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ABSTRACT

Advancements in self-supervised learning (SSL) for machine vision have enhanced
representation robustness and model performance, leading to the emergence of
publicly shared pre-trained backbones, such as ResNet and ViT models tuned
with SSL methods like SimCLR. Due to the computational and data demands
of pre-training, the utilisation of such backbones becomes a strenuous necessity.
However, employing backbones may imply adhering to the existing vulnerabilities
towards adversarial attacks. Prior research on adversarial robustness typically
examines attacks with either full (white-box) or no direct access (black-box) to
the target model, but the adversarial robustness of models tuned on known pre-
trained backbones remains largely unexplored. Furthermore, it is unclear which
tuning configuration is critical for mitigating exploitation risks. In this work, we
systematically study the adversarial robustness of models that use such backbones,
evaluating 20, 000 combinations of tuning configurations, including fine-tuning
techniques, backbone families, datasets, and attack types. To uncover and exploit
vulnerabilities, we propose to use proxy models to transfer adversarial attacks, fine-
tuning them with various configurations to simulate different levels of knowledge
about the target. Our findings show that proxy-based attacks can outperform
strong query-based black-box methods with sizeable budgets approaching the
effectiveness of white-box methods. Critically, we construct a naive “backbone
attack”, leveraging only the shared backbone, and show that even it can achieve
efficacy consistently surpassing black-box and closing in towards white-box attacks,
thus exposing critical risks in model-sharing practices. Finally, our ablations reveal
how tuning configuration knowledge impacts attack transferability.

1 INTRODUCTION

Machine vision models pre-trained with massive amounts of data, which utilise self-supervised
tuning techniques (Newell & Deng, 2020) are shown to be robust and highly performing (Goyal
et al., 2021a; Goldblum et al., 2024) feature-extracting backbones (Elharrouss et al., 2022; Han
et al., 2022), which are further used in a variety of tasks, from classification (Atito et al., 2021; Chen
et al., 2020b) to semantic segmentation (Ziegler & Asano, 2022). However, creating such backbones
incurs substantial data annotation (Jing & Tian, 2020) and computational costs (Han et al., 2022),
consequently rendering the use of such publicly available pre-trained backbones the most common
and efficient solution for researchers and engineers alike. Prior research has focused on analysing
safety and adversarial robustness in different settings w.r.t. knowledge of the target model weights,
fine-tuning data, fine-tuning techniques and other tuning configurations – complete knowledge, i.e.
white-box (Porkodi et al., 2018) vs. no knowledge, i.e. black-box (Bhambri et al., 2019).

Although in practice, an attacker can access partial knowledge (Lord et al., 2022; Zhu et al., 2022;
Carlini et al., 2022) of how the targeted model was produced, i.e. original backbone weights, tuning
recipe, etc., the adversarial robustness of models tuned on a downstream task from a given pre-trained
backbone remains largely underexplored. We refer to settings with partial knowledge of the target
model tuning configuration as grey-box (S. et al., 2018). These types of configurations are important
both for research and production settings because with an increased usage (Goldblum et al., 2023)
of publicly available pre-trained backbones for downstream applications, we are still incapable of
assessing the potential exploitation susceptibility and inherent risks within models tuned on top of
them and subsequently enhance future pre-trained backbone sharing practices.
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Figure 1: The figure depicts all of the settings used to evaluate adversarial vulnerabilities given
different information of the target model construction. From left to right, we simulate exhaustive
varying combinations of tuning configurations available from the target model during adversarial
attack construction. All of the created proxy models are used separately to assess adversarial
transferability.

To address this gap, in our work, we systematically explore the safety from adversarial attacks in
models tuned on downstream classification tasks from known publicly available backbones pre-
trained with self-supervised objectives. We further explicitly measure the effect of the target model
construction configuration by simulating different levels of its availability during the adversarial
attack. For this purpose, we initially train 352 diverse models from 21 families of commonly used
pre-trained backbones using 4 different fine-tuning techniques and 4 datasets. We fix each of these
networks as potential target models and transfer adversarial attacks using all other models produced
from the same backbones as proxy surrogates (Qin et al., 2023; Lord et al., 2022) for the construction
of adversarial attacks. Each surrogate model simulates varying levels of knowledge availability w.r.t.
target model construction configuration on top of the available backbone during adversarial attack
construction. This constitutes approximately 20, 000 adversarial transferability comparisons between
target and proxy pairs across all model families and configuration variations. By assessing the
adversarial transferability of attacks from these surrogate models, we are able to explicitly measure
the impact of the availability of each combination of tuning configurations on the final target model
during adversarial sample generation, as depicted in Figure 1.

