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Abstract001

A systematic, reliable, and low-cost evalua-002
tion of Conversational Recommender Systems003
(CRSs) remains an open challenge. Existing004
automatic CRS evaluation methods are proven005
insufficient for evaluating the dynamic nature006
of recommendation conversations. This work007
proposes FACE: a Fine-grained, Aspect-based008
Conversation Evaluation method that provides009
evaluation scores for diverse turn and dialogue010
level qualities of recommendation conversa-011
tions. FACE is reference-free and shows strong012
correlation with human judgments, achieving013
system correlation of 0.9 and turn/dialogue-014
level of 0.5, outperforming state-of-the-art CRS015
evaluation methods by a large margin. Ad-016
ditionally, unlike existing LLM-based meth-017
ods that provide single uninterpretable scores,018
FACE provides insights into the system per-019
formance and enables identifying and locating020
problems within conversations.021

1 Introduction022

Evaluation is vital for developing powerful Con-023

versational Recommender Systems (CRSs), where024

users are provided with relevant and personalized025

recommendations (Bernard et al., 2025; Wang et al.,026

2023a; Zhang et al., 2022). While human evalua-027

tion is considered the gold standard, it cannot be028

used intensively during the development of CRSs,029

due to its cost- and time-intensive nature (Zhang030

and Balog, 2020). Automatic evaluation methods031

fill this gap and serve as invaluable aids for early032

diagnosis of known problems and biases during033

development of CRSs (Dey and Desarkar, 2023;034

Dubois et al., 2024b)035

There are a number of shortcomings in exist-036

ing automatic evaluation methods that make them037

unreliable for CRS evaluation: (i) Reference-038

based metrics such as Recall, ROUGE-L, and039

BERTScore (Zhang et al., 2020) cannot capture040

the dynamic and evolving user-system interactions041

and limit the evaluation process to assessing single 042

conversation turns given fixed conversation histo- 043

ries. (ii) Recently proposed reference free LLM- 044

based evaluation methods (Liu et al., 2023; Zhong 045

et al., 2022), while showing higher correlation with 046

humans, provide a single uninterpretable1 score 047

for each evaluation aspect, which cannot be traced 048

back to its contributing factors; (iii) Automatic eval- 049

uations of CRSs focus mainly on turn-level aspects 050

(e.g., recommendation effectiveness), without pro- 051

viding insights into dialogue-level aspects (e.g., 052

interest arousal and task completion), which are 053

more indicative of why a user is (dis)satisfied (Siro 054

et al., 2022) with a conversation. 055

In this paper, we propose FACE, a Fine-grained 056

Aspect-based Conversation Evaluation method. 057

FACE is reference-free and handles diverse conver- 058

sation trajectories; see Figure 1. It first decomposes 059

system responses into self-contained, contextual- 060

ized information fragments, termed conversation 061

particles. They are then evaluated by an LLM us- 062

ing a set of optimized instructions, through beam 063

search and a bandit algorithm. These sub-scores 064

are then aggregated into a single score per aspect. 065

Therefore, FACE scores are interpretable, in the 066

sense that they can be traced back to their con- 067

tributing factors, providing insights into problems 068

within the conversation. FACE evaluates CRSs 069

on two turn-level aspects: relevance and interest- 070

ingness, and five dialogue-level aspects: under- 071

standing, task completion, conversation efficiency, 072

interest arousal, and overall impression. 073

To evaluate FACE, we collect 20,962 human 074

annotations for 467 human-system conversations, 075

covering the aforementioned evaluation aspects 076

and nine diverse CRSs that are trained on the Re- 077

1In this paper, interpretability is less ambitious than what
is defined in the AI field (Barredo Arrieta et al., 2020; Per-
rella et al., 2024) and concerns evaluation methods that enable
humans to gain insights into a system’s behavior and iden-
tify issues within conversations; i.e., interpretability of the
evaluation process (Perrella et al., 2024).
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Figure 1: Illustration of FACE for a turn-level aspect. Instruction optimization generates a set of diverse evalu-
ation instructions for the given aspect (e.g., relevance) based on an initial prompt; See example instructions in
Appendix E.2. For evaluation, each conversation is decomposed into particles containing a dialogue act, a mention
(text span from a system turn), and user feedback from the following turn. A response distribution is created for
each instruction-particle pair and the weighted summation of the scores is computed. The final score is obtained by
aggregating the scores across all instructions and particles. For turn-level aspects, aggregation is performed per turn,
while for dialogue-level aspects, scores of particles across the entire dialogue are aggregated.

Dial (Li et al., 2018) and OpenDialKG (Moon078

et al., 2019) datasets. Our experiments demon-079

strate that FACE outperforms state-of-the-art meth-080

ods by a large margin, achieving system and081

turn/dialogue-level Spearman of 0.9 and 0.5, re-082

spectively, without observing any system-human083

conversations for instruction optimization. We fur-084

ther show that FACE generalizes to chatbots trained085

on Topical-Chat (Gopalakrishnan et al., 2019) and086

PersonaChat (Zhang et al., 2018) datasets, outper-087

forming strong baselines. Importantly, we demon-088

strate how FACE scores can be interpreted by hu-089

mans to diagnose issues of two competitive CRSs.090

Key contributions of this paper include: (i) We091

propose FACE, a strong CRS evaluation method092

that evaluates dynamic user-system interactions for093

diverse turn- and dialogue-level evaluation aspects.094

(ii) We show FACE is generalizable to other LLMs095

and chitchat conversations, while offering inter-096

pretable scores that helps humans to identify and097

locate potential system issues. (iii) We develop098

and release a dataset for evaluating CRS evalua-099

tion methods, which covers high-quality human100

annotations of human-system conversations. This101

provides a meta-evaluation dateset that facilitate102

future benchmarking of CRS evaluation methods.2103

2 Method104

Our Fine-Grained Aspect-based Conversation Eval-105

uation (FACE) approach handles the one-to-many106

nature of conversations and provides detailed107

scores for turn and dialogue-level evaluation as-108

pect. Figure 1 illustrates the FACE method. Using109

2The resources of FACE, including codes/prompts used,
the interface developed, and collected annotations, will be
available on the GitHub repository upon acceptance.

beam search and bandit algorithms, FACE first op- 110

timize a set of instructions for a given evaluation 111

aspect. During evaluation, a dialogue is decom- 112

posed into conversation particles, each containing 113

a dialogue act (e.g., “Recommendation”), mention 114

(e.g., “How about Inception”), and corresponding 115

user feedback from the user response (e.g., “Incep- 116

tion seems interesting”). Each particle is indepen- 117

dently evaluated with optimized instructions via an 118

LLM, generating score distributions and resulting 119

in turn/dialogue-level scores for a given aspect. 120

We note, without detailed elaboration, that FACE 121

is applicable to a broad range of evaluation as- 122

pects (Sakai, 2023) and conversation types (e.g., 123

task-oriented and chit-chat dialogues). The primary 124

focus of this paper, however, is on CRSs and seven 125

widely recognized turn- and dialogue-level eval- 126

uation aspects, following (Siro et al., 2022); see 127

Sec. 3.1 for detailed description of these aspects. 128

This section describes the evaluation steps of 129

FACE: particle generation (Sec. 2.1) and evalua- 130

tion score computation (Sec. 2.2), followed by the 131

instruction optimization process (Sec. 2.3). 132

2.1 Conversation Particle Generation 133

FACE sets two goals: (1) enable reference-free 134

evaluations to address state explosion in natu- 135

ral conversation evaluation, and (2) provide fine- 136

grained scores at both turn- and dialogue-level to lo- 137

cate undesired system behavior within the conversa- 138

tion (Sakai, 2023). To achieve these, we introduce 139

conversation particle, a self-contained information 140

unit decomposed from conversations. Each particle 141

is composed of three parts: (i) Dialogue act is the 142

system’s action associated with the particle, such 143

as “recommendation” or “preference elicitation;” 144

(ii) Mention denotes the particle text within the 145
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system’s response, like “How about the movie A?”;146

