
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

RNNS ARE NOT TRANSFORMERS (YET):
THE KEY BOTTLENECK ON IN-CONTEXT RETRIEVAL

Anonymous authors
Paper under double-blind review

ABSTRACT

This paper investigates the gap in representation powers of Transformers and Recur-
rent Neural Networks (RNNs), which are more memory efficient than Transformers.
We aim to understand whether RNNs can match the performance of Transform-
ers, particularly when enhanced with Chain-of-Thought (CoT) prompting. Our
theoretical analysis reveals that CoT improves RNNs but is insufficient to close
the gap with Transformers. A key bottleneck lies in the inability of RNNs to
perfectly retrieve information from the context, even with CoT: for several tasks
that explicitly or implicitly require this capability, such as associative recall and
determining if a graph is a tree, we prove that RNNs are not expressive enough to
solve the tasks while Transformers can solve them with ease. Conversely, we prove
that adopting techniques to enhance the in-context retrieval capability of RNNs,
including Retrieval-Augmented Generation (RAG) and adding a single Transformer
layer, can elevate RNNs to be capable of solving all polynomial-time solvable
problems with CoT, hence closing the representation gap with Transformers. We
validate our theory on synthetic and natural language experiments.

1 INTRODUCTION

Transformers (Vaswani et al., 2017) have become the dominant choice of the backbone for Large
Language Models (LLMs). The core component of Transformers is self-attention modules, which
allow the model to route information densely across the entire sequence. However, this design leads
to high inference costs for long sequences, including a memory cost linear in the sequence length
to maintain intermediate attention keys and values for each token, and a time cost quadratic in the
sequence length to compute the attention score for each pair of tokens.

Recently, Recurrent Neural Networks (RNNs) have become an increasingly popular choice in
sequence modeling tasks due to their ability to maintain a memory size constant in sequence length
during inference, thus being more memory efficient than Transformers. Katharopoulos et al. (2020)
showed that Linear Transformers (Transformers with linear attention) can be expressed as RNNs.
Gu et al. (2022) took a different path to design RNNs by structuring latent states as State Space
Models (SSMs) from control theory. These ideas have led to a series of development of modern
RNNs, including RWKV (Peng et al., 2023), RetNet (Sun et al., 2023), and Mamba (Gu & Dao,
2023). Most notably, Mamba can achieve competitive performance with Transformers on several
sequence modeling tasks with linear time and constant memory in sequence length.

Can RNNs replace Transformers yet? The rise of these modern RNNs has led to an interest in
understanding their limitations. A recent work by Arora et al. (2023) showed that a broad family
of RNNs, input-independent gating SSMs, are empirically inferior to Transformers in a task that
has a long history in artificial intelligence, Associative Recall (AR) (Willshaw et al., 1969; Hopfield,
1982; Hinton & Anderson, 2014): Given a series of key-value pairs as a string, the model is required
to recall the value given a key. On the theory side, Sanford et al. (2023) and Jelassi et al. (2024)
demonstrated that constant-memory RNNs do not have sufficient representation power to solve
the tasks of averaging a given subset of input vectors (q-sparse averaging) and repeating the input
sequence (copying), respectively, while there exist shallow Transformers that can solve these tasks.

However, the above results do not exclude the possibility that enhancing RNNs with additional
prompting techniques or minor architectural changes could close the gap with Transformers. In fact,
Transformers themselves are not perfect either and sometimes need additional techniques at inference
time to perform well. For instance, Transformers may struggle with mathematical and algorithmic

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Transformer + CoT ⊃ P

Transformer

Vanilla Transformer

RNN + In-Context RAG ⊃ P

RNN + CoT ̸⊃ P

Vanilla RNN

RNN (This work)

Figure 1: Hierarchy of Representation Power. While RNN with chain-of-thought (CoT) with
O(log n) bit memory provably has strictly stronger representation power than RNN without CoT
under mild complexity assumptions (Theorem 4.1), it is still exponentially weaker than Transformer
with CoT in representing solutions to algorithmic problems (Theorem 4.7). We proceed to show that
the incapability of RNNs in In-Context Retrieval is the root cause of the gap and propose two forms
of In-Context Retrieval Augmented Generation (In-Context RAG) to close the gap by illustrating
their power to simulate any polynomial-time Turing machines (Theorems 5.2 and 5.4).

reasoning problems if they are forced to produce the correct answer immediately after processing the
input sequence. But with Chain-of-Thought (CoT) prompting applied, a prompting technique that
guides the model to generate a series of intermediate tokens before arriving at the final answer, their
performance can be significantly improved. Feng et al. (2023); Li et al. (2024) explained the success
of CoT from the perspective of representation power: Transformers alone do not have sufficient
representation power to solve problems beyond a certain circuit complexity class (TC0), but with
CoT, they can even simulate any polynomial-time Turing machine.

The effectiveness of CoT on Transformers naturally leads to the following question:

Can similar enhancements, such as adopting CoT, improve RNNs to be on par with Transformers?

Our Contributions. This paper examines potential ways to close the gap in the representation powers
of RNNs and Transformers (with softmax attention) on algorithmic problems. Through a series of
lower and upper bound results, we show that CoT improves the representation power of RNNs, but to
close the gap with Transformers, CoT alone is not enough to overcome a key bottleneck of RNNs:
their inability to retrieve information from the context, which we call in-context retrieval for short.

We further illustrate that addressing this in-context retrieval bottleneck is sufficient to close this
gap: RNNs can solve all polynomial-time solvable problems if adopting techniques to enhance the
in-context retrieval capability, including involving Retrieval-Augmented Generation (RAG) and using
hybrid architectures, such as appending a single Transformer layer.

Our main contributions are listed as follows:

1. CoT improves RNNs but cannot close the representation gap with Transformers. (Section 4)

• On the positive side, we prove that CoT makes RNNs strictly more expressive under mild
assumptions from circuit complexity (PSPACE ̸⊂ P/poly).

• On the negative side, we show that adopting CoT is not enough to close the representation gap
between RNNs and Transformers: the memory efficiency of RNNs fundamentally limits their
ability to perform in-context retrieval, even with CoT. This point is made concrete by proving
that RNNs with CoT cannot solve a set of fundamental algorithmic problems that directly ask
for in-context retrieval, including associative recall.

• We further exemplify that in-context retrieval can be implicitly required in tasks that appear
unrelated, by proving the inability of RNNs to solve the classic problem of determining whether
a graph is a tree (IsTree).

Our negative results hold for a wide range of RNN architectures, including the aforementioned
Mamba, RWKV, and even Linear Transformers. Technically, this is because RNNs are so memory
efficient that they can trigger streaming lower bounds (Sanford et al., 2023), especially for
problems that require in-context retrieval.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Figure 2: We train RNNs (Mamba) and Transformers (LLaMA 2 Touvron et al. (2023)) with a frozen
word embedding and decoding head of three different model sizes (0.5M, 1M, 2M) on IsTree with
three different sizes of graph (16, 32, 64) under three different setups. Vanilla means the model
directly predicts the label. COT means the model will generate a chain-of-thought process based on
DFS (see Algorithm 1) before prediction. Retrieval means the model will generate the chain of search
queries and reasoning before prediction (see Algorithm 2). We observe that (1) Both Transformer
and RNNs can’t solve the IsTree question without a chain of thought; (2) RNNs’ performance with
chain-of-thought decays quickly when the number of nodes increase, which is consistent with our
theory; (3) All models reach almost perfect accuracy when enhanced with retrieval.

2. Enhancing the in-context retrieval capability of RNNs can close the gap. (Section 5)

• We prove that allowing RNNs to invoke function calls to perform a primitive of in-context
retrieval based on regular expression is sufficient to boost their representation power to solve all
polynomial-time solvable problems with CoT, hence closing the representation gap.

• As one layer of the Transformer is sufficient to perform many in-context retrieval operations,
mixing some Transformer layers in RNNs should also narrow the representation gap. We prove
that a minimal possible change in the RNN architecture can just work: adding one Transformer
layer at the end of the RNN architecture is sufficient to close the representation gap.

Our positive results showing that enhancing in-context retrieval can improve RNNs’ representation
power hold for vanilla Linear RNNs, and can be easily extended to more complex architectures.
The intuition behind these results is that RNN can focus on the local reasoning steps and use the
in-context retrieval module to adaptively fetch the relevant information from the context.

We validate our theoretical findings through synthetic and natural language experiments on IsTree
and HotPot-QA, confirming that while CoT alone cannot close the performance gap between RNNs
and Transformers, the proposed two solutions effectively narrow this gap. (Section 6)

Implications. We believe these results could provide valuable insights into architecture designs of
LLMs: RNNs alone can suffer from many fundamental limitations in representation power, even
with CoT; on the other hand, it is promising to explore strategies to enhance the in-context retrieval
capability of RNNs with little overhead, such as using a hybrid architecture that mixes in one or more
Transformer layers (Ren et al., 2024; Waleffe et al., 2024; Lieber et al., 2024b).

2 RELATED WORKS

State Space Machines and Linear Transformers. There has been a recent surge of interest in
state space machines and (kernalized) linear transformers (Gu et al., 2022; Katharopoulos et al.,
2020; Peng et al., 2023; Sun et al., 2023; Gu & Dao, 2023; Fu et al., 2023; Poli et al., 2023; Luo
et al., 2021; Peng et al., 2021; Wang et al., 2020), which are a class of models that combine the
parallelizability of the Transformer with the memory efficiency of the RNN. These models can
process both a sequential and a recurrent form, and can use the former for fast parallelizable training
and the latter for memory-efficient inference. However, these models are still empirically inferior
to the Transformer in terms of performance. Our work investigates the reasons behind this gap and
proposes to close it by enhancing the in-context retrieval capability.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Chain of Thought (CoT). Chain of thought (Wei et al., 2023; Nye et al., 2021; Kojima et al., 2023;
Wang & Zhou, 2024) is an augmentation to the Transformer, that allows it to solve more complex
reasoning tasks by generating a reasoning process before outputting the answer. It has been shown
that Transformers with CoT provably have more expressive power than the original Transformer
without CoT (Feng et al., 2023; Li et al., 2024). However, the expressive power of RNNs with CoT
has not yet been systematically studied. Theorem F.1 in Feng et al. (2023) shows that RNN cannot
output a particular format of CoT for evaluating arithmetic expressions and solving linear equations
while Transformers with the same amount of parameters can. Concurrent work (Yang et al., 2024)
discovers that linear Transformers, a special class of RNNs, are not able to solve some dynamic
programming problems with CoT, unless the number of parameters grows with the length of the input.
One high-level message our work conveys is similar to theirs: RNNs have limited representation
power to perform reasoning with CoT. However, we show that such limitation is not specific to the
output format or architecture and apply tools from streaming complexity to prove lower bounds on a
broader range of tasks and memory-efficient architectures.

Streaming Algorithms. Our lower bound leverages the technique in streaming algorithms. Streaming
algorithms are algorithms that take constant (typically just 1) pass over the input and use sublinear
space, hence including RNNs with fixed state space as a special case. Works in streaming algorithms
date back to the 1980s (Munro & Paterson, 1980) and have been formalized and popularized in the
1990s (Alon et al., 1996) due to the need to process large data streams. The study of streaming
algorithm is closely connected with the concept of communication complexity. The communication
complexity of an algorithm is defined by the amount of communication cost required when the
algorithm is distributed, and all streaming algorithms can be viewed as distributed algorithms with
sublinear communication complexity, whose communication content is the internal state of the
algorithm. The lower bound in our work is a direct application of this observation to the study of
RNNs and we mainly consider the lower bounds for (1) indexing the input (Munro & Paterson, 1980)
and (2) determining whether the input is a tree (Henzinger et al., 1998).

We will defer other related works to Appendix A.

3 PRELIMINARIES

We briefly introduce the definitions that are necessary for understanding our results and defer detailed
definitions to Appendix B.

Vocabulary and Embeddings. Let n be a parameter so that the input length can be bounded by
Θ(n). We assume a finite vocabulary V that includes natural numbers from 1 to n and a constant
number of special tokens. For our theoretical analysis, we fix word and position embeddings and
only consider the representation power of the model when the non-embedding parameters can change.
See Appendix B.3 for the formal definitions. Note that in the common practice, the vocabulary size
does not increase with n and numbers may be tokenized into a few tokens according to their decimal
representations. Nevertheless, our lower bounds can be easily extended to this more practical case,
since these results do not rely on the specific form of the vocabulary and embeddings. For upper
bounds, our embedding scheme should be easily implemented from other embedding schemes with a
few RNN or Transformer layers.

Language Models. We denote the set of all finite sequences and all non-empty finite sequences
of tokens in V as V ∗ and V +. A language model (LM) is a function M : V + → PV that maps a
non-empty sequence to a probability distribution over the next token, where PV is the probability
simplex over V . We focus on LMs realized by deep neural networks: mapping an input sequence S
to a sequence of embeddings Emb(S), then applying a neural network (e.g., Transformer or RNN) to
process the embeddings and output the probability distribution.

Numerical Precision. We consider models with fixed numerical precision. We use p to denote the
precision of the number of bits to represent real numbers and use Rp to denote the set of all real
numbers that can be represented by p-bit floating point numbers. We defer the details to Appendix B.2.
We assume p = O(log n), which is a common assumption when studying the finite precision neural
networks (Feng et al., 2023; Merrill & Sabharwal, 2023).

Transformers. We study Transformers with a standard decoder architecture containing softmax
attention and gated feedforward layers. See Appendix B.3 for definitions. We focus on constant-size
Transformers, where the depth, width and number of parameters are fixed and do not depend on n.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

RNNs. Recently there has been a lot of interest in the linear-time Transformer, which replaces the
full-attention calculation with linear-time alternatives. These variants are mostly special forms of
recurrent neural networks (RNNs) that are parallelizable. Here we define a general form of RNNs
containing all the common variants to the best of our knowledge, including Mamba (Gu & Dao,
2023), RWKV (Peng et al., 2023), RetNet (Sun et al., 2023), StreamingLLM (Xiao et al., 2023),
RMT (Bulatov et al., 2022), TOVA (Oren et al., 2024), xLSTM (Beck et al., 2024) etc. An RNN
maintains a state st ∈ RΛ

p storing Λ p-bit floating point numbers. At each step, the RNN generates
the next state st+1 based on the current state st and token St, and then it makes a prediction based on
the updated state st+1. We characterize the complexity of an RNN with the following three measures:
(1) the parameter size P in bits, which is the total number of bits in parameters; (2) the memory size
M = Λp in bits, which is the total number of bits in each state; (3) the circuit size C, which is the
number of bit-wise operations needed to compute one step of the RNN. A particularly interesting class
of RNNs is constant-size RNNs, where the dimension of state and number of parameters are fixed and
do not depend on n, i.e., Λ = O(1), p = O(log n), P = O(log n), M = O(log n), C = O(log n).
We do not assume a specific structure of the RNN when we want to prove impossibility results for
RNNs, i.e., what RNNs cannot represent. But when we want to showcase what RNNs can represent,
we focus on Linear RNNs, one of the simplest form of RNNs, so that our results are more likely to be
generalizable to more complex RNNs. See Appendix B.3 for the definitions of all the above models.

Algorithmic Problems. An algorithmic problem is a problem that may be solved by an algorithm. In
this paper, we focus on algorithmic problems f : V + → VA that asks for computing f(Sin) given a
sequence of tokens Sin as the input, where VA is the set of possible answers. We say that an LM M can
(directly) solve an algorithmic task f if, given the sequence Sin, the probability distribution M(Sin)
for the next token is peaked at the correct output token f(Sin), i.e., argmaxj∈V M(Sin)[j] = f(Sin).

Chain-of-Thought Reasoning. Chain-of-Thought (CoT) reasoning allows the LM to produce
intermediate steps before the final output. Following Feng et al. (2023); Li et al. (2024), our paper
studies the effectiveness of CoT reasoning in improving the expressiveness of LMs, and we allow
the intermediate steps to be an arbitrary sequence of tokens. We say that an LM M can solve an
algorithmic problem f with CoT if the following process terminates with a sequence ended with
f(Sin). First, let S0 = Sin. For all i ≥ 0, decode the next token snexti = argmaxj∈V M(Si)[j]
from M , and append it to the current sequence Si+1 = Si ⊕ snexti . If snexti ∈ VA, then the process
terminates with Si+1 with i steps of CoT; otherwise the process continues. It is evident that if an LM
can solve an algorithm problem with 0 steps of CoT, then an LM M can (directly) solve the problem.
In this case, we also say that the LM can solve the problem without CoT.

4 HOW WELL DOES COT IMPROVE THE REPRESENTATION POWER OF RNNS?

In this section, we aim to understand how well CoT improves the representation power of RNNs and
how it compares with Transformers.

4.1 COT STRICTLY IMPROVES RNNS

First, we show a positive result that RNNs with CoT can solve tasks that RNNs without CoT cannot
solve. This relies on a mild complexity assumption PSPACE ̸⊂ P/poly, i.e., not all polynomial
space complexity problems can be solved by a polynomial-size circuit family. This has been widely
believed to be true since PSPACE ⊂ P/poly would imply severe complexity consequences (Karp &
Lipton, 1980; Babai et al., 1991).

Theorem 4.1. Assuming PSPACE ̸⊂ P/poly, there exists an algorithmic problem such that (1)
there exist constant-size Linear RNNs that can solve the problem with polynomial length CoT; and
(2) any constant-size regular RNNs cannot solve the problem without CoT.

