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ABSTRACT

Crowdsourcing has emerged as an effective platform to label a large volume of
data in a cost- and time-efficient manner. Most previous works have focused on
designing an efficient algorithm to recover only the ground-truth labels of the
data. In this paper, we consider multi-choice crowdsourced labeling with the goal
of recovering not only the ground truth but also the most confusing answer and
the confusion probability. The most confusing answer provides useful informa-
tion about the task by revealing the most plausible answer other than the ground
truth and how plausible it is. To theoretically analyze such scenarios, we propose
a model where there are top-two plausible answers for each task, distinguished
from the rest of choices. Task difficulty is quantified by the confusion probabil-
ity between the top two, and worker reliability is quantified by the probability of
giving an answer among the top two. Under this model, we propose a two-stage
inference algorithm to infer the top-two answers as well as the confusion prob-
ability. We show that our algorithm achieves the minimax optimal convergence
rate. We conduct both synthetic and real-data experiments and demonstrate that
our algorithm outperforms other recent algorithms. We also show the applicability
of our algorithms in inferring the difficulty of tasks and training neural networks
with the soft labels composed of the top-two most plausible classes.

1 INTRODUCTION

Crowdsourcing has been widely adopted to solve a large number of tasks in a time- and cost-efficient
manner with the aid of human workers. In this paper, we consider ‘multiple-choice’ tasks where a
worker is asked to provide a single answer among multiple choices. Some examples are as follows:
1) Using crowdsourcing platforms such as MTurk, we solve object counting or classification tasks on
a large collection of images. Answers can be noisy either due to the difficulty of the scene or due to
unreliable workers who provide random guesses. 2) Scores are collected from reviewers for papers
submitted at a conference. For certain papers, scores can vary widely among reviewers, either due
to the paper’s inherent nature (clear pros and cons) or due to the reviewer’s subjective interpretation
of the scoring scale (Stelmakh et al., 2019; Liu et al., 2022).

In the above scenarios, responses provided by human workers may not be consistent among them-
selves not only due to the existence of unreliable workers but also due to the inherent difficulty of
the tasks. In particular, for multiple-choice tasks, there could exist plausible answers other than
the ground truth, which we call confusing answers.1 For tasks with confusing answers, even reli-
able workers may provide wrong answers due to confusion. Thus, we need to decompose the two
different causes of wrong answers: low reliability of workers and confusion due to task difficulty.

Most previous models for multi-choice crowdsourcing, however, fall short of modeling the confu-
sion. For example, in the single-coin Dawid-Skene model (Dawid & Skene, 1979), which is the
most widely studied crowdsourcing model in the literature, it is assumed that a worker is associated
with a single skill parameter fixed across all tasks, which models the probability of giving a correct
answer for every task. Under this model, any algorithm that infers the worker skill would count a
confused labeling as the worker’s error and lower its accuracy estimate for the worker, which results
in a wrong estimate for their true skill level.

1This phenomenon is evident on public datasets: for ‘Web’ dataset (Zhou et al., 2012), which has five labels,
the most dominating top-two answers take 80% of the overall answers and the ratio between the top two is 2.4:1.
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To model the effect of confusion in multi-choice crowdsourcing problems, we propose a new model
under which each task can have a confusing answer other than the ground truth, with a varying
confusion probability across tasks. The task difficulty is quantified by the confusion probability, and
the worker skill is modeled by the probability of giving an answer among the top two, to distinguish
reliable workers from pure spammers who just provide random guesses among possible choices. We
justify the proposed top-two model with public datasets. Under this new model, we aim to recover
both the ground truth and the most confusing answer with the confusion probability, indicating how
plausible the recovered ground truth is compared to the most confusing answer.

We provide an efficient two-stage inference algorithm to recover the top-two plausible answers and
the confusion probability. The first stage of our algorithm uses the spectral method to get an initial
estimate for top-two answers as well as the confusion probability, and the second stage uses this
initial estimate to estimate the worker reliabilities and to refine the estimates for the top-two answers.
Our algorithm achieves the minimax optimal convergence rate. We then perform experiments where
we compare our method to recent crowdsourcing algorithms on both synthetic and real datasets,
and show that our method outperforms other methods in recovering top-two answers. This result
demonstrates that our model better explains the real-world datasets including errors from confusion.
Our key contributions can be summarized as follows.

• Top-two model: We propose a new model for multi-choice crowdsourcing tasks where
each task has top-two answers and the difficulty of the task is quantified by the confusion
probability between the top-two. We justify the proposed model by analyzing six public
datasets, and showing that the top-two structure explains well the real datasets.

• Inference algorithm and its applicaitons: We propose a two-stage algorithm that recovers
the top-two answers and the confusion probability of each task at the minimax optimal
convergence rate. We demonstrate the potential applications of our algorithm not only in
crowdsourced labeling but also in quantifying task difficulty and training neural networks
for classification with soft labels including the top-two information and the task difficulty.

Related works In crowdsourcing (Welinder et al., 2010; Liu & Wang, 2012; Demartini et al.,
2012; Aydin et al., 2014; Demartini et al., 2012), one of the most widely studied models is the
Dawid-Skene (D&S) model (Dawid & Skene, 1979). In this model, each worker is associated with a
single confusion matrix fixed across all tasks, which models the probability of giving a label b ∈ [K]
for the true label a ∈ [K] for K-ary classification task. In the single-coin D&S model, the model is
further simplified such that each worker possesses a fixed skill level regardless of the true label or
the task. Under the D&S model, various methods were proposed to estimate the confusion matrix
or skill of each worker by spectral method (Zhang et al., 2014; Dalvi et al., 2013; Ghosh et al.,
2011; Karger et al., 2013), belief propagation or iterative algorithms (Karger et al., 2014; 2011; Li
& Yu, 2014; Liu et al., 2012; Ok et al., 2016), or rank-1 matrix completion (Ma et al., 2018; Ma
& Olshevsky, 2020; Ibrahim et al., 2019). The estimated skill can be used to infer the ground-truth
answer by approximating the maximum likelihood (ML)-type estimators (Gao & Zhou, 2013; Gao
et al., 2016; Zhang et al., 2014; Karger et al., 2013; Li & Yu, 2014; Raykar et al., 2010; Smyth
et al., 1994; Ipeirotis et al., 2010; Berend & Kontorovich, 2014). In contrast to the D&S models,
our model allows the worker to have different probability of error caused by confusion. Thus, our
algorithm needs to estimate not only the worker skill but also the task difficulty. Since the number of
tasks is often much larger than the number of workers in practice, estimating the task difficulties is
much more challenging than estimating worker skills. We provide a statistically-efficient algorithm
to estimate the task difficulties and use this estimate to infer the top-two answers.

We also remark that there are some recent attempts to model task difficulties (Khetan & Oh, 2016;
Shah et al., 2020; Krivosheev et al., 2020; Shah & Lee, 2018; Bachrach et al., 2012; Li et al., 2019;
Tian & Zhu, 2015). However, these works are either restricted to binary tasks (Khetan & Oh, 2016;
Shah et al., 2020; Shah & Lee, 2018) or focus on grouping confusable classes (Krivosheev et al.,
2020; Li et al., 2019; Tian & Zhu, 2015). Our result, on the other hand, applies to any set of multi-
choice tasks, where the choices of each task are not necessarily restricted to a fixed set of classes.

Notation. For a vector x, xi represents the i-th component of x. For a matrix M , Mij refers to
the (i, j)th entry of M . For any vector x, its `2 and `∞-norm are denoted by ‖x‖2 and ‖x‖∞,
respectively. We follow the standard definitions of asymptotic notations, Θ(·), O(·), o(·), and Ω(·).
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2 MODEL AND PROBLEM SETUP

We consider a crowdsourcing model to infer the top-two most plausible answers among K choices
for each task. There are n workers and m tasks. For each task j ∈ [m] := {1, . . . ,m}, we denote
the correct answer by gj ∈ [K] and the next plausible, or the most confusing answer by hj ∈ [K].
We call the pair (gj , hj) the top-two answers for task j ∈ [m]. Let p ∈ [0, 1]n and q ∈ (1/2, 1]m be
parameters modeling the reliability of workers and difficulty of tasks, respectively. For every pair of
(i, j), the j-th task is assigned to the i-th worker independently with probability s. We use a matrix
A ∈ Rn×m to represent the responses of workers, where Aij = 0 if the j-th task is not assigned to
the i-th worker, and if it is assigned, and Aij is equal to the received label. The distribution of Aij
is specified by the worker reliability pi and task difficulty qj as follows:

Aij =


gj , with prob. s

(
piqj + 1−pi

K

)
,

hj , with prob. s
(
pi(1− qj) + 1−pi

K

)
,

each b ∈ [K]\{gj , hj}, with prob. s
(

1−pi
K

)
,

0, with prob. 1− s.

(1)

Here pi stands for the reliability of the i-th worker, in giving the answer from the most plausible top
two (gj , hj). If pi = 0, the worker is considered a spammer who provides random answers among
K choices, and a larger value of pi indicates a higher worker reliability. The parameter qj represents
the inherent difficulty of the task j in distinguishing between the top two answers: for an easy task,
qj is closer to 1, and for a hard task, qj is closer to 1/2. We call qj the confusion probability. Our
goal is to recover top-two answers (gj , hj) for all j ∈ [m] with high probability with the minimum
possible sampling probability s. We assume that the model parameters (p, q) are unknown.

We propose the top-two model to reflect common attributes of public crowdsourcing datasets, sum-
marized in Appendix §A. The most important observation is that the top-two answers dominate the
overall answers, and only the second-dominating answer has an incidence rate comparable to that
of the ground truth. In other words, the standard deviation in the incidence rate of the second dom-
inating answer has an overlap with that of the ground truth, but not the third-, or fourth-dominating
answers. This indicates that assuming a unique ‘confusing answer’ is sufficient to model the confu-
sion stemming from task difficulty. More details are available in Appendix §A.

Binary conversion. The K-ary task can be decomposed into (K − 1)-binary tasks (Karger et al.,
2013): define A(k) for 1 ≤ k < K such that the (i, j)-th entry A(k)

ij indicates whether the answer

Aij is larger than k, i.e., A(k)
ij = −1 if 1 ≤ Aij ≤ k; A(k)

ij = 1 if k < Aij ≤ K; and A(k)
ij = 0 if

Aij = 0. We show that E[A(k)] is rank-1 and the singular value decomposition (SVD) of E[A(k)]
can reveal the top-two answers {(gj , hj)}mj=1 and the confusion probability vector q.

Proposition 1. For every 1 ≤ k < K, the binary-mapped matrix A(k) ∈ {−1, 0, 1}n×m satisfies
E[A(k)]− s(K−2k)

K 1n×m = 2sp(r(k))>, where r(k) = [r
(k)
1 · · · r(k)

m ]> is defined as
Case I: gj > hj

r
(k)
j :=


k
K where k < hj ;
k
K − (1− qj) where hj ≤ k < gj ;
k
K − 1 where gj ≤ k,

Case II: gj < hj

r
(k)
j :=


k
K where k < gj ;
k
K − qj where gj ≤ k < hj ;
k
K − 1 where hj ≤ k.

By defining ∆r
(k)
j := r

(k)
j − r

(k−1)
j for k ∈ [K] with r(0)

j := 0 and r(K)
j := 0 for all j, we have

∆r
(k)
j =


1
K − qj where k = gj ,
1
K − (1− qj) where k = hj ,
1
K otherwise.

(2)

Note that ∆r
(k)
j has its minimum at k = gj and the second smallest value at k = hj for qj ∈ (1/2, 1].

If one can specify gj , the task difficulty qj can also be revealed from 1
K −∆r

(gj)
j . In the next section,

we use this structure of r(k) for k ∈ [K] to infer the top two answers and the confusion probability.2

2We assume that η
√
n ≤ ‖p‖2 ≤

√
n for some η > 0, i.e., there are only o(n) spammers (pi = 0), and

‖r(k)‖2 = Θ(
√
m) for every k ∈ [K], which can be easily satisfied except exceptional cases from equation 2.
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Algorithm 1 Spectral Method for Initial Estimation (TopTwo1 Algorithm)

1: Input: data matrixA1 ∈ {0, 1, . . . ,K}n×m and parameter η > 0 where η
√
n ≤ ‖p‖2 ≤

√
n.