and (iii) Feedback is the user’s evaluative reply, for147

instance, “The movie A seems interesting.” Fol-148

lowing (Joko et al., 2024)), we use 5 dialogue acts:149

greetings, preference elicitation, recommendation,150

goodbye, and others.151

We instruct an LLM to decompose system re-152

sponses into particles, denoted as decomposer in153

the rest of the paper. Let rt be the target system154

response at turn t, h the dialogue history preced-155

ing rt, and rt+1 the user’s turn following rt. The156

decomposer D maps (h, rt, rt+1) to conversation157

particles Pr = D(h, rt, rt+1), where each particle158

p ∈ Pr is a triplet (act, mention, feedback). The159

full particle list for a dialogue, Pd, is the union of160

particles from all responses with the dialogue, i.e.,161

Pd =
⋃

r∈dPr.162

Appendix E details prompts used for particle163

generation. It is shown that LLMs are more ef-164

fective than traditional methods like dependency165

parsing and information extraction for decompos-166

ing texts into atomic units (Pradeep et al., 2024;167

Alaofi et al., 2024).168

2.2 Evaluation Score Computation169

FACE utilizes optimized instructions to generate170

scores for each conversation particle. Formally,171

given a particle p and the evaluation instruction172

Ia for the aspect a, an LLM generates a response173

rap . To address known issues with LLM-generated174

scores, such as low variance and their noise (Liu175

et al., 2023), we obtain a response distribution176

{rap,i}ni=1 and compute a weighted sum over the177

response set:178

Eparticle(Ia, p) =
n∑

i=1

rap,iP (rap,i|Ia, p; θ), (1)179

where P (.) is a probability of rap,i from an LLM180

parameterized by θ.181

These particles scores are then aggregated182

per turn or conversation by taking their mean,183

E(Ia,Px) = 1
|Px|

∑
p∈Px

Eparticle(Ia, p), where184

Px is the set of particles for a given turn or dia-185

logue, depending on evaluation aspect a; e.g., for186

relevance, aggregation is performed over particles187

of a turn, and for task completion aggregation is188

done for all particles of the dialogue.189

A unique feature of FACE is utilizing diverse190

reasoning paths for each evaluation aspect, which is191

obtained by selecting optimized chain-of-thought192

(CoT) instructions. The intuition is that evalua-193

tion requires complex reasoning, and an optimal194

answer can be obtained by marginalizing various 195

thought paths (Wang et al., 2023b). Here, a set of 196

top-performing optimized instructions with various 197

CoT instructions, Ia, are applied to particles, and 198

the resulting scores are aggregated to obtain the 199

final score sa: 200

sa = FACE(Ia,Px) =
1

|Ia|
∑
Ia∈Ia

E(Ia,Px). 201

2.3 Instruction Optimization 202

Instruction optimizer generates diverse optimized 203

CoT instructions for a given evaluation aspect. The 204

goal is to obtain a representative set of thought 205

processes (via CoT) for an evaluation aspect, and 206

leverage them to evaluate unseen human-system 207

conversations. The optimization process is per- 208

formed on annotated human-human conversations 209

to capture human thinking process and reasoning 210

when assessing dialogue quality. We note, at the 211

outset, that all the optimization and selection algo- 212

rithms are performed independently for each aspect. 213

For notational simplicity, we shall drop superscript 214

a from aspect-related instruction and evaluation 215

scores in this section. 216

To optimize instructions, we assume access to 217

human evaluated dialogues, H = {(xi, li)}mi=1, 218

where xi is either a turn or an entire dialogue de- 219

pending on the aspect, and li is its label. Similarly, 220

we assume access to an LLM L1 that generates 221

evaluation scores, SI = {(xi,FACE(I,Pxi))}mi=1, 222

where Pxi
corresponds to particles of a specific 223

turn or conversation and P =
⋃

xi
Pxi

is all parti- 224

cles in the dialogue collection. 225

The optimization objective is to identify a set of 226

optimal instructions I∗ that maximizes the correla- 227

tion between human labels and the scores generated 228

by the automatic evaluator: 229

argmax
I∗

C(H,SI∗), 230

where C(.) represents the correlation function. 231

The optimization process employs an LLM L2 232

to refine instructions based on the scores gener- 233

ated by the evaluator LLM L1. FACE employs a 234

non-parametric optimization algorithm using tex- 235

tual gradients (Pryzant et al., 2023). Here, natural 236

language “gradients” (as opposed to numerical gra- 237

dients) are generated to describe the shortcomings 238

of instructions. The gradients are used to rewrite 239

original instructions in the opposite semantic direc- 240

tion. The best instructions are iteratively selected 241
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Algorithm 1 Instruction optimization of FACE
Require: Human evaluations H, initial prompt I , iterations

K, beam width b, candidate size b′, gradient samples α
1: Initialize Ipool ← ∅ , I1 ← {I}
2: for k = 1, ...,K do
3: for each instruction Ikj ∈ Ik do
4: for each particle p ∈ P do
5: // Get score
6: sp,kj ← Eparticle(Ikj , p) ▷ Eq. 1
7: // Textual Gradient Generation
8: Gp,kj ← G∇(Ikj , sp,kj , lp;α) ▷ Eq. 2
9: // Instruction Rewriting

10: I′p,kj
←Rδ(Ikj ,Gp,kj ) ▷ Eq. 3

11: end for
12: end for
13: I′k =

⋃
p∈P

⋃
j I

′
p,kj

▷ Collect all rewrites
14: // Instruction Selection
15: Icand

k ← SelectUCB
b′ (I′k) ▷ Appendix B.1

16: Ipool ← Icand
k ∪ Ipool ▷ Update pool

17: // Select top-b instructions
18: Ik+1 ← argmaxIk⊆Ipool,|Ik|=b C(H,SIk )
19: end for
20: I∗ ← argmaxI∗⊆Ipool C(H′,SI∗)
21: return I∗