See Appendix E.5 for the proof. The key insight is that the representation power of RNNs without
CoT is limited to shallow circuits of size poly(log n), but RNNs with CoT can simulate O(log n)-
space Turing machines perfectly with poly(n) steps. This result is consistent with previous works on
the benefit of CoT for Transformers (Feng et al., 2023; Li et al., 2024), which also prove based on
mild complexity assumptions that Transformers with CoT have the representation power to simulate
polynomial-size circuits to solve all the problems in P but Transformers without CoT cannot. Here
we rigorously prove that a similar benefit of CoT also applies to RNNs, but a key difference is that
CoT cannot boost the representation power of RNNs to simulate every polynomial-size circuit family.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

4.2 COT CANNOT CLOSE THE REPRESENTATION GAP WITH TRANSFORMERS

Now we proceed to understand whether CoT can make RNNs as expressive as Transformers. The
answer turns out to be negative: RNNs, even with CoT, struggle to solve very simple algorithmic
problems that require the capability of retrieving information from the current context, which we call
In-Context Retrieval for short. This limitation is directly related to the memory efficiency of RNNs.
For a model with at most o(n) bits in memory, we can involve techniques from streaming complexity
to prove impossibility results for problems requiring In-Context Retrieval.

4.2.1 SIMPLE PROBLEMS ON IN-CONTEXT RETRIEVAL

Here we list several simple algorithmic problems that directly test the in-context retrieval capability of
the model, which turn out to be a good test-bed for understanding the limitations of RNNs compared
to Transformers. We defer discussion on the history of these problems to Appendix C.

Definition 4.2 (Index). Index is a problem that given a sequence of tokens with length n and a query
token i ∈ [n], requires the model to output the type of the i-th token.

Definition 4.3 (Associative Recall). Associative Recall (AR) is a problem that given a sequence of
tokens with length n consisting of tokens in [n] and a query token q ∈ [n], requires the model to
output the next token of q in the sequence.

Definition 4.4 (c-gram Retrieval). An c-gram is a contiguous subsequence of c tokens in a sequence
of tokens. c-gram retrieval is a problem that given a sequence of tokens with length n and a query
(c− 1)-gram that is the prefix of a c-gram in the sequence, requires the model to output the last token
of that c-gram.

Definition 4.5 (Counting). Counting is a problem that given a sequence of tokens with length n,
a query token q ∈ [n], and a query number t ∈ N, requires the model to output 0 or 1 to indicate
whether the number of occurrences of q in the sequence is greater than t.

The following theorems show that constant-size RNNs cannot solve any of the four tasks, while
constant-size Transformers can solve them perfectly.

Theorem 4.6. For task T ∈ {Index, AR, c-gram retrieval, Counting}, there exist constant-size Trans-
formers that can solve T . On the other hand, any RNN with o(n)-bit memory cannot solve T of size
n with any length of CoT for large enough n.

See Appendix E.4 for the proof. The key idea of the lower bound is to view RNNs in the framework
of communication complexity and use information-theoretic arguments to prove a lower bound. The
computation of RNNs can be distributed to two parties: party A simulates the RNN on the first part
of the input and sends the state to party B, then party B receives the state and simulates the RNN
on the second part of the input (the query string) until it finishes producing the output. Therefore,
if the RNN can solve the problem with o(n)-bit memory, then the input can be compressed to o(n)
bits while maintaining all the necessary information to answer all possible queries, which contradicts
certain information-theoretic lower bounds.

We note that Theorem 4.6 does not imply that RNNs are incapable of in-context retrieval at all.
Instead, it states that the maximal context length that RNNs can effectively retrieve from is linear
in its state size. Although for a short context window, RNNs can be trained to perform in-context
retrieval (see e.g. Arora et al. (2023); Gu & Dao (2023)), this limitation in retrieval capabilities
has been empirically observed: for example in Waleffe et al. (2024), both pretrained Mamba and
Mamba-2 7B models are shown to have significantly worse Phonebook-retrieval capabilities on 1K
context length than Transformers with the same size and trained on the same data.

4.2.2 LIMITATIONS OF RNNS BEYOND SIMPLE IN-CONTEXT RETRIEVAL PROBLEMS

A natural question would be if an algorithmic problem does not directly test the in-context retrieval
capability, can we hope that RNNs would have the representation power to solve it? Do RNNs and
Transformers have the same representation power in this case? Still, the answer is negative. We show
that the limited memory size in RNNs can still be a bottleneck in solving algorithmic problems. Even
if the retrieval capability is not explicitly tested in an algorithmic problem, it may still be required
implicitly for reasoning about the answer.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

We demonstrate this gap on a simple algorithmic problem that is seemingly irrelevant to retrieval:
the IsTree problem. Given an undirected graph G of n nodes, determine whether G is a tree, i.e.,
whether every pair of nodes is connected by exactly one simple path. We convert the graph G into a
token sequence, where we input the graph edge by edge. Figure 6 shows an example of the IsTree
problem. A classical solution to IsTree is running Depth First Search (DFS), which takes O(n) time.
See Appendix B for more details.

Our result below shows that constant-size RNNs cannot solve IsTree, even with CoT. But constant-
size Transformers can perform CoT reasoning by simulating DFS and perfectly solve the problem.

Theorem 4.7. There exist constant-size Transformers that can solve IsTree with CoT of length O(n).
On the other hand, any RNN with o(n)-bit memory cannot solve IsTree with any length of CoT.

See Appendix E.6 for the proof. The key idea of the lower bound is to again utilize information-
theoretic lower bounds. This idea lies in the core of streaming complexity literature and investigation
on the IsTree problem, dating back to Henzinger et al. (1998). We hereby restate the proof for
completeness.

Given any binary sequence x of length n − 2 and an index k ∈ [n − 3], we construct a graph as
follows: the graph has n nodes, and vertex a is connected to vertex xa + n− 1 for any a ∈ [n− 2].
Additionally, vertex k is connected to vertex k + 1. The graph is a tree if and only if xk ̸= xk+1.
Assuming there is an RNN with o(n)-bit memory that can solve IsTree, consider two parties, A and
B, each holding the sequence x and the index k. They can construct two parts of the graph using
their information: A simulates the RNN on the first part and sends the state to B, who then simulates
the RNN (potentially with CoT) on the second part to determine the output of the IsTree problem,
equivalent to checking whether xk ̸= xk+1. However, since k is never sent to A, B can determine
whether xk ̸= xk+1 for any k ∈ [n− 3], contradicting certain information-theoretic lower bounds.

4.2.3 TRANSFORMERS ARE STRICTLY MORE EXPRESSIVE THAN RNNS

The above theorems show that RNNs have a significant representation gap with Transformers, even
with CoT. Finally, we show that this gap is one-sided: there only exist tasks where Transformers can
solve them and RNNs cannot, but not the other way around. The proof (Appendix E.7) is inspired by
a recent work on CoT for Transformer (Li et al., 2024).

Theorem 4.8. Given input length n, let R is an RNN with word embedding W (E) ∈ R(n+nS)×d
p ,

where p = Θ(log n) is the precision, the constant nS is the number of special symbols in the
vocabulary, the constant d is the embedding dimension. If each recurrent iteration can be computed
by a circuit of size C(n) ≤ 2p/2, and if the RNN produces the final answer after running at most nA

steps of CoT for some constant A > 0, then there exist Transformers with O(log n)-bit precision,
O(C(n)) parameters and word embedding

[
W (E) 0(n+nS)×d

]
that can produce the same final

answer after running (C(n) + 1)nA steps of CoT.

5 ENHANCING THE IN-CONTEXT RETRIEVAL CAPABILITY CLOSES THE GAP

In Section 4.2, we show that RNNs are deficient at In-Context Retrieval, hence leading to a significant
representation gap with Transformers. In this section, we aim to understand: if we enhance the
In-Context Retrieval capability of RNNs, do RNNs remain to have any representation gap with
Transformers? We answer this question by examining two representative approaches to enhance the
In-Context Retrieval capability, one explicit and one implicit, and show that both ways can close the
representation gap between RNNs and Transformers in solving algorithmic problems.

5.1 EXPLICIT RETRIEVAL THROUGH REGULAR EXPRESSION

First, we explore the power of RNNs with Retrieval Augmented Generation (RAG), which gives
an LM the capability to retrieve relevant information to assist generation. In our context, we are
specifically interested in allowing LMs to call functions to retrieve information from their context,
which we call In-Context Retrieval Augmented Generation (In-Context RAG).

Perhaps the simplest form of In-Context RAG is to allow the model to invoke function calls to
associative recall, but we show in Appendix E.8 that this is not enough to close the representation
gap between RNNs and Transformers. In this light, we need to consider a more general form of
In-Context Retrieval capability. We then turn to implement In-Context RAG by enabling an LM

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

RNN . . . RNN RNN RNN . . . RNN RNN RNN . . . RNN

StartSearch EndSearch

StartSearch EndSearch

Context Search Query Search Result

Retriever

In-Context RAG

RNN . . . RNN RNN . . . RNN RNN

Attention + MLP

Appending One Transformer Layer

Figure 3: Illustration of the two approaches to enhance the In-Context Retrieval capability of RNNs:
In-Context RAG (left) and appending one Transformer layer (right).

to perform regular expression matching, since the regular expression is a flexible primitive that
can be used to describe a wide range of retrieval tasks and can be implemented efficiently on
modern hardware. To be precise, when the context is string<StartSearch>pattern<EndSearch>,
we evaluate the Python code re.search(pattern, string).group(1) to get the result
of the regular expression matching. Then we append the result to the end of the context. See
Definition B.10.

The following theorem shows that In-Context RAG with regular expressions is powerful enough for
RNNs to solve the In-Context Retrieval problems in Section 4.2.1 with CoT.
Theorem 5.1. For task T ∈ {Index, AR, c-gram retrieval, Counting, IsTree}, there exist constant-
size Linear RNNs that can solve T with In-Context RAG. For T other than IsTree, O(1) steps of CoT
is required and for IsTree, O(n log n) steps of CoT is required.

More generally, the following theorem further shows that In-Context RAG empowers constant-size
RNNs to simulate polynomial-time Turing machines.
Theorem 5.2. Given A,B > 0, for all polynomial-time Turing machines T ∈ TIME(nA) with
B states and vocabulary size B, there exist Linear RNNs with B special symbols, O(A log n)-bit
precision and memory, and O(AB2) parameters that can output the result of T by running O(nA)
steps of CoT with In-Context RAG.

By introducing In-Context RAG, RNNs are able to use regular expressions to retrieve information
from a distance and put relevant information together. Then RNNs can use perform more complex
operations locally and output tokens to be retrieved later.

As a final note, our focus here is to understand the representation power of RNNs given an appropriate
RAG, but not to propose a method that immediately leads to practical applications. While the above
results show that In-Context RAG can close the representation gap between RNNs and Transformers
in solving algorithmic problems, a limitation here is that In-Context RAG is not an immediate
practical solution, as there is no existing training data for this In-Context RAG.

5.2 IMPLICIT RETRIEVAL BY APPENDING JUST ONE TRANSFORMER LAYER

Since Bahdanau et al. (2016), attention mechanisms have been understood as a form of compensation
for the fixed memory size of RNNs, allowing the model to attend to the entire context and retrieve
information. More recently, several hybrid Transformer-RNN architectures, such as Jamba (Lieber
et al., 2024a), SPADE (Zuo et al., 2022), and Block-state Transformers (Fathi et al., 2023), have
shown significant performance improvements over RNNs in practice.

Now we demonstrate that adding attention layers as a form of implicitly enhancing the retrieval
capability can close the representation gap. We study a simple hybrid architecture that combines
RNN and Transformer by appending just one Transformer layer to the RNN output (Appendix B).
The following theorem shows that it can solve the In-Context Retrieval problems in Section 4.2.
Theorem 5.3. For task T ∈ {Index, AR, c-gram retrieval, Counting, IsTree}, there exist constant-
size hybrid Linear RNNs that can solve T . For T other than IsTree, no CoT is required and for IsTree,
O(n log n) steps of CoT is required.

Further, we show that this hybrid architecture is powerful enough to even simulate all polynomial-time
Turing machines with CoT.
Theorem 5.4. Given A,B > 0, for all polynomial-time Turing machines T ∈ TIME(nA) with B
states and vocabulary size B, there exist a constant-size hybrid Linear RNNs with B special symbols,

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Figure 4: We train Mamba with one additional Transformer layer with a frozen word embedding and
decoding head of three different model sizes (0.5M, 1M, 2M) on IsTree with three different sizes of
graph (16, 32, 64) under three different setups. Vanilla means the model directly predicts the label.
COT means the model will generate a chain-of-thought process based on DFS (see Algorithm 1)
before prediction. Retrieval means the model will generate the chain of search queries and reasoning
before prediction (see Algorithm 2).

O(A log n)-bit precision and memory, and O(AB2) parameters that can output the result of T by
running O(nA) steps of CoT.

The proof idea is similar to the case of using In-Context RAG but now we use attention to retrieve
information instead.

6 EMPIRICAL VALIDATION

We validate our theoretical findings through synthetic and natural language experiments: CoT alone
cannot close the performance gap between RNNs and Transformers, but enhancing the in-context
retrieval capability can narrow the gap.

6.1 VALIDATION ON SYNTHETIC TASK: ISTREE

First, we validate our theoretical findings on the IsTree task introduced in Section 4.2.2. We generate a
synthetic dataset for this task, where each data point is a tokenized graph concatenated with an answer
of YES or NO, potentially with a CoT inserted in between. We then train RNNs and Transformers as
language models on this dataset autoregressively.

Experiment Details. To generate the graph, we follow the procedure described in the proof of The-
orem 4.7 (see Figure 6). The CoT data is generated using Algorithm 1 and the retrieval data is
generated using Algorithm 2. For the CoT model, we decode the reasoning path during inference time
until we reach the first YES or NO up to a max token limit greater than the length of all ground truth
CoT. For the data points that the model fails to give a prediction, we assume the model gets it correct
with 0.5 probability. For the retrieval task, we omit the explicit format of the regular expression and
only ask the model to generate the vertices and special tokens in the regular expression to shorten
the length of the input sequence. The reported accuracy is calculated over a validation set of 5000
samples using the last iteration of the model. We defer the experiment details to Appendix D. The
results are shown in Figures 2 and 4.

Results with CoT. Without CoT, both the Transformers and RNNs model cannot learn to solve the
IsTree problem. CoT improves the performance of both Transformers and RNNs but the RNNs’ per-
formance degrades sharply as the graph size increases and the Transformers consistently outperforms
RNNs in this case. This is consistent with our theory that CoT can improve the expressiveness of the
RNN models but the expressiveness is still not enough to solve IsTree (see Theorems 4.1 and 4.7).

Results with In-Context RAG. In-Context RAG allows all the models to reach near-perfect accuracy.
This is consistent with our theory that retrieval augmentation via regular expression can improve
the expressiveness of the RNN models to solve algorithmic tasks (see Theorems 5.2 and E.33). The
hybrid model (a Mamba model with one additional Transformer layer on the top) shows performance
on par with the Transformer, which is consistent with our theory (see Theorems 5.4 and E.36).

6.2 VALIDATION ON HOTPOT-QA
We further conduct experiments on open-source LLMs based on Transformer, Mambda, and a hybrid
architecture to show that for tasks that require stronger in-context retrieval capability, RNNs suffer
more performance degradation compared to Transformers.

Experiment Details. We use Phi-1.5 1.3B (Li et al., 2023) as our Transformer model. We further use
two Mamba and Transformer-Mamba hybrid models distilled from Phi-1.5 with approximately the
same parameters’ sizes (Bick et al., 2024) as our RNN and hybrid models. To test our theory, we

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

2 4 6 8
Number of Paragraphs

0.4
0.5
0.6
0.7
0.8
0.9
1.0

Ac
cu

ra
cy

Retrieval Required

Transformer
Hybrid
RNN

2 4 6 8
Number of Paragraphs

0.4
0.5
0.6
0.7
0.8
0.9
1.0

Ac
cu

ra
cy

Retrieval Free

Transformer
Hybrid
RNN

Figure 5: Evaluation of Multi-Document Reasoning on Hotpot-QA. n paragraphs are given to the
model before the question and 2 among which contains required information to answer the question.
(Left). When provided paragraphs are given in a random order, the task requires stronger in-context
retrieval capabilities when n increases. RNNs’ performance drop more sharply, as predicted by theory.
(Right). When the required paragraphs are always at the end of the provided paragraphs, the retrieval
difficulty significantly decreases and all the models have stable performance with respect to n.
use the Hotpot-QA (Yang et al., 2018) dataset. In the validation set of Hotpot-QA, each question is
accompanied by a set of different related paragraphs from Wikipedia. 2 of these paragraphs contain
useful information to answer this question. The model needs to retrieve the correct paragraphs and
reason based on these paragraphs to get the answer to the question.

HotpotQA with Controlled Retrieval Difficulty. We consider the following version of Hotpot-QA
with enhanced retrieval difficulty: We choose n paragraphs containing the correct paragraphs and
order them randomly before the question. The model needs to answer the question based on the given
paragraphs after CoT reasoning. This design allows us to use the hyperparameter n to control the
difficulty of in-context retrieval in this task, with larger n corresponding to a higher difficulty.

Evaluation. We test our models under a 4-shot setting with Chain-of-Thought. The model we tested
has varying performance even if n = 2. This is mostly due to their different capabilities to follow
instructions and in-context examples. To mitigate this effect and highlight the impact of retrieval, we
only test on a subset of 350 samples of the validation set where all the models can answer correctly
given the correct paragraphs. This ensures perfect accuracy when n = 2 in both settings. We vary n
in {2, 4, 6, 8} and the result is shown in Figure 5.

RNNs’ performance drops sharply with increased retrieval difficulty. While all the model’s
performance drops with increased retrieval difficulty (Figure 5, left), the RNN model has the largest
drops. The hybrid model with only 4 attention layers performs significantly better than the RNN
model. This validates our theory that RNN architectures’ limited in-context retrieval capabilities will
impact their performance in reasoning and hybrid architecture is a potential solution to this limitation.

Deconfouding the effect of context length. The context length also increases with the number
of provided paragraphs and can be a potential confounder. We then experiment with a controlled
group: after choosing the same set of n paragraphs, we always order the correct paragraph at the end,
which significantly simplifies the in-context retrieval process. In this case, all the models have stable
performance when the number of paragraphs increases.

