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Abstract

The regulatory architecture of endocrine cells—key coordinators of systemic
physiology—remains poorly defined across tissues. We built a cross-tissue single-
cell atlas by integrating 17 human scRNA-seq datasets from diverse organs. Us-
ing scVI for robust harmonization, we combined network inference and consen-
sus nonnegative matrix factorization (cNMF) to resolve transcriptional programs.
We uncover a hierarchical landscape in which tissue-specific, hormone-identity
modules are layered on conserved pan-endocrine programs that support high se-
cretory capacity. In particular, we identify conserved endoplasmic reticulum
stress/unfolded-protein-response (UPR) and secretory-granule-biogenesis mod-
ules that form a shared backbone for hormone production and trafficking. A
transcription-factor–centric analysis shows that regulatory networks mirror devel-
opmental origins and are shaped by combinatorial codes of broadly acting pan-
endocrine regulators together with tissue-restricted factors. This atlas provides
a foundation for probing endocrine diversity and coordination in physiology and
disease.

1 Introduction

Endocrine cells orchestrate systemic physiology, yet their cross-tissue regulatory architecture re-
mains largely unknown. While single-cell studies have revealed endocrine diversity within individ-
ual organs such as the pancreas or gut [1–3], these tissue-specific analyses obscure shared principles
governing the endocrine system as a whole. Progress has been limited by the technical challenges
of integrating heterogeneous single-cell datasets [4], where batch effects often mask the subtle bio-
logical signals needed to distinguish conserved programs from tissue-specific adaptations [5].

To overcome these challenges, we integrated 17 single-cell RNA-seq datasets spanning multiple
human tissues using scVI for robust data harmonization and applied network inference methods to
systematically map transcriptional programs [6–8]. Our analysis reveals a hierarchical regulatory
landscape composed of both specialized tissue-restricted modules and core programs conserved
across organs.

Specifically, we identified conserved transcriptional programs governing the secretory pathway, in-
cluding modules for the unfolded protein response (UPR) and secretory granule biogenesis, which
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underscore the shared identity of endocrine cells as professional secretory cells. Furthermore, our
transcription factor-centric analysis shows that regulatory networks reflect developmental origins
and are governed by combinatorial codes of pan-endocrine (e.g., NEUROG3) and tissue-restricted
(e.g., PDX1, CDX2) regulators. This cross-tissue atlas offers a foundational resource for uncov-
ering principles of endocrine cell biology and generating hypotheses on endocrine dysfunction in
metabolic disease, inflammation, and cancer.

2 Methodology

2.1 Dataset Collection and Curation

We retrieved all human single-cell RNA-seq datasets containing endocrine cells from the CZ CEL-
LxGENE Census (version 2025-01-30)[9, 10] using a Python workflow and downloaded the corre-
sponding h5ad files. The search initially returned 64 datasets, reduced to 55 after de-duplication.
To ensure sufficient endocrine representation, we retained only datasets with at least 1% endocrine
cells, yielding 17 datasets spanning gastrointestinal, lung, pancreatic, hepatic, and other tissues for
integrated cross-tissue analysis [11–22] .

2.2 Preprocessing and Quality Control

Raw count matrices were processed in Scanpy (v1.9) [23] using a standard pipeline. Cells with fewer
than 1,000 detected genes or high mitochondrial content were removed, and genes expressed in
fewer than three cells were excluded. Counts were normalized to 10,000 per cell, log1p-transformed,
and highly variable genes (HVGs) were identified by mean–variance decomposition (Fig. 2A) for
downstream integration and module inference.

2.3 Data Integration and Batch Correction

To mitigate batch effects, we compared ComBat [24], a linear empirical Bayes method implemented
in the sva R package, with scVI [7], a deep generative model leveraging variational autoencoders
to jointly model gene expression and batch covariates in a nonlinear latent space. Integration per-
formance was benchmarked using the scib-metrics framework [25], which combines metrics for
batch correction (e.g., kBET, graph connectivity) and biological conservation (e.g., isolated label
F1 score, silhouette width). The aggregate score, computed as the mean of normalized batch and
biology metrics, was used to rank integration methods.