2: Randomly split (with equal probabilities) and convert A1 into binary matrices X(k) ∈
{−1, 0, 1}n×m and Y (k) ∈ {−1, 0, 1}n×m for 1 ≤ k < K as described in Sec. 3.1.

3: Let u(k) be the leading normalized left singular vector of X(k). Trim the abnormally large
components of u(k) by letting it be zero if u(k)

i > 2
η
√
n

and denote the resulting vector as ũ(k).

4: Calculate the estimate of ‖p‖r(k) by v(k) := 1
s′ (Y

(k))>ũ(k). Assume v(0) := 0 and v(K) :=
0.

5: For k ∈ [K], calculate ∆v
(k)
j := v

(k)
j − v

(k−1)
j . Estimate the top-two answers for j ∈ [m] by

ĝj := arg min
k∈[K]

∆v
(k)
j ; ĥj := arg min

k 6=ĝj ,k∈[K]

∆v
(k)
j . (3)

6: Estimate ‖p‖2 by defining lj := K
K−2

∑
k 6=ĝj ,k 6=ĥj

∆v
(k)
j and l := 1

m

∑m
j=1 lj .

7: Estimate qj for j ∈ [m] by defining

q̂j := 1/K −∆v
(ĝj)
j /l. (4)

8: Output: estimated top-two answers {(ĝj , ĥj)}mj=1 and confusion probability vector q̂.

3 PROPOSED ALGORITHM

Our algorithm consists of two stages. In Stage 1, we compute an initial estimate on top-two answers
and the confusion probability q. In Stage 2, we estimate the worker reliability vector p by using the
result of the first stage, and use the estimated p and q to refine our estimates for the top two answers.
Assume that we randomly split the original response matrix A into A1 and A2 with probability s1

and 1− s1, respectively, and use onlyA1 for stage 1 and (A1,A2) for stage 2.

3.1 STAGE 1: INITIAL ESTIMATES USING SVD

The first stage begins with randomly splitting A1 again into two independent matrices B and C
with equal probabilities. We then convert B and C into (K − 1)-binary matrices B(k) and C(k)

as explained in Sec. 2. Define X(k) and Y (k) as X(k) := B(k) − s′(K−2k)
K 1n×m and Y (k) :=

C(k) − s′(K−2k)
K 1n×m for s′ = s · s1/2. We have E[X(k)] = E[Y (k)] = s′p(r(k))> from Prop. 1.

We use X(k) and Y (k) to estimate p∗ := p/‖p‖2 and ‖p‖2r(k), respectively. The estimators are
denoted by u(k) and v(k), respectively. We define u(k) as the left singular vector of X(k) with
the largest singular value. Sign ambiguity of the singular vector is resolved by defining u(k) as
the one between {u(k),−u(k)} in which at least half of the entries are positive. After trimming
abnormally large components of u(k) and defining the trimmed vector as ũ(k), we calculate v(k) :=
1
s′ (Y

(k))>ũ(k), which is an estimate for ‖p‖2r(k). By using v(k) for 1 ≤ k < K, we get estimates
for top-two answers (ĝj , ĥj) based on the observation in equation 2. Lastly, we estimate ‖p‖2 and
use v(k)/‖p‖2 ≈ r(k) to estimate the confusion probability vector q. See Algorithm 1 for details.

3.2 STAGE 2: PLUG-IN MAXIMUM LIKELIHOOD ESTIMATOR (MLE)

The second stage uses the result of Stage 1 to estimate the worker reliability vector p. We first
propose an estimate for the worker reliability vector p by using the estimated top-two answers
{(gj , hj)}mj=1 from Algorithm 1. We randomly split the original response matrix A into A1 and
A2 with probability s1 and 1 − s1, respectively, and use A1 only for Algorithm 1 and A2 only for
calculating the estimator p̂. Our estimate for the worker reliability pi is defined as

p̂i =
K

(K − 2)

 1

s(1− s1)

 1

m

m∑
j=1

1(A2
ij = ĝj or ĥj)

− 2

K

 . (5)
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Algorithm 2 Plug-in MLE (TopTwo2 Algorithm)

1: Input: data matrixA ∈ {0, 1, . . . ,K}n×m and the sample splitting rate s1 > 0.
2: Randomly splitA intoA1 andA2 by definingA1 := A◦S andA2 = A◦ (1n×m−S) where
S is an n×m matrix whose entries are i.i.d. with Bern(s1) and ◦ is an entrywise product.

3: Apply Algorithm 1 to A1 to yield estimates for top-two answers {(ĝj , ĥj)}mj=1 and confusion
probability vector q̂.

4: By using {(ĝj , ĥj)}mj=1 andA2, calculate the estimate p̂ as in equation 5.
5: By using the wholeA and (p̂, q̂), find the plug-in MLE estimates (ĝMLE

j , ĥMLE
j ) by

arg max
a,b∈[K]2,a 6=b

n∑
i=1

log

(
Kp̂iq̂j
1− p̂i

+ 1

)
1(Aij = a) + log

(
Kp̂i(1− q̂j)

1− p̂i
+ 1

)
1(Aij = b). (6)

6: Output: estimated top-two answers {(ĝMLE
j , ĥMLE

j )}mj=1.

Our plug-in MLE uses the estimated (p̂, q̂) in the place of (p, q) at the oracle
MLE, which finds (ĝj , ĥj) ∈ [K]2\{(1, 1), (1, 2), . . . , (K,K)} such that (ĝj , ĥj) :=
arg max(a,b)∈[K]2,a6=b

∑n
i=1 logP(Aij |p, qj , (a, b)) as in equation 6. Details can be found in Alg.2.

The time complexity of Alg. 2 is O(m2 logm+ nmK2), since the SVD in Alg. 1 can be computed
via power iterations within O(m2 logm) steps (Boutsidis et al., 2015), and the step for finding the
pair of answers maximizing equation 6 requires O(nmK2) steps.

4 PERFORMANCE ANALYSIS

To state our main theoretical results, we first need to introduce some notation and assumptions.
Let µ(i,j)

(a,b),k denote the probability that a worker i ∈ [n] gives label k ∈ [K] for the assigned task

j ∈ [m] of which the top-two answers are (gj , hj) = (a, b). Note that µ(i,j)
(a,b),k can be written

in terms of (pi, qj) from the distribution in equation 1 for every a, b, k ∈ [K]3. Let µ(i,j)
(a,b) =

[µ
(i,j)
(a,b),1 µ

(i,j)
(a,b),2 · · · µ

(i,j)
(a,b),K ]>. We introduce a quantity that measures the average ability

of workers in distinguishing the ground-truth pair of top-two answers (gj , hj) from any other pair
(a, b) ∈ [K]2/{(gj , hj)} for the task j ∈ [m]. We define

D
(j)

:= min
(gj ,hj) 6=(a,b)

1

n

n∑
i=1

DKL

(
µ

(i,j)
(gj ,hj),µ

(i,j)
(a,b)

)
; D := min

j∈[m]
D

(j)
, (7)

where DKL(P,Q) :=
∑
i P (i) log(P (i)/Q(i)) is the KL-divergence between P and Q. Note that

D
(j)

is strictly positive if there exist at least one worker i with pi > 0 and qj ∈ (1/2, 1) for the dis-
tribution in equation 1, so that (gj , hj) can be distinguished from any other (a, b) ∈ [K]2/{(gj , hj)}
statistically. We define D as the minimum of D

(j)
over j ∈ [m], indicating the average ability of

workers in distinguishing (gj , hj) from any other (a, b) for the most difficult task in the set of tasks.

We split the performance analysis of our algorithm into two parts. First, Theorem 1 states the
performance guarantees for Alg. 1.
Theorem 1 (Performance Guarantees for Algorithm 1). For any ε, δ1 > 0, if the sampling probabil-
ity s · s1 = Ω

(
1

δ21‖p‖22
log K

ε

)
, Algorithm 1 guarantees the recovery of the ordered top-two answers

(gj , hj) with probability at least 1− ε for any j ∈ [m] with qj ∈ (1/2, 1), i.e.,

P
(

(ĝj , ĥj) = (gj , hj)
)
≥ 1− ε for all j ∈ [m] with qj ∈ (1/2, 1), (8)

and the recovery of the confusion probability qj with

P (|q̂j − qj | < δ1) ≥ 1− ε for all j ∈ [m], (9)

for every sufficiently large number m of tasks and the number of workers n = O(m/ logm).

5



Under review as a conference paper at ICLR 2023

By using Theorem 1, we can also find the sufficient conditions to guarantee the recovery of paired
top-two answers for all tasks and q with an arbitrarily small `∞-norm error.

Corollary 1. For any ε, δ1 > 0, if the sampling probability s·s1 = Ω
(

1
δ21‖p‖22

log mK
ε

)
, Algorithm 1

guarantees the recovery of {(gj , hj)}mj=1 and q with probability at least 1− ε as m→∞ such that

P
(

(ĝj , ĥj) = (gj , hj),∀j ∈ [m]
)
≥ 1− ε and P (‖q − q̂‖∞ < δ1) ≥ 1− ε. (10)

Proofs of Theorem 1 and Corollary 1 are available in Appendix §G.

We next analyze the performance of Alg. 2, which uses Alg. 1 as the first stage. Before providing
the main theorem for Alg. 2, we state a lemma charactering a sufficient condition for estimating the
worker reliability vector p from equation 5 with an arbitrarily small `∞-norm error.

Lemma 1. Conditioned on (ĝj , ĥj) = (gj , hj) for all j ∈ [m], if s(1 − s1) = Ω
(

1
δ22m

log n
ε

)
, the

estimator p̂i defined in equation 5 of Alg. 2 guarantees P (‖p− p̂‖∞ < δ2) ≥ 1− ε for any ε > 0.

Combining Corollary 1 and Lemma 1, we can have the estimators (p̂, q̂) for the worker reliability
vector p and the confusion probability vector q with `∞-norm error bounded by any arbitrarily small
δ > 0 with probaiblity at least 1− 2ε if

s = s · s1 + s(1− s1) = Ω

(
log(mK/ε)

δ2‖p‖22
+

log(n/ε)

δ2m

)
= Ω

(
log(mK/ε)

δ2‖p‖22

)
(11)

where the last equality is from the assumption that ‖p‖2 = Θ(
√
n) and n = O(m/ logm). In this

regime, the sample complexity for estimating the task difficulty q is larger than that for estimating
worker reliability p. To make sure that the sampling probability s < 1, we need n = Ω(logm).

Our second theorem, Theorem 2, characterizes the sufficient condition on the sampling probability
s to guarantee the recovery of the pair of top-two answers for all tasks by equation 6 of Alg. 2, when
a sufficiently accurate estimation of (p, q) is given.

Theorem 2. Assume that there is a positive scalar ρ such that µ(i,j)
(gj ,hj),c ≥ ρ for all (i, j, gj , hj , c) ∈

[n]× [m]× [K]3. For any ε > 0, if (p̂, q̂) are given with

max{‖p− p̂‖∞, ‖q − q̂‖∞} ≤ δ := min

{
ρ

4
,

ρD

4(6 +D)

}
, (12)

and the sampling probability s = Ω
(

log(1/ρ) log(mK2/ε)+D log(m/ε)

nD

)
, then for any ε > 0 the esti-

mates of {(gj , hj)}mj=1 from equation 6 of Algorithm 2 guarantees

P
(

(ĝj , ĥj) = (gj , hj),∀j ∈ [m]
)
≥ 1− ε. (13)

Proofs of Lemma 1 and Theorem 2 are available in Appendix §H. The assumption in Theorem 2
that µ(i,j)

(gj ,hj),c ≥ ρ for some ρ > 0 holds if pi < 1 for all i ∈ [n], i.e., there is no perfectly reliable
worker. This assumption can be easily satisfied by adding an arbitrary small random noise to the
worker answers as well. By combining the statements in Corollary 1, Lemma 1, and Theorem 2
with δ1 = δ2 = δ for δ defined in equation 12, we get the overall performance guarantee for Alg. 2.
Corollary 2 (Performance Guarantees for Alg. 2). Alg. 2 guarantees the recovery of top-two an-
swers for all tasks with P

(
(ĝj , ĥj) = (gj , hj),∀j ∈ [m]

)
≥ 1− ε for any ε > 0 if s satisfies

s = Ω

(
log(mK/ε)

δ2‖p‖22
+

log(1/ρ) log(mK2/ε) +D log(m/ε)

nD

)
= Ω

(
log(m/ε)

δ2‖p‖22
+

log(m/ε)

nD

)
.