We further explore a naive exploitation method referred to as backbone attack that only utilises
the pre-trained feature extractor for adversarial sample construction, in this setting. The attack
uses projected gradient descent over the representation space to disentangle the features of similar
examples. Our results show that both proxy models and even simple backbone attacks are capable of
surpassing strong query-based black-box methods and achieving comparable efficacy to white-box
performance. The findings indicate that backbone attacks, where the attacker lacks knowledge of
tuning configuration about the target model, are generally more effective than attempts to generate
adversarial samples with limited knowledge. This highlights the vulnerability of models built on
publicly available backbones.

Our ablations show that having access to the weights of the pre-trained backbone is functionally
equivalent to possessing all other tuning configurations about the target model when performing
adversarial attacks. We compare these two scenarios and show that both lead to similar vulnerabilities,
highlighting the interchangeable nature of these knowledge types in attack effectiveness. Our results
emphasise the risks in sharing and deploying pre-trained backbones, particularly concerning the
disclosure of configurations. Our experimental framework can be seen in Figure 1.
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In summary, our contributions are as follows: (i) we formalize and systematically study grey-box
adversarial attacks, which reflects realistic scenarios where attackers have partial knowledge of
target model tuning configuration, such as access to pre-trained backbone weights and/or fine-tuning
configuration; (ii) we simulate over 20, 000 comparisons of adversarial transferability, evaluating
the impact of varying levels of tuning configuration availability about target models during the
construction of attacks; (iii) we explore a naive attack method, backbone attacks, which leverages the
pre-trained backbone’s representation space for adversarial sample generation, demonstrating that
even such a simple approach can achieve stronger performance compared to query-based black-box
methods and often approaching white-box attack effectiveness; (iv) we show that access to pre-
trained backbone weights alone enables adversarial attacks as effectively as access to the full tuning
configuration about the target model, emphasizing the inherent vulnerabilities in publicly available
pre-trained backbones.

2 RELATED WORK

Self Supervised Learning With the emergence of massive unannotated datasets for machine vision
such as YFCC100M (Thomee et al., 2016), ImageNet (Deng et al., 2009), CIFAR (Krizhevsky,
2009) and others, Self Supervised Learning (SSL) techniques (Jing & Tian, 2021) have become
increasingly more popular for pre-training vision models (Newell & Deng, 2020). This prompted the
creation of various families of SSL objectives, such as colorization prediction (Zhang et al., 2016),
jigsaw puzzle solving (Noroozi & Favaro, 2016) with further invariance constraints (Misra & van der
Maaten, 2020, PIRL), non-parametric instance discrimination (Wu et al., 2018, NPID, NPID++),
unsupervised clustering (Caron et al., 2018), rotation prediction (Gidaris et al., 2018, RotNet), sample
clustering with cluster assignment constraints (Caron et al., 2020, SwAV), contrastive representation
entanglement (Chen et al., 2020a, SimCLR), self-distillation without labels (Caron et al., 2021,
DINO) and others (Jing & Tian, 2021). Numerous architectures, like AlexNet (Krizhevsky et al.,
2012), variants of ResNet (He et al., 2016) and visual transformers (Dosovitskiy et al., 2021; Touvron
et al., 2021; Ali et al., 2021) were trained using these SSL methods and shared for public use, thus
forming the set of widely used pre-trained backbones. We obtain all of these models trained with
different self-supervised objectives from their original designated studies summarised in VISSL
(Goyal et al., 2021b). An exhaustive list of models is shown in Table 3.