7 CONCLUSION AND DISCUSSION

This paper studies the representation gap between RNNs and Transformers on algorithmic problems.
We prove that while CoT improves RNNs, it is insufficient to close the gap with Transformers due
to the key bottleneck of RNNs’ inability to perform in-context retrieval. We show that adopting
In-Context RAG or appending a single Transformer layer to RNNs can enhance their in-context
retrieval capabilities, thus closing the representation gap with Transformers.

This work provides valuable insights for the architectural design of LLMs. Considering the inherent
limitations of RNNs in in-context retrieval, it is crucial to explore strategies that enhance this
capability. This includes developing more effective in-context RAG methods tailored for RNNs,
beyond the theoretically simple but impractical approach using regular expressions discussed here.
Further research should also focus on architectural modifications that strike a balance between
representational power and memory efficiency. In this study, we demonstrate that adding just a single
Transformer layer significantly enhances the representational capacity of RNNs. Future work could
investigate the optimization and generalization of various hybrid architectures to achieve a more
comprehensive understanding.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Ekin Akyürek, Bailin Wang, Yoon Kim, and Jacob Andreas. In-context language learning: Architec-
tures and algorithms, 2024.

Silas Alberti, Niclas Dern, Laura Thesing, and Gitta Kutyniok. Sumformer: Universal approximation
for efficient transformers, 2023.

Noga Alon, Yossi Matias, and Mario Szegedy. The space complexity of approximating the frequency
moments. In Proceedings of the twenty-eighth annual ACM symposium on Theory of computing,
pp. 20–29, 1996.

Simran Arora, Sabri Eyuboglu, Aman Timalsina, Isys Johnson, Michael Poli, James Zou, Atri Rudra,
and Christopher Ré. Zoology: Measuring and improving recall in efficient language models. arXiv
preprint arXiv:2312.04927, 2023.

Jimmy Ba, Geoffrey E Hinton, Volodymyr Mnih, Joel Z Leibo, and Catalin Ionescu. Using fast
weights to attend to the recent past. Advances in neural information processing systems, 29, 2016.

L. Babai, L. Fortnow, N. Nisan, and A. Wigderson. Bpp has subexponential time simulations unless
exptime has publishable proofs. In [1991] Proceedings of the Sixth Annual Structure in Complexity
Theory Conference, pp. 213–219, 1991. doi: 10.1109/SCT.1991.160263.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by jointly
learning to align and translate, 2016.

Maximilian Beck, Korbinian Pöppel, Markus Spanring, Andreas Auer, Oleksandra Prudnikova,
Michael Kopp, Günter Klambauer, Johannes Brandstetter, and Sepp Hochreiter. xlstm: Extended
long short-term memory, 2024.

Satwik Bhattamishra, Kabir Ahuja, and Navin Goyal. On the ability and limitations of transformers
to recognize formal languages, 2020.

Aviv Bick, Kevin Y. Li, Eric P. Xing, J. Zico Kolter, and Albert Gu. Transformers to ssms: Distilling
quadratic knowledge to subquadratic models, 2024. URL https://arxiv.org/abs/2408.
10189.

Sebastian Borgeaud, Arthur Mensch, Jordan Hoffmann, Trevor Cai, Eliza Rutherford, Katie Mil-
lican, George van den Driessche, Jean-Baptiste Lespiau, Bogdan Damoc, Aidan Clark, Diego
de Las Casas, Aurelia Guy, Jacob Menick, Roman Ring, Tom Hennigan, Saffron Huang, Loren
Maggiore, Chris Jones, Albin Cassirer, Andy Brock, Michela Paganini, Geoffrey Irving, Oriol
Vinyals, Simon Osindero, Karen Simonyan, Jack W. Rae, Erich Elsen, and Laurent Sifre. Improving
language models by retrieving from trillions of tokens, 2022.

Aydar Bulatov, Yuri Kuratov, and Mikhail S. Burtsev. Recurrent memory transformer, 2022.

Nelson Elhage, Neel Nanda, Catherine Olsson, Tom Henighan, Nicholas Joseph, Ben Mann, Amanda
Askell, Yuntao Bai, Anna Chen, Tom Conerly, Nova DasSarma, Dawn Drain, Deep Ganguli,
Zac Hatfield-Dodds, Danny Hernandez, Andy Jones, Jackson Kernion, Liane Lovitt, Kamal
Ndousse, Dario Amodei, Tom Brown, Jack Clark, Jared Kaplan, Sam McCandlish, and Chris
Olah. A mathematical framework for transformer circuits. Transformer Circuits Thread, 2021.
https://transformer-circuits.pub/2021/framework/index.html.

Mahan Fathi, Jonathan Pilault, Orhan Firat, Christopher Pal, Pierre-Luc Bacon, and Ross Goroshin.
Block-state transformers, 2023.

Guhao Feng, Bohang Zhang, Yuntian Gu, Haotian Ye, Di He, and Liwei Wang. Towards revealing
the mystery behind chain of thought: A theoretical perspective. In Thirty-seventh Conference on
Neural Information Processing Systems, 2023. URL https://openreview.net/forum?
id=qHrADgAdYu.

Daniel Y. Fu, Tri Dao, Khaled K. Saab, Armin W. Thomas, Atri Rudra, and Christopher Ré. Hungry
hungry hippos: Towards language modeling with state space models, 2023.

11

https://arxiv.org/abs/2408.10189
https://arxiv.org/abs/2408.10189
https://openreview.net/forum?id=qHrADgAdYu
https://openreview.net/forum?id=qHrADgAdYu

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Alex Graves, Greg Wayne, and Ivo Danihelka. Neural turing machines. arXiv preprint
arXiv:1410.5401, 2014.

Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces, 2023.

Albert Gu, Karan Goel, and Christopher Re. Efficiently modeling long sequences with structured
state spaces. In International Conference on Learning Representations, 2022. URL https:
//openreview.net/forum?id=uYLFoz1vlAC.

Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasupat, and Ming-Wei Chang. Realm: Retrieval-
augmented language model pre-training, 2020.

Michael Hahn. Theoretical limitations of self-attention in neural sequence models. Transactions of
the Association for Computational Linguistics, 8:156–171, December 2020. ISSN 2307-387X.
doi: 10.1162/tacl_a_00306. URL http://dx.doi.org/10.1162/tacl_a_00306.

Jie Hao, Xing Wang, Baosong Yang, Longyue Wang, Jinfeng Zhang, and Zhaopeng Tu. Modeling
recurrence for transformer. In Jill Burstein, Christy Doran, and Thamar Solorio (eds.), Proceedings
of the 2019 Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1198–1207,
Minneapolis, Minnesota, June 2019. Association for Computational Linguistics. doi: 10.18653/v1/
N19-1122. URL https://aclanthology.org/N19-1122.

Yiding Hao, Dana Angluin, and Robert Frank. Formal language recognition by hard attention
transformers: Perspectives from circuit complexity, 2022.

Monika Rauch Henzinger, Prabhakar Raghavan, and Sridhar Rajagopalan. Computing on data
streams. External memory algorithms, 50:107–118, 1998.

Geoffrey E Hinton and James A Anderson. Parallel models of associative memory: updated edition.
Psychology press, 2014.

John J Hopfield. Neural networks and physical systems with emergent collective computational
abilities. Proceedings of the national academy of sciences, 79(8):2554–2558, 1982.

Samy Jelassi, David Brandfonbrener, Sham M Kakade, and Eran Malach. Repeat after me: Trans-
formers are better than state space models at copying. arXiv preprint arXiv:2402.01032, 2024.

Zhengbao Jiang, Luyu Gao, Zhiruo Wang, Jun Araki, Haibo Ding, Jamie Callan, and Graham Neubig.
Retrieval as attention: End-to-end learning of retrieval and reading within a single transformer. In
Yoav Goldberg, Zornitsa Kozareva, and Yue Zhang (eds.), Proceedings of the 2022 Conference on
Empirical Methods in Natural Language Processing, pp. 2336–2349, Abu Dhabi, United Arab
Emirates, December 2022. Association for Computational Linguistics. doi: 10.18653/v1/2022.
emnlp-main.149. URL https://aclanthology.org/2022.emnlp-main.149.

Richard M. Karp and Richard J. Lipton. Some connections between nonuniform and uniform
complexity classes. In Proceedings of the Twelfth Annual ACM Symposium on Theory of Computing,
STOC ’80, pp. 302–309, New York, NY, USA, 1980. Association for Computing Machinery. ISBN
0897910176. doi: 10.1145/800141.804678. URL https://doi.org/10.1145/800141.
804678.

Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pappas, and François Fleuret. Transformers are
RNNs: Fast autoregressive transformers with linear attention. In Hal Daumé III and Aarti Singh
(eds.), Proceedings of the 37th International Conference on Machine Learning, volume 119 of
Proceedings of Machine Learning Research, pp. 5156–5165. PMLR, 13–18 Jul 2020. URL
https://proceedings.mlr.press/v119/katharopoulos20a.html.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa. Large
language models are zero-shot reasoners, 2023.

Yuri Kuratov, Aydar Bulatov, Petr Anokhin, Dmitry Sorokin, Artyom Sorokin, and Mikhail Burtsev.
In search of needles in a 11m haystack: Recurrent memory finds what llms miss, 2024.

12

https://openreview.net/forum?id=uYLFoz1vlAC
https://openreview.net/forum?id=uYLFoz1vlAC
http://dx.doi.org/10.1162/tacl_a_00306
https://aclanthology.org/N19-1122
https://aclanthology.org/2022.emnlp-main.149
https://doi.org/10.1145/800141.804678
https://doi.org/10.1145/800141.804678
https://proceedings.mlr.press/v119/katharopoulos20a.html

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Yuanzhi Li, Sébastien Bubeck, Ronen Eldan, Allie Del Giorno, Suriya Gunasekar, and Yin Tat Lee.
Textbooks are all you need ii: phi-1.5 technical report, 2023. URL https://arxiv.org/
abs/2309.05463.

Zhiyuan Li, Hong Liu, Denny Zhou, and Tengyu Ma. Chain of thought empowers transformers to
solve inherently serial problems, 2024.

Zhong Li, Jiequn Han, Weinan E, and Qianxiao Li. On the curse of memory in recurrent neural
networks: Approximation and optimization analysis. In International Conference on Learning
Representations, 2021. URL https://openreview.net/forum?id=8Sqhl-nF50.

Zhong Li, Haotian Jiang, and Qianxiao Li. On the approximation properties of recurrent encoder-
decoder architectures. In International Conference on Learning Representations, 2022. URL
https://openreview.net/forum?id=xDIvIqQ3DXD.

Opher Lieber, Barak Lenz, Hofit Bata, Gal Cohen, Jhonathan Osin, Itay Dalmedigos, Erez Safahi,
Shaked Meirom, Yonatan Belinkov, Shai Shalev-Shwartz, Omri Abend, Raz Alon, Tomer Asida,
Amir Bergman, Roman Glozman, Michael Gokhman, Avashalom Manevich, Nir Ratner, Noam
Rozen, Erez Shwartz, Mor Zusman, and Yoav Shoham. Jamba: A hybrid transformer-mamba
language model, 2024a.

Opher Lieber, Barak Lenz, Hofit Bata, Gal Cohen, Jhonathan Osin, Itay Dalmedigos, Erez Safahi,
Shaked Meirom, Yonatan Belinkov, Shai Shalev-Shwartz, Omri Abend, Raz Alon, Tomer Asida,
Amir Bergman, Roman Glozman, Michael Gokhman, Avashalom Manevich, Nir Ratner, Noam
Rozen, Erez Shwartz, Mor Zusman, and Yoav Shoham. Jamba: A hybrid transformer-mamba
language model, 2024b. URL https://arxiv.org/abs/2403.19887.

Bingbin Liu, Jordan T. Ash, Surbhi Goel, Akshay Krishnamurthy, and Cyril Zhang. Transformers
learn shortcuts to automata. In The Eleventh International Conference on Learning Representations,
2023. URL https://openreview.net/forum?id=De4FYqjFueZ.

Shengjie Luo, Shanda Li, Tianle Cai, Di He, Dinglan Peng, Shuxin Zheng, Guolin Ke, Liwei Wang,
and Tie-Yan Liu. Stable, fast and accurate: Kernelized attention with relative positional encoding,
2021.

Shahar Lutati, Itamar Zimerman, and Lior Wolf. Focus your attention (with adaptive iir filters), 2023.

William Merrill and Ashish Sabharwal. The Parallelism Tradeoff: Limitations of Log-Precision
Transformers. Transactions of the Association for Computational Linguistics, 11:531–545, 06
2023. ISSN 2307-387X. doi: 10.1162/tacl_a_00562. URL https://doi.org/10.1162/
tacl_a_00562.

William Merrill, Ashish Sabharwal, and Noah A. Smith. Saturated transformers are constant-depth
threshold circuits, 2022.

J Ian Munro and Mike S Paterson. Selection and sorting with limited storage. Theoretical computer
science, 12(3):315–323, 1980.

Maxwell Nye, Anders Johan Andreassen, Guy Gur-Ari, Henryk Michalewski, Jacob Austin, David
Bieber, David Dohan, Aitor Lewkowycz, Maarten Bosma, David Luan, Charles Sutton, and
Augustus Odena. Show your work: Scratchpads for intermediate computation with language
models, 2021.

Matanel Oren, Michael Hassid, Yossi Adi, and Roy Schwartz. Transformers are multi-state rnns,
2024.

Jongho Park, Jaeseung Park, Zheyang Xiong, Nayoung Lee, Jaewoong Cho, Samet Oymak, Kang-
wook Lee, and Dimitris Papailiopoulos. Can mamba learn how to learn? a comparative study on
in-context learning tasks, 2024.

13

https://arxiv.org/abs/2309.05463
https://arxiv.org/abs/2309.05463
https://openreview.net/forum?id=8Sqhl-nF50
https://openreview.net/forum?id=xDIvIqQ3DXD
https://arxiv.org/abs/2403.19887
https://openreview.net/forum?id=De4FYqjFueZ
https://doi.org/10.1162/tacl_a_00562
https://doi.org/10.1162/tacl_a_00562

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Bo Peng, Eric Alcaide, Quentin Anthony, Alon Albalak, Samuel Arcadinho, Stella Biderman, Huanqi
Cao, Xin Cheng, Michael Chung, Matteo Grella, Kranthi Kiran GV, Xuzheng He, Haowen Hou,
Jiaju Lin, Przemyslaw Kazienko, Jan Kocon, Jiaming Kong, Bartlomiej Koptyra, Hayden Lau,
Krishna Sri Ipsit Mantri, Ferdinand Mom, Atsushi Saito, Guangyu Song, Xiangru Tang, Bolun
Wang, Johan S. Wind, Stanislaw Wozniak, Ruichong Zhang, Zhenyuan Zhang, Qihang Zhao, Peng
Zhou, Qinghua Zhou, Jian Zhu, and Rui-Jie Zhu. Rwkv: Reinventing rnns for the transformer era,
2023.

Hao Peng, Nikolaos Pappas, Dani Yogatama, Roy Schwartz, Noah A. Smith, and Lingpeng Kong.
Random feature attention, 2021.

Michael Poli, Stefano Massaroli, Eric Nguyen, Daniel Y. Fu, Tri Dao, Stephen Baccus, Yoshua
Bengio, Stefano Ermon, and Christopher Ré. Hyena hierarchy: Towards larger convolutional
language models, 2023.

Liliang Ren, Yang Liu, Yadong Lu, Yelong Shen, Chen Liang, and Weizhu Chen. Samba: Simple
hybrid state space models for efficient unlimited context language modeling, 2024. URL https:
//arxiv.org/abs/2406.07522.

Ohad Rubin and Jonathan Berant. Long-range language modeling with self-retrieval, 2023.

Clayton Sanford, Daniel Hsu, and Matus Telgarsky. Representational strengths and limitations of
transformers, 2023.

Clayton Sanford, Daniel Hsu, and Matus Telgarsky. Transformers, parallel computation, and logarith-
mic depth, 2024.

Jianlin Su, Murtadha Ahmed, Yu Lu, Shengfeng Pan, Wen Bo, and Yunfeng Liu. Roformer: Enhanced
transformer with rotary position embedding. Neurocomputing, 568:127063, 2024.

Yutao Sun, Li Dong, Shaohan Huang, Shuming Ma, Yuqing Xia, Jilong Xue, Jianyong Wang, and
Furu Wei. Retentive network: A successor to transformer for large language models, 2023.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher, Cris-
tian Canton Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy Fu,
Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn,
Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa, Isabel
Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee,
Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov, Pushkar Mishra,
Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi,
Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing Ellen Tan, Binh
Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen
Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien Rodriguez, Robert Stojnic,
Sergey Edunov, and Thomas Scialom. Llama 2: Open foundation and fine-tuned chat models,
2023.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Ł ukasz Kaiser, and Illia Polosukhin. Attention is all you need. In I. Guyon, U. Von
Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (eds.), Ad-
vances in Neural Information Processing Systems, volume 30. Curran Associates, Inc.,
2017. URL https://proceedings.neurips.cc/paper_files/paper/2017/
file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf.

Roger Waleffe, Wonmin Byeon, Duncan Riach, Brandon Norick, Vijay Korthikanti, Tri Dao, Albert
Gu, Ali Hatamizadeh, Sudhakar Singh, Deepak Narayanan, Garvit Kulshreshtha, Vartika Singh,
Jared Casper, Jan Kautz, Mohammad Shoeybi, and Bryan Catanzaro. An empirical study of
mamba-based language models, 2024. URL https://arxiv.org/abs/2406.07887.

Sinong Wang, Belinda Z. Li, Madian Khabsa, Han Fang, and Hao Ma. Linformer: Self-attention
with linear complexity, 2020.

Xuezhi Wang and Denny Zhou. Chain-of-thought reasoning without prompting, 2024.