(14)

In equation 14, the first term is for guaranteeing accurate estimates of p and q with `∞-norm error
bounded by δ and the second term is for guaranteeing the recovery of the top-two answers from
MLE with high probability. Since ‖p‖22 = Θ(n), the two terms effectively have the same order but
with different constant scaling, depending on model-specific parameters (p, q).

Lastly, we show the optimality of convergence rates of Alg. 1 and Alg. 2 with respect to two types
of minimax errors, respectively. The proof of Theorem 3 is available in Appendix §I.
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Theorem 3. (a) Let Fp be a set of p ∈ [0, 1]n such that the collective quality of workers, measured
by ‖p‖2, is parameterized by p as Fp̄ := {p : 1

n‖p‖
2
2 = p}. Assume that p ≤ 2/3. If the average

number ns of samples (queries) per task is less than (1/2p) log(1/ε), then

min
ĝ

max
p∈Fp, g∈[K]m

1

m

∑
j∈[m]

P(ĝj 6= gj) ≥ ε. (15)

(b) There is a universal constant c > 0 such that for any p ∈ [0, 1]n, q ∈ (1/2, 1]m, if the sampling
probability s < Ω

(
1/(nD)

)
, then

min
(ĝ,ĥ)

max
(g,h)∈[K]m×[K]m

gj 6=hj ,∀j[m]

1

m

∑
j∈[m]

P((ĝj , ĥj) 6= (gj , hj)) ≥ c. (16)

From part (a) of Theorem 3, it is necessary to have s > Ω
(
(1/‖p‖22) log(1/ε)

)
to make the minimax

error in equation 15 less than ε. Since Theorem 1 shows that Alg. 1 recovers (ĝj , ĥj) with probabil-
ity at least 1− ε if s > Ω

(
(1/‖p‖22) log(1/ε)

)
when s1 = 1, we can conclude that Alg. 1 achieves

the minimax optimal rate for a fixed collective intelligence of workers, measured by ‖p‖2. From
part (b) of Theorem 3, for any (p, q), unless we have s > Ω(1/(nD)) there always exists a con-
stant fraction of tasks for which the recovered top-two answers are incorrect. This bound matches
with our sufficient condition on s from Alg. 2 in equation 14 upto logarithmic factors, as long as
δ2‖p‖2 & nD, showing the minimax optimality of our Alg. 2 for any (p, q). More discussions on
the theoretical results are available at Appendix §E.

5 EXPERIMENTS

We evaluate the proposed algorithm under diverse scenarios of synthetic datasets in Sec. 5.1, and
for two applications–in identifying difficult tasks in real datasets in Sec. 5.2 and in training neural
network models with soft labels defined from the top-two plausible labels in Sec. 5.3.

5.1 EXPERIMENTS ON SYNTHETIC DATASET

We compare the empirical performance of Alg. 1 and Alg. 2 (referred as TopTwo1 and TopTwo2)
with other baselines: majority voting(MV), OTP-D&S and MV-D&S (Zhang et al., 2014), PGD
(Ma et al., 2018), M-MSR (Ma & Olshevsky, 2020) and oracle-MLE, whose details can be found
in Appx. §C. We choose these baselines since they have the strongest established guarantees in the
literature and they are all MLE-based approaches, from which the top-two answers can be inferred.
Obviously, oracle-MLE, which uses the ground-truth model parameters, provides the best possible
performance. We devise four scenarios described in Table 1 to verify the robustness of our model for
various (p, q) ranges, at (n,m) = (50, 500) with s ∈ (0, 0.2]. The number of choices for each task
is fixed as 5. Fig. 1 reports the empirical error probability 1

m

∑m
j=1 P((ĝj , ĥj) 6= (gj , hj)) averaged

over 30 runs, with 95% confidence intervals (shaded region). Four columns correspond to the four
scenarios, resp. The prediction errors for gj and hj are plotted in Fig. 6 of Appx. §D.1.

We can observe that for all the considered scenarios TopTwo2 achieves the best performance, near
the oracle MLE, in recovering (gj , hj). Depending on the scenarios, the reason TopTwo2 out-
performs can be explained differently. For the Easy scenario, since qj is close to 1, it is easy to
distinguish gj from hj but hard to distinguish hj from other labels. Our algorithm achieves the best

Table 1: Parameters for synthetic data experiments under diverse scenarios.

Easy Hard Few-smart High-variance

Worker pi ∈ [0, 1] pi ∈ [0, 1]
90% pi ∈ [0, 0.1]

pi ∈ [0, 1]10% pi ∈ [0.9, 1]

Task qj ∈ [0.9, 1] qj ∈ (0.5, 0.6] qj ∈ (0.5, 1]
50% qj ∈ (0.5, 0.6]
50% qj ∈ [0.9, 1.0]
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Figure 1: Prediction error for (g, h) for four scenarios as the avg. number of queries per task
changes. Our TopTwo2 alg. achieves the best performance, near the oracle MLE for all the scenarios.

performance in estimating hj by a large margin (Fig. 6). For the Hard scenario, it is hard to distin-
guish gj and hj , but our algorithm, which uses an accurate q̂j , can better distinguish gj and hj . For
Few-smart, our algorithm achieves the biggest gain compared to other methods, since our algorithm
can effectively distinguish few smart workers from spammers. High-variance shows the effect of
having diverse qj in a dataset. We remark that our algorithm achieves the best performance, near
that of the oracle-MLE, for all the scenarios, while the next performer keeps changing depending
on scenarios. For example, the OPT D&S is the second best performer in the Easy scenario, while
it is the worst performer in the Few-smart scenario. We also show the robustness of our algorithm
against changes in model parameters in Appendix §D.

5.2 EXPERIMENTS ON REAL-WORLD DATASET: INFERRING TASK DIFFICULTIES

We next provide experimental results using real-world data collected from MTurk and show that our
algorithm can be used for inferring task difficulties. We devised a color comparison task where we
asked the crowd to choose a color, among six given choices, that looks the most similar to a reference
color of each task. See Fig. 4 in Appx. §A.1 for example tasks. After randomly generating a
reference color and the six choices, we identified the ground truth and the most confusing answer for
each task by measuring the distance between colors using the CIEDE2000 color difference formula
(Sharma et al., 2005). If the distance from the reference color to the ground truth is much shorter
than that to the most confusing answer, then the task was considered easy. We designed 1000 tasks
and distributed it to 200 workers, collecting 19.5 responses on each task. After collecting the data,
we subsampled it to simulate how the prediction error decreases as the number of responses per task
increases. Fig. 2a shows the performances in detecting (gj , hj), gj and hj , averaged over 10 times of
random sampling, with 95% confidence interval (shaded region). TopTwo2 algorithm achieved the
best performance in detecting (gj , hj), gj and hj in all ranges. We further examined the correlation
between the task difficulty - quantified by the distance gap between the ground truth and the most

(a) The average prediction error on color comparison tasks (b) Histogram of dist. gap

Figure 2: (a) Prediction error for (gj , hj), gj and hj (from left to right) for color comparison tasks
using real data collected from MTurk. Our TopTwo2 algorithm achieves the best performance. (b)
Histogram of color distance gap for the task groups with the highest qj (easiest tasks) and lowest qj
(most difficult tasks). The difficult task group (blue) tends to have a smaller color distance gap.
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confusing answer from the reference color - and the estimated confusion probability qj across tasks.
We selected top 50 most difficult/easiest tasks according to the estimated confusion probability qj
and plotted the histograms of the distance gap for the two groups in Fig 2b. We can see that the
difficult group (blue, having lowest qj) tends to have a smaller distance gap than those of the easy
task group (red). This result shows that our algorithm can identify difficult tasks in real datasets.

5.3 TRAINING NEURAL NETWORKS WITH SOFT LABELS HAVING TOP-TWO INFORMATION

An appealing example where we can use the knowledge of the second best answer is in training
deep neural networks for classification tasks. Traditionally, a hard label (one ground-truth label per
image) has been used to train a classifier. In recent works, it has been shown that using a soft label
(full label distribution that reflect human perceptual uncertainty) is sometimes beneficial in obtaining
a model with better generalization capability (Peterson et al., 2019). However, obtaining an accurate
full label distribution requires much higher sample complexity than recovering only the ground-
truth. For example, Peterson et al. (2019) provided a CIFAR10H dataset with full human label
distributions for 10000 instances of CIFAR10 test examples by collecting on average 50 judgements
per image, which is about 5-10 times larger than those of usual datasets (Table 4 in Appendix A.1).

Our top-two model, on the other hand, can effectively reduce the required sample complexity, while
still guaranteeing the advantages in training models with soft labels. To demonstrate this idea, we
trained two deep neural networks, VGG-19 and ResNet18, with the soft-label vectors having the
top-two structure (top2) for CIFAR10H dataset3. We then compared the training/test results with
those of the hard label (hard) and full label distribution (full). Experimental details are in Appendix
§B. Compared to the original training with hard labels, training with top-two soft labels achieved
1.56% and 4.09% higher test accuracy in VGG-19 and ResNet18, respectively (averaged in three
runs, 150 epochs) as shown in Table 2, which is even higher than that of the full label distribution in
VGG-19. This result shows that training with the top-two soft labels results in better generalization
(test accuracy) than training with hard labels, since the top-two soft label includes simple yet helpful
side information, the most confusable class and the confusion probability.

Table 2: Comparison of performances for CIFAR10H dataset with hard/soft label training

Network Train accuracy Training loss Test accuracy Test loss

VGG-19 (hard) 97.46±0.59% 0.081±0.012 77.64±1.54% 1.057±0.118
VGG-19 (top2) 97.00±0.51% 0.231±0.014 79.20±1.04% 0.754±0.050
VGG-19 (full) 96.69±0.48% 0.282±0.010 78.66±0.97% 0.740±0.030

ResNet18 (hard) 98.47±0.320% 0.046±0.009 76.49%±1.80% 1.275±0.157
ResNet18 (top2) 98.67±0.491% 0.168±0.024 80.58%±2.36% 0.640±0.093
ResNet18 (full) 99.19±0.125% 0.189±0.023 80.93%±2.66% 0.611±0.102

6 DISCUSSION

We proposed a new model for multiple-choice crowdsourcing, with top-two confusable answers and
varying confusion probability over tasks. We provided an algorithm to infer the top-two answers and
the confusion probability. This work can benefit several query-based data acquisition systems such
as MTurk or review systems by providing additional information about the task such as the most
plausible answer other than the ground truth and how plausible it is, which can be used to quantify
the accuracy of the ground truth or to classify the tasks based on difficulty. The topic of confusion
is getting increasing attention in the machine learning community for designing reliable classifiers
(Jin et al., 2017; Luque et al., 2019; Chang et al., 2017). We also demonstrated possible applications
of our algorithm in designing soft labels for better generalization of neural networks.

3As in (Peterson et al., 2019), we used the original 10000 test examples of CIFAR10 for training and 50000
training examples for testing. Thus, the final accuracy is lower than usual. Since CIFAR10H is collected from
selected ‘reliable’ workers who answered a set of test examples with an accuracy higher than 75%, we directly
used the top-two dominating answers and the fraction between the two in designing the soft label vector (top2).
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A VERIFICATION FOR THE PROPOSED TOP-TWO MODEL

We proposed the top-two model to reflect the key attributes of seven datasets including Adult2, Dog,
Web, Flag, Food, Plot, and Color, of which the details are summarized in Appendix A.1.

Table 3 shows empirical distributions of the mean incidence of responses for the top-three dominat-
ing answers, sorted by the dominance proportions, for the six public datasets and the Color dataset
that we collected, with the standard deviation over the tasks in the dataset. In Fig. 3, we also plot
empirical distributions of the mean incidence of responses sorted by the dominant proportion with
error bars indicating the standard deviation. The i-th data point represents the average incidence of
the i-th highest response in each task. For example, in Adult2 dataset, the most dominating answer
takes 0.8 portion of the total answers, and the next dominating answer takes 0.14 portion of the total
answers on average.

