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Abstract
Triangular machine translation is a special case001
of low-resource machine translation where the002
language pair of interest has limited parallel003
data, but both languages have abundant par-004
allel data with a pivot language. Naturally,005
the key to triangular machine translation is the006
successful exploitation of such auxiliary data.007
In this work, we propose a transfer-learning-008
based approach that utilizes all types of auxil-009
iary data. As we train auxiliary source-pivot010
and pivot-target translation models, we initial-011
ize some parameters of the pivot side with a012
pre-trained language model and freeze them013
to encourage both translation models to work014
in the same pivot language space, so that they015
can be smoothly transferred to the source-target016
translation model. Experiments show that our017
approach can outperform previous ones.018

1 Introduction019

Machine translation (MT) has achieved promising020

performance when large-scale parallel data is avail-021

able. Unfortunately, the abundance of parallel data022

is largely limited to English, which leads to con-023

cerns on the unfair deployment of machine transla-024

tion service across languages. In turn, researchers025

are increasingly interested in non-English-centric026

machine translation approaches (Fan et al., 2021).027

Triangular MT (Kim et al., 2019; Ji et al., 2020)028

has the potential to alleviate some data scarcity029

conditions when the source and target languages030

both have a good amount of parallel data with a031

pivot language (usually English). Kim et al. (2019)032

have shown that transfer learning is an effective033

approach to triangular MT, surpassing generic ap-034

proaches like multilingual MT.035

However, previous works have not fully ex-036

ploited all types of auxiliary data (Table 1). For037

example, it is reasonable to assume that the source,038

target, and pivot language all have much monolin-039

gual data because of the notable size of parallel040

data between source-pivot and pivot-target.041

approach X Y Z X-Z Z-Y X-Y

no transfer !

pivot translation ! !

step-wise pre-training ! ! !

shared target transfer ! ! ! !

shared source transfer ! ! ! !

simple triang. transfer ! ! ! !

triangular transfer ! ! ! ! ! !

Table 1: Data usage of different approaches (Section
3.2). X, Y, and Z represent source, target, and pivot
language, respectively. Our triangular transfer uses all
types of data.

In this work, we propose a transfer-learning- 042

based approach that exploits all types of auxiliary 043

data. During the training of auxiliary models on 044

auxiliary data, we design parameter freezing mech- 045

anisms that encourage the models to compute the 046

representations in the same pivot language space, 047

so that combining parts of auxiliary models gives 048

a reasonable starting point for finetuning on the 049

source-target data. We verify the effectiveness of 050

our approach with a series of experiments. 051

2 Approach 052

We first present a preliminary approach that is a 053

simple implementation of our basic idea, for ease 054

of understanding. We then present an enhanced ver- 055

sion that achieves better performance. For notation 056

purpose, we use X, Y, and Z to represent source, 057

target, and pivot language, respectively. 058

2.1 Simple Triangular Transfer 059

We show the illustration of the preliminary ap- 060

proach in Figure 1, called simple triangular trans- 061

fer. In Step (1), we prepare a pre-trained language 062

model (PLM) with the pivot language monolingual 063

data. We consider this PLM to define a representa- 064

tion space for the pivot language, and we would like 065

subsequent models to stick to this representation 066
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Figure 1: Simple triangular transfer. Dashed lines repre-
sent parameter initialization. The gray color indicates
some parameters are frozen according to the freezing
strategy (Section 2.3). Other colors represent trainable
parameters in different languages. Below the diagram
shows the data used in each step.