14

https://arxiv.org/abs/2406.07522
https://arxiv.org/abs/2406.07522
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://arxiv.org/abs/2406.07887

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc Le,
and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language models, 2023.

David J Willshaw, O Peter Buneman, and Hugh Christopher Longuet-Higgins. Non-holographic
associative memory. Nature, 222(5197):960–962, 1969.

Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song Han, and Mike Lewis. Efficient streaming
language models with attention sinks, 2023.

Kai Yang, Jan Ackermann, Zhenyu He, Guhao Feng, Bohang Zhang, Yunzhen Feng, Qiwei Ye, Di He,
and Liwei Wang. Do efficient transformers really save computation?, 2024.

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio, William W. Cohen, Ruslan Salakhutdinov,
and Christopher D. Manning. Hotpotqa: A dataset for diverse, explainable multi-hop question
answering, 2018. URL https://arxiv.org/abs/1809.09600.

Shunyu Yao, Binghui Peng, Christos Papadimitriou, and Karthik Narasimhan. Self-attention networks
can process bounded hierarchical languages, 2023.

Simiao Zuo, Xiaodong Liu, Jian Jiao, Denis Charles, Eren Manavoglu, Tuo Zhao, and Jianfeng Gao.
Efficient long sequence modeling via state space augmented transformer, 2022.

15

https://arxiv.org/abs/1809.09600

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

CONTENTS

1 Introduction 1

2 Related Works 3

3 Preliminaries 4

4 How Well Does CoT Improve the Representation Power of RNNs? 5

4.1 CoT Strictly Improves RNNs . 5

4.2 CoT Cannot Close the Representation Gap with Transformers 6

4.2.1 Simple Problems on In-Context Retrieval 6

4.2.2 Limitations of RNNs Beyond Simple In-Context Retrieval Problems 6

4.2.3 Transformers are Strictly More Expressive Than RNNs 7

5 Enhancing the In-Context Retrieval Capability Closes the Gap 7

5.1 Explicit Retrieval Through Regular Expression 7

5.2 Implicit Retrieval by Appending Just One Transformer Layer 8

6 Empirical Validation 9

6.1 Validation on Synthetic Task: IsTree . 9

6.2 Validation on Hotpot-QA . 9

7 Conclusion and Discussion 10

A Extended Related Works 18

B Additional Definitions 19

B.1 Reasoning Tasks on Graphs. 19

B.2 More on Numeric Precisions. 19

B.3 Models . 19

B.4 Language Models for Reasoning. 21

C Omitted Discussion on In-Context Retrieval Examples 22

D Omitted Experiment Details 22

E Omitted Proof 23

E.1 Building Blocks of FFNs Construction . 23

E.2 Building Blocks of Transformers Construction . 24

E.3 Building Blocks of RNNs Construction . 31

E.4 Proof of Theorem 4.6 . 32

E.5 Proof of Theorem 4.1 . 33

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

E.6 Proof of Theorem 4.7 . 34

E.6.1 Proof of Lemma E.26 . 34

E.6.2 Proof of Lemma E.27 . 35

E.7 Proof of Theorem 4.8 . 37

E.8 AR function calls is not enough for closing the representation gap 39

E.9 Proof of Theorem E.32 . 40

E.10 Proof of Theorem E.33 . 40

E.11 Proof of Theorem 5.2 . 42

E.12 Proof of Theorem E.35 . 43

E.13 Proof of Theorem E.36 . 43

E.14 Proof of Theorem 5.4 . 44

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

A EXTENDED RELATED WORKS

Comparison Between Transformers and RNNs (without CoT). A line of works focused on
the comparison between RNNs and Transformers in terms of recognizing or generating formal
languages (Bhattamishra et al., 2020; Hahn, 2020; Merrill et al., 2022). These works show that the
lack of recurrent structure in Transformers makes them fail to recognize some formal languages that
RNNs can recognize. However, Liu et al. (2023); Yao et al. (2023); Hao et al. (2022) show that
such limitation can be mitigated when we consider bounded length of input or bounded grammar
depth. Our work differs from these works in that we consider the expressive power of RNNs and
Transformers with CoT and show that in this case, the gap between RNNs and Transformers is
one-sided (Theorem 4.8). Another thread of recent works focuses on understanding why RNNs or
SSMs are inferior to Transformers (Arora et al., 2023; Jelassi et al., 2024; Sanford et al., 2023; 2024).
Our work differs from these prior works from two perspectives: (1) we identify the common reason
behind a wide range of tasks where RNNs fall behind Transformers; (2) we show two potential
solutions that can bridge the representation gap by addressing this common reason (the incapability
to retrieve from context).

Retrieval Augmented Generation. Our work proposes to use retrieval augmentation to close the
representation gap between RNNs and Transformers. This is consistent with the recent trend of
retrieval augmented generation (Guu et al., 2020; Borgeaud et al., 2022; Rubin & Berant, 2023).
Empirically, retrieval augmented generation has been shown to improve the performance of recurrent
models in various tasks (Kuratov et al., 2024; Akyürek et al., 2024) and our work provides a theoretical
foundation for this phenomenon. Our work also shows that an attention layer can be used to simulate
the retrieval process, which is consistent with the finding that attention can improve the performance
of RNNs (Vaswani et al., 2017; Arora et al., 2023; Park et al., 2024; Peng et al., 2023; Hao et al.,
2019). It has also been shown empirically that attention can be used to simulate complex retrieval
process (Jiang et al., 2022).

Comparison Between Transformers and RNNs Prior work (Arora et al., 2023) has shown that
input-independent gating SSMs are inferior to Transformers in the task called associative recall
(Willshaw et al., 1969; Hopfield, 1982; Hinton & Anderson, 2014). The task requires the model to
recall a previously seen pattern given a partial input. They show that input-dependent gating SSMs
have better performance in associative recall and also propose a hybrid architecture that combines
input-independent state space machines with attention to achieve better performance. Our work
differs from this work in the following ways: (1) Our work studies associative recall from a theoretical
perspective and proves formal lower bounds on the memory size of RNNs necessary for solving
associative recall and other retrieval tasks; (2) We also study hybrid architectures but we provide a
proof that appending a single Transformer layer to RNNs can make them expressive enough; (3) Our
theory applies to not only input-independent gating SSMs but also all RNNs with o(n)-bit memory.

Prior work (Jelassi et al., 2024) proves a representation gap between RNNs and Transformers in
repeating a long sequence, which can be seen as a retrieval task. They show that RNNs have difficulty
performing the task due to their limited memory. Our work further proves that RNNs are limited
in solving many other retrieval tasks, even with CoT. Technically, a key ingredient in their proof
is a counting argument on the output sequence to show a limited memory size is not enough to
produce too many different output sequences, but our proof can handle retrieval tasks that only require
outputting a single token.

Notably, Sanford et al. (2023) apply communication complexity to prove circuit size or memory size
lower bounds for RNNs and Transformers on the task of sparse averaging. Sanford et al. (2024)
extend this technique to another task called hopk, a generalization of the associative recall task. Our
technique is similar to theirs since our proof is also based on communication complexity. But we
consider a broader range of tasks including seemingly irrelevant reasoning tasks such as IsTree, and
further explore various ways to close the representation gap.

Representation Theory of RNNs. Another line of works (Li et al., 2021; 2022; Alberti et al.,
2023) studies the universal approximation power of RNNs. They show that the upper bound of the
approximation power of linear RNNs will be constrained by the dimension of the hidden states. Their
works on the high level are consistent with our findings but are not directly comparable because we
are considering finite precision compute models with the assistance of CoT or In-Context RAG.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

B ADDITIONAL DEFINITIONS

We will now define some definitions used in the proofs.

B.1 REASONING TASKS ON GRAPHS.

When resaoning on graphs, without otherwise specified, we will use n as the number of vertices and
m as the number of edges. Without loss of generality, we will assume the vertices are labeled by [n].

We will focus on decision problems on graphs, which are defined as follows:
Definition B.1 (Decision Problem on Graphs). A decision problem on graphs is a function f : G →
{YES,NO}, where G is the set of all possible graphs.

We will use the following decision problem as our main example:
Definition B.2 (IsTree). IsTree(G) = YES if G is a tree, and IsTree(G) = NO otherwise.

One can view IsTree as a minimal example of reasoning task2s. One of the classical solutions to
IsTree is running Depth First Search and this algorithm takes O(n) time.

B.2 MORE ON NUMERIC PRECISIONS.

We will use ROUND(x, p) to denote the rounding function that rounds x to the nearest number in
Rp. We will assume p is an odd number without loss of generality.

Rp =

{
(2bp − 1)

(
p−1∑
i=1

bi2
(p−1)/2−i

)
: ∀i ∈ [p], bi ∈ {0, 1}

}
. (1)

For calculation over Rp, we will assume the calculation is exact and the result is rounded to Rp at the
end, that is, for operator ⊕, we will have

ROUND(x, p)⊕p ROUND(y, p)

=ROUND(ROUND(x, p)⊕ ROUND(y, p), p)) .

We will additionally define Zp as the set of all integers that can be represented by p-bit floating
point numbers. We will define 1/[m] as the set of unit fractional { 1

i }i∈[m]. Further, we will define
ROUND(1/[m], p) as the rounding of 1/[m] to Rp. We will additionally define for any real number
x ∈ {0, 1}, next(x) = 1

m+1 where m = argmink∈Z |x− 1
k |.

B.3 MODELS

Tokenization. To tokenize a string, we will tokenize all the words separated by the space character
into a sequence of tokens. To tokenize a graph G, we will order its edges E = {(ui, vi) | ui < vi}
randomly and tokenize it into the following string:

Tokenize(G) = {<s>, u1,∼, v1, . . . , um,∼, vm}. (2)
We hereby assume there are constant more special tokens that are not the same as any number token,
which are listed below:

• <s>: the first special token, indicating the start of a sentence.
• ∼: the second special token, indicating an edge.
• YES: the third special token, indicating the answer is yes.
• NO: the fourth special token, indicating the answer is no.
• <StartSearch>: the fifth special token, indicating the start of a search query.
• <EndSearch>: the sixth special token, indicating the end of a search query.

We will denote the total number of special tokens as nS and the total vocabulary size as |V | = n+nS .
We will further define the detokenization function Detokenize,

Detokenize(S) = “S1 S2 . . . Sl”.

Here each Si is either a number or a special token, which we will treat as a word.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Embedding Functions. We will use d to denote the dimension of the embedding and wi to denote
the i-th coordinate vector in Rd.

We will separate the embedding function into two parts: the word embedding and the position
embedding. For the word embedding, we will use iw1 ∈ Rd to represent the embedding of the
vertice i in the tokenization of the graph. For the k-th special token, we will use w2+k to represent its
embedding. For example, the embedding of ∼ is w2. We will denote the word embedding matrix as
W (E) ∈ R|V |×d.

For the position embedding, we will use lwd to represent the position embedding of the l-th token in
the tokenization of the graph, which is a hyperparameter. The final embedding of any token sequence
is the sum of the word embedding and the position embedding. We will use Emb to denote the
embedding function.

This embedding function will be fixed and shared across all models we consider in this paper and
will not be learned during training, hence we will not consider it as part of the model parameters.

Language Modeling. We use V ∗ and V + to denote the set of all finite sequences and all non-empty
finite sequences of tokens in V , respectively. We study language models that can predict the next token
given a prefix of tokens. For this, we define a language model (LM) as a function M : V + → PV

that maps a non-empty sequence to a probability distribution over the next token, where PV is the
probability simplex over V . We specifically study the case where the language model is realized by
deep neural networks: first map the input sequence S into a sequence of embeddings Emb(S), and
then apply a neural network, such as a Transformer or RNN, to process the embeddings and output
the probability distribution. We would call a series of parameterized models with increasing input
size a family of models.

Transformer We will first define the Transformer architecture used in the theoretical analysis in
this paper.

Definition B.3 (Transformer Block). Let X ∈ Rd×l be the input matrix, where l is the sequence
length. The output of a Transformer block f is defined as:

f(X) = X +A(X) + g(X +A(X)),

A(X) =

H∑
h=1

W (V,h)Xsoftmax

((
W (K,h)X

)⊤
W (Q,h)X

√
d

+ C

)
, (3)

where g is a column-wise ReGLU feed-forward network 1 with width w and output dimen-
sion d, A is the scaled dot-product attention, softmax is the column-wise softmax function,
W (K,h), W (Q,h), W (V,h) are the learnable parameters and H is the number of heads, and

C =

0 0 . . . 0

−∞ 0 . . . 0
...

...
...

...
−∞ −∞ . . . 0

 ∈ Rl×l is a mask to prevent the attention from attending to future

tokens.

In the context of language modeling, given a sequence of tokens S , a Transformer T (S) is defined as:

Definition B.4 (Transformer). Let S ∈ |V |l be the tokenized input sequence, the output of a
Transformer is defined as:

T (S) = softmax
(
W (E) (fL (. . . f1 (Emb (S))))

)
:,l
. (4)

where softmax is the column-wise softmax function, fi is the i-th Transformer block. We will call
the i-th Transformer block the i-th layer of the Transformer and denote its feed-forward layer and
attention layer as gi and Ai respectively.

1ReGLU means σ(x) = ReLU(W1x + b1) ⊗ (W2x + b2), this is a surrogate for the commonly used
SwiGLU activation and allows the model to perform multiplication of two coordinates.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

RNNs We formally define the RNN architecture here.

Definition B.5 (RNN). An RNN architecture is characterized by two functions: state transition
function t : Θ →

(
RΛ

p × Rd
p → RΛ

p

)
and output function o : Θ →

(
RΛ

p → Rd
p

)
, where Λ is the

dimension of the state and Θ is the parameter space. Let S ∈ |V |l be the input sequence, the output
of a recurrent neural network with parameter θ ∈ Θ is defined as:

Rθ(S) = softmax
(
W (E)oθ(sl)

)
,

∀k ∈ [l], sk = tθ(sk−1,Emb(S):,k),

where s0 ∈ RΛ
p is a vector determined by θ and W (E) is the word embedding matrix. We will omit

the subscript θ when it is clear from the context.

We define the following RNN architecture for the proof of our upper bound.

Definition B.6 (RNN block). A Linear RNN block is defined as follows:

f(X) = X + LU(X) + g(X + LU(X)),

where g is a column-wise ReGLU feed-forward network with width w and output dimension d and
LU is a linear unit, defined as

h0 = 0, h:,t = Ah:,t−1 +BX:,t,LU(X:,1:l) = h:,1:l.

Definition B.7 (Linear RNN). A Linear RNN is a recurrent neural network

R(S) = softmax
(
W (E) (fL (. . . f1 (Emb (S))))

)
:,l
. (5)

where softmax is the column-wise softmax function, fi is the i-th Linear RNN block. We will call
the i-th Linear RNN block the i-th layer of the Linear RNN and denote its feed-forward layer and
linear unit layer as gi and LUi respectively.

Hybrid RNNs. We formally define the hybrid RNN architecture here.

Definition B.8 (Hybrid RNN). A hybrid RNN is a model that consists of an RNN with transition
and output function t,o and one Transformer layer f , the output of the RNN is used as the input
of the Transformer layer and the output of the Transformer layer is used to produce the next token.
Concretely, given the input sequence Sin, the output of the hybrid architecture is:

H(S) = softmax
(
W (E)f

(
[o(sk)]k∈[l]

))
:,l
,

∀k ∈ [l], sk = t(sk−1,Emb(S):,k),

B.4 LANGUAGE MODELS FOR REASONING.

Chain of Thought. We will now define how we use language models to solve reasoning tasks
utilizing the following technique called chain of thought.

Definition B.9 (Chain of Thought). Given a language model, M with vocabulary V and the tokenized
input sequence Sin ∈ |V |l0 , chain of thought (CoT) generates the following sequence of tokenized
sequence:

S0 = Sin, (6)

snexti = argmax
j∈V

M(Si)[j], (7)

Si+1 = Si ⊕ snexti ,∀i ≥ 0. (8)

The process terminates at Si when argmaxj∈V M(Si)[j] is YES or NO. The language model can
solve the reasoning task within T steps of CoT if the process terminates at Si where i ≤ T and the
final output is correct. We will call the special case where the language model solves the reasoning
task within 0 steps of CoT as solving the reasoning task without CoT.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Retrieval Augmentation. We will show in this paper that retrieval augmentation is a necessary
technique to solve reasoning tasks for recurrent neural networks. We will define retrieval augmentation
as follows:
Definition B.10 (Retrieval Augmented Generation). Given an LM M with vocabulary V (containing
two additional special tokens, <StartSearch> and <EndSearch>) and the tokenized input sequence
Sin ∈ |V |l0 , the LM M with In-Context RAG generates following sequence of tokenized sequence:

S0 = Sin, snexti = argmax
j∈V

M(Si)[j],

Si+1 =

{
Si ⊕ snexti , if snexti ̸= <EndSearch>

Si ⊕ snexti ⊕ RETRIEVE (Si) , otherwise.

Here RETRIEVE looks for the last occurrence of <StartSearch> at position ls and <EndSearch>
in S at position le and treat Detokenize(Sls:le) as a regular expression, where Detokenize maps the
tokenized sequence back to the string, inserting a space between every pair of adjacent tokens. The
algorithm then runs a regular expression matching on Detokenize(S1:ls−1), finds the first matching
substring, and returns the first capturing group according to the regular expression (i.e., content
embraced by a pair bracket in the regular expression). While there are many grammar standards of
regular expressions, we adhere to the standard specified in the re library of Python. That is, we
evaluate the following Python code to get the result of the regular expression matching:

re.search(pattern, string).group(1)

where Detokenize(Sls:le) is the pattern and Detokenize(S1:ls−1) is the string.

We will note that assuming |V | = O(n) and every search query and the result is of length O(1), the
regular expression evaluation can typically be evaluated in O(n) time.