Adversarial Attacks The availability of pre-trained backbones allows for testing them for vulner-
abilities towards adversarial attacks, which are learnable imperceptible perturbations generated to
mislead models into making incorrect predictions (Szegedy et al., 2014; Goodfellow et al., 2015).
Several attack strategies have been studied, including single-step fast gradient descent (Goodfellow
et al., 2014; Kurakin et al., 2017, FGSM), and computationally more expensive optimization-based
attacks, such as projected gradient descent based attacks (Madry et al., 2018, PGD), CW (Carlini
& Wagner, 2017), JSMA (Papernot et al., 2017), and others (Dong et al., 2018; Moosavi-Dezfooli
et al., 2016; Madry et al., 2018; Ma et al., 2023). All of these attacks assume complete access to the
target model, which is known as the white-box (Papernot et al., 2017) setting. These attacks can be
targeted to confuse the model to infer a specific wrong class or untargeted, aiming to make them
infer any incorrect label. However, an opposite setting with no information, referred to as black-box
(Papernot et al., 2017), has also been explored as a more common setting during adversarial attack
construction. These methods involve attempts at gradient estimation (Chen et al., 2017; Ilyas et al.,
2018; Bhagoji et al., 2018), adversarial transferability (Papernot et al., 2017; Chen et al., 2020c), local
search (Narodytska & Kasiviswanathan, 2016; Brendel et al., 2018; Li et al., 2019; Moon et al., 2019),
combinatorial perturbations (Moon et al., 2019) and others (Bhambri et al., 2019). However, a great
portion of these methods also require massive sample query budgets ranging from

[
103, 105

]
queries,

or computational resources for creating each adversarial sample (Bhambri et al., 2019). Compared to
these, we introduce a novel setup with the knowledge of the pre-trained backbone and varying levels
of partially known target model tuning configuration during adversarial attack construction, which
we refer to as grey-box. This setup reflects common scenarios where attackers have partial knowledge
of the target model tuning configuration, allowing them to systematically assess the effect of this
knowledge on adversarial transferability and show the risks in the current model-sharing practices.
We show that even simple naive attacks are more capable of exploiting models without the need for a
sizable query budget compared to black-box attacks.
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Adversarial Transferability Our work is also aligned with adversarial transferability, where
adversarial examples generated for one model can mislead other models, even without access to
the target model weights or training data. This property poses significant security concerns, as it
allows for effective black-box attacks on systems with no direct access (Papernot et al., 2017; Ilyas
et al., 2018). Efforts can be divided into generation-based and optimisation methods. Generative
methods have emerged as an alternative to iterative attacks, where adversarial generators are trained
to produce transferable perturbations. For instance, Poursaeed et al. (2018) employs autoencoders
trained on white-box models to generate adversarial examples. Most attacks aiming at adversarial
transferability strongly depend on the availability of data from the target domain (Carlini & Wagner,
2017; Papernot et al., 2017), although attempts at improving the transferability of baseline adversarial
samples have also been explored (Li et al., 2020; Zhang et al., 2022; Li et al., 2023; 2024; Naseer
et al., 2020a). However, although current adversarial transferability methods claim to produce massive
vulnerabilities in machine vision models, Katzir & Elovici (2021) examines the practical implications
of adversarial transferability, which are frequently overstated. That study demonstrates that it is nearly
impossible to reliably predict whether a specific adversarial example will transfer to an unseen target
model in a black-box setting. This perspective shows the importance of systematically evaluating
transferability in realistic settings, including scenarios where attackers are sensitive to the cost of
failed attempts. In our study, we offer a novel systematic approach to explicitly assess the adversarial
transferability with varying levels of configuration knowledge.

3 METHODOLOGY

Preliminaries For consistency, we employ the following notation. We denote each dataset as
D = {X ,Y}; where X = {x1, . . . , x|D|} is a set of images, with xi ∈ RH×W×C ; where H ,W
and C are the height, width and the channels of the image accordingly and Y = {y1 . . . yn} is
used as the set of ground truth labels. We denote the training, validation and testing splits per task
as D = {Dtrain,Dval,Dtest}. A model is defined as a tuple M = M(D,W,B,F), where D
contains the dataset used for training,W are the weights of the trained model and B is the pre-trained
back-bone B(WB) with available weightsWB. The notation F(T ,Z), where T encodes the mode of
tuning (e.g., full fine-tuning, partial fine-tuning, etc.) and Z the depth of tuning of the final classifier
on top of the backbone.