using beam search and Upper Confidence Bound242

(UCB) bandits, based on correlations with human243

judgments. The process consists of three stages.244

(1) Textual Gradient Generation. This is an it-245

erative process, where a static prompt ∇ is used246

for generating textual gradients (lines 7-8 of Al-247

gorithm 1). At each iteration k, the prompt ∇248

takes an evaluation instruction Ikj from the cur-249

rent set of instructions Ik, its prediction score250

sp,kj = Eparticle(Ikj , p), and the corresponding hu-251

man label lp for a given particle p. A set of textual252

gradients Gp,kj is then generated by:253

Gp,kj = G∇(Ikj , sp,kj , lp;α), (2)254

where G∇(.) is the gradient generation function,255

with parameter α denoting the number of gradients256

generated per instruction-score pair. Since human257

annotations are provided at the turn- or dialogue-258

level, lp represents human annotation for the turn259

or dialogue that contains the particle p.260

(2) Instruction Rewriting. This step updates each261

instruction using textual gradients (lines 9-10 of262

Algorithm 1). For each particle p at iteration k, we263

use the rewriting function Rδ with the prompt δ,264

which takes the current instruction Ikj and gradi-265

ents Gp,kj to obtain updated instructions I′p,kj :266

I′p,kj = Rδ(Ikj ,Gp,kj ). (3)267

An LLM L3 is used for the rewriting function Rδ268

with the prompt δ guiding it to revise the current269

instruction, considering the provided feedback.270

(3) Instruction Selection. The step identifies the 271

most promising instructions for the next iteration in 272

two stages of selecting candidate instructions using 273

UCB bandit, and identifying the top beam based 274

on evaluation scores on the training data. This step 275

corresponds to lines 14-18 of Algorithm 1. 276

Let I′k =
⋃

p∈P
⋃

j I
′
p,kj

be the set of all rewrit- 277

ten instructions at the iteration k. The first stage 278

identifies b′ ≥ b promising candidates instructions 279

Icand
k from the rewritten instructions I′k and stores 280

them in an instruction pool Ipool (lines 15-16 of 281

Algorithm 1). 282

The second stage then evaluates these candidate 283

instructions by computing the correlation of the 284

generated scores with human labels using the train- 285

ing set. Therefore, the instructions for the next iter- 286

ation are generated (line 18 of Algorithm 1. This 287

process follows a beam search approach, where at 288

each iteration we create a pool of candidates, assess 289

their performance, and select the top ones to form 290

the new beam for continued exploration. Once all 291

iterations are complete, the final optimal instruc- 292

tions I∗ are selected by their correlation scores on 293

a validation set H′ (line 20 of Algorithm 1). 294

The UCB selection algorithm, denoted as 295

SelectUCB
b′ in Algorithm 1, returns the top b′ can- 296

didates using UCB bandits, following Pryzant et al. 297

(2023). It iteratively selects instructions based 298

on the estimated correlation with human annota- 299

tions computed over sampled particles; see Ap- 300

pendix B.1 for algorithmic details. 301

3 Human Annotation Collection 302

To assess the correlation of automatic CRS evalua- 303

tion methods with human judgments, we develop a 304

dataset and crowdsource human annotations on a 305

set of human-system conversations. 306

3.1 Dialogue Annotation 307

To create the meta-evaluation dataset, we need hu- 308

man annotations on multi-turn interactions between 309

users and various CRSs. CRSArena-Dial (Bernard 310

et al., 2025), consists of dialogues with multi-turn 311

interactions between users and nine state-of-the- 312

art CRSs trained on OpenDialKG (Moon et al., 313

2019) and ReDial (Li et al., 2018) datasets . To 314

ensure annotation quality, we implement strict qual- 315

ity control procedures and develop a specialized 316

annotation interface through multiple pilot studies. 317

See Appendix A.1.3 for details on CRSs, quality 318

control, and the developed interface. 319
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Figure 2: Distribution of human annotation scores for
seven aspects across nine systems in CRSArena-Eval.

Evaluation Aspects. We follow Siro et al. (2022)320

and collect annotations for seven evaluation aspects321

that are central to CRSs, covering both system and322

user centric features of a conversation (see Ap-323

pendix A.1.1 for more details). These aspects and324

their descriptions (used as instructions to annota-325

tors) are as follows:326

Turn-level Aspects:327
Relevance (0–3): Does the assistant’s response make sense328

and meet the user’s interests?329
Interestingness (0–2): Does the response make the user330

want to continue the conversation?331
Dialogue-level Aspects:332
Understanding (0–2): Does the assistant understand the333

user’s request and try to fulfill it?334
Task Completion (0–2): Does the assistant make recom-335

mendations that the user finally accepts?336
Efficiency (0–1): Does the assistant suggest items matching337

the user’s interests within the first three interactions?338
Interest Arousal (0–2): Does the assistant try to spark the339

user’s interest in something new?340
Overall Impression (0–4): What is the overall impression341

of the assistant’s performance?342

These instructions and scales are based on (Siro343

et al., 2022), with minor adjustments from Sakai344

(2023) for clarity. Turn-level aspects are evaluated345

for each system turn, while dialogue-level aspects346

are evaluated for the entire dialogue.347

3.2 Analysis348

We now analyze our collected annotations, referred349

to as CRSArena-Eval.350

Statistics. A total of 20,962 annotations were col-351

lected, spanning 467 dialogues and 2,235 system352

turns. Each task was annotated by three workers,353

with additional annotations collected to resolve ties,354

yielding 6,805 final labels after majority voting.355

Annotation details are provided in Appendix A.2.1.356

Inter-annotator Agreement. Given the ordinal na-357

ture of judgments, we report inter-annotator agree-358

ment using Pearson’s r and Spearman’s ρ, follow-359

ing (Mehri and Eskenazi, 2020), along with Krip-360

pendorff’s α. Average scores across all aspects361

are r = 0.443, ρ = 0.425, and α = 0.436, in-362

dicating moderate agreement. We note that these363

agreements exceed the existing high-quality an- 364

notations of AB-ReDial dataset (Siro et al., 2022, 365

2023), showing both the difficult nature of the task 366

and high quality annotations of our dataset. Ap- 367

pendix A.2.2 details this comparison and the agree- 368

ment calculation procedure. 369

System Score Distribution. Figure 2 shows the 370

distribution of collected scores for the nine CRSs 371

in CRSArena-Eval. It shows no system reaches 372

the high end of the scale, indicating that existing 373

CRSs do not fully satisfy users. This aside, the 374

scores cover a broad range, reflecting differing sys- 375

tem quality, which is crucial to assess the ability of 376

automatic evaluators to distinguish system perfor- 377

mance (Mehri and Eskenazi, 2020). 378

4 Experimental Setup 379

Datasets. For instruction optimization, we use the 380

AB-ReDial (Siro et al., 2022, 2023) dataset, which 381

contains annotations of human-human conversa- 382

tions from the ReDial dataset(cf. Sec. 3.1). The 383

annotations are obtained for the seven evaluation 384

aspects and are per turn/dialogue. This ensures no 385

human-system conversations are involved in the 386

optimization process. We use 60% of AB-ReDial 387

for training and the rest for validation. For evalua- 388

tion, we use the CRSArena-Eval dataset (cf. Sec. 3). 389

CRSArena-Eval (RD)/(KG) denote the subset of 390

the dataset for systems developed using ReDial (Li 391

et al., 2018) and OpenDialKG (Moon et al., 2019), 392

respectively. 393

Settings. Unless indicated otherwise Llama-3.1- 394

8B-Instruct (Dubey et al., 2024) is used for FACE. 395

We run the instruction optimization for K = 6 396

iterations and stored b′ = 16 instructions in the 397

instruction pool, resulting in 96 instructions. The 398

final selection of the optimal instruction set I∗ (line 399

20 of Algorithm 1) is done using the validation set 400

and results in a set of 16 instructions. Prompts, 401

hyperparameters, and other settings are detailed in 402

Appendices C and E. 403

Baselines. Multiple automatic evaluators are used 404

as our baselines: LLMDirect directly prompts the 405

LLM to annotate the given turn/dialogue using 406

the same instructions as human annotations for 407

CRSArena-Eval; LLMCoT+ICL adds CoT (Kojima 408

et al., 2024; Wei et al., 2022) and in-context learn- 409

ing (ICL) (Brown et al., 2020) with two examples 410

to the prompt of LLMDirect; UniEval (Zhong et al., 411

2022) and G-Eval (Liu et al., 2023) are state-of-the- 412

art reference-free conversation evaluation methods. 413
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Methods
Turn-level Dialogue-level AllRel. Int. Und. Task Eff. Int. Overall

r ρ r ρ r ρ r ρ r ρ r ρ r ρ r ρ

CRSArena-Eval (RD)
LLMDirect 0.464 0.455 0.248 0.260 0.522 0.482 0.405 0.363 0.101 0.101 0.217 0.203 0.564 0.522 0.360 0.341
LLMCoT+ICL 0.453 0.446 0.175 0.177 0.481 0.457 0.425 0.400 0.174 0.174 0.188 0.174 0.498 0.472 0.342 0.329
UniEval 0.311 0.288 0.182 0.242 0.246 0.225 – – – – – – 0.395 0.387 – –
G-Eval 0.490 0.471 0.302 0.289 0.490 0.444 0.351 0.364 0.488 0.482 0.332 0.325 0.577 0.577 0.433 0.422
FACE w/o train 0.468 0.462 0.279 0.290 0.605 0.574 0.482 0.392 0.339 0.423 0.235 0.255 0.617 0.555 0.432 0.422
FACE 0.549 0.550 0.443 0.437 0.650 0.635 0.570 0.453 0.484 0.534 0.447 0.430 0.712 0.668 0.551 0.530