space. In order to achieve this, we freeze certain067

parameters in Step (2) as we train source-pivot and068

pivot-target translation models, which are partly069

initialized by the PLM. For example, the pivot-070

target translation model has the pivot language on071

the source side, so the encoder is initialized by the072

PLM, and some (or all) of its parameters are frozen.073

This ensures that the encoder produces representa-074

tions in the pivot language space, and the decoder075

has to perform translation in this space. Likewise,076

the encoder in the source-pivot translation model077

needs to learn to produce representations in the078

same space. Therefore, when the pivot-target de-079

coder combines with the source-pivot encoder in080

Step (3), they could cooperate more easily in the081

space defined in Step (1).082

We experimented with RoBERTa (Liu et al.,083

2019) and BART (Lewis et al., 2020) as the PLMs.084

We found that simple triangular transfer attains085

about 0.8 higher BLEU by using BART instead of086

RoBERTa. In contrast, we found that dual trans-087

fer (Zhang et al., 2021), one of our baselines, per-088

forms similarly with BART and RoBERTa. When089

used to initialize decoder parameters, RoBERTa090

has to leave the cross attention parameters ran-091

domly initialized, which may explain the superior-092

ity of BART for our approach, while dual transfer093

does not involve initializing decoder parameters.094

Therefore, we choose BART as our default PLM.095

2.2 Triangular Transfer096

A limitation of simple triangular transfer is that097

it does not utilize monolingual data of the source098

and target languages. A naive way is to prepare099

source and target PLMs and use them to initial- 100

ize source-pivot encoder and pivot-target decoder, 101

respectively. However, this leads to marginal im- 102

provement for the final source-target translation 103

performance. This is likely because the source, tar- 104

get, and pivot PLMs are trained independently, so 105

their representation spaces are isolated. 106

Therefore, we intend to train source and target 107

PLMs in the pivot language space as well. To this 108

end, we design another initialization and freezing 109

step inspired by (Zhang et al., 2021), as shown 110

in Figure 2. In this illustration, we use BART as 111

the PLM. Step (2) is the added step of preparing 112

BART models in the source and target languages. 113

As the BART body parameters are inherited from 114

the pivot language BART and frozen, the source 115

and target language BART embeddings are trained 116

to lie in the pivot language space. Then in Step (3), 117

every part of the translation models can be initial- 118

ized in the pivot language space. Again, we freeze 119

parameters in the pivot language side to ensure the 120

representations do not drift too much. 121

2.3 Freezing Strategy 122

There are various choices when we freeze parame- 123

ters in the pivot language side of the source-pivot 124

and pivot-target translation models. Take the en- 125

coder of the pivot-target translation model as the 126

example. In one extreme, we can freeze the em- 127

beddings only; this is good for the optimization of 128

pivot-target translation, but may result in a space 129

that is far away from the pivot language space given 130

by the pivot PLM. In the other extreme, we can 131

freeze the entire encoder, which clearly hurts the 132

pivot-target translation performance. This is hence 133

a trade-off. We experiment with multiple freezing 134

strategies between the two extremes, i.e., freezing a 135

given number of layers. We always ensure that the 136

number of frozen layers is the same for the decoder 137

of the source-pivot translation model. 138

Besides layer-wise freezing, we also try 139

component-wise freezing inspired by (Li et al., 140

2021). In their study, they found that some com- 141

ponents like layer normalization and decoder cross 142

attention are necessary to finetune, while others 143

can be frozen. In particular, we experiment with 144

three strategies based on their findings of the most 145

effective ones in their task. These strategies apply 146

to Step (3) of triangular transfer. 147

LNA-E,D: All layer normalization, encoder self 148

attention, decoder cross attention can be finetuned. 149
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Figure 2: Triangular transfer. Dashed lines represent parameter initialization. The gray color indicates the parameters
are frozen. In Step (3) the gray color shows one of the possible freezing strategies (Section 2.3).

approach BLEU
no transfer 13.49

pivot translation through no transfer 18.99
step-wise pre-training 18.49
shared target transfer 18.88
shared source transfer 18.89

triangular transfer 19.91

Table 2: Comparison with baselines. Our triangular
transfer is significantly better (p < 0.01) than baselines
by paired bootstrap resampling (Koehn, 2004).

Others are frozen.150

LNA-D: All encoder parameters, decoder layer151

normalization and cross attention can be finetuned.152

LNA-e,D: Use LNA-D when training the source-153

pivot model. When training the pivot-target model,154

freeze encoder embeddings in addition to LNA-D.155

3 Experiments156

3.1 Setup157

We conduct experiments on French (Fr)→ German158

(De) translation, with English (En) as the pivot159

language. The evaluation metric is computed by160

SacreBLEU1 (Post, 2018). Our translation model161

is Transformer base (Vaswani et al., 2017). Further162

details can be found in the appendix.163

1SacreBLEU signature: BLEU+case.mixed+numrefs.1+
smooth.exp+tok.13a+version.1.4.12.