Table 3: Proportions of top-three dominating answers in public datasets

Dataset Ground truth 2nd dominating answer 3rd dominating answer

Adult2 0.80±0.19 0.14±0.13 0.04±0.07
Dog 0.76±0.15 0.22±0.14 0.01±0.04
Web 0.59±0.20 0.25±0.12 0.12±0.09
Flag 0.90±0.16 0.09±0.13 0.01±0.03
Food 0.80±0.18 0.17±0.15 0.02±0.05
Plot 0.62±0.21 0.30±0.16 0.06±0.07

Color 0.43±0.1 0.23±0.06 0.15±0.05

(a) (b) (c) (d)

(e) (f) (g)

Figure 3: Empirical distribution of the mean incidence of responses sorted by the dominant propor-
tion, averaged over all tasks in each dataset. The i-th data point represents the average incidence of
the i-th highest response in each task. The error bars indicate the standard deviation of the mean
incidence of the i-th dominating answer over the tasks in the dataset.

From the table and figure, we can observe that for all the considered public datasets the top-two
answers dominate the overall answers, i.e., about 65-90% of the total answers belong to the top two.
Furthermore, the average ratio from the most dominating answer to the second one is 4:1, while
that between the second and the third is 7.5:1. There often exist overlaps in the error bars between
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(a) gj = 6 and hj = 5 (b) gj = 4 and hj = 3

(c) gj = 5 and hj = 3 (d) gj = 6 and hj = 2

Figure 4: Example tasks for ‘Color’ dataset where the ground truth g and the most confusing answer
h are determined by the color distance from the reference color (top).

the ground truth and the second dominating answer, e.g., for Web, Plot, and Color datasets, but no
such overlap is found between the ground truth and the third dominating answer. What we can call
a ‘confusing answer’ is an answer that has an incidence rate comparable to that of the ground truth.
In all the considered datasets, only the second dominating answer shows such a tendency, and thus,
we can conclude that the third dominating answer cannot be called a ‘confusing answer’, and the
top-two model in equation 1 well describes the errors in answers caused by confusion.

Moreover, from the public datasets, we also observe that the task difficulty can be quantified by the
confusion probability between the top-two answers. As an example, for the Web dataset, when we
select the easiest 500 tasks and hardest 500 tasks by ordering tasks with the ratio of correct answers,
the ratio between the ground-truth to the 2nd best answer was 10.7:1 for the easiest group, while it
was 1.5:1 for the hardest group. This observation shows that the ratio between the top-two answers
indeed captures task difficulty as does our model parameter for task difficulty qj in equation 1.

A.1 DATASETS

We collect six publicly available multi-class datasets: Adult2, Dog, Web, Flag, Food and Plot. Since
these datasets do not provide information about the most confusing answer or the task difficulty,
we additionally create a new dataset called ‘Color’, for which we can identify the most confusing
answer and also quantify the task difficulty for all the included tasks.

• Color is a dataset where the task is to find the most similar color to the reference color
among six different choices. For each task, we randomly create a reference color and then
choose six choices of colors. The distance from the reference color to the ground truth
color is in between 4.5 and 5.5, the distance to the most confusing answer is in between
5.5 and 6.5, and the distance to the rest of the choices is between 11 and 12, where the
distance between the pairs of colors is measured by CIEDE2000 (Sharma et al., 2005)
color difference formulation. The tasks are ordered in terms of their difficulty levels by
measuring the gap between: the distance from the reference color to the ground truth; and
that to the most confusing answer. If the distance from the reference color to the ground
truth is much shorter than that to the most confusing answer, then the task is considered
easy. Using MTurk, we collected 19600 labels from 196 workers for 1000 tasks. Each
Human Intelligence Task (HIT) is composed of randomly selected 100 tasks, and we pay
$1 to each worker who completed a HIT. Fig. 4 shows an example task for the Color
dataset.

• Adult2 (Ipeirotis et al., 2010) is a 4-class dataset where the task is to classify the web pages
into four categories (G, PG, R, X) depending on the adult level of the websites. This dataset
contains 3317 labels for 333 websites which are offered by 269 workers.
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(a) Images with lowest q (considered to be hard) (b) Images with highest q (considered to be easy)

Figure 5: Training images with (a) lowest and (b) highest confusion probabilities.

• Dog (Zhang et al., 2014) is a 4-class dataset where the task is to discriminate a breed (out
of Norfolk Terrire, Norwich Terrier, Irish Wolfhound, and Scottich Deerhound) for a given
dog. This dataset contains 7354 labels collected from 52 workers for 807 tasks.

• Web (Zhou et al., 2012) is a 5-class dataset where the task is to determine the relevance of
query-URL pairs with a 5-level rating (from 1 to 5). The dataset contains 15567 labels for
the 2665 query-URL pairs offered by 177 workers.

• Flag (Krivosheev et al., 2020) is a dataset for multiple-choice tasks where each task is
to identify the country for a given flag from 10 given choices. A total of 1600 votes are
collected from 220 workers for the 100 tasks.

• Food (Krivosheev et al., 2020) is a dataset for multiple-choice tasks where each task asks
to identify a picture of a given food or dish from 5 given choices. This dataset contains
1220 labels for 76 tasks collected from 177 workers.

• Plot (Krivosheev et al., 2020) is a dataset for multiple-choice tasks where the task is to
identify a movie from a description of its plot from 10 given choices. Only workers who
correctly solved the first 10 test questions can answer the rest of the tasks. A total of 1937
labels are collected from 122 workers for 100 tasks.

Table 4 shows a summarized information for the introduced datasets.

Table 4: Dataset information

Dataset # workers # tasks # labels or choices sparsity dtask dworker

Adult2 269 333 4 0.037 10.0 12.4
Dog 109 807 4 0.092 10.0 74.0
Web 176 2653 5 0.033 5.9 88.3
Flag 220 100 10 0.073 16.0 7.3
Food 177 54 5 0.125 22.1 6.7
Plot 122 56 10 0.293 35.7 16.4

Color 196 1000 6 0.1 19.5 99.4

B EXPERIMENTAL DETAILS FOR NEURAL NETWORK TRAINING IN SEC. 5.3

We show the details of the experiments in Sec. 5.3.

B.1 DATASETS

The CIFAR10H dataset (Peterson et al., 2019) consists of 511,400 human classifications by 2,571
participants which were collected via Amazon Mechanical Turk. Each participant classified 200
images, 20 from each category. Every 20 tasks, a trivial question is presented to prevent random
guessing, and participants who scored below 75% were excluded from the dataset. We present the
images with the lowest/highest q from the training samples in Fig 5. The image with a lower q means
that the first answer and the second answer are hard to distinguish.
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B.2 MODEL

We trained two simple CNN architectures, VGG-19 and ResNet-18, to show the usefulness of the
second answer and the confusion probability. For each model, our loss function is defined as the
cross-entropy between the softmax output and the two-hot vector (in which the values are q and
1− q for g and h, respectively). We compare the results of our top-two label training with those of
full-distribution training and hard label (one-hot vector) training.

B.3 TRAINING

We train each model using 10-fold cross validation (using 90% of images for training and 10%
images for validation) and average the results across 5 runs. We run a grid search over learning
rates, with the base learning rate chosen from {0.1, 0.01, 0.001}. We find 0.1 to be optimal in all
cases. We trained each model for a maximum of 150 epochs using SGD optimizer with a momentum
of 0.9 and a weight decay of 0.0001. Our neural networks are trained using NVIDIA GeForce 3090
GPUs.

C BASELINE METHODS

In this section, we explain the baseline methods with which we compare the performance of our
algorithms. To analyze the performance in recovering the top-two answers, we considered the ML-
based algorithms, including the Spectral-EM algorithm (MV-D&S and OPT-D&S) (Zhang et al.,
2014), Projected Gradient Descent (PGD) (Ma et al., 2018) and M-MSR (Ma & Olshevsky, 2020),
which provide a “score” for each label so that we can recover the top-two answers.

• Spectral-EM algorithm (MV-D&S and OPT-D&S) (Zhang et al., 2014) is a two-stage
algorithm for multi-class crowd labeling problems. These algorithms are built for the D&S
model where each worker has his/her own confusion matrix. In the first stage of the algo-
rithm, the confusion matrix of each worker is estimated via spectral method (OPT-D&S)
or majority voting (MV-D&S), respectively, and in the second stage, the estimates for the
confusion matrices are refined by optimizing the objective function of the D&S estimator
via the Expectation Maximization (EM) algorithm.

• Projected Gradient Descent (PGD) (Ma et al., 2018) is an approach to estimate the skills
of each worker in the single-coin D&S model. The authors formulate the skill estimation
problem as a rank-one correlation-matrix completion problem. They propose a projected
gradient descent method to solve the correlation-matrix completion problem.

• M-MSR (Ma & Olshevsky, 2020) algorithm is an approach to estimate the reliability of
each worker in the multi-class D&S model. M-MSR algorithm utilizes that the rank of the
response matrix is one. To estimate the reliability of the workers, they use update rules to
find the left singular vector and right singular vector of the response matrix. In this process,
the extreme values are filtered out to guarantee the stable convergence of the algorithm.

D SYNTHETIC EXPERIMENTS

D.1 ADDITIONAL PLOTS FOR SYNTHETIC DATA EXPERIMENTS IN SEC. 5.1

In Section 5.1, we devised four scenarios described in Table 1 to verify the robustness of our
model for various (p, q) ranges, with (n,m, s) = (50, 500, 0.2). The performance of algorithms
is measured by the empirical average error probabilities in recovering gj , hj and (gj , hj), i.e.,
1
m

∑m
j=1 P(ĝj 6= gj), 1

m

∑m
j=1 P(ĥj 6= hj) and 1

m

∑m
j=1 P((ĝj , ĥj) 6= (gj , hj)) and plotted in

Fig. 6. We can observe that for all the considered scenarios TopTwo2 achieves the best perfor-
mance, near the oracle MLE, in recovering (gj , hj). Depending on scenarios though, the reason
TopTwo2 outperforms can be explained differently. For Easy scenario, since qj is close to 1, it be-
comes easy to distinguish gj from hj but hard to distinguish hj from other labels. Our algorithm
achieves the best performance in estimating hj by a large margin. For Hard scenario, it becomes
hard to distinguish gj and hj , but our algorithm, which uses an accurate q̂j , can better distinguish

16



Under review as a conference paper at ICLR 2023

Figure 6: Prediction error for (gj , hj) (top row), gj (middle) and hj (bottom) for four scenarios. Our
algorithm (TopTwo2) achieves the best performance, near the oracle MLE for all the scenarios.

gj and hj . High-variance show the effect of having diverse qj in a dataset. For Few-smart, our
algorithm achieves the biggest gain compared to other methods, since our algorithm can effectively
distinguish few smart workers from spammers. We remark that even though the performance gap
between TopTwo2 and the next best performer is not significant for some cases, our algorithm al-
ways achieves the best performance, near that of the oracle-MLE, for all the scenarios, while the
next performer keeps changing depending on scenarios. For example, the OPT D&S is the second
best performer in the ‘Easy’ scenario, while it is the worst performer in the ‘Few smart’ scenario.

D.2 ROBUSTNESS OF OUR METHODS

In this section, we present a set of four additional synthetic experiments to demonstrate the ro-
bustness of our methods, Alg. 1 and Alg. 2 (referred to as TopTwo1 and TopTwo2). In each
experiment, we change a parameter of our synthetic error model and compare the prediction error
of our algorithms to the baselines: majority voting(MV), OTP-D&S and MV-D&S Zhang et al.
(2014), PGD Ma et al. (2018) and Oracle-MLE. We measure the performance of each algorithm
by the empirical average error probabilties in recovering the ground truth gj , the most confusing
answer hj and the pair of top two (gj , hj), i.e., 1

m

∑m
j=1 P(ĝj 6= gj), 1

m

∑m
j=1 P(ĥj 6= hj) and

1
m

∑m
j=1 P((ĝj , ĥj) 6= (gj , hj)). Obviously, Oracle-MLE provides a lower bound for the perfor-

mance.