CRSArena-Eval (KG)
LLMDirect 0.452 0.452 0.238 0.231 0.599 0.546 0.538 0.481 0.137 0.137 0.425 0.378 0.655 0.557 0.435 0.397
LLMCoT+ICL 0.419 0.408 0.203 0.190 0.562 0.520 0.475 0.434 0.114 0.114 0.309 0.279 0.599 0.521 0.383 0.352
UniEval 0.416 0.428 0.262 0.401 0.563 0.541 – – – – – – 0.618 0.659 – –
G-Eval 0.533 0.505 0.334 0.316 0.535 0.475 0.430 0.422 0.485 0.463 0.424 0.403 0.656 0.642 0.485 0.461
FACE w/o train 0.492 0.486 0.308 0.324 0.664 0.611 0.426 0.411 0.240 0.419 0.297 0.322 0.672 0.557 0.443 0.447
FACE 0.543 0.527 0.471 0.453 0.719 0.677 0.593 0.484 0.518 0.543 0.449 0.404 0.766 0.679 0.580 0.538

Table 1: Annotation correlations for reference-free evaluation methods. All columns show the correlations averaged
over all aspects. All FACE correlations are statistically significant with p < 0.01.

Methods Turn-level Dial-level All
r ρ r ρ r ρ

R@1 -0.197 0.060 -0.120 0.081 -0.142 0.075
R@10 -0.192 0.048 -0.111 0.071 -0.134 0.064
Distinct-3 0.716 0.841 0.665 0.780 0.680 0.798
Distinct-4 0.654 0.800 0.609 0.760 0.622 0.771
LLMDirect 0.860 0.822 0.872 0.799 0.868 0.806
G-Eval 0.740 0.840 0.893 0.830 0.850 0.833
FACE 0.930 0.842 0.913 0.837 0.918 0.838

Table 2: System ranking correlations on CRSArena-
Eval, averaged over corresponding aspects. All FACE
correlations are statistically significant with p < 0.05.

Since UniEval covers limited aspects, we only re-414

port those overlapping with ours. For fair compari-415

son, we use Llama-3.1-8B-Instruct as the backbone416

for LLM-based methods LLMDirect, LLMCoT+ICL,417

and G-Eval in Section 5.1. To show generalizabil-418

ity to different LLMs in Section 5.2, other LLMs419

are used for our experiments.420

Metrics. For correlation metrics, we use Pearson’s421

and Spearman’s to appropriately handle the annota-422

tion scales. Following (Mehri and Eskenazi, 2020),423

correlation significance is computed by p-value424

derived from t-distribution using Python’s SciPy425

library (Virtanen et al., 2020).426

5 Results427

We begin by outlining our key research questions428

and then present a series of experiments conducted429

to address them: RQ1: How does FACE correlate430

with human judgments? RQ2: How generalizable431

are FACE-optimized instructions across different432

LLMs and domains? RQ3: Can fine-grained eval-433

uation scores of FACE provide insights about sys-434

tem’s issues?435

5.1 Annotation Correlation 436

Table 1 shows the annotation correlation results, 437

demonstrating that FACE, on average, outperforms 438

all baselines by a large margin. We note that FACE 439

is not optimized on any subset of CRSArena-Eval 440

(cf. Sec. 4), highlighting its strong generalization to 441

unseen systems. Although one can argue that FACE 442

might have captured some information from ReDial 443

dataset during the optimization process, results on 444

CRSArena-Eval (KG) shows generalization and 445

robustness of FACE to unseen recommendation 446

datasets. 447

The results also demonstrate that even without in- 448

struction optimization (FACE w/o train), FACE re- 449

mains competitive with the state-of-the-art method, 450

G-Eval, suggesting the effectiveness of our particle- 451

based approach. The benefit of training is more 452

pronounced for challenging aspects such as Inter- 453

estingness, Efficiency, and Interest Arousal, which 454

indicates that FACE effectively optimizes instruc- 455

tions for aspects that LLMs struggle to capture 456

using a single thought process. 457

Table 2 shows the correlation of system rankings 458

created by different automatic evaluation methods. 459

System ranking correlations are calculated by av- 460

eraging each system’s score, ranking systems, and 461

measuring correlation with system rankings based 462

on human judgments. We obtain correlation for 463

reference-based metrics by computing system rank- 464

ings from reported scores (Wang et al., 2023a). As 465

baselines, we report Recall, and Distinct-n (Li et al., 466

2016) as reference-based metrics, and LLMDirect 467

and G-Eval as top-performing reference-free met- 468

rics from Table 1. 469

From the results, we notice that recall metrics 470

are insufficient, which is in line with the litera- 471
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Methods LLM Size CRS-RD CRS-KG Avg.
r ρ r ρ r ρ

LLMDirect Llama 8B 0.564 0.522 0.655 0.557 0.610 0.540
G-Eval Llama 8B 0.577 0.577 0.656 0.642 0.617 0.610
FACE Llama 8B 0.712 0.668 0.766 0.679 0.739 0.674
FACE* Gemma 9B 0.689 0.687 0.718 0.703 0.704 0.695
FACE* Gemma 2B 0.647 0.603 0.728 0.646 0.688 0.625
FACE* Qwen 7B 0.698 0.664 0.764 0.693 0.731 0.679
FACE* Qwen 3B 0.643 0.632 0.725 0.674 0.684 0.653
FACE* Qwen 1.5B 0.557 0.606 0.605 0.635 0.581 0.621

Table 3: Results on generalizability of FACE to other
LLMs. CRS-RD and -KG represent CRSArena-Eval
(RD) and (KG), respectively. All FACE annotation cor-
relations are statistically significant with p < 0.01.