2.4 Cross-Tissue Regulatory Module Inference with CoVarNet

We applied CoVarNet (v0.3) to the scVI-integrated expression matrix [26, 27]. Pearson correlations
were computed on log-normalized expression after filtering genes expressed in ≥5% of cells per
tissue. Nonnegative matrix factorization (NMF) [28] with the Brunet algorithm decomposed the co-
variance matrix, selecting K = 12 modules via cophenetic correlation across K = 6–20. Modules
with enrichment p < 0.05 (Fisher’s test, BH correction) and ≥1.5-fold tissue representation were
marked tissue-specific; others were cross-tissue. Partial correlation networks used the top 5% of
edges (ranked by absolute partial correlation) to highlight hub modules and cross-tissue links.

2.5 NMF / cNMF Program Discovery (k = 30)

Because endocrine functions are implemented by reusable gene programs that can recur across tis-
sues, an interpretable decomposition was required to quantify program activity per cell and enable
cross-tissue comparisons. Consensus nonnegative matrix factorization (cNMF) was therefore ap-
plied using the cNMF implementation [29, 30] on the HVG-filtered expression matrix. Candidate
ranks k ∈ {10, . . . , 50} were evaluated by a composite criterion comprising reconstruction error,
consensus cophenetic correlation [31], within-program gene coherence among the top-50 loadings,
and the proportion of programs significantly enriched for Gene Ontology, KEGG, and MSigDB
terms [32–34]. The optimal rank was k = 30, which was used for downstream analyses. For
k = 30, consensus program loadings and cell-wise usage scores were computed; activities were
normalized within tissues, and tissue specificity was quantified using the τ index and Shannon en-
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tropy to classify tissue-enriched versus cross-tissue programs [35]. These activities were then used
to support cross-tissue comparisons and downstream validation.

2.6 TF-Centric Regulatory Network Inference with SCENIC

To complement program-level decompositions with a transcription factor (TF)–centered view
that clarifies upstream control of endocrine programs, we applied the SCENIC workflow using
pySCENIC [36, 37]. ENSEMBL identifiers were mapped to HGNC symbols via MyGene.info to en-
sure consistent TF and target annotation [38]. The pipeline comprised: (i) gene regulatory network
(GRN) inference from the HVG-filtered expression matrix with GRNBoost2 (Arboreto) and, where
indicated, GENIE3 [39, 40]; (ii) motif-based pruning with cisTarget (RcisTarget) using the human
hg38 v10 motif-ranking databases (TSS±10 kb and 500 bp upstream/100 bp downstream) to retain
direct TF–target regulons [41, 42]; and (iii) per-cell regulon activity quantification with AUCell
followed by adaptive binarization [36, 37]. Tissue-level summaries of regulon activity supported
cross-tissue comparisons of endocrine control, and low-dimensional embeddings of the AUCell ma-
trix (UMAP) facilitated visualization of regulon usage across cell states [43].

3 Results

3.1 Dataset Overview and Endocrine Cell Composition

Table 1: Study information.

We compiled 17 single-cell RNA-seq datasets spanning gastrointestinal, lung, pancreatic, hepatic,
and other human tissues (Table 1). Endocrine cells constituted only a minor fraction of the total
cell population in most datasets, with a median abundance of 0.56% (Fig. 1C), except in pancreatic
datasets where they reached up to 42%. This high percentage is explained by the prior enrichment
of endocrine islets in that study.

Across all datasets, enteroendocrine cells were most frequent, followed by neuroendocrine and lung
neuroendocrine cells (Fig. 1A). Endocrine cells were distributed across at least 15 distinct organs
(Fig. 1B), underscoring their broad physiological relevance. The cell type–tissue co-occurrence map
(Fig. 1D) revealed clear tissue-specific enrichment, such as enteroendocrine cells in the gut and lung
neuroendocrine cells in respiratory tissues, suggesting tissue-adaptive specialization.
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Figure 1: Metadata overview showing: (A) Top 10 endocrine cell types across 17 filtered datasets.
(B) Top 15 tissues with endocrine cells. (C) Distribution of endocrine cell percentages across 17
filtered datasets. (D) Co-occurrence of cell types and tissues.

3.2 Integration of Single-Cell Datasets across Tissues

Figure 2: Single-cell data integration results showing: (A) Highly variable genes; (B) Mitochondrial
gene percentage; (C) Violin plots for QC metrics; (D–L) UMAP visualizations of batch effects, cell
types, tissues, and disease states under different integration methods; (M) Quantitative metrics for
batch correction and biological conservation.