Changing the dimension of observed matrix: We first check the robustness of our methods against
the change of dimensions of the observation matrix A ∈ {0, 1 . . . ,K}n×m with n ≤ m. We
vary the number of workers (n) or the number of tasks (m) while fixing the other dimension. The
default values of n and m are 50 and 500, respectively, and the sampling probability s is fixed as 0.1
throughout the experiments. The worker reliability pi and the task difficulty qj is sampled uniformly
at random from [0, 1] and (1/2, 1], respectively, for all i ∈ [n] and j ∈ [m].
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(a) Effect of the number of workers on the performance

(b) Effect of the number of tasks on the performance

(c) Effect of the variance of worker reliability on the performance

(d) Effect of the variance of task difficulty on the performance

(e) Effect of the portion of spammers on the performance

Figure 7: Prediction error for (gj , hj) (first column), gj (second column), and hj (third column) for
five different setups. The solid lines represent the mean prediction errors of each algorithm averaged
over 10 runs, and the shaded regions represent the standard deviations.
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In Fig. 7a and 7b, we report the results when we change n for a fixedm and s, or when we changem
for a fixed n and s, respectively. From Fig. 7a, we can see that as the number of workers increases,
the performance of every algorithm improves since the number of samples per task scales as ns for
a fixed s. Our algorithm achieves the performance close to the Oracle-MLE for all the considered
range, which implies that the worker reliabilities {pi} are well estimated with our methods. From
Fig. 7b, we can see that our algorithm achieves a robust performance against the change in the
number of tasks, although the performance gets closer to that of Oracle-MLE as the number of tasks
increases. Since our method uses SVD in the first stage, the larger dimension is beneficial for the
concentration of the random perturbation matrix with respect to the expectation of the observation
matrix. This phenomenon is observed for other baseline methods as well, which are based on the
spectral method, OPT D&S, for example.

Changing the variance of worker reliability: In this experiment, we change the range of pi, the
parameter for worker skill/reliability, for i ∈ [n], with a fixed mean in order to observe the impact
of the variance of the worker reliability on the prediction error. We randomly sample pi from the
window [0.5 − x, 0.5 + x] with x varying from 0.05 to 0.25. The mean of the worker reliability is
fixed as 0.5.

As shown in Fig. 7c, when the variance of the worker reliability increases, the baseline methods
estimating worker reliabilities perform better than the majority voting. Our TopTwo2 algorithm
achieves the best performance close to Oracle-MLE, as the standard deviation increases, i.e., as the
workers become more heterogeneous.

Changing the variance of task difficulty: We also design an experiment to observe the impact of
the variance of qj , j ∈ [m], the parameter for task difficulty, on the prediction error. We randomly
sample qj from the window [0.75− x, 0.75 + x] with x varying from 0.05 to 0.25. The mean of the
worker reliability is fixed as 0.75. If the variance of the task difficulty is small, it could be sufficient
to only estimate the worker reliability since all the tasks have almost the similar task difficulties.

As shown in Fig. 7d, when the variance of the task difficulty increases, our TopTwo2 algorithm
performs better than the other baselines. This is the evidence for the validity of our method in
estimating the task difficulty.

Changing the portion of spammers: Spammers who provide random answers always exist in
crowdsourcing systems. To improve the inference performance, it is important to distinguish spam-
mers from reliable workers. In our experimental setup, we define a spammer as a worker whose
reliability parameter pi is in the range [0, 0.1]. We change the portion of spammers among the
workers from 0.1 to 0.9 and compare the prediction error of our methods to those of other baseline
methods.

In Fig. 7e, we can see that our algorithm achieves the best performance among all the considered
baselines except Oracle-MLE, which can exactly distinguish spammers from reliable workers. This
result demonstrates the superiority of our methods in detecting spammers compared to other meth-
ods.

D.3 ESTIMATING THE WORKER RELIABILITY VECTOR AND THE TASK DIFFICULTY VECTOR

In this section, we examine the accuracy of our estimates for the worker reliability vector p and the
task difficulty vector q. The worker reliability is estimated by p̂ defined in equation 5 of Algorithm
2 and the task difficulty is estimated by q̂ defined in equation 4 of Algorithm 1. To analyze the
accuracy of these estimators, we compute the mean squared error (MSE), 1

n‖p̂−p‖
2
2 and 1

m‖q̂−q‖
2
2,

respectively.

To analyze the estimation accuracy for the worker reliability, we first sample pi uniformly at random
from [0, 1] for all i ∈ [n] and fix the worker reliability vector p. Then, we randomly sample the
task difficulty vector q ∈ (1/2, 1]m fifty times and then sample the observation matrices from
the distribution equation 1 for each (p, q) pair with a fixed p. For each observation matrix, we
subsample the data with varying probabilities and apply Algorithm 2 to get the estimate p̂, which is
then used to calculate the MSE of p. We report the MSE averaged over these fifty cases. Similarly, to
analyze the estimation accuracy for the task difficulty, we randomly sample and fix a task difficulty
vector q ∈ (1/2, 1]m and generate fifty different observation matrices while varying the worker
reliability vector p. We again report the MSE averaged over these fifty cases. The number of workers
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and that of tasks is set to be (50, 500) for the worker reliability estimation, and to be (100, 1000) for
the task difficulty estimation.

In Fig. 8a and 8b, we plot the MSE for p and q, respectively, as the average number of queries per
task increases. We can see that both for p and q, the MSEs converge to near zero as the average
number of queries per task increases. However, estimating the task difficulty requires more number
of samples as our theory equation 11 suggests.

(a) Mean squared error 1
n
‖p̂− p‖22 (b) Mean squared error 1

m
‖q̂ − q‖22

Figure 8: Mean squared errors in estimating the worker reliability vector p (left) and the task diffi-
culty vector q (right), respectively.

E DISCUSSION OF THEORETICAL RESULTS

In this section, we present a discussion of the main theoretical results.

• Theorem 1 asserts that the sampling probability of Ω
(

1
δ21‖p‖22

log K
ε

)
is sufficient to re-

cover the top-two answers (gj , hj) for any task j ∈ [m] and to estimate the confusion
probability qj with accuracy of |q̂j − qj | < δ1 by Algorithm 1 with probability at least
1 − ε. Combined with Theorem 3 part (a), we can see that this sample complexity is the
minimax optimal rate for a fixed collective quality of workers, measured by ‖p‖22.
• It is also worth comparing our algorithm with the simple majority voting (MV) scheme.

The MV scheme infers the top-two answers by counting the majority of the received
answers. Simple analysis shows that the MV scheme requires the sampling probabil-
ity s such that ns = Θ

(
( 1
n

∑
i pi)

−2 log 1
ε

)
to recover (gj , hj) with probability 1 − ε.

Remind that Algorithm 1 requires ns = Ω
(

n
δ21‖p‖22

log K
ε

)
samples per task. Since

1
n‖p‖

2 = 1
n

∑
i p

2
i ≥

(
1
n

∑
i pi
)2

by Cauchy-Schwarz inequality, Algorithm 1 achieves
strictly better trade-offs unless pi is same for all workers i ∈ [n]. As an example, for a
spammer-hammer model where α ∈ (0, 1) fraction of workers are hammers with pi = 1
and the rest are spammers with pi = 0, Algorithm 1 requires ns = Θ

(
1
α log 1

ε

)
samples per

task, while MV requires ns = Θ
(

1
α2 log 1

ε

)
samples per task to recover top-two answers

with probability 1− ε.
• Theorem 2 shows that when we have an entrywise bound on the estimated worker reliabil-

ity vector p and the task difficulty vector q, the plug-in MLE estimator, used in Algorithm
2, guarantees the recovery of top-two answers if the sampling probability s = Ω( log(m/ε)

nD̄
)

where D̄, which depend on (p, q), indicates the average reliability of workers in distin-
guishing the top-two answers from any other pairs for the most difficult task. Combined
with Theorem 3 part (b), we can see that this sample complexity is the minimax optimal
rate for any (p, q), ignoring the logarithmic terms.
• Combining the conditions for the accurate estimation of model parameters in equation 11

and the convergence of the plug-in MLE (Theorem 2), Corollary 2 shows the condition on
the sample complexity to guarantee the performance of Algorithm 2.
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F PROOF OF PROPOSITION 1

For each task j and label k, define four indicator functions:

Πa(j, k) :=1(gj > k, hj > k),

Πb(j, k) :=1(gj ≤ k, hj > k),

Πc(j, k) :=1(gj > k, hj ≤ k),

Πd(j, k) :=1(gj ≤ k, hj ≤ k),

(17)

which satisfy Πa(j, k) + Πb(j, k) + Πc(j, k) + Πd(j, k) = 1. For notational simplicity, we will
often drop (j, k) fron Π∗. The pmf ofA(k) is given by

A
(k)
ij =


−1 with probability s(1− ρ(k)

ij ),

1 with probability sρ(k)
ij ,

0 with probability 1− s,
(18)

where ρ(k)
ij = Πa(j, k)pi + Πb(j, k)pi(1− qj) + Πc(j, k)piqj + (K−k)(1−pi)

K , and its expectation is

E[A
(k)
ij ] = s(2ρ

(k)
ij − 1). Note that by using Πa = 1 − Πb − Πc − Πd, the probability ρ(k)

ij can be

written as ρ(k)
ij = pi

(
qj(Πc −Πb)− (Πc + Πd) + k

K

)
+ K−k

K . Thus, by defining

r
(k)
j := qj(Πc −Πb)− (Πc + Πd) +

k

K
, (19)

the expectation of A(k)
ij can be written as

E[A
(k)
ij ] = s(2ρ

(k)
ij − 1) = s

(
2pir

(k)
j +

K − 2k

K

)
, (20)

and

E[A(k)]− s(K − 2k)

K
1n×m = 2sp(r(k))>. (21)

Note that

Case I: gj > hj

Πa(j, k) = 1 where k < hj ,

Πc(j, k) = 1 where hj ≤ k < gj ,

Πd(j, k) = 1 where gj ≤ k;

Case II: gj < hj

Πa(j, k) = 1 where k < gj ,

Πb(j, k) = 1 where gj ≤ k < hj ,

Πd(j, k) = 1 where hj ≤ k.

(22)

Thus, r(k)
j in equation 19 is equal to

Case I: gj > hj

r
(k)
j =


k
K where k < hj ;
k
K − (1− qj) where hj ≤ k < gj ;
k
K − 1 where gj ≤ k,

Case II: gj < hj

r
(k)
j =


k
K where k < gj ;
k
K − qj where gj ≤ k < hj ;
k
K − 1 where hj ≤ k.

G PERFORMANCE ANALYSIS OF ALGORITHM 1

G.1 PROOFS OF THEOREM 1 AND COROLLARY 1

In Algorithm 1, we use the data matrix A1, which is obtained by randomly splitting the original
data matrix A into A1 and A2 with probability s1 and (1 − s1), respectively. Then, the first stage
of Algorithm 1 begins with randomly splitting A1 again into two independent matrices B and C
with equal probabilities, and then converting B and C into (K − 1)-binary matrices B(k) and
C(k) as explained in Sec. 2. We define X(k) and Y (k) as X(k) := B(k) − s′(K−2k)

K 1n×m and

Y (k) := C(k) − s′(K−2k)
K 1n×m where s′ = s · s1/2. We have E[X(k)] = E[Y (k)] = s′p(r(k))>
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from Prop. 1. For notational simplicity, we will ignore this random splitting for a moment and just
pretend thatX(k) and Y (k) are sampled independently with s′ = s throughout this section.

We first outline the proof. Based on the observation that E[X(k)] = sp(r(k))>, if E[X(k)] is
available we can recover p∗ = p

‖p‖2 by SVD, and by using p∗ it is possible to recover ‖p‖2r(k),
which then reveals {(gj , hj)}mj=1 as well as q from the relation in equation 2. To estimate p∗ from
X(k), we first bound the spectral norm of the perturbation, ‖X(k) − E[X(k)]‖2. We then use this
bound and Wedin SinΘ theorem to bound sin θ(u(k),p∗) where u(k) is the left singular vector of
X(k) with the largest singular value. We trim the abnormally large components of u(k) and denote
the resulting vector by ũ(k). After trimming, it is still possible to show that sin θ(ũ(k),p∗) can
be bounded in the same order as that of sin θ(u(k),p∗). Finally, we provide an entrywise bound
between v(k) = 2

s (Y (k))>ũ(k) and ‖p‖2r(k) in Lemma 5, which is the main lemma to prove
Theorem 1. We state our main technical lemmas first and then prove Theorem 1.