Tuning configuration variations We define the variations of the available configuration
about the target model M during an adversarial attack as a unit of release R =
R(M(D,W,B(WB),F(T ,Z))). For example, if the target fine-tuning mode Z target and dataset
Dtarget are not known, the unit of release will beR = R(M(∗,W,B(WB),F(T , ∗))). Note that the
black-box setting will correspond to the unit of releaseR(M(∗, ∗, ∗, ∗, ∗)) and the white-box setting
toR(M(D,W,B(WB),F(T ,Z))), all the variations between these are considered grey-box. When
discussing any experiments within the grey-box setup, we assume the minimal unit of release contains
knowledge about at least the pre-trained backbone i.e. R(M(∗, ∗,B(WB), ∗).

Adversarial Attacks with Proxy Models To test the adversarial robustness of the models trained
from the same pre-trained backbone, we create a set of proxy modelsMproxy = {Mproxy

1 . . .Mproxy
v }

given the pre-trained backbone B, where v is the number of all possible units of release between
black-box and white-box settings that include the backbone. For each proxy modelMproxy

i with its
designated configuration unit of releaseRi, we use an adversarial attack A to generate adversarial
noise and further transfer it to the target modelMtarget. This means that given an example image x
with a label y, target and proxy modelsMtarget,Mproxy we want to produce a sample x′ that would
fool the target model, such that argmaxMtarget(x′) ̸= y. If we are using a targeted attack, we want
Mtarget(x′) = t where t is the targeted class different from the ground truth t ̸= cgt. After creating
the adversarial attack for each sample in Dproxy

test and Dtarget
test , we evaluate the success rate of the

attack and the success rate of the transferability to the target model. To measure the success and
robustness of the adversarial attack and its transferability, we define the following metrics:

Attack Success Rate (ASR). The proportion of adversarial examples that fool the proxy model
Mproxy

i :

ASRi =
1

|Dproxy
test |

∑
x∈Dproxy

test

I [Mproxy
i (x′) ̸= y] , (1)
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Algorithm 1 Backbone Attack
Input: Model backbone B, clean image x0, perturbation bound ϵ, step size α, number of steps T ,

distance function Lcosine, random start flag
Output: Adversarial image xadv
Initialization:
xadv ← x0

if random start then
xadv ← xadv + Uniform(−ϵ, ϵ)
xadv ← Clip(xadv, 0, 1)

end
Fixed Original Image Representation:
z0 ← StopGrad(B(x0))

for t = 1 to T do
Forward Pass:

zadv ← B(xadv) // Adversarial image representation
Compute Loss and Gradient:
L ← 1− cos(zadv, z0) // Distance loss

g ← ∇xadvL // Gradient w.r.t xadv
Update Adversarial Image:

xadv ← xadv + α · sign(g) // PGD step
Projection:

δ ← Clip(xadv − x0,−ϵ, ϵ) // Project perturbation into ℓ∞-ball with
perturbation budget ϵ

xadv ← Clip(x0 + δ, 0, 1) // pixel range
end
return xadv

where I[·] is the indicator function.

Transfer Success Rate (TSR). The proportion of adversarial examples generated byMproxy
i that

also fool the target modelMtarget:

TSRi =
1

|Dtarget
test |

∑
x∈Dtarget

test

I
[
Mtarget(x′) ̸= y

]
. (2)

This setup allows us to explicitly quantify how the availability of diverse configuration combinations
explicitly impacts the adversarial transferability of the given model, thus highlighting the risks in the
model-sharing practices. A visual depiction of this can be seen in Figure 1.

3.1 BACKBONE ATTACK

To test the vulnerabilities associated with publicly available pre-trained feature extractors, we con-
struct a backbone attack, which only utilises the known backbone B of the modelMtarget. The aim,
similar to the prior paragraph, is to create an adversarial attack from B to transfer to the target model
Mtarget. To do this, we use a Projected Gradient Descent-based method (Madry et al., 2018, PGD),
where the attack iteratively perturbs the input images in order to maximize the distance between the
feature representations of the clean input and the adversarial input, as derived from the backbone B.
More formally, let x and x̃ represent the clean input and adversarial input, respectively. The attack
iteratively refines x̃ such that:

x̃t+1 = ProjS (x̃t + α · sign (∇x̃t
LB(x, x̃t))) , (3)

where LB is the loss function defined to measure the distance between the feature representations of
the clean and adversarial inputs. The backbone representations fB are extracted as fB(x) = B(x),
and the differentiable loss can be formulated as:

LB(x, x̃) = 1− cos (fB(x), fB(x̃)) , (4)

5
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Figure 2: The impact of the unavailability, i.e. difference from the target model white-box perfor-
mance, of all tuning configurations on adversarial transferability during proxy attack construction and
the backbone attack. The results show the average difference from the white-box in transferability
using PGD with a higher budget (left) and the segmentation w.r.t. in the target training mode (right).

where cos(·, ·) represents the cosine similarity between the two feature vectors. To prevent gradient
computation from propagating to the clean representation fB(x), we utilize a stop-gradient operation
f̃B(x) = SG(fB(x)). The adversarial input x̃ is initialized with a random perturbation within the ℓ∞
ball of radius ϵ, and the updates are iteratively projected back onto this ball using the ProjS operator:

ProjS(x̃) = clip (x+ δ, 0, 1) , (5)
where δ = clip (x̃− x,−ϵ, ϵ) .

The pseudo-code of the complete process can be seen in Algorithm 1. In summary, the backbone
attack focuses solely on the backbone B, without requiring any knowledge of the full target model
Mtarget, thereby revealing vulnerabilities inherent to publicly available feature extractors. A form
of this algorithm has been utilised as a naive self-supervised perturbation generation component
in adversarial defence training (Naseer et al., 2020b, NPR), however, it has not been explored
individually. We only use this attack to showcase that even naive backbone exploitation methods can
have significant adversarial transferability.

4 EXPERIMENTAL SETUP

Original Entropy Adversarial Entropy

Metadata type F-Statistic P-Value F-Statistic P-Value

Target Tune Mode 0.00 0.96 1238.7 0.0
Proxy Tune Mode 0.02 0.88 0.5 0.4
Target Dataset 2812.25 0.00 1184.1 0.0
Proxy Dataset 8.31 0.00 5.0 0.0
Target Tune Depth 5.64 0.01 0.36 0
Proxy Tune Depth 0.08 0.77 0.00 0

Table 1: Variance analysis of entropy values across categorical
variables. The table shows F-statistics and p-values for both origi-
nal and adversarial entropy means. Significant p-values (p < 0.05)
show notable variations in entropy across tuning configurations.

Image classification datasets
Through our study, we use 4
datasets covering both classical
and domain-specific classifica-
tion benchmarks, such as CIFAR-
10 and CIFAR-100 (Beyer et al.,
2020), Oxford-IIIT Pets (Parkhi
et al., 2012) and Oxford Flowers-
102 (Nilsback & Zisserman,
2008). We train the proxy and
target model variations on each
one of the datasets using the
recipe and hyperparameters by
(Kolesnikov et al., 2020), repro-
ducing the state-of-the-art model
performance results (Dosovitskiy
et al., 2020; Yu et al., 2022; Bruno et al., 2022; Foret et al., 2020).

Model variations We use 21 different models tuned from 5 architectures, 9 self-supervised objec-
tives and 3 pre-training datasets. A detailed overview of these can be seen in Table 3 in Section A.1.
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Figure 3: The impact of the unavailability, i.e. difference from the target model white-box perfor-
mance, of all tuning configurations on adversarial transferability during proxy attack construction
and the backbone attack. The results show the average transferability for PGD with a higher budget
for targeted vs untargeted attacks (left) and the segmentation w.r.t. the target training dataset (right).

Model Fine-tuning Variations For training the proxy and target models, we employ two modes
of training T , with full-tuning of the weights and with fine-tuning only the last added classification
layers on top of the pre-trained backbone. We also define the depth of tuning Z as the number of clas-
sification layers added on top of the pre-trained backbone. We use {1, 3} final layers, corresponding
to shallow and deep tuning settings.

Adversarial Attacks To assess the success rate of white-box adversarial attacks and the adversarial
transferability from the proxy models, we employ FGSM (Goodfellow et al., 2015) and PGD (Madry
et al., 2018). We use standard attack hyper-parameters introduced in parallel adversarial transferability
studies (Waseda et al., 2023; Naseer et al., 2022). For a fair comparison, we also use the same values
for our backbone-attack. We also impose a standard perturbation budget ϵ ≤ 8

255 in line with prior
studies (Naseer et al., 2022) outline in Algorithm 1. To show that our results are consistent even with
a higher computational budget, we report the results of PGD with 4 times more iterations per sample
for white-box, proxy and backbone attack experiments. For black-box experiments, we use the Square
attack (Andriushchenko et al., 2020), which is a query-efficient method that uses a random search
through adversarial sample construction. To standardise the query budget for all architectures and
simulate real-world constraints, we allow 10 queries of the target model per sample. The information
about the used computational resource can be found in Section A.2.