ture (Bernard et al., 2025). While the results show472

that FACE outperforms all other methods, we note473

that system ranking correlations should be con-474

sumed with caution, as they are less informative475

than annotation correlation, especially for competi-476

tive systems (Faggioli et al., 2023).477

Overall, we can answer (RQ1): FACE achieves478

high annotation and system ranking correlations479

with human judgments, outperforming state-of-the-480

art methods by a large margin.481

5.2 Generalizability of FACE482

We hypothesize that the pool of optimized instruc-483

tions by FACE can be reused for different LLMs484

and domains. To assess this hypothesis, we take the485

instruction pool and re-select the top instructions486

(line 20 of Algorithm 1) for different LLMs and487

datasets. We denote this adapted FACE as FACE*.488

Generalization to other LLMs. To assess gen-489

eralizability of FACE to other LLMs, we use the490

AB-ReDial validation set and re-select instructions491

for five LLMs: Gemma 2 (9B and 2B) and Qewn492

2.5 (7B, 3B, 1.B). Table 3 shows annotation correla-493

tion results for top-performing baselines of Table 1.494

The results indicate that adapting to Gemma 9B495

and Qwen 7B achieves performance comparable496

to FACE. Interestingly, our method is highly effec-497

tive for small models: FACE adapted to Gemma498

2B outperforms G-Eval, which uses an LLM with499

4x more parameters. A similar observation can be500

made for Qwen 3B and 1.5B.501

Generalization to Chitchat Conversations. To502

examine generalizability of FACE to another type503

of conversations, we evaluate FACE on the exiting504

chitchat datasets: (1) USR-Persona (Mehri and Es-505

kenazi, 2020) (based on PersonaChat (Zhang et al.,506

2018)), containing personalized chit-chats, and (2)507

USR-Topical (Mehri and Eskenazi, 2020) (based on508

Topical-Chat (Gopalakrishnan et al., 2019)), con-509

taining knowledge-grounded conversations. These510

Methods USR-Persona USR-Topical Avg.
r ρ r ρ r ρ

ROUGE-L 0.114 0.091 0.193 0.203 0.154 0.147
BLEU-4 0.147 0.151 0.131 0.235 0.139 0.193
METEOR 0.250 0.256 0.250 0.302 0.250 0.279
BERTScore 0.188 0.157 0.214 0.233 0.201 0.195
Dial-M 0.400 0.390 0.370 0.400 0.385 0.395
USR 0.607 0.528 0.416 0.377 0.512 0.453
UniEval 0.616 0.580 0.595 0.613 0.605 0.597
G-EvalGPT-3.5 0.441 0.458 0.519 0.544 0.480 0.501
G-EvalGPT-4 0.607 0.670 0.594 0.605 0.601 0.638
FACE 0.473 0.544 0.498 0.506 0.486 0.525
FACE*72B 0.681 0.697 0.570 0.582 0.625 0.639

Table 4: Results on generalizability of FACE to chitchat
conversations. All FACE correlations are statistically
significant with p < 0.01.

datasets provide annotations for six evaluation as- 511

pects, of which “maintains context” is the only as- 512

pect that is similar to ours. We use the instruction 513

pool for the relevance aspect and re-select opti- 514

mal instructions using the validation set of USR- 515

Persona for USR-Topical evaluation and vice versa, 516

to ensure that the test set is completely unseen. 517

Table 4 presents the results of FACE generaliz- 518

ability to chitchat conversations, with G-Eval re- 519

sults obtained using GPT-3.5 and 4. On average, 520

FACE outperforms all baselines except G-Eval with 521

GPT-4, while FACE*72B outperforms all baselines. 522

This is especially striking, considering that FACE is 523

completely blind to category of conversations and 524

uses an LLM with a lower number of parameters 525

than GPT. Additionally, using an open model for 526

evaluation has the added value of reproducibility. 527

Based on the results of Tables 3 and 4, we an- 528

swer our second research question (RQ2): FACE- 529

optimized instructions are highly generalizable to 530

different LLMs and domains, by performing a sim- 531

ple adaptation of FACE to a new LLM/domain. The 532

adaptation to larger models can even surpass the 533

state-of-the-art method with GPT-4 as a backbone 534

on chit-chat conversations. 535

5.3 FACE Interpretability 536

To demonstrate how FACE fine-grained scores can 537

help humans to identify issues of CRSs, we com- 538

pare two competitive CRSs: BARCOR (Wang 539

et al., 2022a) and UniCRS (Wang et al., 2022b). 540

Humans and FACE prefer BARCOR (cf. Fig. 2 and 541

(Bernard et al., 2025)), while recall-based metrics 542

favor UniCRS (Wang et al., 2023a). The left radar 543

chart in Figure 3 shows FACE analysis for BAR- 544

COR and UniCRS. While the overall impression in- 545

dicates similar performance, UniCRS excels in rel- 546

evance and efficiency, whereas BARCOR is better 547

in user understanding and keeping users interested. 548

7



Overall
impression

Interest
arousal

Efficiency

Understanding

Interestingness

Relevance

Task completion

UniCRSBARCOR

UniCRS
BARCOR

Turn

U
nd

er
st

an
di

ng
 (%

)

Figure 3: Breakdown analysis comparing BARCOR and
UNICRS. Left: FACE evaluation results for each aspect.
Right: Scores of Understanding aspect per system turn.

The right graph shows the user understanding as-549

pect for each system turn. BARCOR shows higher550

scores in earlier turns, indicating that it understands551

user preferences early on, which may explain its552

higher human preference. These insights suggest553

that, while UniCRS excels in recommendations,554

overall performance can be improved by focusing555

on user understanding and preference elicitation.556

Overall, we answer (RQ3) positively: FACE557

providing valuable insights into system’s behavior,558

which are useful for system improvement.559

6 Analysis560

Sample Efficiency. To determine the systems’561

score and create a system ranking, the evaluation562

method needs to be fed with a sample of user-563

system conversations. To measure how many sam-564

ples are needed to find a system ranking with a high565

correlation with human judgments, we plot sys-566

tem ranking correlations for various conversation567

counts per system in Figure 4. The results indicate568

that FACE has strong sample efficiency; it achieves569

a Spearman correlation of 0.8 with gold rankings570

using only 3 dialogues per system, making it twice571

as efficient as the best-performing existing method,572

G-Eval. Given that collecting human-system con-573

versations require cost and effort, FACE’s sample574

efficiency significantly enhances actual usability.575

Bias Analysis. We analyze whether FACE shows576

known LLM biases: length bias and self-bias (cf.577

Sect. 7). Notably, we find no evidence of either578

bias in FACE. Indeed, FACE correlates less with579

response length than human evaluators and, surpris-580

ingly, tends to prefer human responses to system581

responses compared to human evaluators; see Ap-582

pendix D for details.583

7 Related Work584

Recent advancements in LLMs have led to vari-585

ous LLM-based, reference-free automatic evalua-586

tion methods (Upadhyay et al., 2024; Dubois et al.,587

2024b; Liu et al., 2023; Lin and Chen, 2023; Zheng588
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Figure 4: Sample efficiency of different evaluation meth-
ods for the overall aspect on CRSArena-Eval.

et al., 2024a; Dey and Desarkar, 2023). How- 589

ever, improved performance comes with challenges. 590

Evaluation bias is one of them; LLMs tend to favor 591

longer responses (length bias) (Wang et al., 2024; 592

Dubois et al., 2024b) and are biased toward texts 593

from similar models (self-bias) (Xu et al., 2024; 594

Liu et al., 2023). Generalizability is another chal- 595

lenge; LLMs are sensitive to handcrafted, arbitrary 596

prompts, which are not reusable for different mod- 597

els (Sclar et al., 2024; Razavi et al., 2025). FACE 598

mitigates these biases with conversation particles 599

and instruction optimization (see Section 6). 600

To assign granular evaluation scores, multiple 601

nugget-based evaluation was proposed (Voorhees, 602

2003; Mayfield et al., 2024; Pradeep et al., 2024; 603

Lin and Demner-Fushman, 2005; Ekstrand-Abueg 604

et al., 2013; Takehi et al., 2023; Rajput et al., 2011; 605

Dietz, 2024). However, these works are reference- 606

based and/or focus on individual responses, and 607

more importantly, they do not target information- 608

seeking conversations. To this aim, SWAN (Sakai, 609

2023) proposes a conceptual framework for fine- 610

grained evaluations. While promising in concept, 611

its execution remains an open question; inspired by 612

SWAN, we tackle these challenges. 613

The detailed related work on automatic evalu- 614

ations, nugget-based approaches, and instruction 615

optimizations, is in Appendix F. 616

8 Conclusion 617

We present FACE, a fine-grained, aspect-based 618

evaluation method for CRSs. It addresses the short- 619

comings of existing metrics, such as focusing on 620

fixed dialogue history with reference-based met- 621

rics, overlooking diverse conversation trajectories, 622

and relying on non-granular scores with limited 623

insights. FACE is shown to strongly correlate with 624

human judgments, generalize across LLMs and 625

domains, and provide insights for system improve- 626

ment. Future work needs to address current limi- 627

tations by further examining evaluation biases, as- 628

sessing effectiveness across broad domains, and 629

exploring how FACE can help expert evaluators. 630
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9 Limitations631