Let us define the perturbation matrix

E := X(k) − E[X(k)] = B(k) − s(K − 2k)

K
1n×m − sp(r(k))> = B(k) − E[B(k)] (23)

where

B
(k)
ij =


−1 w.p. s(1− ρ(k)

ij ),

1 w.p. sρ(k)
ij ,

0 w.p. 1− s,
(24)

and ρ(k)
ij = Πa(j, k)pi + Πb(j, k)pi(1 − qj) + Πc(j, k)piqj + (K−k)(1−pi)

K for (Πa,Πb,Πc,Πd)
defined in equation 17.

For the perturbation matrix E in equation 23, we have

E[Ei,j ] = 0, and |Ei,j | ≤ 2, 1 ≤ i ≤ n, 1 ≤ j ≤ m, (25)

and also

var(Eij) = var(B
(k)
ij ) = E[(B

(k)
ij )2]− (E[B

(k)
ij ])2

= s− (s(ρ
(k)
ij − 1/2))2 ≤ s.

(26)

Note that {Eij} are independent across all i, j. Define

ν := max

max
i

∑
j

E[E2
i,j ], max

j

∑
i

E[E2
i,j ]

 ≤ max{m,n}s. (27)

By applying the spectral norm bound to random matrices with independent entires, appeared in
Bandeira & Van Handel (2016) and summarized in Theorem 4, we can bound the spectral norm of
E as below.
Lemma 2 (Spectral norm bound of E). With probability 1− (n+m)−8, we have

‖E‖ ≤ 4
√
smax (m,n) + c̃

√
log(n+m) (28)

for some constant c̃ > 0 when m ≥ n. For some sufficiently large m, assuming n = o(m) and
s = Ω(log(n+m)/m), the spectral norm of E can be further bounded by

‖E‖ ≤ 5
√
sm. (29)

Using the bounded spectral norm of E in equation 29 and applying the Wedin SinΘ theorem, sum-
marized in Theorem 5, we can bound the angle between u(k) and p∗.
Lemma 3. For some sufficiently large m, assuming n = o(m) and s = Ω(log(n + m)/m), we
have

sin θ(u(k),p∗) ≤ Θ(1/
√
sn) (30)

with probability at least 1− (n+m)−8.
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Proof. By applying the Wedin SinΘ Theorem (Theorem 5), we have

sin θ(u(k),p∗) ≤
√

2‖E‖
s‖p‖2 · ‖r(k)‖2 − ‖E‖

. (31)

We have ‖p‖2 = Θ(
√
n) and ‖r(k)‖2 = Θ(

√
m) by assumptions on model parameters. By

Lemma 2, for some sufficiently large m, assuming n = o(m) and s = Ω(log(n + m)/m), we
have ‖E‖ ≤ 5

√
sm with probability at least 1− (n+m)−8. Combining these bounds, we get

sin θ(u(k),p∗) ≤ Θ(
√
sm)

Θ(s
√
mn)−Θ(

√
sm)

=
1

Θ (
√
sn)

. (32)

We trim the abnormally large components of u(k) by letting it zero if u(k)
i > 2/(η

√
n) and denote

the resulting vector as ũ(k). This process is required to control the maximum entry size of ũ(k),
which is used later in the proof. For the next lemma, we show that after the trimming process, the
norm of ũ(k) is still close to 1 and the angle between ũ(k) and p∗ has the same order as that of
sin θ(u(k),p∗).
Lemma 4. Given ‖p∗‖2 ≥ η

√
n, we have

‖ũ(k)‖2 ≥
√

1− 50 sin2 θ(u(k),p∗), (33)

sin θ(ũ(k),p∗) ≤ 6
√

2 sin θ(u(k),p∗). (34)

The proof of Lemma 4 is provided in Section G.2.

Finally, we provide our main lemma giving the entrywise bound on the difference between v(k) =
1
s (Y (k))>ũ(k) and ‖p‖2r(k).
Lemma 5 (Entrywise Bound). For any δ1, ε > 0, and any task j ∈ [m] and label index k ∈ [K], if

the sampling probability s ≥ Θ
(

1
δ21‖p‖22

log 1
ε

)
, then we can guarantee

P
(∣∣∣∣1s 〈Y (k)

∗j , ũ(k)
〉
− ‖p‖2r(k)

j

∣∣∣∣ < δ1‖p‖2
)
> 1− ε (35)

as m→∞ when n = O(m/ logm).

Proof. For notional simplicity, denote θ(ũ(k),p∗) by θ. To prove equation 35, we show bounds on
two probabilities,

P
(∣∣∣∣1s 〈Y (k)

∗j , ũ(k)
〉
− ‖ũ(k)‖2‖p‖2r(k)

j cos θ

∣∣∣∣ > δ1‖p‖2
2

)
< ε/2, (36)

P
(∣∣∣‖ũ(k)‖2‖p‖2r(k)

j cos θ − ‖p‖2r(k)
j

∣∣∣ > δ1‖p‖2
2

)
< ε/2. (37)

Then, the triangle inequality implies equation 35.

We first prove equation 36. Remind that we do the random splitting of the input matrixA and define
the two independent binary-converted matrices as X(k) and Y (k), for 1 ≤ k < K, which are used
to estimate ũ(k) and v(k), respectively. Thus, ũ(k) is independent from Y (k) and this independence
is used when we bound the first and second moments of v(k)

j = 1
s 〈Y

(k)
∗j , ũ(k)〉. For any 1 ≤ j ≤ m,

the first and second moments of v(k)
j = 1

s 〈Y
(k)
∗j , ũ(k)〉 satisfy

E
[

1

s

〈
Y

(k)
∗j , ũ(k)

〉]
= 〈p, ũ(k)〉r(k)

j = ‖p‖2‖ũ(k)‖2(cos θ)r
(k)
j = Θ(

√
n) (38)

if r(k)
j 6= 0 by Lemma 3 and 4, and

var

(
1

s

〈
Y

(k)
∗j , ũ(k)

〉)
≤ 1

s2

n∑
i=1

(ũ
(k)
i )2E[(Y

(k)
ij )2] = Θ

(
1

s

)
(39)
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since E[(Y
(k)
ij )2] = Θ(s) and

∑n
i=1(ũ

(k)
i )2 = Θ(1) by Lemma 3 and 4. Furthermore, we have

max1≤i≤m |Y (k)
ij ũ

(k)
i | ≤ Θ

(
1√
n

)
since ũ(k)

i ≤ 2
η
√
n

. By applying the Bernstein’s inequality, we
can show that

P
(∣∣∣∣1s 〈Y (k)

∗j , ũ(k)
〉
− ‖ũ(k)‖2‖p‖2r(k)

j cos θ

∣∣∣∣ > δ1‖p‖2
2

)
≤ 2 exp

(
− Θ(δ2

1‖p‖22)

Θ
(

1
s

)
+ Θ (δ1‖p‖2/

√
n)

)
≤ exp

(
−Θ(sδ2

1‖p‖22)
)

(40)

where the second inequality is due to the assumption ‖p‖2 = Θ(
√
n). To make this probability less

than ε
2 , it is sufficient to have s ≥ Ω

(
1

δ21‖p‖22
log 1

ε

)
.

We next prove equation 37 by bounding
∣∣∣‖ũ(k)‖2‖p‖2r(k)

j cos θ − ‖p‖2r(k)
j

∣∣∣. By the triangle in-
equality, we have∣∣∣‖ũ(k)‖2‖p‖2r(k)

j cos θ − ‖p‖2r(k)
j

∣∣∣ ≤ ∣∣∣‖ũ(k)‖2‖p‖2r(k)
j cos θ − ‖p‖2r(k)

j cos θ
∣∣∣

+
∣∣∣‖p‖2r(k)

j cos θ − ‖p‖2r(k)
j

∣∣∣ . (41)

Note that

1

‖p‖2
·
∣∣∣‖ũ(k)‖2‖p‖2r(k)

j cos θ − ‖p‖2r(k)
j cos θ

∣∣∣ = r
(k)
j cos θ

∣∣∣‖ũ(k)‖2 − 1
∣∣∣

≤ Θ(sin2 θ(u(k),p∗)) =
1

Θ (ns)
,

(42)

with probability 1− (n+m)−8 by Lemma 3 and 4, and also note that

1

‖p‖2
·
∣∣∣‖p‖2r(k)

j cos θ − ‖p‖2r(k)
j

∣∣∣ = r
(k)
j (1− cos θ)

≤ Θ(sin2 θ(u(k),p∗)) =
1

Θ (ns)
,

(43)

with probability 1 − (n + m)−8 by Lemma 3 and 4. To make these errors of order 1/Θ (ns) less
than δ1

2 , it is sufficient to have s ≥ Ω
(

1
δ1n

)
.

By combining the above results, it can be guaranteed that
∣∣∣ 1

2s

〈
Y

(k)
∗j , ũ(k)

〉
− ‖p‖2r(k)

j

∣∣∣ < δ‖p‖2
with probability at least 1− ε, if the sampling probability

s ≥ max

{
Ω

(
1

δ2
1‖p‖22

log
1

ε

)
,Ω

(
1

δ1n

)}
= Ω

(
1

δ2
1‖p‖22

log
1

ε

)
(44)

where the last equality is due to ‖p‖2 = Θ(
√
n). The condition s = Ω(log(n+m)/m) in Lemma

3 is immediately satisfied by equation 44 when n = O(m/ logm).

Proof of Theorem 1. By using Lemma 5, we next prove Theorem 1. By applying the union bound
over k ∈ [K], if s ≥ Θ

(
1

δ21‖p‖22
log K

ε

)
then we have

‖p‖2(r
(k)
j − δ1) ≤ v(k)

j =
1

s

〈
Y

(k)
∗j , ũ(k)

〉
≤ ‖p‖2(r

(k)
j + δ1), ∀k ∈ [K] (45)

for any δ1 > 0 and j ∈ [m] with probability at least 1− ε. Under the condition equation 45, for any
qj ∈ (1/2, 1) and δ < min

{
2qj−1

2 ,
1−qj

2

}
, we can guarantee that

1

K
− qj + δ <

1

K
− (1− qj)− δ and

1

K
− (1− qj) + δ <

1

K
− δ, (46)
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which implies (ĝj , ĥj) = (gj , hj) for (ĝj , ĥj) defined in equation 3. This proves equation 8 of
Theorem 1.

We next prove equation 9, the accuracy guarantee in estimating the task difficulty vector q. After
estimating ‖p‖2r(k) by v(k) = 1

s (Y (k))>ũ(k), we estimate ‖p‖2 by calculating l where lj :=
K
K−2

∑
k 6=ĝj ,k 6=ĥj

∆v
(k)
j and l := 1

m

∑m
j=1 lj . Assume that |‖p‖2 − l| ≤ ‖p‖2δ′. We will specify

the required order of δ′ later. Remind that the estimate for qj is defined as q̂j := 1
K −

∆v
(ĝj)

j

l . Under
the condition that ĝj = gj and |vj − ‖p‖2r(k)

j | ≤ ‖p‖2δ1, both of which are satisfied under the
conditions of Lemma 5, we have(

1
K − qj − 2δ1

)
1 + δ′

≤
∆v

(ĝj)
j

l
≤
(

1
K − qj + 2δ1

)
1− δ′

. (47)

By the Taylor expansion for 1
1−x = 1 + x+ Θ(x2) as x→ 0, we have

|q̂j − qj | ≤ 2δ1 + δ′
(

1

K
− qj + 2δ1

)
+ Θ(δ′2) = Θ(δ1 + δ′). (48)

Thus, both the order of δ′, which is the estimation error of ‖p‖2, and that of δ, which is the estimation
error of ‖p‖2r(k)

j , govern the estimation accuracy of qj . We next show that we can have δ′ = Θ(δ1).