5 RESULTS

5.1 WHAT CONFIGURATION MATTERS

To quantify the impact of each possible configuration availability along with the backbone knowledge
during adversarial attack construction, we compute the difference between the adversarial attack
success rate (ASR) for the target model and the transferability success rate (TSR) from a proxy model,
trained from the same backbone, with partial information. We report the results obtained with the
PGD attack trained with higher iteration steps per sample as that is more representative for measuring
the adversarial attack success in white-box and grey-box settings.

Which configuration is important? Our results in Figure 2 show that the most significant perfor-
mance decay compared to a white-box attack performance occurs when the attacker is unaware of the
mode of the training of the target model, i.e. if it is trained with complete parameters or only tunes
the last classification layers. The second most impactful knowledge for attack construction is the
availability of the target tuning dataset. The depth of the tuning is the least important knowledge for
obtaining a transferable attack. We further show in the right part of Figure 2 that models that fine-tune
the last classification layers can be trivially exploited with transferable attacks, achieving results
significantly better than strong black-box exploitation and closing white-box attack performance. It
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is, however, apparent that training all of the model weights substantially decreases the efficiency of
proxy attacks, with almost no correlation towards configuration availability. We further show that
our results remain consistent w.r.t. the choice of the dataset, and regardless if the adversarial attack
is targeted or untargeted as seen in Figure 3. It is interesting to note that for datasets with more
domain-specific content, such as Oxford-IIIT Pets and Oxford Flowers-102, the effectiveness of the
proxy attack dwindles, although these datasets are much less diverse compared to CIFAR-100.
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Figure 4: Impact of the unavailability of each tuning
configuration on model decision-making. Higher JS di-
vergence implies a bigger change in final classification.

Tuning configuration impacts the quality
of adversarial attacks We also want to
measure the effectiveness of the adversarial
attack and the impact of the tuning config-
uration on it by quantifying how the gen-
erated adversarial sample has shifted the
decision-making of the model. To do this,
we compute the entropy of the final soft-
max layer for each original sample and its
adversarial counterpart, and perform a com-
plete ANOVA variance analysis (St et al.,
1989) of the entropy distribution. This anal-
ysis, presented in Table 1, tests whether
the means of entropies from the original
and adversarial images differ significantly
across the groups of available tuning con-
figurations. A perfect attack would produce
a sample that does not majorly impact the
entropy of the model. The analysis reveals
that the target dataset, and tuning mode
significantly influence entropy, particularly
in adversarial scenarios. This finding sug-
gests that while this configuration aids in crafting effective adversarial samples, it also plays a critical
role in amplifying entropy shifts, thereby making these adversarial samples more detectable.

To quantify the impact of the availability of tuning configuration during the construction of attacks
on the decision-making of the model, we also compute the Jensen-Shannon Divergence (Menéndez
et al., 1997) between the output softmax distributions of the model produced for original samples and
their adversarial counterparts, seen in Figure 4. High JS divergence suggests a strong attack, as the
adversarial example causes a significant shift in the model’s predicted probabilities, with minimal
changes to the input sample under an imposed perturbation budget ϵ. Our results show that not
knowing the mode of the target model training causes the most degradation in constructing successful
adversarial samples with proxy attacks. The second most important fact is the choice of the target
dataset, while the depth of the final classification layers does not seem to be impactful for creating
adversarial samples. Figure 4 reveals a critical insight: proxy attacks, even when constructed without
knowledge of the target model’s dataset or depth, can generate adversarial samples that induce more
pronounced distribution shifts than white-box attacks. In other words, attackers do need to have
access to the training dataset or model classification depth to craft adversarial samples capable of
significantly disrupting the target model’s decision-making process.