The limitations of this paper are as follows: (1)632

While FACE is a general method applicable to var-633

ious conversations, this paper evaluated it only on634

CRSs and one aspect for chit-chat; further explo-635

ration in other domains/aspects is needed. (2) Al-636

though FACE did not exhibit bias in our analysis637

(Sec. 6), evaluating unknown biases remains un-638

derexplored. (3) Knowing the limitations of LLM-639

based evaluation (Soboroff, 2024; Clarke and Di-640

etz, 2024; Faggioli et al., 2023), we emphasize that641

FACE may not replace expert human evaluations.642

Instead, it facilitates research and development on643

conversational systems by offering a scalable and644

efficient evaluation method (Dubois et al., 2024a).645
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A Human Annotation Collection Details 1026

A.1 Annotation Setup 1027

In this section, we provide details on the human 1028

annotation collection process, including the anno- 1029

tation interface and aspect selection, participant 1030

selection and quality control, and the CRSArena- 1031

Dial dataset used for annotation. 1032

A.1.1 Interface and Aspect Selection 1033

This section describes the annotation interface and 1034

the selection of evaluation aspects for our annota- 1035

tion collection. 1036

Annotation Interface. To crowdsource high- 1037

quality annotations, we built an interface, through 1038

multiple pilot experiments, to overcome the widely 1039

reported challenges in the literature (Joko et al., 1040

2024; Bernard and Balog, 2023; Radlinski et al., 1041

2019; Eickhoff and de Vries, 2011). This includes 1042

workers (1) skipping reading context, (2) misunder- 1043

standing aspect definitions, (3) geting distracted by 1044

overwhelming information on the annotation page, 1045

and (4) annotating randomly without focus. Our 1046

interface requires users to pass a quiz on aspect 1047

definitions and enforces the annotation of each turn 1048

before evaluating the entire dialogue. It further in- 1049

cludes hidden tests with expert-verified answers, 1050

and workers who fail to meet the required agree- 1051

ment are dismissed. 1052

Evaluation Aspect Selection. To determine the 1053

evaluation aspects for annotation collection, we 1054

performed a comprehensive review of literature on 1055

conversational system evaluations, identifying over 1056

50 aspects. The full list of these aspects, compiled 1057

from 21 studies, will be available in the GitHub 1058

repository upon acceptance. 1059

A.1.2 Participants and Quality Control 1060

We recruited Prolific3 workers from English- 1061

speaking countries with a 100% approval rate and 1062

≥ 1000 previous submissions. Considering some 1063

3https://www.prolific.co/
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workers exhibit behavior aimed at just maximizing1064

financial gain (Eickhoff and de Vries, 2011), we1065

filtered out those with a history of subpar submis-1066

sions to ensure quality. Furthermore, workers with1067

<30% agreement with experts on hidden tests were1068

excluded. Each batch of work contained annota-1069

tions for 20 dialogues, taking around 40 minutes to1070

complete, at the cost of £6. Three annotations per1071

annotation task were collected. In case of disagree-1072

ment, additional annotations were collected until1073

ties were resolved.1074

A.1.3 CRSArena-Dial Dataset1075

Here, we provide the CRSs contained in the1076

CRSArena-Dial (Bernard et al., 2025) dataset and1077

the preprocessing steps we applied to the dataset.1078

CRSs. The CRSArena-Dial dataset consists1079

of human conversation with nine state-of-the-art1080

CRSs, including KBRD (Chen et al., 2019), BAR-1081

COR (Wang et al., 2022a), UniCRS (Wang et al.,1082

2022b), ChatGPT (Wang et al., 2023a), and CRB-1083

CRS (Manzoor and Jannach, 2022), each developed1084

based on OpenDialKG (Moon et al., 2019) and Re-1085

Dial (Li et al., 2018) datasets, except CRB-CRS,1086

which is solely on the ReDial dataset.1087

Preprocessing. To ensure the quality of dialogues,1088

we excluded seven dialogues that were unsuitable1089

for our annotation, such as those with only a single1090

user utterance, resulting in 467 dialogues with a1091

total of 2,235 system responses for our annotations.1092

A.2 Annotation Results Details1093

A.2.1 Statistics1094

In total, 109 workers were recruited for our annota-1095

tion collection. On average, each dialogue has 14.61096

annotation tasks, each annotated by three workers.1097

Noteworthy, our annotation interface made the pro-1098

cess highly efficient, requiring only 8 seconds per1099

annotation. For 92% of the tasks, an agreement1100

was achieved by the first three annotators and for1101

the remaining 8% of tasks additional annotations1102

were collected to resolve ties.1103

A.2.2 Inter-annotator Agreement1104

This section describes the inter-annotator agree-1105

ment calculation process, as well as the compari-1106

son of our results with the AB-ReDial dataset (Siro1107

et al., 2022, 2023). We calculate the Person’s r and1108

Spearman’s ρ by taking the average of correlation1109

between each pair of annotations (Manning et al.,1110

2008; Mehri and Eskenazi, 2020). For comparison,1111

Aspect CRSArena-Eval AB-ReDial
r ρ α r ρ α

Turn-level
Relevance 0.613 0.611 0.612 0.527 0.502 0.526
Interestingness 0.386 0.386 0.375 0.209 0.217 0.209
Dialogue-level
Understanding 0.505 0.477 0.496 0.321 0.313 0.318
Task Completion 0.481 0.440 0.482 0.345 0.321 0.346
Efficiency 0.297 0.297 0.289 0.225 0.225 0.226
Interest Arousal 0.242 0.241 0.226 0.254 0.291 0.247
Overall Impression 0.573 0.526 0.572 0.321 0.300 0.321

Table 5: Inter-annotator agreement of CRSArena-Eval
and AB-ReDial (Siro et al., 2023) based on Pearson’s r,
Spearman’s ρ, and Krippendorff’s α correlations.

we calculate the agreement for the same aspects 1112

on the AB-ReDial dataset (Siro et al., 2022, 2023), 1113

yielding r = 0.328, ρ = 0.325, and α = 0.327, 1114

showing higher quality of CRSArena-Eval. Ta- 1115

ble 5 shows the inter-annotator agreement for each 1116

aspect. CRSArena-Eval demonstrates higher agree- 1117

ment than AB-ReDial in all aspects except for in- 1118

terest arousal, highlighting the quality of our anno- 1119

tations. 1120

B Method Algorithm Details 1121

B.1 UCB Selection Algorithm 1122

The UCB selection algorithm, denoted as 1123

SelectUCB
b′ (·), is presented in Algorithm 2. For 1124

each iteration t, Nt(I) denotes the number of eval- 1125

uations of instruction I on sampled particles and 1126

Qt(I) denotes its estimated correlation. Follow- 1127

ing (Pryzant et al., 2023), it samples a subset of 1128

particles and their corresponding human annota- 1129

tions, then selects the instruction that maximizes 1130

the UCB criterion Qt(I) + c
√
log t/Nt(I), where 1131

c is an exploration constant. The selected instruc- 1132

tion is evaluated on the sampled particles, and its 1133

estimated effectiveness is updated based on the 1134

correlation with human annotations. After T it- 1135

erations, the algorithm returns the candidate in- 1136

structions Icand
k containing the top b′ instructions 1137

according to their final estimated effectiveness QT 1138

with the SelectTopInstructionsb′(QT ) function. 1139

This forms a set of promising candidates for the 1140

next stage of the selection process. We note that, for 1141

efficient execution of the UCB process, we approx- 1142

imate it by dividing T into multiple small batches 1143

and processing each batch in parallel. 1144

B.2 Instruction Optimization Details 1145

For the prompt ∇, we employ reasoning templates 1146

(Ye et al., 2024), which provide a set of items to be 1147
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Algorithm 2 SelectUCB
b′ (·) - Candidate Selection

with UCB Bandits
Require: All rewritten instructions I′k, particles P, human

annotations H, number of UCB iterations T , and the
number of selected instructions b′.