By Lemma 5, we have |vj − ‖p‖2r(k)
j | ≤ ‖p‖2δ1, which implies

‖p‖2(∆r
(k)
j − 2δ1) ≤ ∆v

(k)
j ≤ ‖p‖2(∆r

(k)
j + 2δ1). (49)

Under the condition (ĝj , ĥj) = (gj , hj), since ∆r
(k)
j = 1

K for k 6= ĝj , ĥj , we have

‖p‖2 − ‖p‖2
2δ1K

K − 2
≤ lj =

K

K − 2

∑
k 6=ĝj ,k 6=ĥj

∆v
(k)
j ≤ ‖p‖2 + ‖p‖2

2δ1K

K − 2
, (50)

and thus δ′ = 2δ1K
K−2 = Θ(δ1). Thus, it is enough to have s = Ω

(
1

δ21‖p‖22
log K

ε

)
to guarantee

equation 9.

Proof of Corollary 1. By using Lemma 5 and taking the union bound over all tasks j ∈ [m] as
well as k ∈ [K], we can prove Corollary 1 in a similar way as that of Theorem 1.

G.2 PROOF OF LEMMA 4

We first prove equation 33,

‖ũ(k)‖2 ≥
√

1− 50 sin2 θ(u(k),p∗).

Let I be the set of indices 1 ≤ i ≤ n such that u(k)
i ≥ 2

η
√
n

. Then, we have u(k)
i − p∗i ≥ 1

η
√
n

for all
i ∈ I since p∗i = pi/‖p‖2 ≤ 1

η
√
n

due to the assumption that ‖p‖22 ≥ η2n. Thus, we have

|I|
η2n
≤
∑
i∈I

(u
(k)
i − p

∗
i )

2 ≤ ‖u(k) − p∗‖22. (51)

By using the triangle inequality, we can show that√∑
i∈I

(
u

(k)
i

)2

≤

√√√√∑
i∈I

(
u

(k)
i −

2

η
√
n

)2

+

√
4|I|
η2n

≤

√√√√∑
i∈I

(
p∗i −

2

η
√
n

)2

+

√∑
i∈I

(
u

(k)
i − p∗i

)2

+

√
4|I|
η2n

≤

√
4|I|
η2n

+

√∑
i∈I

(
u

(k)
i − p∗i

)2

+

√
4|I|
η2n

≤ 5‖u(k) − p∗‖2.

(52)
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Therefore, we get

1 ≥ ‖ũ(k)‖22 = 1−
∑
i∈I

(u
(k)
i )2 ≥ 1− 25‖u(k) − p∗‖22. (53)

By the law of cosine, we have
‖p∗ − u(k)‖22 = sin2 θ(u(k),p∗) + (1− cos θ(u(k),p∗))2 = 2− 2 cos θ(u(k),p∗)

= 2

(
1−

√
1− sin2 θ(u(k),p∗)

)
= 2

sin2 θ(u(k),p∗)

1 +
√

1− sin2 θ(u(k),p∗)

≤ 2 sin2 θ(u(k),p∗).

(54)

Combining equation 53 and equation 54 proves equation 33.

We next prove equation 34,
sin θ(ũ(k),p∗) ≤ 6

√
2 sin θ(u(k),p∗).

First, note that ‖ũ(k) − u(k)‖22 =
∑
i∈I

(
u

(k)
i

)2

. We have

sin θ(ũ(k),p∗) ≤ ‖ũ(k) − p‖2 ≤ ‖ũ(k) − u(k)‖2 + ‖u(k) − p∗‖2 ≤ 6‖u(k) − p∗‖2 (55)
where the last inequality is from equation 52. Combined with equation 54, we get equation 34.

H PERFORMANCE ANALYSIS OF ALGORITHM 2

H.1 PROOF OF LEMMA 1

In this lemma, we show that conditioned on (ĝj , ĥj) = (gj , hj) for all j ∈ [m], if s(1 − s1) =

Ω
(

1
δ2m

log n
ε

)
, the estimator p̂i defined in equation 5,

p̂i =
K

(K − 2)

 1

s(1− s1)

 1

m

m∑
j=1

1(A2
ij = ĝj or ĥj)

− 2

K

 ,

guarantees P (‖p− p̂‖∞ < δ2) ≥ 1− ε for any ε > 0.

Given (ĝj , ĥj) = (gj , hj) for all j ∈ [m], sinceA2 is independent of (ĝj , ĥj), we have

E
[
1(A2

ij = ĝj or ĥj)
]

= P(A2
ij = ĝj or ĥj) = s(1− s1)

(
K − 2

K
pi +

2

K

)
,

var
(
1(A2

ij = ĝj or ĥj)
)
≤ s(1− s1).

(56)

By applying the Bernstein’s inequality, we can show that

P

∣∣∣∣∣∣
m∑
j=1

(
1(A2

ij = ĝj or ĥj)− s(1− s1)

(
K − 2

K
pi +

2

K

))∣∣∣∣∣∣ > (K − 2)ms(1− s1)δ2
K


≤ exp

− 1
2

(
(K−2)ms(1−s1)δ2

K

)2

ms(1− s1) + 1
3

(K−2)ms(1−s1)δ2
K

 ≤ exp
(
−Θ

(
ms(1− s1)δ2

2

))
.

(57)

Thus, if the sampling probability satisfies

s(1− s1) = Ω

(
1

mδ2
2

log
1

ε

)
, (58)

then we can guarantee that P(|p̂i− pi| < δ2) ≥ 1− ε. By taking the union bound over i ∈ [n], if the
sampling probability satisfies

s(1− s1) = Ω

(
1

mδ2
2

log
n

ε

)
, (59)

then we can guarantee that P (‖p̂− p‖∞ < δ2) ≥ 1− ε.
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H.2 PROOF OF THEOREM 2

To prove this theorem, we use similar proof techniques from Zhang et al. (2014). Since the work
in Zhang et al. (2014) focuses on the recovery of only the ground-truth label for each task, we
generalize the techniques to recover not only the ground-truth label but also the most confusing
answer.

We first introduce some notations. Let µ(i,j)
(a,b),k denote the probability that a worker i ∈ [n] gives

label k ∈ [K] for the assigned task j ∈ [m] of which the top-two answers are (gj , hj) = (a, b). Let
µ

(i,j)
(a,b) = [µ

(i,j)
(a,b),1 µ

(i,j)
(a,b),2 · · · µ

(i,j)
(a,b),K ]>. We introduce a quantity that measures the average

ability of workers in distinguishing the ground-truth pair of top-two answers (gj , hj) from any other
pair (a, b) ∈ [K]2/{(gj , hj)} for the task j ∈ [m]. We define

D
(j)

:= min
(gj ,hj) 6=(a,b)

1

n

n∑
i=1

DKL

(
µ

(i,j)
(gj ,hj),µ

(i,j)
(a,b)

)
; D := min

j∈[m]
D

(j)
, (60)

where DKL(P,Q) :=
∑
i P (i) log(P (i)/Q(i)) is the KL-divergence between P and Q. Note that

D
(j)

is strictly positive if qj ∈ (1/2, 1) and there exists at least one worker i with pi > 0 for the
distribution equation 1, so that (gj , hj) can be distinguished from any other (a, b) ∈ [K]2/{(gj , hj)}
statistically. We define D as the minimum of D

(j)
over j ∈ [m], indicating the average ability of

workers in distinguishing (gj , hj) from any other (a, b) for the most difficult task in the set.

Let us define an event that will be shown holding with high probability,

E :

n∑
i=1

K∑
k=1

1(Aij = k) log

µ(i,j)
(gj ,hj),k

µ
(i,j)
(a,b),k

 ≥ nsD/2 for all j ∈ [m] and (a, b) ∈ [K]×[K]\(gj , hj).

(61)

Define

li :=

K∑
k=1

1(Aij = k) log
(
µ

(i,j)
(gj ,hj),k/µ

(i,j)
(a,b),k

)
. (62)

We can see that l1, . . . , ln are mutually independent on any value of (gj , hj), and each li belongs to
the interval [0, log(1/ρ)] where µ(i,j)

(gj ,hj),c ≥ ρ for all (i, j, gj , hj , c) ∈ [n] × [m] × [K]3. We can
easily show that

E

[
n∑
i=1

li

∣∣∣∣∣(gj , hj)
]

=

n∑
i=1

sDKL

(
µ

(i,j)
(gj ,hj),µ

(i,j)
(a,b)

)
. (63)

We define

D :=

n∑
i=1

DKL

(
µ

(i,j)
(gj ,hj),µ

(i,j)
(a,b)

)
. (64)

The following lemma shows that the second moment of li is bounded above by the KL-divergence
between the label distribution under (gj , hj) pair and the label distribution under (a, b) pair.
Lemma 6. Conditioning on any value of (gj , hj), we have

E
[
l2i |(gj , hj)

]
≤ 2 log(1/ρ)

1− ρ
sDKL

(
µ

(i,j)
(gj ,hj),µ

(i,j)
(a,b)

)
. (65)

The proof of this lemma can be obtained by following the proof of the similar result, Lemma 4 of
Zhang et al. (2014).

According to Lemma 6, the aggregated second moment of li is bounded by

E

[
n∑
i=1

l2i

∣∣∣∣∣(gj , hj)
]
≤ 2 log(1/ρ)

1− ρ

n∑
i=1

sDKL

(
µ

(i,j)
(gj ,hj),µ

(i,j)
(a,b)

)
=

2 log(1/ρ)

1− ρ
sD.

(66)
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Thus, applying the Bernstein’s inequality, we have

P

[
n∑
i=1

li ≥ sD/2

∣∣∣∣∣(gj , hj)
]
≥ 1− exp

(
−

1
2 (sD/2)2

2 log(1/ρ)
1−ρ sD + 1

3 (2 log(1/ρ))(sD/2)

)
. (67)

Since ρ ≤ 1/2 and D ≥ nD
(j) ≥ nD, combining the above inequality with union bound over

j ∈ [m], we have

P [E ] ≥ 1−mK2 exp

(
− nsD

33 log(1/ρ)

)
. (68)

The maximum likelihood estimator finds a pair of (a, b) ∈ [K]2, a 6= b, maximizing

(ĝj , ĥj) = arg max
(a,b)∈[K]2,a6=b

n∏
i=1

P(Aij |p, qj , (a, b))

= arg max
(a,b)∈[K]2,a6=b

n∑
i=1

logP(Aij |p, qj , (a, b))

= arg max
(a,b)∈[K]2,a6=b

n∑
i=1

K∑
k=1

1(Aij = k) logµ
(i,j)
(a,b),k. (69)

The plug-in MLE in equation 6, on the other hand, finds a pair of (a, b) ∈ [K]2, a 6= b, maximizing

(ĝj , ĥj) = arg max
(a,b)∈[K]2,a 6=b

n∑
i=1

K∑
k=1

1(Aij = k) log µ̂
(i,j)
(a,b),k (70)

where µ̂(i,j)
(a,b),k is the estimated probability that a worker i ∈ [n] gives label k ∈ [K] for the assigned

task j ∈ [m] of which the top two answers are (gj , hj) = (a, b) assuming pi = p̂i from equation 5
and qj = q̂j from equation 4 in the distribution equation 1. Thus, for the plug-in MLE to correctly
find the ground-truth top two answers (gj , hj), we need to satisfy the following event:

n∑
i=1

K∑
k=1

1(Aij = k) log
(
µ̂

(i,j)
(gj ,hj),k/µ̂

(i,j)
(a,b),k

)
≥ 0 for all (a, b) ∈ [K]× [K]\(gj , hj). (71)

For any arbitrary (a, b) 6= (gj , hj), consider the quantity

Q(a,b) :=

n∑
i=1

K∑
k=1

1(Aij = k) log
(
µ̂

(i,j)
(gj ,hj),k/µ̂

(i,j)
(a,b),k

)
, (72)

which can be written as

Q(a,b) =

n∑
i=1

K∑
k=1

1(Aij = k) log
µ

(i,j)
(gj ,hj),k

µ
(i,j)
(a,b),k

+

n∑
i=1

K∑
k=1

1(Aij = k)

log

 µ̂(i,j)
(gj ,hj),k

µ
(i,j)
(gj ,hj),k

− log

 µ̂(i,j)
(a,b),k

µ
(i,j)
(a,b),k

 .
(73)

Assuming that there exist ρ > δ3 such that

µ
(i,j)
(a,b),k ≥ ρ and |µ̂(i,j)