IsTree In the context of language modeling, we can write the graph G as a sequence of tokens, and
then the task of IsTree is to determine whether G is a tree by predicting a YES/NO token with or
without CoT. We use the following tokenization for the graph G:

Tokenize(G) = {<s>, u1,∼, v1, u2,∼ v2, . . . , um,∼, vm}, (9)
where <s> and ∼ are two special tokens representing the start of the sentence and an edge, and ui, vi
are numbers denoting the nodes of the graph.

C OMITTED DISCUSSION ON IN-CONTEXT RETRIEVAL EXAMPLES

Index and AR are perhaps the most basic problems in retrieval, where Index asks for retrieving a
token from the input sequence viewed as a linear array of tokens, and AR asks for retrieving a token
from the input sequence viewed as an associative array. These two problems have been studied
extensively by different communities. Index is a classic problem in streaming and communication
complexity (Munro & Paterson, 1980), known to be impossible to solve with o(n) bits of memory for
streaming algorithms. AR has been regarded as a fundamental problem that an artificial intelligence
system should be able to solve (Willshaw et al., 1969; Hopfield, 1982; Hinton & Anderson, 2014;
Graves et al., 2014; Ba et al., 2016). In the context of LLMs, AR has been observed to correlate
with in-context learning performance (Elhage et al., 2021) and has also been used extensively as
synthetic surrogate tasks for pretraining performance (Fu et al., 2023; Poli et al., 2023; Lutati et al.,
2023). Besides Index and AR, c-gram retrieval is a natural extension of AR to the case where the
query key can contain multiple tokens: instead of retrieving a token given a single-token key, c-gram
retrieval asks for retrieving a token when the given key is a (c− 1)-gram. This task has been studied
empirically, but not theoretically in Jelassi et al. (2024). Counting is a problem that asks for the
number of occurrences of a token, thereby testing the model’s capability to retrieve some statistics of
relevant information from the input sequence.

D OMITTED EXPERIMENT DETAILS

We train three different architectures: (1) LLaMA architecture (Touvron et al., 2023) representing
Transformers, (2) Mamba architecture (Gu & Dao, 2023) representing RNNs, and (3) Mamba with

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

one additional layer of LLaMA block representing hybrid architectures. Following our theory, we
freeze and weight-tie the prediction head and word embedding in all the models. For ease of training,
we use a different embedding function mapping i−th token to [sin(i

10000j/d
), cos(i

10000j/d
)]j∈[d/2]

with N being the number of different tokens and use standard RoPE (Su et al., 2024) as position
embedding. We train every model with at least 1M samples to guarantee convergence using Adam
with a cosine learning rate. If the model doesn’t converge, we retrain using 5M samples. After a grid
search over learning rates, we train all the Transformer models with learning rates 1e-3 and the rest
of the models with learning rates 3e-4. We run all the experiments on a server with 8 A100s and the
estimated time to reproduce the results is within 2 days.

E OMITTED PROOF

E.1 BUILDING BLOCKS OF FFNS CONSTRUCTION

We will first show some basic operations that multiple layers of feedforward neural networks with
ReGLU activation can perform that will be used in the following proofs.

Lemma E.1 (Multiplication). Given two dimensions i1, i2, there exists a parameter configuration of
a 1-layer feedforward neural network with ReGLU activation that for any input x ∈ Rd and constant
width, computes the product of xi1 and xi2 .

g(x) = [xi1 × xi2 , 0, . . . , 0]
⊤.

Proof. We can construct the following feedforward neural network with ReGLU activation:

W1x = [xi1 −xi1 0 . . . 0]
⊤
,

W2x = [xi2 xi2 0 . . . 0]
⊤
,

W3h = [h1 + h2 0 0 0 . . . 0]
⊤
,

b1 = b2 = b3 = 0.

g(x) = W3(ReLU(W1x)⊗ ReLU(W2x)) = [xi1 × xi2 , 0, . . . , 0]
⊤.

Lemma E.2 (Linear Operations). Given a linear transformation W ∈ Rd×d, there exists a parameter
configuration of a 1-layer feedforward neural network with ReGLU activation and width w = d that
for any input x ∈ Rd, computes Wx.

Proof.

b1 = 1w, b2 = 0, b3 = 0,

W1 = 0,W2 = W,W3 = Id×d

Lemma E.3 (Indicator). Given a constant integer B ≤ d and a dimension i, there exists a parameter
configuration of a 1-layer feedforward neural network with ReGLU activation and width 4 that for
any input x ∈ Rd, computes the indicator function of xi = B when xi is an integer.

Proof.

b2 = 1w, b1 = [−B − 0.5,−B + 0.5, B − 0.6, B + 0.4]⊤, b3 = 10,

W2 = 0,W1x = [xi, xi,−xi,−xi]
⊤,

ReLU(W1x+ b1) = [ReLU(xi −B − 0.5) ReLU(xi −B + 0.5) ReLU(B − xi − 0.6) ReLU(B − xi + 0.4)]

W3 = 10 [1 −1 −1 1]
⊤
.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Then,

g(x) = W3ReLU(W1x+ b1) + b3

= 10 (ReLU(xi −B − 0.5)− ReLU(xi −B + 0.5)) + 10 (ReLU(B − xi − 0.6)− ReLU(B − xi + 0.4)) + 10

=

10× 0 + 10×−1 + 10 = 0, if xi < B,

10×−0.5 + 10×−0.4 + 10 = 1, if xi = B,

10×−1 + 10× 0 + 10 = 0, if xi > B.

Lemma E.4 (Lookup Table). For constant B and k such that kB ≤ d, given a lookup table which key
is tuple of k integers bounded by B, and value is a scalar in Rp, there exists a parameter configuration
of a 1− layer feedforward neural network with ReGLU activation with width O(Bk) that for any
input x ∈ Rd, computes the value of the lookup table at the key xi1 , xi2 , . . . , xik .

Proof. We can calculate xi1 +B× xi2 +B2 × xi3 + . . .+Bk−1 × xik , and then scale Bk indicator
functions to get the value of the lookup table at the key xi1 , xi2 , . . . , xik .

Lemma E.5 (Threshold). Given any threshold u and constant ϵ > 0, there exists a parameter
configuration of a 1-layer feedforward neural network with ReGLU activation and width 2 that for
any input x ∈ Rd, computes the indicator function xi > u on xi ∈ [−∞, u− ϵ] ∪ [u,∞].

Proof.

b2 = 1w, b1 = [−u+ ϵ,−u+ 0.5ϵ]⊤, b3 = 0,

W2 = 0,W1x = [xi, xi]
⊤,

ReLU(W1x+ b1) = [ReLU(xi − u+ ϵ) ReLU(xi − u+ 0.5ϵ)]

W3 =
2

ϵ
[1 −1 −1 1]

⊤
.

Then,

g(x) = W3ReLU(W1x+ b1) + b3

= 2/ϵ (ReLU(xi − u− ϵ)− ReLU(xi − u+ 0.5))

=

{
0 if xi < u− ϵ,

1, if xi > u,

Lemma E.6 (Interval). Given any constant u, v and ϵ > 0, there exists a parameter configuration of
a 1-layer feedforward neural network with ReGLU activation and width 4 that for any input x ∈ Rd,
computes the indicator function xi ∈ [u, v] on xi ∈ [−∞, u− ϵ] ∪ [u, v] ∪ [v,∞].

Proof. The interval function here can be written as the difference of two threshold functions. We
can use the same construction as in Lemma E.5 to approximate the indicator function xi > u and
xi > v + ϵ and then take the difference.

E.2 BUILDING BLOCKS OF TRANSFORMERS CONSTRUCTION

We will show in this section some construction for basic functionality using Transformer Blocks.
This construction will be used in the following sections to prove the main results.

We will always use X ∈ Rd×l
p as the input to the Transformer Block, where d is the dimension of the

input, and l is the length of the sequence. We will first outline all the building functionality and then
show how to implement them.
Definition E.7 (Copying Function). For integer s, index set I1, I2 ⊂ [d− 20] satisfying |I1| = |I2|,
a copying function COPY[s, I1, I2] satisfies the following, ∀X ∈ Rd×l

p , then

COPY[s, I1, I2](X)I2,k = xI1,max{k−s,0} ∀k ≤ [m]

COPY[s, I1, I2](X)Ic
2 ,k

= 0 ∀r ∈ [m]

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

Definition E.8 (Counting Function). For index set I1, I2 ⊂ [d− 20], |I1| = |I2| ≤ 10 and index i, a
counting function COUNT[I1, I2, i] satisfies the following, if ∀v ∈ I1 ∪ I2, k ∈ [l], Xv,k ∈ Zp and
Xv,k ̸= 0, then

COUNT[I1, I2, i](X)i,k =
1∑k

h=1 1[XI1,h = XI2,k] + 1
∀k ∈ [l].

COUNT[I1, I2, i](X)ic,k = 0 ∀k ∈ [l].

Definition E.9 (Matching Function). For index set I1, I2, I3, I4 ⊂ [d− 20], |I1| = |I2| ≤ 10, |I3| =
|I4|, a matching function Match[I1, I2, I3, I4] satisfies the following, if ∀v ∈ I1∪ I2, k ∈ [l], Xv,k ∈
Zp, then

Match[I1, I2, I3, I4](x)I3,k = XI4,k∗ ∀k ∈ [l]

where k∗ =

{
min{h | XI1,h = XI2,k}, {h | XI1,h = XI2,k} ≠ ∅
1, otherwise

.

Definition E.10 (Matching Closest Function). For index set I1, I2, I3, I4 ⊂ [d− 20], |I1| = |I2| ≤
10, |I3| = |I4|, a matching closest function Match[I1, I2, I3, I4] satisfies the following, if ∀v ∈
I1 ∪ I2, k ∈ [l], Xv,k ∈ Zp, then

MatchClose[I1, I2, I3, I4](x)I3,k = XI4,k∗ ∀k ∈ [l]

where k∗ =

{
max{h | XI1,h = XI2,k}, {h | XI1,h = XI2,k} ≠ ∅
1, otherwise

.

Definition E.11 (Matching Nearest Function). For index set I1, I2, I3, I4 ⊂ [d− 20], |I1| = |I2| ≤
10, |I3| = |I4| and index i, a matching nearest function MatchNearest[I1, I2, I3, I4, i] satisfies the
following, if ∀v ∈ I1 ∪ I2, k ∈ [l], Xv,k ∈ Zp, then

MatchNearest[I1, I2, I3, I4](x)I3,k = XI4,k∗ ∀k ∈ [l]

where k∗ =

{
argminh∈{h|XI1,h=XI2,k} |h−Xi,k|, {h | XI1,h = XI2,k} ≠ ∅
1, otherwise

.

Definition E.12 (Matching Next Function). Given any interger constant A, assuming p > 10A log n,
for index set I1, I2, I3, I4 ⊂ [d − 20], |I1| = |I2| ≤ 10, |I3| = |I4|, and a special counting index
a, a matching next function MatchNext[I1, I2, I3, I4, a] satisfies the following, if X satisfies the
following condition:

1. ∀v ∈ I1 ∪ I2, k ∈ [l], Xv,k ∈ Zp,

2. Xa,k ∈ ROUND(1/[nA], p) ∪ {0},

3. For any k ∈ [l], given any k ≥ k, the counting index multiset Sk = {Xa,k′ | XI1,k′ =
XI2,k} takes consecutive and disjoint values in ROUND(1/[nA], p), that is, there exists uk, vk ∈
ROUND(1/[nA], p) such that Sk = [uk, vk] ∩ ROUND(1/[nA], p).

then, we have

MatchNext[I1, I2, I3, I4, a](X)I3,k = XI4,k∗ ∀k ∈ [l]

where k∗ = arg min
h∈{h|XI1,h=XI2,k}∪{1}

|Xa,h − next(Xa,k)|.

Now we will show how to implement these functions using Transformer Blocks. The construction
here is motivated by the construction in Feng et al. (2023) with some modifications.

Lemma E.13 (Copying Blocks). For integer s, index set I1, I2 ⊂ [d− 10] satisfying |I1| = |I2|, a
copying function COPY[s, I1, I2] can be implemented with 1 feedforward block g and 1 attention
block A with 1 attention head. Formally, when Xd,k = k, it holds that

A (g (X) +X) = COPY[s, I1, I2](X).

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

Proof of Lemma E.13. We will use the feedforward block to calculate X2
k,d and 1 (Lemma E.1) and

have

(g(X) +X)d−1,k = k2

(g(X) +X)d−2,k = 1.

∀i ̸∈ {d− 1, d− 2}, (g(X) +X)i,k = Xi,k.

We will use X ′ to denote g(X) +X . Then we will choose W (K),W (Q) such that

W (K)X ′
:,k′ = n

 1
k′

k′2

W (Q)X ′

:,k =

−(k2 + s2 − 2sk)
2k − 2s
−1

Hence ((

W (K)X
)⊤ (

W (Q)X
))

k′,k

=− n
(
k′2 − k′(2k − 2s) + k2 + s2 − 2sk

)
=− n(k − s− k′)2

Hence we have

argmax
k′<k

((
W (K)X

)⊤ (
W (Q)X

))
k′,k

= max{k − s, 0}.

Also, for any k′ ≤ k, k′ ̸= max{k − s, 0}, we have((
W (K)X

)⊤ (
W (Q)X

))
k′,k

−
((

W (K)X
)⊤ (

W (Q)X
))

max{k−s,0},k
< −n.

Hence after the column-wise softmax and rounding to p = O(log n) bit, we have(
softmax

((
W (K)X

)⊤ (
W (Q)X

)))
k′,k

= 1[k′ = max{k − s, 0}].

We will then choose W (V) such that

W (V)X ′
I2,k′ = X ′

I1,k′ = XI1,k′ ∀k′ ∈ [l].

W (V)X ′
Ic
2 ,k

′ = 0 ∀k′ ∈ [l].

This then concludes that

A (g (X) +X) = COPY[s, I1, I2](X).

The proof is complete.

Lemma E.14 (Counting Blocks). For index set I ⊂ [d− 20] satisfying |I1| = |I2| ≤ 10, a counting
function COUNT[i, I1, I2] can be approximated with 1 feedforward block g and 1 attention block A
with 1 attention head. Formally, when Xd,k = k and X3,k = 1[k = 1], XI1,1 = 0, it holds that

A (g (X) +X)i,k = ROUND(COUNT[s, I1, I2](X)i,k, p) .

A (g (X) +X)ic,k = 0.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

Proof of Lemma E.14. We will use the feedforward block to calculate X2
v,k, v ∈ I1∪I2 (Lemma E.1)

and have
(g(X) +X)d−i,k = X2

I1[i],k
, i ∈ [|I|].

(g(X) +X)d−|I|−i,k = X2
I2[i],k

, i ∈ [|I|].
(g(X) +X)d−2|I|−1,k = 1.

∀i ̸∈ {d− i | i ∈ [2|I|+ 1]}, (g(X) +X)i,k = Xi,k.

We will use X ′ to denote g(X) +X . Then we will choose W (K),W (Q) such that

W (K)X ′
:,k′ = n

1 + 1[k′ = 1]
XI1[i],k′

X2
I1[i],k′

i∈[I]

W (Q)X ′
:,k =

 X2
I2[i],k

−XI2[i],k

1

i∈[I]

Hence,

((
W (K)X

)⊤ (
W (Q)X

))
k′,k

=− n

|I|∑
i=1

(
X ′2

I2[i],k′ −XI1[i],k′(2XI2[i],k) +X2
I2[i],k

)
+ n1[k′ = 1]

|I|∑
i=1

X2
I[i],k.

=− n

|I|∑
i=1

(XI1[i],k′ −XI2[i],k)
2 + n1[k′ = 1]

|I|∑
i=1

X2
I2[i],k

.

Hence we have

max
k′<k

((
W (K)X

)⊤ (
W (Q)X

))
k′,k

= 0.

Equality holds when k′ = 1 or XI1[i],k′ = XI2[i],k for all i ∈ [|I1|].

Also, for any k′ ≤ k, k′ ̸= 1 or XI1[i],k′ ̸= XI2[i],k for some i ∈ [|I1|], we have((
W (K)X

)⊤ (
W (Q)X

))
k′,k

< −n.

Hence after the column-wise softmax and rounding to p = O(log n) bit, we have(
softmax

((
W (K)X

)⊤ (
W (Q)X

)))
k′,k

= ROUND

(
1∑k

h=1 1[XI1,h = XI2,k] + 1
, p

)

Here the O
(

1
nA

)
term comes from the fact that the softmax is rounded to p = O(log n) bit.

We will then choose W (V) such that
W (V)X ′

i,k′ = X ′
3,k′ = 1[k′ = 1] ∀k′ ∈ [l].

W (V)X ′
Ic,k′ = 0 ∀k′ ∈ [l].

This then concludes that
A (g (X) +X)i,k = ROUND(COUNT[s, I1, I2](X)i,k, p) .

A (g (X) +X)ic,k = 0.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

Lemma E.15 (Matching Blocks). Given any constant c, for index set I1, I2, I3, I4 ⊂ [d− 20], |I1| =
|I2| ≤ 10, |I3| = |I4|, a matching function Match[I1, I2, I3, I4] can be implemented with 1 feed-
forward block g and 1 attention block A with 1 attention head. Formally, when Xd,k = k,X3,k =
1[k = 1], XI1,1 = 0 and k ≤ nc, it holds that

A (g (X) +X) = Match[I1, I2, I3, I4](X)

Proof. We will use the feedforward block to calculate k2, X2
v,d, v ∈ ∪I1 ∪ I2 as in the proof

of Lemmas E.13 and E.14.

We then choose W (K),W (Q) such that((
W (K)X

)⊤ (
W (Q)X

))
k′,k

=− n4c+1

|I|∑
i=1

(XI1[i],k′ −XI2[i],k)
2 − nk′2

+ 1[k′ = 1]

n4c+1

|I|∑
i=1

X2
I2[i],k

+ n− n2c+2

 .