5.2 BACKBONE-ATTACKS

To test the extent of the vulnerabilities that the knowledge of the pre-trained backbone can cause,
we evaluate a naive exploitation method, backbone attack, which only uses the pre-trained feature
extractor for adversarial sample construction. Our results in Figure 2 and Figure 3 show that backbone
attacks are highly effective at producing transferable adversarial samples regardless of the target
model tuning mode, dataset or classification layer depth. This naive attack shows significantly higher
transferability compared to a strong black-box attack with a sizeable query and iteration budget
and almost all proxy attacks. The results are consistent across all configuration variations, showing
that even a naive attack can exploit the target model vulnerabilities closely to a white-box setting,
given the knowledge of the pre-trained backbone. Moreover, in Figure 4, we see that the adversarial
samples produced from this attack, on average, cause a bigger shift in the model’s decision-making
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compared to white-box attacks. This indicates that backbone attacks amplify the uncertainty in the
target model’s predictions, making them more disruptive than conventional white-box attacks. A
concerning aspect of backbone attacks is their effectiveness in resource-constrained environments.
Unlike black-box attacks, which often require extensive computation or iterative querying, backbone
attacks can be executed with minimal resources, leveraging pre-trained models freely available in
public repositories. This ease of implementation raises concerns, as it lowers the barrier for malicious
actors to exploit adversarial vulnerabilities.

5.3 KNOWING THE WEIGHTS VS KNOWING EVERYTHING ELSE
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Figure 5: Scenarios where adversaries either lack backbone
weights or only possess them. The latter is shown as Back-
bonePGD (SwaV ResNet-50).

To isolate the impact of pre-trained
backbone knowledge in adversarial
transferability, we take two ResNet-
50 SwAV backbones pre-trained with
different batch sizes and further tuned
with identical configuration variations.
This allows for the production of two
sets of models with matching training
configurations but varying weights;
one set is chosen as the target, and the
other as the proxy model. We aim to
compare the adversarial transferability
of the attacks from the set of proxies
towards their matching targets with
the backbone attacks. This allows us
to simulate conditions where adver-
saries either know all configurations
but lack the weights or have access to
the backbone weights alone.

Our results in Figure 5 show that the
knowledge of the pre-trained back-
bone is, on average, a stronger or at
least an equivalent signal for producing adversarially transferable attacks compared to possessing all
of the training configurations without the knowledge of the weights. The results are consistent across
all datasets, with domain-specific datasets showing marginal differences in adversarial transferability
between the two scenarios. This means that possessing information about only the target model
backbone is equivalent to knowing all of the training configurations for constructing transferable
adversarial samples.

6 CONCLUSIONS

We investigated the vulnerabilities of machine vision models fine-tuned from publicly available pre-
trained backbones under a formalised grey-box adversarial setting. We systematically measured the
effect of varying levels of training configuration availability for constructing transferable adversarial
attacks. We also explored a naive backbone attack method in this setting, showing that access to
backbone weights is sufficient for obtaining adversarial attacks significantly better than query-based
black-box settings and comparable to white-box performance. We found that these attacks often
induce more drastic shifts in the model’s decision-making compared to white-box attacks. We
demonstrated that access to backbone weights is equivalent in effectiveness to possessing all tuning
configurations about the target model, making public backbones a critical security concern. Our
results highlight the risks associated with sharing pre-trained backbones, as they enable attackers to
craft highly effective adversarial samples, even with minimal additional information. These findings
underscore the need for more thought-out practices in sharing pre-trained backbones to mitigate the
inherent vulnerabilities exposed by adversarial transferability.
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We confirm that our experiments respect privacy, avoid misuse, disclose limitations and potential
harms, and acknowledge societal impacts. All datasets used were obtained under proper licenses or
permissions, and any use of adversarial methods is justified and documented to alert downstream
users of risks.