3.2 Baselines 164

We compare with several baselines as follows. 165

No transfer: This baseline directly trains on the 166

source-target parallel data. 167

Pivot translation: Two-pass decoding by 168

source-pivot and pivot-target translation. 169

Step-wise pre-training: This is one of the ap- 170

proaches in (Kim et al., 2019) which is simple and 171

robust. It trains a source-pivot translation model 172

and uses the encoder to initialize the encoder of 173

a pivot-target translation model. In order to make 174

this possible, these two encoders need to use a 175

shared source-pivot vocabulary. Then the pivot- 176

target translation model is trained while keeping its 177

encoder frozen. Finally the model is finetuned on 178

source-target parallel data. 179

Shared target dual transfer: Dual transfer 180

(Zhang et al., 2021) is a general transfer learning ap- 181

proach to low-resource machine translation. When 182

applied to triangular MT, it cannot utilize both 183

source-pivot and pivot-target parallel data. Shared 184

target dual transfer uses pivot-target auxiliary trans- 185

lation model and does not exploit source-pivot par- 186

allel data. 187

Shared source dual transfer: The shared 188

source version uses source-pivot translation model 189

for transfer and does not exploit pivot-target paral- 190

lel data. 191

3.3 Main Results 192

We present the performance of our approach and 193

the baselines in Table 2. The no transfer baseline 194
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strategy Fr-En En-De Fr-De
L = 0 31.42 20.95 19.62
L = 1 31.41 20.98 19.76
L = 2 31.55 20.56 19.71
L = 3 31.06 20.54 19.91
L = 4 30.92 20.22 19.68
L = 5 30.39 19.95 19.21
L = 6 30.31 19.11 19.02

LNA-E,D 28.72 17.92 17.97
LNA-D 31.08 20.23 18.75

LNA-e,D 31.08 19.97 18.25

Table 3: BLEU scores of different freezing strategies for
triangular transfer. For layer-wise freezing, the embed-
dings and the lowest L layers of the pivot side network
are frozen. If L = 0, only the embeddings are frozen.

performs poorly because it is trained on a small195

amount of parallel data. The other baselines per-196

form much better. Among them, pivot translation197

attains the best performance in terms of BLEU,198

at the cost of doubled latency. Our approach can199

outperform all the baselines.200

3.4 The Effect of Freezing Strategies201

From Table 3, we can observe the effect of dif-202

ferent freezing strategies. For layer-wise freezing,203

we see a roughly monotonic trend of the Fr-En204

and En-De performance with respect to the num-205

ber of frozen layers: The more frozen layers, the206

lower their BLEU scores. However, the best Fr-De207

performance is achieved with L = 3. This indi-208

cates the trade-off between the auxiliary models’209

performance and the pivot space anchoring. For210

component-wise freezing, the Fr-En and En-De211

performance follows a similar trend, but the Fr-De212

performance that we ultimately care about is not as213

good.214

3.5 Using Monolingual Data215

Table 4 shows the effect of different ways of us-216

ing monolingual data. The naive way is to prepare217

PLMs with monolingual data and initialize the en-218

coder or decoder where needed. For pivot trans-219

lation, this is known as BERT2BERT (Rothe et al.,220

2020) for the source-pivot and pivot-target transla-221

tion models. For dual transfer, parts of the auxiliary222

models can be initialized by PLMs (e.g., for shared223

target transfer, the pivot-target decoder is initial-224

ized). For Step (2) in simple triangular transfer,225

we can also initialize the pivot-target decoder and226

approach BLEU
pivot translation through no transfer 18.99

pivot translation through BERT2BERT 19.06
shared target transfer 18.88

shared target transfer + naive mono. 18.93
shared source transfer 18.89

shared source transfer + naive mono. 18.97
simple triang. transfer 18.96

simple triang. transfer + naive mono. 19.00
triangular transfer 19.62

Table 4: Naive ways of using auxiliary monolingual
data do not bring clear improvement. Our approaches
freeze embeddings as the freezing strategy in this table.