1: Initialize Nt(I)← 0, Qt(I)← 0, ∀I ∈ I′k
2: for t = 1, ..., T do
3: // Sample particles and corresponding labels uni-

formly
4: Psmp ⊂ P, Hsmp ⊂ H
5: // Select the instruction with the highest UCB criterion

6: I ← argmaxI∈I′
k
{Qt(I) + c

√
log t
Nt(I)

}
7: // Evaluate the instruction I on the sampled particles
8: Ssmp ← {Eparticle(I, p)}p∈Psmp

9: // Compute correlation and update UCB criterion
10: Observe reward r ← C(Ssmp,Hsmp)
11: Nt(I)← Nt(I) + |Psmp|
12: Qt(I)← Qt(I) +

r−Qt(I)
Nt(I)

13: end for
14: return Icand

k ← SelectTopInstructionsb′(QT )

considered by G∇. Our items include identifying1148

inconsistencies between the predicted and human1149

annotations, evaluating the correctness of the cur-1150

rent task and CoT instructions, and suggesting edits1151

to these instructions, if necessary.1152

C Experimental Setup Details1153

C.1 Software Libraries and Hyperparameters1154

All experiments were performed using the1155

SGLang (Zheng et al., 2024b) library for its pre-1156

diction efficiency. The temperature of 0.6 is set1157

across all experiments unless otherwise stated. For1158

instruction optimization, we set parameters α = 2,1159

c = 1, b = 4, and use the batch size of B = |I′k|/21160

and T = 5B iterations. A sampling size of n = 51161

is used to create a score distribution (Sect. 2.2). All1162

hyper parameters are obtained using the validation1163

set or following (Pryzant et al., 2023).1164

C.2 Implementation Details1165

Here, we describe the implementation we used to1166

improve the efficiency of instruction optimization1167

process (Sect. 2.3). In this process, while theoret-1168

ically two distinct LLMs L2 and L3 are used for1169

gradient generation and instruction rewriting, the1170

two steps can be merged into a single LLM call by1171

concatenating ∇ and δ. This halves the number of1172

LLM calls, resulting in a significant speedup of the1173

optimization process.1174

D Bias Analysis1175

We conduct analyses to see whether FACE exhibits1176

length bias and self-bias.1177

D.1 Length Bias 1178

For length bias (Dubois et al., 2024b; Wang et al., 1179

2024), using CRSArena-Eval, we examine the cor- 1180

relation between a system’s average word count 1181

in conversations and the overall score. We find 1182

that Pearson’s correlations are 0.824 and 0.868 for 1183

FACE and humans, respectively. This indicates no 1184

sign of length bias compared to humans, which 1185

is in line with existing work (Chiang et al., 2025; 1186

Dubois et al., 2024b) that report humans also favour 1187

longer responses, highlighting the nuanced nature 1188

of the LLM length bias. 1189

D.2 Self-Bias 1190

For self-bias, where LLMs prefer system responses 1191

over human ones, we use FACE to evaluate pairs 1192

of system- and human-generated responses and see 1193

if they show any preferences compared to gold 1194

human annotators. We examine two conversation 1195

types: USR-Persona for chit-chat, and a combi- 1196

nation of CRSArena-Eval and AB-ReDial for a 1197

recommendation. We could not find evidence for 1198

self-bias in FACE; e.g., for USR-Persona, FACE 1199

aligns with human preferences 77.8% of the time 1200

when humans prefer human-generated responses 1201

and 71.4% of the time when they prefer system- 1202

generated responses. 1203

E Prompts 1204

In this section, we first provide an overview (Ap- 1205

pendix E.1) of the specific prompts employed in 1206

our method and then illustrate concrete examples 1207

(Appendix E.2) of each prompt. 1208

E.1 Overview 1209

Inspired by TREC RAG 2024 (Pradeep et al., 2024), 1210

the decomposer prompt starts with: “Your task is 1211

to extract conversation particles [...]” followed by 1212

CoT prompts and the format of nuggets. The tex- 1213

tual gradient prompt ∇ begins with “Examine the 1214

original instructions, predicted nugget score, and 1215

gold score.” and then identifies inconsistency be- 1216

tween predicted and gold scores, followed by sug- 1217

gestions to the instruction if necessary. The instruc- 1218

tion rewriting prompt δ starts with “Propose new 1219

instructions of 50 words based on [...]” followed 1220

by the guidance on how to rewrite based on the tex- 1221

tual gradient, inspired by (Ye et al., 2024). The seed 1222

evaluation instruction I is as follows “Given the 1223

dialogue, evaluate the quality of the target nugget 1224

based on the given aspect. Step 1: [...]”. Exam- 1225
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ples of prompts are provided below, and all used1226

and optimized prompts can be found in our GitHub1227

repository upon acceptance.1228

E.2 Examples1229

E.2.1 Conversation Particle Generation1230

Prompt1231

Dialogue History: {dialogue_history}1232
Target Assistant Turn: {target_turn}1233
User’s Response: {user_response}1234

Your task is to extract conversation particles, which1235
are minimal, atomic units of information or facts1236
from the target assistant turn.1237

Each nugget consists of:1238
• "dialogue_act": one of the following1239

labels: "greeting," "preference1240
elicitation," "recommendation,"1241
"goodbye," or "others."1242

• "nugget_mention": the atomic unit of infor-1243
mation from the target assistant turn. [...]1244

• "user_feedback": the excerpt of user feed-1245
back against the given nugget. [...]1246

The output must be a JSON list of nuggets. [...]1247

Must think step by step:1248
1. Explain the dialogue history, the target assis-1249

tant turn, and the user feedback.1250
2. How many conversation particles are found in1251

the target assistant turn?1252
3. For each nugget, discuss the meaning of the1253

user feedback.1254
4. Output in JSON format.1255

E.2.2 Textual Gradient Prompt ∇1256

Examine the original instructions, predicted nugget1257
score, and gold dialogue (or turn) score.1258

• Based on the gold dialogue (or turn) score, is1259
the predicted nugget score reasonable?1260

• Does original instructions describe how to use1261
the nugget’s information correctly?1262

• Necessary to edit the original instructions?1263

E.2.3 Instruction Rewriting Prompt δ1264

Propose new instructions of ~50 words based on1265
the feedback.1266

• Note that the full dialogue can be changed,1267
thus your new instructions must be general1268
enough to handle different contexts.1269

• Note that the task is "nugget" evaluation, not1270
"turn" or "dialogue" evaluation; thus, the new1271
instructions should focus on how to use the1272
nugget.1273

• Must provide "task description" and explicit1274
"step-by-step instructions" for the nugget eval-1275
uation; in step-by-step instructions labeling1276
each step as "Step 1," "Step 2," and so on.1277

• Break down the evaluation into smaller steps1278
and provide a checklist (“Does the nugget...?”1279
or “Is this nugget...?”) for each step.1280

...1281

E.2.4 Initial Prompt (Before Optimization) 1282

Task description: Given the dialogue, evaluate 1283
the quality of the target nugget based on the 1284
{evaluation_aspect}. 1285