Initial visualization of unintegrated datasets showed strong batch effects, with samples clustering by
dataset rather than biology (Fig. 2D, 2G, 2J). We compared ComBat and scVI for batch correction
and biological signal preservation.
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ComBat reduced batch effects effectively (Fig. 2E, 2H, 2K) but often over-corrected, merging dis-
tinct cell types and disease states. In contrast, scVI balanced batch effect removal and biological
conservation, retaining both cell-type and tissue-level structure (Fig. 2F, 2I, 2L). Quantitatively,
scVI achieved the highest aggregate integration score (0.74 vs. 0.72 for ComBat; Fig. 2M), driven
by superior bio-conservation metrics such as isolated label F1 score and silhouette index. This
establishes scVI embeddings as a robust foundation for cross-tissue analyses.

3.3 Cross-Tissue CoVarNet Analysis Reveals Shared and Tissue-Specific Modules

Figure 3: CoVarNet analysis results showing: (A) Cell module (CM) abundance and distribution
across samples; (B) Mean CM abundance distribution; (C) Tissue-wise CM distribution; (D) Cell
type clustering relationships; (E–F) Global and individual CM network connections.

We applied CoVarNet to the scVI-integrated expression matrix and identified 12 covariance mod-
ules (CMs) representing transcriptional programs across endocrine cells (Fig. 3A). Module abun-
dance analysis revealed tissue-restricted programs — for example, CM01–CM03 in gastrointestinal
tissues, CM07–CM09 in the pancreas, and CM10–CM12 in the lung — as well as cross-tissue
modules such as CM04 and CM06 (Fig. 3B–C). Cell module enrichment highlighted tissue-level
specialization within each CM, while hub modules (CM05, CM08) displayed extensive cross-tissue
connectivity (Fig. 3D–E).

The inter-module network in Fig. 3F visualizes these relationships as a hierarchical graph, where
nodes represent CMs and edges indicate significant co-variation across tissues. Tissue-restricted
modules clustered tightly, reflecting local transcriptional programs, whereas hub modules connected
multiple clusters, forming bridging nodes that integrate tissue-specific signals into shared endocrine
regulatory circuits. Overall, the architecture can be described as primarily tissue-structured, with
only a limited shared cross-tissue regulatory framework.
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3.4 cNMF Reveals Shared Core and Tissue-Specific Endocrine Programs

Applying consensus nonnegative matrix factorization (cNMF) to human endocrine single-cell tran-
scriptomes across multiple organs resolved gene programs that partition variation into broadly
shared “core” processes and tissue-restricted hormone identities. Core programs include transla-
tion/ribosome and secretory-pathway modules, consistent with the high biosynthetic and traffick-
ing load of professional secretory cells. In contrast, tissue-enriched programs capture canonical
hormone signatures (e.g., pancreatic islet INS/GCG/SST/IAPP, stomach GHRL, intestinal L-cell
PYY/GCG, and enterochromaffin TPH1/DDC), with usage patterns that recapitulate expected re-
gional distributions. Methodologically, cNMF is well-suited to disentangle these identity versus
activity programs in single-cell data, improving the interpretability of mixed cellular states [29].

Among the core programs, Program 13 was identified as a conserved module for managing the
endoplasmic reticulum (ER) and secretory capacity. This program is enriched for ER chaperones
and components of the ER-associated degradation (ERAD) and unfolded protein response (UPR)
pathways, including HSPA5/GRP78, HERPUD1, and the key UPR regulator XBP1 [44, 45]. This
signature reflects a coordinated response to expand protein-folding capacity and safeguard proteosta-
sis under the high demand of hormone synthesis. This finding is consistent with studies in endocrine
β-cells, where the IRE1α–XBP1s arm of the UPR is engaged by glucose to expand secretory capac-
ity and protect against oxidative stress [46, 47]. Gene Ontology enrichments for “protein folding in
ER” and “response to ER stress” further validate the interpretation of Program 13 as a conserved,
activation-linked secretory-capacity module.