REPRODUCIBILITY REPORT

To reproduce the results of our study, we provide the complete codebase, processing pipelines and
hyperparameters for each dataset. We also make the rigorous details and checkpoints of all of the
models in our study across all of the datasets publicly available for further experimentation and
exploration.
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Model Families CIFAR10 CIFAR100 Oxford Flowers Oxford Pets
AlexNet (Colorization, IN1K) 88.97 98.96 24.91 49.94
AlexNet (Colorization, IN22K) 89.56 98.92 25.19 50.06
AlexNet (Colorization, YFCC100M) 87.84 98.55 24.91 49.96
AlexNet (Jigsaw, IN1K) 53.25 74.03 26.96 45.38
AlexNet (Jigsaw, IN22K) 53.06 73.76 30.61 49.86
AlexNet (DeepCluster V2) 49.59 64.38 27.15 44.52
ResNet-50 (Jigsaw, IN22K) 61.03 81.81 26.37 47.28
ResNet-50 (Colorization, IN1K) 89.86 98.07 24.91 50.12
ResNet-50 (Colorization, IN22K) 88.99 97.89 27.01 50.00
ResNet-50 (Jigsaw, IN1K) 56.34 80.01 25.46 48.12
ResNet-50 (Jigsaw, IN22K) 54.48 75.08 26.79 47.75
ResNet-50 (RotNet, IN1K) 47.71 72.61 37.86 45.69
ResNet-50 (Jigsaw, IN1K) 58.02 78.32 26.17 48.06
ResNet-50 (NPID) 58.37 80.39 49.77 48.42
ResNet-50 (PIRL) 58.80 84.12 34.03 44.10
ResNet-101 (SimCLR) 55.09 70.34 28.54 47.12
ResNet-50 (SimCLR) 51.57 65.91 30.26 44.12
ResNet-50 (SwAV, 400ep) 48.63 68.46 28.79 44.33
ResNet-50 (SwAV, 800ep) 50.23 67.89 27.73 45.33
DeiT-Small (DINO) 63.37 85.08 26.56 47.26
XCiT-Small (DINO) 49.46 64.84 27.19 46.76

Table 2: Adversarial Transferability Averaged for each dataset per model architecture type

A EXPERIMENTAL DETIALS

A.1 MODEL VARIATIONS AND ADVERSARIAL TRANSFERABILITY

The adversarial transferability for each type of model can be seen in Table 2. The complete set of
model variations used throughout the experimentations can be observed in Table 3.

A.2 COMPUTATIONAL RESOURCES

All experiments were conducted using two compute nodes, each equipped with 8 NVIDIA A100
GPUs (80 GB memory per GPU), resulting in a total of 16 GPUs. Each node was powered 96 vCPUs
(Intel Xeon Platinum) and 400 GB of RAM. Training all 352 model variations required approximately
3200 GPU-hours. The adversarial evaluation phase—including proxy attack generation, backbone
attacks, and high-budget PGD experiments—required an additional 1800 GPU-hours. To ensure
consistency, we fixed all random seeds to 42 across all runs, including for NumPy, PyTorch, and
Python’s built-in random module. Model tuning configurations, checkpoints, logs, and attack results
were stored for full reproducibility.
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SSL Method Pretraining Dataset Architecture
Colorization (Zhang et al., 2016)

Colorization YFCC100M AlexNet
Colorization ImageNet-1K AlexNet
Colorization ImageNet-1K ResNet-50
Colorization ImageNet-21K AlexNet
Colorization ImageNet-21K ResNet-50

Jigsaw Puzzle (Noroozi & Favaro, 2016)
Jigsaw Puzzle ImageNet-21K ResNet-50
Jigsaw Puzzle ImageNet-1K ResNet-50
Jigsaw Puzzle ImageNet-21K ResNet-50
Jigsaw Puzzle ImageNet-21K AlexNet
Jigsaw Puzzle ImageNet-1K AlexNet
Jigsaw Puzzle ImageNet-1K ResNet-50

PIRL (Jigsaw-based) (Misra & van der Maaten, 2020)
PIRL ImageNet-1K ResNet-50

Rotation Prediction (Gidaris et al., 2018)
RotNet ImageNet-1K ResNet-50

DINO (Caron et al., 2021)
DINO ImageNet-1K DeiT-Small
DINO ImageNet-1K XCiT-Small

SimCLR (Chen et al., 2020a)
SimCLR ImageNet-1K ResNet-50
SimCLR ImageNet-1K ResNet-101

SwAV (Caron et al., 2020)
SwAV ImageNet-1K ResNet-50
SwAV ImageNet-1K ResNet-50

DeepCluster V2 (Caron et al., 2018)
DeepCluster V2 ImageNet-1K AlexNet

Instance Discrimination (NPID) (Wu et al., 2018)
NPID ImageNet-1K ResNet-50

Table 3: Summary of Self-Supervised Learning Methods, Pretraining Datasets, and Architectures
used in our study.
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