approach BLEU
no transfer 18.74

shared target transfer 20.53
shared source transfer 20.73

triangular transfer 20.84

Table 5: BLEU scores from training with pivot-based
back-translation.

source-pivot encoder with PLMs. However, none 227

of the above methods shows clear improvement. 228

This is likely because these methods only help the 229

auxiliary translation models to train, which is not 230

necessary as they can be trained well with abun- 231

dant parallel data already. In contrast, our design 232

of Step (2) in triangular transfer additionally helps 233

the auxiliary translation models to stay in the pivot 234

language space. 235

3.6 Pivot-Based Back-Translation 236

Following (Kim et al., 2019), we generate syn- 237

thetic parallel Fr-De data with pivot-based back- 238

translation (Bertoldi et al., 2008). Results in Table 239

5 show that triangular transfer and dual transfer 240

clearly outperform the no transfer baseline. 241

4 Conclusion 242

In this work, we propose a transfer-learning-based 243

approach that utilizes all types of auxiliary data, 244

including both source-pivot and pivot-target paral- 245

lel data, as well as involved monolingual data. We 246

investigate different freezing strategies for train- 247

ing the auxiliary models to improve source-target 248

translation, and achieve better performance than 249

previous approaches. 250
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A Data and Preprocessing 349

We gather data from WMT, shown in Tables 6 and 350

7. 351

The preprocessing pipeline includes punctua- 352

tion normalization, tokenization, and deduplication. 353

Each language is encoded with byte pair encod- 354

ing (BPE) (Sennrich et al., 2016) with 32k merge 355

operations. The BPE codes and vocabularies are 356

learned on each language’s monolingual data, and 357

then used to segment parallel data. Sentences with 358

more than 128 subwords are removed. Parallel 359

sentences are cleaned with length ratio 1.5 (length 360

counted by subwords). 361
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lang. source train dev test

En-De WMT 2019
Europarl v9, News Commentary v14,

newstest2011 newstest2012
Document-split Rapid corpus

Fr-En WMT 2015
Europarl v7, News Commentary v10,

newstest2011 newstest2012
UN corpus, 109 French-English corpus

Fr-De WMT 2019 News Commentary v14, newstest2008-2010 newstest2011 newstest2012

Table 6: Parallel data source.

lang. source name
En WMT 2018 News Crawl 2014-2017
De WMT 2021 100m subset from WMT 2021

Fr WMT 2015
Europarl v7, News Commentary v10,

News Crawl 2007-2014, News Discussions

Table 7: Monolingual data source.

language code # sentence (pair)
En-De 3.1m
Fr-En 29.5m
Fr-De 247k

En 93.9m
De 100.0m
Fr 44.6m

Table 8: Training data statistics.

The final training data statistics is shown in Table362

8.363

B Hyperparameters364

Our implementation is based on fairseq (Ott365

et al., 2019). We share decoder input and output366

embeddings (Press and Wolf, 2017). The optimizer367

is Adam. Dropout and label smoothing are both368

set to 0.1. The batch size is 6,144 per GPU and369

we train on 8 GPUs. The peak learning rate is370

5×10−4 for the no transfer baseline and auxiliary371

models, 1× 10−4 for the Fr→De model of step-372

wise pre-training and dual transfer, and 7× 10−5373

for the Fr→De model of triangular transfer. The374

learning rate warms up for 4,000 steps, and then375

follows inverse square root decay. Early stopping376

happens when the development BLEU does not377

improve for 10 epochs.378

RoBERTa and BART models use exactly the379

same architecture as Transformer base. The mask380

ratio is 15%. The batch size is 256 sentences per381

GPU, and each sentence contains up to 128 tokens.382

The learning rate warms up for 10,000 steps to the383

peak 5×10−4, and then follows polynomial decay. 384

They are trained for 125k steps. 385
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