The detailed construction of W (K),W (Q) is omitted here since it is similar to the proof of Lem-
mas E.13 and E.14.

We will discuss several cases for the distribution of
((

W (K)X
)⊤ (

W (Q)X
))

k′,k
. It always holds

that
((

W (K)X
)⊤ (

W (Q)X
))

1,k
= −n2c+2.

1. If there doesn’t exists k′, such that Xk′,I1 = Xk,I2 , then for any i > 1, we have((
W (K)X

)⊤ (
W (Q)X

))
i,k

< −n4c+1.

2. If there exists k′, such that Xk′,I1 = Xk,I2 , then for such k′, we have((
W (K)X

)⊤ (
W (Q)X

))
k′,k

= −nk′2 > −n2c+1. The rest of the entries are all

smaller than −n4c+1. Finally, the largest k′ satisfying that Xk′,I1 = Xk,I2 will corre-

sponds to a
((

W (K)X
)⊤ (

W (Q)X
))

k′,k
that is at least n larger than the second largest((

W (K)X
)⊤ (

W (Q)X
))

k′,k
, as in the proof of Lemma E.13.

Concluding the above discussion, we have after the column-wise softmax and rounding to p =
O(log n) bit,(
softmax

((
W (K)X

)⊤ (
W (Q)X

)))
k′,k

=

{
1[k′ = min{h | XI1,h = XI2,k}], {h | XI1,h = XI2,k} ≠ ∅
1[k′ = 1], otherwise

Further, we will choose W (V) such that

W (V)X ′
I3,k′ = X ′

I4,k′ = XI4,k′ ∀k′ ∈ [l].

W (V)X ′
Ic
3 ,k

′ = 0 ∀k′ ∈ [l].

This then concludes that

A (g (X) +X) = Match[I1, I2, I3, I4](X)

This concludes the proof.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

Lemma E.16 (Matching Closest Blocks). Given any constant c, for index set I1, I2, I3, I4 ⊂
[d− 20], |I1| = |I2| ≤ 10, |I3| = |I4|, a matching closest function MatchClose[I1, I2, I3, I4] can be
implemented with 1 feedforward block g and 1 attention block A with 1 attention head. Formally,
when Xd,k = k,X3,k = 1[k = 1], XI1,1 = 0 and k ≤ nc, it holds that

A (g (X) +X) = MatchClose[I1, I2, I3, I4](X)

Proof. The proof is similar to the proof of Lemma E.15, and one can design the attention pattern as((
W (K)X

)⊤ (
W (Q)X

))
k′,k

=− n4c+1

|I|∑
i=1

(XI1[i],k′ −XI2[i],k)
2 − n(k − k′)2

+ 1[k′ = 1]

n4c+1

|I|∑
i=1

X2
I2[i],k

+ n(k − 1)2 − n2c+2

 .

The rest of the proof is omitted here.

Lemma E.17 (Matching Nearest Blocks). Given any constant c, for index set I1, I2, I3, I4 ⊂
[d − 20], |I1| = |I2| ≤ 10, |I3| = |I4| and index i , a matching nearest function
MatchNearest[I1, I2, I3, I4, i] can be implemented with 1 feedforward block g and 1 attention
block A with 1 attention head. Formally, when Xd,k = k,X3,k = 1[k = 1], XI1,1 = 0 and k ≤ nc,
it holds that

A (g (X) +X) = MatchNearest[I1, I2, I3, I4, i](X)

Proof. The proof is similar to the proof of Lemma E.15, and one can design the attention pattern as((
W (K)X

)⊤ (
W (Q)X

))
k′,k

=− n4c+1

|I|∑
u=1

(XI1[u],k′ −XI2[u],k)
2 − n(Xi,k − k′)2

+ 1[k′ = 1]

n4c+1

|I|∑
u=1

X2
I2[u],k

+ n(1−Xi,k)
2 − n2c+2

 .

The rest of the proof is omitted here.

Lemma E.18 (Matching Next Blocks). Given any constant A, c, for index set I1, I2, I3, I4 ⊂
[d − 20], |I1| = |I2| ≤ 10, |I3| = |I4| and a special counting index a, a matching next function
MatchNext[I1, I2, I3, I4, a] can implement with 1 feedforward block g and 1 attention block A with
1 attention head. Formally, when Xd,k = k,X3,k = 1[k = 1], XI1,1 = 0 and k ≤ nc, it holds that

A (g (X) +X) = MatchNext[I1, I2, I3, I4, a](X)

Proof. We will use the feedforward block to calculate the following next function, where

next(x) =

1
2 , x ≥ 2

3 .
1
3 ,

3
5 > x > 2

5 .
1
4 ,

7
20 > x > 3

10

x− x2 + x3, x ≤ 11
40 .

The value can be arbitrary for x ∈ [1140 ,
3
10] ∪ [25 ,

7
20] ∪ [35 ,

2
3]. This function is achievable by a

feedforward block through combination of Lemmas E.1 and E.6.

The purpose of this is to approximate the next function for x ∈ ROUND(1/[nA], p), and we have
the following lemma.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

Lemma E.19. For large enough n and any x ∈ ROUND(1/[nA], p), we have

|next(x)− next(x)| ≤ next(x)3 +O

(
1

n10A

)
.

Proof. We always have ROUND(1/[nA], p) ∩
(
[1140 ,

3
10] ∪ [25 ,

7
20] ∪ [35 ,

2
3]
)
= ∅. We will discuss

several cases for x ∈ ROUND(1/[nA], p).

1. If x ≥ 3
10 , then next(x) = next(x).

2. If x ≤ 7
20 , it holds that |x− 1/m| ≤ 1/n10A,m ≥ 3, then

next(x) = x− x2 =
1

m
− 1

m2
+

1

m3
+O

(
1

n10A

)
=

1

m+ 1
− 1

m3(m+ 1)
+O

(
1

n10A

)
This then concludes the proof.

We then choose W (K),W (Q) such that((
W (K)X

)⊤ (
W (Q)X

))
k′,k

=− n4A+3

|I|∑
i=1

(XI1[i],k′ −XI2[i],k)
2 − n4A+1(next(Xa,k)−Xa,k′)2

+ 1[k′ = 1]

n4A+3

|I|∑
i=1

X2
I2[i],k

+ n4A+1X2
a,k − n4A+2

 .

Again, the detailed construction of W (K),W (Q) is omitted here since it is similar to the proof
of Lemmas E.13 and E.14.

We will discuss several cases for the distribution of
((

W (K)X
)⊤ (

W (Q)X
))

k′,k
. It always holds

that
((

W (K)X
)⊤ (

W (Q)X
))

1,k
= −n4A+2.

1. If there doesn’t exists k′, such that Xk′,I1 = Xk,I2 , then for any i > 1, we have((
W (K)X

)⊤ (
W (Q)X

))
i,k

< −n4A+3.

2. If there exists k′, such that Xk′,I1 = Xk,I2 , then for such k′, we have((
W (K)X

)⊤ (
W (Q)X

))
k′,k

= −n3A(next(Xa,k) − Xa,k′)2 > −n4A+1. The rest of the

entries are all smaller than −n4A+2.

It remains to discuss the distribution of
((

W (K)X
)⊤ (

W (Q)X
))

k′,k
for k′ satisfying Xk′,I1 =

Xk,I2 . When X satisfies the condition in Definition E.12, we have that Sk = {Xa,k′ | Xk′,I1 =
Xk,I2} takes consecutive and disjoint values in ROUND(1/[nA], p). Hence, if |Sk| > 2, suppose
y, z ∈ Sk satisfies that

|y − next(Xa,k)| = min
x∈Sk

|x− next(Xa,k)|

|z − next(Xa,k)| = min
x∈Sk,x ̸=y

|x− next(Xa,k)|.

We will discuss several cases for y, z.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

• If y − next(Xa,k) and z − next(Xa,k) are both negative, then y > z, we have,(
y − next(Xa,k)

)2 − (z − next(Xa,k)
)2

= (y − z)(y + z − 2next(Xa,k))

≤ −(y − z)2 ≤ − 1

4n4A
.

.
• If y − next(Xa,k) and z − next(Xa,k) are both positive, then y < z, and same as above we

have (
y − next(Xa,k)

)2 − (z − next(Xa,k)
)2

= (y − z)(y + z − 2next(Xa,k))

≤ −(y − z)2 ≤ − 1

4n4A
.

.
• If y − next(Xa,k) and z − next(Xa,k) have different signs, then according to Lemma E.19,

we have, y = ROUND(next(Xa,k), p) because Sk takes consecutive and disjoint values in
ROUND(1/[nA], p). This then implies that(

y − next(Xa,k)
)2 − (z − next(Xa,k)

)2
≤O(

1

n10A
) +

1

next6(Xa,k)
−
(

1

next(Xa,k)(next(Xa,k) + 1)

)2

≤− 1

4n4A
.

Concluding, we always have for any k′′ ̸= k∗ = argmaxk′,k

((
W (K)X

)⊤ (
W (Q)X

))
k′,k((

W (K)X
)⊤ (

W (Q)X
))

k′,k

−
((

W (K)X
)⊤ (

W (Q)X
))

k∗,k

≤ −n

4
.

Concluding the above discussion, we have after the column-wise softmax and rounding to p =
O(log n) bit,(
softmax

((
W (K)X

)⊤ (
W (Q)X

)))
k′,k

= 1

[
k′ = arg min

h∈{h|XI1,h=XI2,k}∪{1}
|Xa,h − next(Xa,k)|

]
.

Further, we will choose W (V) such that

W (V)X ′
I3,k′ = X ′

I4,k′ = XI4,k′ ∀k′ ∈ [l].

W (V)X ′
Ic
3 ,k

′ = 0 ∀k′ ∈ [l].

This then concludes the proof.

E.3 BUILDING BLOCKS OF RNNS CONSTRUCTION

We will now describe the building blocks of Linear RNNs construction. We will introduce some
basic operations that will be used to build more complex RNNs family.
Lemma E.20 (Recent Input Memorizing). Given any constant k and C, there exists a parameter
configuration of linear unit that maintains C dimensions of last k input vectors in the state.

Proof. Suppose the input sequence is x1:t ∈ Rd, and the dimensions that the state should memorize
are d1, d2, . . . , dC . We can construct the following linear unit:

ht =
[
xt−1,d1 . . . xt−1,dC

ht−1,1 . . . ht−1,C×(k−1) ht−1,C×k+1 . . . ht−1,d

]
.

Lemma E.21 (Summation). Given any constant k and C, there exists a parameter configuration of
linear unit that maintains the sum of one dimension of the last k input vectors in the state.

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

Proof. Suppose WLOG the input sequence is x1:t ∈ Rd, and the dimension that the state should
memorize is 1. We can construct the following linear unit:

ht = [xt−1,1 + ht−1,1 ht−1,2 . . . ht−1,d] .

Lemma E.22 (Special Position Memorizing). Given any constant k and C, there exists a parameter
configuration of linear unit and a FFN with Ck width that maintains the C dimensions of the input
vector at position 1 to k in the state.

Proof. This is a direct combination of Lemma E.21 and Lemmas E.1 and E.4. The FFN can assign
all the input vectors with position greater than k to 0, and permute the corresponding dimensions
of first k input vectors to the first Ck dimensions of the state. The linear unit can then maintain the
state.

Lemma E.23 (Recite Fixed Sequence). Given any constant integer k and C, there exists a FFN with
width kC that can output fixed sequence of scalars that takes values in [C] on a fixed set of positions
l1, . . . lk.

Proof. This is a direct consequence of Lemma E.4.

E.4 PROOF OF THEOREM 4.6

We will first restate the theorem for clarity.
Theorem 4.6. For task T ∈ {Index, AR, c-gram retrieval, Counting}, there exist constant-size Trans-
formers that can solve T . On the other hand, any RNN with o(n)-bit memory cannot solve T of size
n with any length of CoT for large enough n.

Proof. We will discuss by cases.

When T is Index, we will first show why RNN cannot solve the Index question without Ω(n) memory.
The key observation is that the recurrent form of RNNs allowed the algorithm to be run in a streaming
fashion with o(n) bit memory. Here streaming means that the algorithm gets to look at each bit of the
memory sequentially and can only update a constant size of memory.

Lemma E.24. Consider the following two-party game, where Alice receives string x ∈ {0, 1}n and
Bob receives an integer k, and Bob wants to know the value of xk. If only Alice is allowed to send a
signal to Bob, then Ω(n) bit communication complexity is required.

Proof of Lemma E.24. Suppose there exists a communication protocol where B only receives o(n)
bit and can perfectly decide xk. Because Alice doesn’t know k, the protocol must send the same
message to Bob for all k. Hence Bob can reconstruct the whole string x with n bit with o(n) bit
communication. This is a contradiction.

Now if RNN can solve the Index problem with o(n) bit memory, then it can also solve the Index
problem with o(n) bit communication complexity. This is because Alice can simply run the RNN on
input x and send the hidden state to Bob. Then Bob can run the RNN with the hidden state and k to
get the answer. This is a contradiction to Lemma E.24. Hence RNN cannot solve the Index problem
with o(n) bit memory.

On the other hand, we will show that Transformers can solve the Index problem with O(log n)
bit parameters. This is because using 2 layers of Transformer, we will implement a Match Block
(Lemma E.15) that can match the last query token with the position of the previous token and retrieve
the type of the matched token to the query token.

When T is AR, wthout loss of generality, we assume that n is even. The proof is similar to the proof
of the proof of theIndex problem. As there are n different types of tokens, we can label them as [n].
Now for any boolean sequence x ∈ {0, 1}n/2, solving AR for the following input is equivalent to
solving the Index problem for x:

Sin = <s>, 1, x1 + n/2, 2, x2 + n/2, . . . , n/2, xn/2 + n/2, k

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

This then implies that RNN cannot solve AR with o(n) bit memory. Transformers, on the other hand,
can still solve AR with O(log n) bit parameters, we will use one layer of copying function to copy
each token’s previous token’s type to it. Then we can use the Match Block to match the last query
token with the position of the previous token and retrieve the type of the matched token to the query
token.

When T is c-gram retrieval, without loss of generality, we assume that n is a multiple of c. The proof
is similar to the proof of Theorem 4.6. As there are n different types of tokens, we can label them as
[n]. Now for any boolean sequence x ∈ {0, 1}n/2, solving AR for the following input is equivalent
to solving the Index problem for x:

Sin = <s>, 1, . . . , 1︸ ︷︷ ︸
c−1

, x1 + n/c, 2, . . . , 2︸ ︷︷ ︸
c−1

, x2 + n/c, . . . , n/c, . . . , n/c︸ ︷︷ ︸
c−1

, xn/c + n/c, k, . . . , k︸ ︷︷ ︸
c−1

This then implies that RNN cannot solve c-gram retrieval with o(n) bit memory. Transformers, on
the other hand, can still solve c-gram retrieval with O(log n) bit parameters, we will use one layer of
copying function to copy each token’s previous c− 1 tokens’ type to it. Then we can use the Match
Block to match the last query token with the position of the previous token and retrieve the type of
the matched token to the query token.

When T is Counting, we will first show why RNN cannot solve the Counting question without Ω(n)
memory. Consider the following setup, given any x ∈ {0, 1}n, the input string is j1j2 . . . jk where
{ji . . . jk} = {j | xj = 1}, then solving the Counting question for this input string for queried
threshold 1 is equivalent to solving the Index problem for x. This then implies that RNN cannot solve
the Counting question with o(n) bit memory.

On the other hand, we will show that Transformers can solve the Counting question with O(log n)
bit parameters. This is because using 2 layers of Transformer, we can first use a COPY block to
copy the last query token to the token corresponds to the threshold, and then use a COUNT block
(Lemma E.14) that can count the number m of the appearance of the last query token in the input
sequence, and then write 1/(m+ 1) to one of the dimension. Finally, we can use the Feed Forward
Network on the last layer to multiply threshold +1 with this value and compare the result to 1 to get
the answer.

E.5 PROOF OF THEOREM 4.1

We will first prove a lemma assuming PSPACE ̸⊂ P/poly.

Lemma E.25. If PSPACE ̸⊂ P/poly, then there exists a Turing machine M with linear space
complexity that cannot be simulated by a polynomial-size circuit family.

Proof. We will prove this by contradiction. Assuming for every Turing machine M with linear
space complexity, there exists a polynomial-size circuit family {Cn} that can simulate M . We will
construct a polynomial-size circuit family {C ′

n} that can decide PSPACE, which contradicts the
assumption that PSPACE ̸⊂ P/poly.

Given any language L ∈ PSPACE, we can decide L by a Turing machine ML with space O(nk)

for some constant k. We can consider another language L′ = {x1|x|k | x ∈ L}. We can decide
L′ by a Turing machine ML′ with linear space complexity by checking the length of the input and
then simulating ML. By the assumption, there exists a polynomial-size circuit family {Cn} that can
simulate ML′ . We can then construct a polynomial-size circuit family {C ′

n} that can decide L by
first counting the length of the input and then simulating Cn on the extended input. This contradicts
the assumption that PSPACE ̸⊂ P/poly.

Now we are ready to prove our theorem.

Theorem 4.1. Assuming PSPACE ̸⊂ P/poly, there exists an algorithmic problem such that (1)
there exist constant-size Linear RNNs that can solve the problem with polynomial length CoT; and
(2) any constant-size regular RNNs cannot solve the problem without CoT.

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2025

v1 v2 v3 v4

v5 v6

Binary Message: 0101, Index: 2

G

Tokenize(G)

=<s>, 2,∼, 6, 1,∼, 5,

3,∼, 5, 4,∼, 6, 2,∼, 3.

v1 v2 v3 v4

v5 v6

1

10
2

9

3
8

4

7
5

6

DFS on G

Euler Tour: 1, 5, 3, 2, 6, 4, 6, 2, 3, 5, 1, Is Tree: Yes

Figure 6: An example of the graph constructed from the binary sequence x = 0101 and the index
k = 2 and the corresponding DFS tour.