Complementing this upstream protein-folding machinery, two additional programs (Programs 12
and 29) were dedicated to the downstream processes of secretory granule biogenesis and process-
ing. Program 29 features granins (CHGB, SCG2), lysosomal factors (CTSD), and peptide-modifying
enzymes (QPCT), while Program 12 includes key factors for prohormone processing, such as SCG5
(7B2) and PCSK2. Granins are hallmark constituents of large dense-core vesicles essential for reg-
ulated secretion [48, 49], while 7B2 acts as an obligate chaperone for PC2 maturation and QPCT
finalizes the bioactivity of many neuropeptides [50, 51]. Together, GO enrichments (e.g., “secre-
tory granule lumen”) and these gene signatures support the view that Programs 12 and 29 encode
a conserved network for building, loading, and maintaining dense-core hormone granules. We hy-
pothesize this “granule-biogenesis” module scales with physiological secretory demand and is co-
ordinated with the ER/UPR expansion driven by XBP1s [46].

3.5 Conserved vs. Divergent Developmental Pathways

We applied SCENIC to compute regulon activity across aggregated tissue groups and retained 49
regulons with nontrivial tissue-specificity scores. Panel A of Fig. 5 shows a clustered heatmap of
mean regulon activity per tissue, and Panel B shows the pairwise tissue correlation matrix based
on the same regulon activities. Two clear patterns emerge. First, tissues of shared developmental
origin cluster together: the foregut-derived stomach and esophagus exhibit the strongest correlation
(r ≈ 0.98), and the small versus large intestine pair also correlates strongly (r ≈ 0.96). Second,
the pancreas forms its own branch, showing only moderate correlation to gut tissues (r ≈ 0.49–
0.53). Nervous system samples are the least correlated with other groups (typically r < 0.5),
indicating distinct transcriptional control. Regulon-wise, immediate-early/AP-1 modules (e.g., JUN
family) show broad low-to-moderate activity across many tissues, whereas subsets of regulons peak
narrowly in a single tissue cluster, consistent with tissue-restricted specification.

Despite divergent adult regulon profiles, gut and pancreatic endocrine cells share a conserved dif-
ferentiation backbone: transient NEUROG3 induction triggers a cascade that activates NEUROD1
and companion regulators to drive endocrine fate commitment [52–55]. The absence of canoni-
cal endocrine TFs such as PAX6, PDX1, and NKX2-2 among the top tissue-differential regulons in
Panel A is therefore expected: these factors act broadly across endocrine lineages rather than mark-
ing a single organ, a view supported by genetic and functional studies showing their pervasive roles
in endocrine differentiation and identity maintenance [56–58]. In this model, tissue identity is su-
perimposed on a shared endocrine scaffold by tissue-enriched TFs: for example, PDX1 and GLIS3
in pancreatic β cells [57, 59, 60], versus CDX2 and TBX3 in intestinal enteroendocrine lineages
[61, 62].
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Figure 4: cNMF program activity and annotation across endocrine tissues. (A) Heatmap of program
usage (k = 30) across tissues/regions reveals broadly shared core programs (diffuse activity) along-
side tissue-restricted modules (focal peaks). (B) Top-ranked genes for Program 12, Program 13, and
Program 29. Program 13 is enriched for ER/UPR and ERAD components (HSPA5/GRP78, HER-
PUD1, XBP1); Program 12 highlights granule prohormone-processing factors (SCG5/7B2, PCSK2);
Program 29 emphasizes dense-core granule constituents and peptide-modifying enzymes (CHGB,
SCG2, CTSD, QPCT). (C) Gene Ontology enrichment recapitulates these functions: Program 13
(ER stress, protein folding/ER membrane), Program 12 (ribosome/translation and ER processes),
and Program 29 (secretory granule lumen, lysosome, peptide inhibitor activity). Dashed lines mark
significance thresholds.

We hypothesize that combinatorial codes of broadly expressed endocrine TFs
(NEUROG3→NEUROD1, PAX6, NKX2-2) together with tissue-specific TFs (PDX1/GLIS3
for pancreas; CDX2/TBX3 for gut) generate endocrine subtype diversity. A practical test of this
model would be to reconstitute these TF combinations in stem-cell-derived endocrine progenitors:
(i) NEUROG3 + PAX6 to establish a generic endocrine state, then (ii) add PDX1 ± GLIS3 to bias
toward a pancreatic β-like program, or (iii) add CDX2 ± TBX3 to bias toward an intestinal L/EC-like
program. This approach is consistent with prior evidence that NEUROG3 is necessary for endocrine
fate in both pancreas and intestine and that NEUROD1 reinforces endocrine differentiation [52, 55].
Similarly, PDX1 and GLIS3 sustain β-cell identity and insulin transcription [57, 59, 60], and CDX2
and TBX3 participate in intestinal identity and BMP-activated enteroendocrine programs [61, 62].
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Figure 5: Regulon activity landscape across tissues. (A) Clustered mean SCENIC regulon ac-
tivity across tissue groups (49 regulons with tissue-specificity score > 0.05). (B) Tissue–tissue
Pearson correlation matrix computed on the same regulon activity vectors. The arrangement high-
lights conserved modules (broad, low-to-moderate activity) versus tissue-restricted regulons and
recapitulates developmental groupings (foregut stomach–esophagus; proximal–distal intestine) and
pancreas-specific control.