Step-by-step instructions: 1286
• Step 1: Read the dialogue history, target 1287

nugget, and user’s response. 1288
– What does the target nugget convey? 1289

• Step 2: Carefully read the grading criteria. 1290
– What are the grading criteria? 1291

• Step 3: Evaluate the target nugget. 1292
– Which grade should be assigned to the 1293

target nugget? 1294

E.2.5 FACE-Optimized Instructions 1295

Here, we provide the optimized instruction exam- 1296

ples for the dialogue-level overall impression as- 1297

pect and the turn-level relevance aspect. Please 1298

note that, in the actual process, FACE optimizes 1299

multiple instructions for each aspect, as shown in 1300

Fig. 1. 1301

Optimized Instructions for Overall Impression 1302

Aspect (Dialogue-level) 1303

Task description: Evaluate the nugget based on its 1304
relevance, accuracy, and usefulness. 1305

Step-by-step instructions: 1306
• Step 1: Check if the nugget is relevant to the 1307

conversation. 1308
– Does the nugget relate to the dialogue con- 1309

text? 1310
– Is the nugget a direct response to the 1311

user’s question or concern? 1312
– Is the nugget related to the user’s prefer- 1313

ences or interests? 1314
• Step 2: Evaluate the nugget’s accuracy. 1315

– Is the information in the nugget accurate 1316
based on the dialogue? 1317

– Does the nugget correctly represent the 1318
conversation? 1319

• Step 3: Assess the nugget’s usefulness. 1320
– Does the nugget provide a helpful or rele- 1321

vant suggestion? 1322
– Does the nugget address the user’s needs 1323

or concerns? 1324
– Does the nugget facilitate a meaningful 1325

continuation of the conversation? 1326

Optimized Instructions for Relevance Aspect 1327

(Turn-level Aspect) 1328

Task description: Evaluate the quality of the target 1329
nugget based on its relevance to the user’s request. 1330

Step-by-step instructions: 1331
• Step 1: Identify the user’s request and the 1332

nugget’s suggestion. 1333
– Step 1.1: Does the nugget’s suggestion 1334

directly address the user’s request? 1335
– Step 1.2: Is the nugget’s genre or category 1336

aligned with the user’s interest? 1337
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• Step 2: Assess the nugget’s relevance.1338
– Step 2.1: Does the nugget’s information1339

accurately address the user’s need?1340
– Step 2.2: Is the nugget’s suggestion con-1341

sistent with the user’s preferences or in-1342
terests?1343

F Related Work Details1344

Automatic Conversation Evaluation. Although1345

human annotations are the gold standard for eval-1346

uating CIS systems, they are expensive and time-1347

consuming; thus, automatic evaluation methods1348

have been proposed to scale up the evaluation pro-1349

cess. There are two main types of automatic evalu-1350

ation methods: reference-based and reference-free.1351

Reference-based methods use gold refer-1352

ences to evaluate system responses, which in-1353

clude Recall@K, BLEU (Papineni et al., 2002),1354

ROUGE (Lin, 2004), and BERTScore (Zhang et al.,1355

2020). While these methods are effective for ma-1356

chine translation and traditional IR tasks, they have1357

limitations in conversation evaluation, as they over-1358

look diverse response possibilities and various eval-1359

uation aspects. These limitations are supported1360

by various studies showing a weak correlation be-1361

tween reference-based methods and human evalu-1362

ations (Mehri and Eskenazi, 2020; Bernard et al.,1363

2025; Liu et al., 2016).1364

Reference-free methods have been proposed to1365

address these limitations (Mehri and Eskenazi,1366

2020; Zhong et al., 2022; Liu et al., 2023). These1367

methods evaluate system responses without relying1368

on gold references, consider multiple aspects of sys-1369

tem quality, and allow for the assessment of various1370

response possibilities. However, these methods pri-1371

marily focus on turn-level evaluation with a fixed1372

dialogue history, limiting their ability to assess the1373

whole conversation and capture the diverse user-1374

system interaction trajectories, which are crucial1375

for evaluating system performance in real-world1376

scenarios (Siro et al., 2022, 2023). FACE addresses1377

these limitations by evaluating the system based1378

on the whole conversation and capturing multiple1379

conversation trajectories from diverse user-system1380

interactions.1381

LLMs for Evaluation. For instance, G-Eval (Liu1382

et al., 2023) uses an LLM to generate an evaluation1383

prompt, which is then used to assess the system’s1384

response, demonstrating a strong correlation with1385

human evaluations in chit-chat conversations.1386

Instruction optimization. To address the arbi-1387

trary nature of handcrafted prompts, various in-1388

struction optimization (or prompt optimization) 1389

methods have been proposed (Chen et al., 2024a; 1390

Kong et al., 2024; Pryzant et al., 2023; Ye et al., 1391

2024; Chen et al., 2024b; Fernando et al., 2025; 1392

Zhou et al., 2023; Yang et al., 2024; Yuksekgonul 1393

et al., 2024; Yang et al., 2025). Zhou et al. (2023) 1394

introduced APE, an automatic prompt engineering 1395

method that uses LLMs to generate prompt candi- 1396

dates, and perform a Monte Carlo search to find 1397

the optimal prompt. Kong et al. (2024) proposed 1398

PRewrite, where prompts are optimized using prox- 1399

imal policy optimization (PPO) (Schulman et al., 1400

2017). Pryzant et al. (2023) proposed an instruc- 1401

tion optimization method using “textual gradient,” 1402

which provides natural language feedback for an 1403

LLM to optimize prompts. These studies focus on 1404

common tasks like QA and classification, leaving 1405

conversation evaluation unexplored. More impor- 1406

tantly, optimized prompts are not generalizable be- 1407

tween LLMs (Zhou et al., 2023), which is crucial 1408

for evaluation tasks, where reusability is essential. 1409

In this work, we present a method for applying a 1410

textual gradient approach to enhance conversation 1411

evaluation alongside effective strategies for trans- 1412

ferring optimized prompts across different settings. 1413

Nugget-based Evaluation. Here, we describe the 1414

expanded version of related work on nugget-based 1415

evaluation (cf. Sect. 7). Nugget-based evaluation 1416

was proposed (Voorhees, 2003) to assign granular 1417

scores to system responses for non-binary queries, 1418

wherein a nugget, which is an atomic piece of infor- 1419

mation, serves as the unit of evaluation, enabling a 1420

more traceable assessment. Although the orig- 1421

inal nugget-based evaluation was intended as a 1422

manual method, many efforts have aimed to au- 1423

tomate or semi-automate it (Mayfield et al., 2024; 1424

Pradeep et al., 2024; Lin and Demner-Fushman, 1425

2005; Ekstrand-Abueg et al., 2013; Takehi et al., 1426

2023; Rajput et al., 2011; Dietz, 2024). One of the 1427

earlier methods is POURPRE (Lin and Demner- 1428

Fushman, 2005), an automatic nugget-based eval- 1429

uation method that uses n-gram co-occurrences 1430

to assess nugget presence in system responses. 1431

More recent research employs LLMs for nugget 1432

matching; Pradeep et al. (2024) introduced the 1433

AutoNuggetizer framework in TREC RAG 2024, 1434

where LLMs automatically create nuggets and as- 1435

sign them to system responses. However, these 1436

works are reference-based and/or focus on individ- 1437

ual responses, and more importantly, they do not 1438

target CIS systems. 1439

16



SWAN (Sakai, 2023) proposes a conceptual1440

framework to evaluate CIS systems by decompos-1441

ing user-system interactions into units and assess-1442

ing them on various aspects. While SWAN’s con-1443

cept is promising, its execution remains an open1444

question, specifically how to automatically create1445

and assess nuggets while ensuring the method’s1446

generalizability. This work is inspired by SWAN1447

and addresses these challenges.1448
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