Proof. By Lemma E.25, we know that if PSPACE ̸⊂ P/poly, then there exists a Turing machine
M with linear space complexity that cannot be simulated by a polynomial-size circuit family. We
will use this result to prove Theorem 4.1.

We design the task as follows, for any n, let m = ⌊log2 n⌋, for any boolean input x of length m, we
will choose input sequence as Sin = 0n−mx and the label as y = YES if M(x) = 1 and y = NO
otherwise.

Because we are considering regular RNN with O(m) memory, we know that we can compute the
result of RNN without CoT through a circuit family with size Poly(m). However, we know that M
cannot be simulated by a polynomial-size circuit family. Hence, no RNN family with O(m) memory
can solve the task for all n.

On the other hand, we can simulate M by the RNN by maintaining the state, the pointer, and the
tape of the M inside the state of the RNN. The RNN can then maintain the transition function of the
Turing machine in its output function as a lookup table Lemma E.4 and write down the updated state,
the direction of the pointer movement, and the updated cell value at the pointer in its context. Paired
with the ability to memorize the recent input Lemma E.20, the RNN can then simulate the running of
the Turing machine.

Because the space complexity of M is linear in m, the time complexity of M is exp(O(m)) which
is polynomial in n. Hence, we can solve the task by an RNN with CoT and O(m) memory and
polynomial-size circuit family.

E.6 PROOF OF THEOREM 4.7

We will now proceed to prove our main theorem, which states that Transformers with chain-of-thought
can solve IsTree perfectly, while RNNs cannot. We will first restate the theorem here.

Theorem 4.7. There exist constant-size Transformers that can solve IsTree with CoT of length O(n).
On the other hand, any RNN with o(n)-bit memory cannot solve IsTree with any length of CoT.

Proof of Theorem 4.7. We will prove this theorem by proving the following lemmas.

Lemma E.26. For any n and RNN R with o(n) memory, R cannot perfectly solve IsTree of size n.

Lemma E.27. There exists a Transformer T with constant depth and width, and O(log n) precision,
that can solve IsTree of size n perfectly with Chain of Thought.

This proof is a direct combination of Lemmas E.26 and E.27.

E.6.1 PROOF OF LEMMA E.26

We first reduce another problem in communication complexity to IsTree.

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2025

Lemma E.28. Consider the following two-party game, where Alice receives string x ∈ {0, 1}n and
Bob receives an integer k, and Bob wants to know whether xk = xk−1. If only Alice is allowed to
send information, Ω(n) bit communication complexity is required.

Proof of Lemma E.28. We can reduce this problem to the problem in Lemma E.24. Considering the
game in Lemma E.24, given any x ∈ {0, 1}n, we can construct x̃i =

∑i
j=1 xi mod 2. Then x̃ is a

string of length n with only 0 and 1. Moreover, xk = xk−1 if and only if x̃k = x̃k−1. Hence, if Bob
can solve the problem in Lemma E.28 with o(n) bit, he can solve the problem in Lemma E.24. This
is a contradiction.

Proof of Lemma E.26. Now suppose that we have a streaming algorithm for IsTree with only o(n)
memory. We shall prove Alice and Bob in Lemma E.28 can use it to solve the original question with
o(n) memory.

Consider the following graph with n+2 nodes. There is a node i corresponding to each xi for i ∈ [n]
and two special nodes n + 1, n + 2. Node i will be connected to n + 1 if xi = 0 and to n + 2 if
xi = 1. Moreover, k − 1 and k will be connected. Now the original answer Bob wants is False if and
only if the graph is a Tree. Hence, given access to the streaming algorithm, Alice can run it on the
edges that she knows exist and send the memory to Bob. Bob can then run it on the edges that he
knows exist. Combining they will be able to solve the original problem. This is a contradiction.

Moreover, as RNN with CoT is also a streaming algorithm, it also requires Ω(n) memory.

E.6.2 PROOF OF LEMMA E.27

Proof of Lemma E.27. The proof is two-folded. We will first define an algorithm that can solve
IsTree by generating a sequence of vertices of length O(n), and then we will show that this sequence
can be generated by a Transformer with constant depth and width, and O(log n) precision as a Chain
of Thought.

Algorithm 1 Depth-First Search Algorithm

Require: A graph G = (V,E) with n vertices and E has an ordering e1, . . . , em.
1: Initialize two stacks of vertices S1, S2 with S1 = [v1], S2 = ∅.
2: while S1 is not empty do
3: Let v be the top of S1. Yield v.
4: if there exists a neighbor u of v not in S1 ∪ S2 then
5: Choose u such that edge (u, v) has the smallest possible order and push u to S1.
6: else
7: Pop v from S1 and push v to S2.
8: end if
9: end while

Algorithm for IsTree. We define Algorithm 1 as a depth-first search algorithm that can generate a
sequence of vertices of length O(n) that can be used to solve IsTree. We will use two stacks S1, S2

to store the vertices. S1 will be used to store the vertices that are not yet visited, and S2 will be used
to store the vertices that are already visited. The algorithm will start with S1 = [v1] and S2 = ∅. At
each step, the algorithm will pop the top of S1 and push it to S2. Then it will push all the neighbors of
the popped vertex that are not in S1 ∪ S2 to S1. The algorithm will terminate when S1 is empty. We
will denote the yielded vertice sequence for G as A(G). The following lemma shows the connection
between the result of the algorithm and the IsTree problem.

Lemma E.29. For any graph G, A(G) is a tree traversal of a spanning tree of the connected
component of G containing v1. Hence IsTree(G) is True if and only if G has n− 1 edges and A(G)
contains 2n− 1 vertices.

Proof of Lemma E.29. First, every vertex in the connected component of G containing v1 will be
visited. This is because the algorithm will always push all the neighbors of the popped vertex that

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2025

are not in S1 ∪ S2 to S1. Hence, the algorithm will terminate when all the vertices in the connected
component of G containing v1 are visited.

Second, every two consecutive vertices in the yielded sequence will be connected by an edge. This
is because the algorithm will always push one of the neighbors of the popped vertex that is not in
S1 ∪S2 to S1. Hence, every two consecutive vertices in the yielded sequence will be connected by an
edge. On the other hand, the combination of these edges will form a tree because the algorithm will
never push a vertex that is already in S1 ∪ S2 to S1. Hence, the yielded sequence is a tree traversal of
a spanning tree of the connected component of G containing v1.

Construction of Transformer. We will now show that the yielded sequence of Algorithm 1 can
be generated by a Transformer with constant depth and width, and O(log n) precision as a Chain
of Thought. The Transformer will generate a valid yielded sequence but can terminate early if the
graph is not a tree. We will now describe the Transformer in detail. We will assume the input token
sequence S is as follows,

S = Tokenize(G), v1, . . . vr (10)

for some r ≥ 0 and v1 . . . vr is a valid yielded sequence. The length of Tokenize(G) is 3n− 2 with
3 tokens for each edges and 1 special token <s>. We will further denote the input to the first layer X
as Emb(S). We will similarly denote the input to layer ℓ as X(ℓ). We will also denote the output of
the last layer as Xout.

1. Layer 1 and Layer 2 Attention. The attention at Layer 1 will output zero and the FFN at Layer
1 and Attention at Layer 2 will implement a counting function (Definition E.8) to count the
number of vertices n appears in the previous token sequence and write ROUND

(
1
n , p
)

in a new
dimension i1 as a result.

2. Layer 2 FFN and Layer 3 Attention. The FFN at Layer 2 and Attention at Layer 3 will implement
a copying function (Definition E.7) copying the first dimension and the counting dimension i1 of
each token to its successor at two new dimensions i2 and i3. For each edge, this moves the type of
the first vertice and the number of times the first vertice appears to ∼. For every vertice in the
chain of thought, this moves the type of the previous vertice to them.

3. Layer 3 FFN and Layer 4 Attention. The FFN at Layer 3 and Attention at Layer 4 will implement
another copying function, copying the dimensions i2 and i3 of each token to its successor at two
new dimensions i4 and i5. Especially, for each edge, this moves the type of the first vertice and
the number of times the first vertice appears to the position corresponding to the second vertices.

4. Layer 4 FFN. This FFN will process the information gathered from the previous layer and prepare
for the next layer. It will make sure the following properties hold for X(5),

• For every token, the position number, its square, and 1 will be kept in the last three dimensions.
• For the first vertices in each edges, ∼ and <s> The rest dimension will be zero.
• For the second vertices of each edges (a, b), there will be four dimensions i6, i7, i8, i9 with

value a, b and na,e, nb,e, where na,e = ROUND(1
1+#aappears up to current edge , 1).

• For vertice vl in v1, . . . , vr, there will be four dimensions i10, i11, i12, i13 with value vl, vl−1

and v2l , v
2
l−1 (v0 = 0).

5. Layer 5 Attention. Combining with the previous Layer 4 FFN layer, we will implement two
match functions with two attention heads matching (i10, i11) or (i11, i10) with (i6, i7) at Layer 5
Attention, i.e. finding the edge in input for each step in the chain of thought, we will then copy
nvl,(vl,vl−1) to dimensions i8 and i9.

6. Layer 6. We will use Layer 5 FFN and Layer 6 Attention to implement the match function that
matches dimension i10 of the current token to i10 in the previous token. This will match vl to the
first appearance of vl in the chain of thought and we will copy i11 of the matched token to i22.
This dimension will be the first predecessor of vl in the chain of thought (0 for v1). We will denote
this predecessor of vl to be f(vl) as it is the father of vl in the tree. Now we will need to split into
two cases depending on whether vl−1 is f(vl). If vl−1 = f(vl) or vl−1 = 0 (for v1), we will set
dimension i8 to be 1 and i9 to be 0. Otherwise, we will keep dimension i8 and i9 as nvl,(vl,vl−1).

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2025

7. Layer 7. Now we will use Layer 6 FFN and Layer 7 Attention with two attention heads to
implement two MatchNext functions2 (Definition E.12) which use i8 or i9 as the counting index,
and match vl at i10 to i6 or i7 respectively. We will then copy dimensions i6 to i9 of the matched
tokens to i14 to i21 (because there will be two of them).

The match next function will be able to retrieve the first edge containing v1. For any i ≥ 2, one
of the matches next function will be able to retrieve the next edge containing vi after (vi, vi+1)
if it exists. If it doesn’t exist, the corresponding counting dimension will either be zero or no
smaller than nvl,(vl,vl−1). We will use Layer 6 FFN to decide whether the next edge exists and
set dimension i14 of the output of Layer 6 to be the other edge in the next edge if it exists, or 0
otherwise, and i15, i16 of the output of layer 6 to be the counting dimension of the next edge if it
exists, or 0 otherwise. For each edge in the original input, we will also set dimension i15, i16 to be
the counting dimension of the edge.

8. Layer 8 Attention We will grab the next edge again, in the same manner as Layer 6, but this time
using dimension i15 and i16. The necessity of this step is that the next edge containing (vi−1, vi)
in the original graph can be the same as the (f(vl), vi) and in such case we need to check whether
the next edge after this edge.

9. Layer 8 FFN. We now have, at each position corresponding to vl, the first edge (f(vl), vl) in the
yielded sequence containing vl and the other vertex in the edge containing vl that hasn’t been
visited if it exists. If they don’t exist, the corresponding dimension will be zero. This allows us
to use Layer 8s FFN to decide the next vertex in the yielded sequence, which is exactly the first
vertex different with f(vl) in the two edges if they exist, or f(vl) otherwise. We will use Layer 8
FFN to calculate the potential next vertex and put it in dimension i23 and its square in i24.

10. Layer 9 Attention. Combining with Layer 8 FFN, we will match i23 of the current token to i10 of
the previous token to find the first appearance of the potential next vertex in the chain of thought.
We will then copy dimension d of the matched token to i25. This value being 1 will imply this
vertex has never appeared in the chain of thought before and any other value will imply the vertex
has appeared before.

11. Layer 9 FFN. We can now check several cases,

• If the potential next vertex v is either f(vr) ̸= 0 or never appears in the chain-of-thought
sequence, then Layer 9 will output n[−v, 1,−1, . . .− 1], which will decodes to v.

• If the potential next vertex v is not f(vr) and appears in the chain-of-thought sequence, then
Layer 9 will output nw6, which will decodes to NO, because the chain of thought has already
visited v and hence the graph is not a tree.

• If vr = 1 and the potential next vertex v is f(vr) = 0, this means the chain of thought has
finished. In this case, layer 9 FFN will check whether the position is 3n − 2 + 2n − 1 =
5n− 3 and output nw5 if it is, or output nw6 otherwise, which will decode to YES and NO
respectively.

This concludes the construction of the Transformer.

E.7 PROOF OF THEOREM 4.8

The theorem is in the same vein as the recent work on the CoT for Transformer (Li et al., 2024),
which shows the constant size and constant precision Transformer with a polynomial-size position
embedding can simulate any polynomial size circuit. The major difference of our theorem is that (1)
we consider a Transformer with fixed word and position embedding, hence allowing the parameter
number to be logarithmic in the input size, and (2) we consider simulating RNNs, which is a special
kind of circuit family and hence we can use more succinct representation utilizing the structural
property attached to the recursive process.

We will now prove Theorem 4.8. We will first restate the theorem for convenience.

Theorem 4.8. Given input length n, let R is an RNN with word embedding W (E) ∈ R(n+nS)×d
p ,

where p = Θ(log n) is the precision, the constant nS is the number of special symbols in the
2The constant A here in Definition E.12is 1

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2025

vocabulary, the constant d is the embedding dimension. If each recurrent iteration can be computed
by a circuit of size C(n) ≤ 2p/2, and if the RNN produces the final answer after running at most nA

steps of CoT for some constant A > 0, then there exist Transformers with O(log n)-bit precision,
O(C(n)) parameters and word embedding

[
W (E) 0(n+nS)×d

]
that can produce the same final

answer after running (C(n) + 1)nA steps of CoT.

Proof. The proof is inspired by Theorem E.30 from Li et al. (2024).

Theorem E.30 (Theorem 3.3 of Li et al. (2024)). For any n and any circuit with size T (n) and input
size n, there exists a Transformer with constant depth and precision, O(log n) width, and a position
embedding with size O(T (n) log n), such that for any input S of length n, the Transformer computes
the output of the circuit on S using T (n) steps.

However, direct utilization of Theorem E.30 is not feasible because we are interested in (1) O(log n)
precision Transformer, and (2) simulating the RNN for nA step, which would correspond to a circuit
with nAC(n) in size. However, as the calculation is recurrent, we can encode the RNN circuit in
O(C(n)) parameter instead.

To do so, we will unroll the circuit of each recurrent step of the RNN into C(n) gates. We will then
assign each gate a unique id in [C(n)] and assume the circuit is calculated in the order of the gate id
in the following manner.

1. Each gate has a type t(i), which is either a constant gate outputting 1, an input gate, a hidden state
gate, an AND gate, or an XOR gate.

2. Each gate i’s output depends on two values l(i) and r(i). If t(i) is a constant gate, then l(i) and
r(i) are assigned to be 0. When it is an input gate, l(i) will be assigned to be the coordinate
of the input embedding and r(i) will be assigned to be the index of the bit of the value at l(i)
coordinate. When it is a hidden state gate, l(i) will be assigned to be the coordinate of the hidden
state embedding, and r(i) will be assigned to be the index of the bit of the value at l(i) coordinate.
If it is an AND gate or an XOR gate, l(i) and r(i) will be assigned to be the id of the two gates
that it depends on.

We will further assume without loss of generality that the hidden state gate is the first pΛ gate. The
output of the last pΛ gate will be the next hidden state. We will also assume that the last p(Λ + d) to
pΛ−1 gates are the output gates. We will now first describe the chain of thought that the Transformer
will output and then construct the Transformer.

Chain of thought Taking any input S with length n, the Transformer will output a sequence of
0 and 1 tokens. The first n tokens will be the same as the input sequence. For each a ≥ 0 and
b ∈ [C(n) + 1], the n+ a (C(n) + 1) + b token is

1. the output of gate b when RNN circuit is calculating the output at a position plus 1, if b ≤ C(n).

2. the n+ a+ 1 token in the RNN chain of thought, if b = C(n) + 1.

Construction of the Transformer.

1. Layer 1. The first attention layer will output zero and the first FFN layer will be of width O(C(n)),
encoding all the gate information. The output of the first layer at position n+ a (C(n) + 1) + b
will have the following coordinate:

• The input i will be encoded in the first dimensions.
• a, a2, b, b2 will be encoded in four different dimensions.
• The gate type t(s(b)) will be encoded in the next dimension, where s(b) = (b + 1)
mod (C(n) + 1) If b = C(n)− 1, then the gate type will be encoded as 0.

• The necessary dependence l(s(b)), l2(s(b)) and r(s(b)), r2(s(b)) will be encoded in the next
two dimensions.

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2025

• A constant 1 will be encoded in the next dimension.

2. Layer 2 Attention. Together with the Layer 1 FFN, the Layer 2 Attention will implement two
match functions (Definition E.9) to copy the output of gate l(b + 1) and r(b + 1) when RNN
circuit is calculating the output at a position. When the type of gate b+ 1 is not AND or XOR,
the result will not be used in the following calculation.

3. Layer 2 FFN Layer 2 FFN will be of width O(1). The output of the layer will be

• When b < C(n) and t(s(b)) is AND or XOR or constant, one dimension of the output will be
the output of gate b+ 1 when RNN circuit is calculating the output at a position.

• When b < C(n) and t(s(b)) is an input or hidden state gate or b = C(n) + 1, one dimension
of the output will be the position in the current chain of thought where the input bit or hidden
state bit is copied from and the other dimension will be the square of that position

• When b = C(n), the output remains the same as the input to Layer 2 FFN.