(a,b),k − µ
(i,j)
(a,b),k| ≤ δ3 for all i ∈ [n], j ∈ [m], (a, b) ∈ [K]2, (74)

we have

max
i∈[n],k∈[K]

log

 µ̂(i,j)
(gj ,hj),k

µ
(i,j)
(gj ,hj),k

− log

 µ̂(i,j)
(a,b),k

µ
(i,j)
(a,b),k

 ≤ 2 log

(
ρ

ρ− δ3

)
. (75)

By the Bernstein’s inequality, we also have

P

[∣∣∣∣∣
n∑
i=1

K∑
k=1

1(Aij = k)− ns

∣∣∣∣∣ > ns/2

]
≤ exp

(
−

1
2 (ns/2)2

ns+ 1
3 (ns/2)

)
= exp

(
−3ns

28

)
. (76)
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By taking the union bound over j ∈ [m], we have

P

[∣∣∣∣∣
n∑
i=1

K∑
k=1

1(Aij = k)− ns

∣∣∣∣∣ > ns/2 for any j ∈ [m]

]
≤ m exp

(
−3ns

28

)
. (77)

Under the intersection of the event
∣∣∣∑n

i=1

∑K
k=1 1(Aij = k)− ns

∣∣∣ ≤ ns/2 for all j ∈ [m] and the
event E , we can guarantee

Q(a,b) =

n∑
i=1

K∑
k=1

1(Aij = k) log
µ

(i,j)
(gj ,hj),k

µ
(i,j)
(a,b),k

+

n∑
i=1

K∑
k=1

1(Aij = k)

log

 µ̂(i,j)
(gj ,hj),k

µ
(i,j)
(gj ,hj),k

− log

 µ̂(i,j)
(a,b),k

µ
(i,j)
(a,b),k


≥ nsD

2
− 3ns log

(
ρ

ρ− δ3

)
≥ ns

(
D

2
− 3δ3
ρ− δ3

)
> 0

(78)

for every j ∈ [m] where the last inequality holds if

δ3 < ρ
D

6 +D
. (79)

In summary, under that the event
∣∣∣∑n

i=1

∑K
k=1 1(Aij = k)− ns

∣∣∣ ≤ ns/2 for all j ∈ [m] and the
event E hold, if we have δ3 such that

|µ̂(i,j)
(a,b),k − µ

(i,j)
(a,b),k| ≤ δ3 for all i ∈ [n], j ∈ [m], (a, b) ∈ [K]2 (80)

and

δ3 < ρ and δ3 < ρ
D

6 +D
, (81)

then we can guarantee that the plug-in MLE in equation 70 successfully recovers the pair of top two
(gj , hj) for all the tasks j ∈ [m]. To make the right-hand side of equation 68 and equation 77 less
than ε/2, it is sufficient to have

s = Ω

(
log(1/ρ) log(mK2/ε) +D log(m/ε)

nD

)
. (82)

Lastly, when we have
max{‖p− p̂‖∞, ‖q − q̂‖∞} ≤ δ, (83)

we can guarantee that
|µ̂(i,j)

(a,b),k − µ
(i,j)
(a,b),k| ≤ 4δ := δ3. (84)

Thus, it is sufficient to guarantee equation 83 with

δ < min

{
ρ

4
,

ρD

4(6 +D)

}
. (85)

I PROOF OF THEOREM 3

I.1 PROOF OF PART (A)

To prove this minimax bound, we use the similar arguments from Karger et al. (2014). In particular,
we consider a spammer-hammer model such that

pi =

{
0, for 1 ≤ i ≤ b(1− p)nc
1, otherwise.

(86)

Assume that total lj workers randomly sampled from [n] provide answers for the task j. Under the
spammer-hammer model, the oracle estimator makes a mistake on task j with probability (K−1)/K
if it is only assigned to spammers. When lj is the number of assignments, we have

P(ĝj 6= gj) =
K − 1

K
(1− p)lj . (87)
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By convexity and using Jensen’s inequality, the average probability of error is lower bounded by

1

m

∑
j∈[m]

P(ĝj 6= gj) ≥
K − 1

K
(1− p)l (88)

where 1
m

∑
i∈[m] li ≤ l. By assuming p ≤ 2/3, we have (1− p) ≥ e−(p+p2). Thus,

min
ĝ

max
p∈Fp, g∈[K]m

1

m

∑
j∈[m]

P(ĝj 6= gj) ≥
K − 1

K
e−(p+p2)l ≥ K − 1

K
e−2pl. (89)

The inequality in equation 89 implies that if l is less than 1
2p log

(
K−1
Kε

)
, then no algorithm can make

the minimax error in equation 89 less than ε. Since the average number of queries per task in our
model is ns, it implies that it is necessary to have s = Ω

(
1
‖p‖22

log 1
ε

)
.

I.2 PROOF OF PART (B)

To prove the second part of the theorem, we use proof techniques from Zhang et al. (2014), but
generalizes the results for pair of top two answers. We assume that jc ∈ [m], (gc, hc) ∈ [K]2 and
(ac, bc) ∈ [K]2 are the task index and the pairs of labels such that

D =
1

n

n∑
i=1

DKL

(
µ

(i,jc)
(gc,hc),µ

(i,jc)
(ac,bc)

)
(90)

for D defined in equation 60.

Let Q be a uniform distribution over the set {(gc, hc), (ac, bc)}m. For any (ĝ, ĥ), we have

max
(v,u)∈[K]m×[K]m

vj 6=uj ,∀j[m]

E

 m∑
j=1

1((ĝj , ĥj) 6= (gj , hj))
∣∣∣(g,h) = (v,u)


≥

m∑
j=1

∑
(v,u)∈{(gc,hc),(ac,bc)}m

Q((v,u))E
[
1((ĝj , ĥj) 6= (gj , hj))

∣∣∣(g,h) = (v,u)
] (91)

Let A := {Aij : i ∈ [n], j ∈ [m]} be the set of observations. Define two probability measures P0

and P1, such that P0 is the measure of A conditioned on (gj , hj) = (gc, hc), while P1 is that on
(gj , hj) = (ac, bc). Then, we can have∑
(v,u)∈{(gc,hc),(ac,bc)}m

Q((v,u))E
[
1((ĝj , ĥj) 6= (gj , hj))

∣∣∣(g,h) = (v,u)
]

= Q((gj , hj) = (gc, hc))P0((ĝj , ĥj) 6= (gc, hc)) + Q((gj , hj) = (ac, bc))P1((ĝj , ĥj) 6= (ac, bc))

≥ 1

2
− 1

2
‖P0 − P1‖TV

≥ 1

2
− 1

4

√
DKL(P0,P1).

(92)

where the second to the last inequality is by Le Cam’s method and the last inequality is by Pinsker’s
inequality.4

Conditioned on (gj , hj), the set of random variables Aj := {Aij : i ∈ [n]} are independent of
A\Aj for both P0 and P1, and thus

DKL(P0,P1) = DKL(P0(Aj),P1(Aj)) + DKL(P0(A\Aj),P1(A\Aj)) = DKL(P0(Aj),P1(Aj))
(93)

4The total variation distance between probability distributions P and Q defined on a set X is defined as the
maximum difference between probabilities they assign on subsets of X : ‖P − Q‖TV := supA⊂X |P (A) −
Q(A)|.
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where P(X) denote the distribution of X with respect to the probability measure P. Given (gj , hj),
since A1j , . . . , Anj are independent, we can show that

DKL(P0(Aj),P1(Aj)) =

n∑
i=1

DKL(P0(Aij),P1(Aij))

=

n∑
i=1

(
(1− s) log

1− s
1− s

+ sDKL

(
µ

(i,j)
(gc,hc),µ

(i,j)
(ac,bc)

))
≥ snD.

(94)

Combining equation 91– equation 94, we have

max
(v,u)∈[K]m×[K]m

vj 6=uj ,∀j[m]

E

 1

m

m∑
j=1

1((ĝj , ĥj) 6= (gj , hj))
∣∣∣(g,h) = (v,u)


≥ 1

2
− 1

4

√
snD.

(95)

Thus, if s ≤ 1
4nD

, then the above inequality is lower bounded by 3/8. This completes the proof.

J USEFUL INEQUALITIES

In this section, we summarize the useful inequalities used in the proof of the main results.

The following inequality, which appeared in Bandeira & Van Handel (2016) provides a non-
asymptotic spectral norm bound for random matrices with independent random entries.

Theorem 4 (Spectral norm bound of a random matrice with independent entries). Consider a ran-
dom matrixX ∈ Rn×m, whose entries are independently generated and obey

E[Xi,j ] = 0, and |Xi,j | ≤ B, 1 ≤ i ≤ n, 1 ≤ j ≤ m. (96)

Define

ν := max

max
i

∑
j

E[X2
i,j ], max

j

∑
i

E[X2
i,j ]

 . (97)

Then there exists some universal constant c > 0 such that for any t > 0,

P
{
‖X‖ ≥ 4

√
ν + t

}
≤ (n+m) exp

(
− t2

cB2

)
. (98)

We also present a useful corollary of Theorem 4, which can be shown from equation 98 by setting
c̃ =
√

9c and t = B
√

9c log(n+m).

Corollary 3 (Corollary of Theorem 4). If E[X2
i,j ] ≤ σ2 for all i, j and satisfying conditions in

Theorem 4, then we have

‖X‖ ≤ 4σ
√

max(m,n) + c̃B
√

log(n+m) (99)

with probability 1− (n+m)−8 for some constant c̃ > 0.

We next summarize the eigenspace perturbation theory for asymmetric matrices with singular value
composition (SVD). Suppose X := [X0,X1] and Z := [Z0,Z1] are orthonormal matrices. When
we define the distance between two subspacesX0 and Z0 by

dist(X0,Z0) := ‖X0X
>
0 −Z0Z

>
0 ‖, (100)

then we have
dist(X0,Z0) = ‖X>0 Z1‖ = ‖Z>0 X1‖. (101)
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Given ‖X>0 Z0‖ ≤ 1, we write SVD of X>0 Z0 ∈ Rr×r as X>0 Z0 := U cos ΘV > where cos Θ =
diag(cos θ1, . . . , cos θr). We call {θ1, . . . , θr} principal angles betweenX0 andZ0. Then, we have

‖X>0 Z1‖ = ‖ sin Θ‖ = max{| sin θ1|, · · · , | sin θr|}. (102)

LetM∗ andM = M∗+E be two matrices in Rn×m with n ≤ m, whose SVD are represented by
M∗ =

∑n
i=1 σ

∗
i u
∗
i v
∗
i
> and M =

∑n
i=1 σiuivi

>, where σ1 ≥ · · · ≥ σn (resp. σ∗1 ≥ · · · ≥ σ∗n).
Let us define

U0 := [u1, · · · ,ur] ∈ Rn×r, V0 := [v1, · · · ,vr] ∈ Rm×r. (103)

The matrices U∗0 and V ∗0 are defined analogously.
Theorem 5 (Wedin sin Θ Theorem). If ‖E‖ < σ∗r − σ∗r+1, then one has

max{‖dist(U0,U
∗
0 )‖, ‖dist(V0,V

∗
0 )‖} ≤

√
2‖E‖

σ∗r − σ∗r+1 − ‖E‖
, (104)

where U∗0 (V ∗0 ) and U0 (V0) are subspaces spanned by the largest r left (right) singular vectors of
M∗ andM , respecively.

Lastly, we also write down two useful concentration inequalities.
Theorem 6 (Hoeffding). Let X1, X2, . . . , Xn be independent random variables such that Xi ∈
[ai, bi] for 1 ≤ i ≤ n. Then, we have

P

[∣∣∣∣∣
n∑
i=1

(Xi − E[Xi])

∣∣∣∣∣ > t

]
≤ 2 exp

(
− 2t2∑n

i=1(bi − ai)2

)
. (105)

Theorem 7 (Bernstein). Let X1, X2, . . . , Xn be independent random variables such that Xi ∈
[ai, bi] for 1 ≤ i ≤ n. Let C := max1≤i≤n(bi − ai) and σ2 =

∑n
i=1 var(Xi). Then we have

P

[∣∣∣∣∣
n∑
i=1

(Xi − E[Xi])

∣∣∣∣∣ > t

]
≤ 2 exp

(
− t2/2

σ2 + C · t/3

)
. (106)
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