4. Layer 3 Attention. Layer 3 Attention will be of width O(1). Together with Layer 2 FFN, Layer
3 Attention will implement Match heads (Definition E.9) to copy the output at the position where
the input bit or hidden state bit is copied from. When the type of gate b+ 1 is not input or hidden
state gate, the result will not be used in the following calculation.

5. Layer 3 FFN Layer 3 FFN will be of width O(1). The output of the layer will be

• When b ̸= C(n), one dimension of the output will be output of gate s(b) when RNN circuit is
calculating the output at a+ 1[b = C(n) + 1] position.

• When b = C(n), the output remains the same as the input to Layer 3 FFN.

6. Layer 4 Layer 4 Attention will have p − 1 heads and each head will be of width O(1). Head
h ∈ [p− 1] will copy the first dimension of the output of Layer 3 FFN at position n+ a(P (n) +
1) + b− (p− h) and weight each of them by 2−h+(p−1)/2 and add them in one dimension. The
Layer 4 FFN will calculate r when the first dimension of the input is 1 and −r otherwise. Hence,
for each a ≥ 0, the n+ a (C(n) + 1)− hp, h ∈ [Λ : Λ+ d] token contains a dimension i1 which
is the k − Λ dimension of the output of the RNN at position a.

7. Layer 5 Layer 5 Attention will have d + 1 heads and each head will be of width O(1). Head
h ∈ [d+ 1] will copy the dimension i1 of the output of Layer 4 FFN at position n+ a(P (n) +
1) + b− (h+Λ)p to a disjoint dimension ih+1. The Layer 5 FFN will then make sure the output
of Layer 5 satisfies the following:

• When b ̸= C(n), one dimension of the output will be n times the output of gate s(b) when
RNN circuit is calculating the output at a + 1[b = C(n) + 1] position plus 1, which will
decode to the corresponding value.

• When b = C(n), the first d dimension of the output will be the same as the output of the RNN
at position a, and the rest dimension will be 0, which will decode to the same token as the
chain of thought of the RNN at position a+ 1.

This concludes the construction of the Transformer.

E.8 AR FUNCTION CALLS IS NOT ENOUGH FOR CLOSING THE REPRESENTATION GAP

Proposition E.31. For any RNN family with O(log n) bit memory and O(log n) parameter with an
oracle to receive results for the AR problem (Definition 4.3) for any queries, for large enough n, the
RNN can’t solve the index problem (Definition 4.2) with length n in any CoT steps.

Proof. Consider a special type of index problem where every token at the even position of the input
sequence is a special token κ and the rest of the tokens are uniformly random. Then the oracle for the
AR problem can be simulated by the RNN by simply outputting the κ when the query is not κ and
outputting the third token when the query is κ. However, following similar proof of Theorem 4.6,
we can show that the RNN can’t solve this special form of index problem with length n in any CoT
steps.

39

2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2025

E.9 PROOF OF THEOREM E.32

We will first state the theorem for clarity.
Theorem E.32. For task T ∈ {Index, AR, c-gram retrieval, Counting}, there exists a Linear RNN
family with O(log n) bit memory and O(log n) parameter, that can solve T with In-Context RAG in
O(1) CoT steps.

Proof. When task T is Index, given an input sequence that ends with a query token k, RNN
will generate the following search query sequence:<StartSearch>, ^(?:\S\s*){k − 1}(\S),
<EndSearch>.

Then the regular expression will match the k-th token in the input sequence. The RNN needs to
recite the format of the query, remember the index k and calculate k − 1 to generate the regular
expression. As we have shown in Lemmas E.20 and E.23, RNN can recite a fixed sequence at fixed
position and memorize the recent input, the above sequence can be generated by an RNN. The explicit
construction of the RNN is omitted here.

When task T is AR, given an input sequence that ends with a query token k, RNN will generate the
following search query sequence: <StartSearch>, \b k \b(\S+)\b, <EndSearch>.

Then the regular expression will match the next token after the first occurrence of k in the input
sequence. The RNN needs to recite the format of the query and remember the query token k to
generate the regular expression. The explicit construction of the RNN is omitted here.

When task T is c-gram retrieval, given an input sequence that ends with query tokens, RNN
will generate the following search query sequence: <StartSearch>, \b k1 . . . kc−1 \b(\S+)\b,
<EndSearch>.

Then the regular expression will match the next token after the first occurrence of k1, . . . kc−1 in the
input sequence. The RNN needs to recite the format of the query and remember the query tokens
k1, . . . kc−1 to generate the regular expression. The explicit construction of the RNN is omitted here.

When task T is Counting, given an input sequence that ends with a query token v and a query threshold
k, RNN will generate the following search query sequence <StartSearch>,(\b v \b){k + 1},
<EndSearch>.

Then the regular expression will match the k-th occurrence of v in the input sequence. The RNN
needs to recite the format of the query and remember the query token v and the threshold k to generate
the regular expression. The RNN can then check whether the retrieval result is FAILED to determine
if the count is less than k. The explicit construction of the RNN is omitted here.

E.10 PROOF OF THEOREM E.33

In this section, we will prove Theorem E.33. We will first state the theorem for convenience.
Theorem E.33. There exists a Linear RNN family with O(log n) bit memory and O(log n) parameter,
that can solve IsTree of size n with In-Context RAG in O(n) CoT steps.

Proof of Theorem E.33. We will first define the sequence that the retrieval-augmented RNN will
generate and then construct an RNN that can generate such a sequence.

Sequence Generation. We will use a variant of Algorithm 1 to generate the sequence and we will
use the concatenation of the tokenization of the sequence returned by Algorithm 2 as the sequence
that the retrieval augmented RNN will generate.

RNN Construction. We can use similar proof in Theorem 5.2 by having the RNN memorize local
sequences and determine the phase of Algorithm 2 it is in. The RNN will maintain the length of S2

(Lemma E.21) and the top of S1 in the state (Lemma E.20) and it is easy to check that the retrieval
function will retrieve the correct result for each search query. The way to determine the next vertex in
the stack is the same as in the proof of Lemma E.27. We will omit the simple but tedious detailed
construction here.

40

2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Under review as a conference paper at ICLR 2025

Algorithm 2 Depth-First Search Algorithm with Retrieving

Require: A graph G = (V,E) with n vertices and E has an ordering e1, . . . , em.
1: Initialize two stacks of vertices S1, S2 with S1 = [v1], S2 = ∅, a list L with L = ∅, and a vertex

v′ = FAILED.
2: while S1 is not empty do
3: Let v be the top of S1. Push v to L.
4: Generate the regular expression r2 = \b(\S+)\b−\bv\b .
5: Let f(v) be the predecessor of v in S1 for the first time and FAILED when v = v1.
6: Push <StartSearch>, r2,<EndSearch>, f(v) to L.
7: if v′ ̸= f(v) then
8: Generate the regular expression

r1 =
(
\bv′\b∼\bv\b | \bv\b∼\bv′\b

)
.*?

(
\b(\S+)\b∼\bv\b |

\bv\b∼\b(\S+)\b
)

9: else
10: Generate the regular expression r1 =\b(\S+)\b∼\bv\b | \bv\b∼\b(\S+)\b
11: end if
12: Push <StartSearch>, r1,<EndSearch> to L.
13: if there exists a neighbor u of v such that (u, v) has larger order than (v, v′) when v′ ̸= f(v)

or there exists a neighbor u of v such that u ̸= f(v) when v′ = f(v) then
14: Choose u such that edge (u, v) has the smallest possible order and push u to L. Let v′′ = u.
15: else
16: Push FAILED to L. Let v′′ = FAILED.
17: end if
18: if v′′ = f(v) ̸= FAILED then
19: Generate the regular expression

r3 =
(
\bv′′\b∼\bv\b | \bv\b∼\bv′′\b

)
.*?

(
\b(\S+)\b∼\bv\b |

\bv\b∼\b(\S+)\b
)

20: Push <StartSearch>, r3,<EndSearch> to L.
21: if there exists a neighbor u of v such that (u, v) has larger order than (v, v′′) then
22: Choose u such that edge (u, v) has the smallest possible order and push u to L. Let

v′′ = u.
23: else
24: Push FAILED to L. Let v′′ = FAILED.
25: end if
26: end if
27: if v′′ = FAILED then
28: Pop v from S1. Push v to S2. Let v′ = v.
29: else
30: Generate the regular expression r4 =\b(\S+)\b−\bv′′\b
31: Push <StartSearch>, r4,<EndSearch>, 0 to L.
32: if v′′ is not in S1 then
33: Push FAILED, v,−, v′′ to L.
34: Push v′′ to S1. Let v′ = v.
35: else
36: Let f(v′′) be the predecessor of v in S1 for the first time and FAILED when v′′ = v1.
37: Push f(v′′),NO to L.
38: return L.
39: end if
40: end if
41: end while
42: if S2 has n vertices then
43: Push YES to L.
44: return L.
45: else
46: Push NO to L.
47: return L.
48: end if

41

2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

Under review as a conference paper at ICLR 2025

E.11 PROOF OF THEOREM 5.2

In this section, we will prove Theorem 5.2. We will first restate the theorem for convenience.
Theorem 5.2. Given A,B > 0, for all polynomial-time Turing machines T ∈ TIME(nA) with
B states and vocabulary size B, there exist Linear RNNs with B special symbols, O(A log n)-bit
precision and memory, and O(AB2) parameters that can output the result of T by running O(nA)
steps of CoT with In-Context RAG.

Proof of Theorem 5.2. We will denote the state of T as 1, . . . , B (we will use 1 as the initial state)
and the vocabulary of T as 1, . . . , B. We will assume T operates on an infinite tape TAPE, which is
a sequence of cells indexed by Z. We will also assume that the tape is initialized with all cells being 0
except for the n cell starting at 1. The Turing machine also has a pointer p that points to a cell in the
tape. The pointer is initialized to 1. At each time step, the Turing machine reads the cell pointed by
POINTER and updates the cell pointed by POINTER and the pointer p according to the transition
function δ : [B + 1]× [B] → [B]× [B]× {−1, 1}, which takes the current state and the current cell
value (could be empty, which corresponds to B + 1) as input and outputs the new state, the new cell
value and the direction to move the pointer. The Turing machine halts when the state is B. Because
T ∈ TIME(nA), the Turing machine will always halt in nA steps. We will use TAPE[t, i] as the
value on the i-th cell on TAPE before the t timestep. We will use POINTER[t] as the value of the
pointer before the t timestep and State[t] as the state of the Turing machine before the t timestep.
We will further use Direction[t] as the direction of the pointer movement before the t timestep.

We will first define the sequence that the retrieval-augmented RNN will generate and then construct
an RNN that can generate such a sequence.

Sequence generation. The input token sequence Sin will be as followed,

Sin = <s>,TAPE[1, 1],TAPE[1, 2], . . . ,TAPE[1, n]

Here all the symbols on the tape are represented by one special symbol in the vocabulary. Given
this input token sequence, the retrieval augmented RNN will generate the following output token
sequence,

S = Sin,<StartSearch>,^(?:\S\s*).{1}(\S),<EndSearch>,

TAPE[1, 1]

1,TAPE[1, 1], 1,

. . .

<StartSearch>,^(?:\S\s*).{n}(\S),<EndSearch>,

TAPE[1, n]

n,TAPE[1, n], n,

<StartSearch>, ((POINTER[1] (.) POINTER[1] .*?$)),<EndSearch>,

SearchResult(1),

POINTER[1],TAPE[2,POINTER[1]],POINTER[1]

State[2],Direction[2],

. . .

<StartSearch>, (POINTER[t] (.) POINTER[t] .*?$),<EndSearch>,

SearchResult(t)

POINTER[t],TAPE[t+ 1,POINTER[t]],POINTER[t],

State[t+ 1],Direction[t+ 1],

Here SearchResult(t) is defined as

SearchResult(t) =

{
FAILED; if POINTER[t] is empty cell before t

TAPE[t,POINTER[t]];otherwise

The output token sequence simulates the Turing machine T on the tape TAPE due to the following
lemma.

42

2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321

Under review as a conference paper at ICLR 2025

Lemma E.34. Given any t ∈ [nA] and i ∈ [nA], the last string in S that contains i, i as a substring
is i,TAPE[t, i], i if TAPE[t, i] is not empty and is the empty string otherwise.

Proof. The proof is by induction, for t = 1, the result holds. For any t ≥ 2, we only need to notice
that POINTER[t− 1] is the only cell that can be updated at time t− 1.

Construction of RNN Given the input, the RNN can first iterate over 1 to n and generate the first
n search queries and results by maintaining a counter in its state and memorizing the most recent
search result (Lemma E.20). Then it is easy to see that the retrieval oracle will generate the correct
SearchResult(t) given the input S. Therefore, we will only need to construct an RNN that can
generate the rest part of S.

We will assume the RNN maintains the state and pointer of the Turing machine in its state and show
that they can be updated.

Based on Lemma E.20, the RNN can maintain constant recent token types in its state, we will assume
the RNN memorize the last tokens up to the most recent <StartSearch> and also calculate the
position relative to the most recent <StartSearch>. By a lookup table in the FFN Lemma E.4, the
RNN can output the fixed format of the search query. Similarly, RNN can output the POINTER[t].
To generate the update TAPE[t+ 1,POINTER[t]],State[t],Direction[t], the RNN can use a FFN
with O(B2) width to memorize the transition function of the Turing machine and output the update.
Then, the RNN can use the memorized recent input to update the state and the pointer of the Turing
machine at the next <StartSearch>. The proof is then complete.

E.12 PROOF OF THEOREM E.35

Theorem E.35. For task T ∈ {Index, AR, c-gram retrieval, Counting}, there exists a hybrid Linear
RNN (Definitions B.7 and B.8) family with O(log n) bit memory and O(log n) parameter, that can
solve T without CoT.

Proof. The proof here is essentially the same as the construction of the Transformer in Theorem 4.6.
We would use the same Transformer layer to solve T . The only difference is that we would use the
output of the RNN, instead of FFN, as the input of the Transformer layer.Also for Counting, instead
of using a COPY function, we write the query token in the state of the RNN (Lemma E.20).

E.13 PROOF OF THEOREM E.36

Theorem E.36. There exists a hybrid Linear RNN with O(log n) bit memory and O(log n) parameter,
that can solve IsTree of size n with a chain of thought of length O(n log n).

Proof. The proof is similar to the proof of Theorem E.33. However, instead of using regular
expressions to retrieve the next neighbor and parent, we will need to use the Transformer layer. The
Transformer layer can retrieve the parent through an attention head implementing the match closest
head (Lemma E.16) if the RNN part maintains the predecessor of each node in the chain of thought.

Retrieving the next neighbor is more complicated and we will use O(log n) steps of the chain of
thought to do that. Given an edge (v, v′), we will first use one match head to retrieve the position p of
(v, v′) in the input sequence and write it to the chain of thought. Then we will use two MatchClose
heads to retrieve the edge that contains v and is closest to p+ 2i for i = 0, 1, . . . , log2 n iteratively
until the heads return an edge that is not (v, v′) or i reaches log2 n. Here 2i can be computed through
doubling one of the dimensions in the state of the RNN and reset that dimension to 1 after termination.
We will then compare the retrieved edge with the father of v to check if it is the same. If it is the
same, we will search the next neighbor of v after the parent of v in the same way. The other part of
the proof is similar to the proof of Theorem E.33.

43

2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375

Under review as a conference paper at ICLR 2025

E.14 PROOF OF THEOREM 5.4

Theorem 5.4. Given A,B > 0, for all polynomial-time Turing machines T ∈ TIME(nA) with B
states and vocabulary size B, there exist a constant-size hybrid Linear RNNs with B special symbols,
O(A log n)-bit precision and memory, and O(AB2) parameters that can output the result of T by
running O(nA) steps of CoT.

Proof. Sequence Generation. Under the same formulation of proof of the Theorem 5.2. The hybrid
RNN will output the following sequence.

S = Sin,POINTER[1],TAPE[2,POINTER[1]],POINTER[1]

State[2],Direction[2],

. . .

POINTER[t],TAPE[t+ 1,POINTER[t]],POINTER[t],

State[t+ 1],Direction[t+ 1],

Note that Lemma E.34 still holds. We only need to prove that the hybrid architecture can generate the
above sequence.

Hybrid Construction. The way RNN maintains the pointers and the states is the same as the proof
of Theorem 5.2. Given each pointer value, we can retrieve the last value of the cell at the pointer
through the one layer of attention by implementing a match closest head (Lemma E.16).

44

	Introduction
	Related Works
	Preliminaries
	How Well Does CoT Improve the Representation Power of RNNs?
	CoT Strictly Improves RNNs
	CoT Cannot Close the Representation Gap with Transformers
	Simple Problems on In-Context Retrieval
	Limitations of RNNs Beyond Simple In-Context Retrieval Problems
	Transformers are Strictly More Expressive Than RNNs

	Enhancing the In-Context Retrieval Capability Closes the Gap
	Explicit Retrieval Through Regular Expression
	Implicit Retrieval by Appending Just One Transformer Layer

	Empirical Validation
	Validation on Synthetic Task: IsTree
	Validation on Hotpot-QA

	Conclusion and Discussion
	Extended Related Works
	Additional Definitions
	Reasoning Tasks on Graphs.
	More on Numeric Precisions.
	Models
	Language Models for Reasoning.

	Omitted Discussion on In-Context Retrieval Examples
	Omitted Experiment Details
	Omitted Proof
	Building Blocks of FFNs Construction
	Building Blocks of Transformers Construction
	Building Blocks of RNNs Construction
	Proof of thm:index
	Proof of thm:rnncot
	Proof of thm:rnntransistree
	Proof of lem:rnnistree
	Proof of lem:logtransistree

	Proof of thm:transbeatrnn
	AR function calls is not enough for closing the representation gap
	Proof of thm:indexre
	Proof of thm:ragistree
	Proof of thm:rnnturing
	Proof of thm:hybridindex
	Proof of thm:hybridistree
	Proof of thm:hybridturing