4 Discussion & Limitations

In this study, we constructed a cross-tissue single-cell atlas of human endocrine cells, revealing key
principles of their regulatory architecture. Our primary finding is that endocrine cells are governed
by a hierarchical system of both shared and tissue-specific transcriptional programs. A key insight
from our cNMF analysis is the identification of conserved pan-endocrine modules related to the high
secretory load of these cells, specifically programs governing the ER/UPR and secretory granule bio-
genesis. This suggests that a fundamental aspect of endocrine identity, beyond hormone production
itself, is the maintenance of a robust protein synthesis and trafficking infrastructure. These core
programs likely represent a shared functional backbone that is activated and scaled in response to
physiological demand across diverse endocrine lineages.

Our analysis further supports a combinatorial logic for endocrine cell identity in which a shared
developmental backbone initiated by master regulators like NEUROG3 is layered with both these
conserved functional modules and tissue-restricted transcription factors (e.g., PDX1 in pancreas,
CDX2 in intestine) to generate adult cellular diversity. These biological insights were enabled by
integrating 17 heterogeneous datasets. Our results affirm that deep generative models such as scVI
can effectively harmonize data while preserving subtle biological variation critical for rare endocrine
populations, thereby providing a robust foundation for downstream network-level analyses (CoVar-
Net, cNMF) and TF-centric inference (SCENIC).

This atlas aggregates heterogeneous public datasets with uneven tissue coverage and protocol differ-
ences; consequently, rare endocrine types are likely under-represented. Stress-response programs,
such as the UPR module, may be influenced by tissue dissociation or handling, so attribution to in
vivo stimuli remains tentative without time-course data. Integration and decomposition choices (e.g.,
scVI embeddings, cNMF rank) can alter neighborhood structure and split or merge modules; thus,
absolute frequencies and boundaries should be interpreted qualitatively. Network inferences (Co-
VarNet, SCENIC) are correlative and motif-dependent, nominating regulators rather than proving
causality. Finally, this resource is transcriptomic and cross-sectional; spatial, chromatin, proteomic,
and perturbation/time-course data will be needed to test the combinatorial TF-code hypothesis.
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5 Conclusion

In this project, we constructed a comprehensive cross-tissue atlas of human endocrine cells by inte-
grating 17 single-cell RNA-seq datasets. Our analysis successfully navigated complex batch effects
to uncover a hierarchical regulatory landscape composed of conserved pan-endocrine programs gov-
erning the secretory pathway and tissue-specific modules that reflect distinct developmental origins
and specialized adult functions. This atlas serves as a foundational resource for dissecting the sys-
temic coordination of the endocrine system and provides a framework for investigating endocrine
dysfunction in health and disease, highlighting fundamental principles of cellular diversification and
adaptation across human organs.

6 AI agent setup.

We used ChatGPT to brainstorm ideas and plan the manuscript structure, Claude Code to run and
iterate on analysis code, and ChatGPT and Gemini to draft and refine text. All model outputs were
critically reviewed and verified by the authors; no confidential data were shared with these tools.
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A Technical Appendices and Supplementary Material

Technical appendices with additional results, figures, graphs and proofs may be submitted with the
paper submission before the full submission deadline, or as a separate PDF in the ZIP file below
before the supplementary material deadline. There is no page limit for the technical appendices.
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Agents4Science AI Involvement Checklist

1. Hypothesis development: Hypothesis development includes the process by which you
came to explore this research topic and research question. This can involve the background
research performed by either researchers or by AI. This can also involve whether the idea
was proposed by researchers or by AI.
Answer: blue[B]
Explanation: Human authors defined the core scientific questions (cross-tissue endocrine
regulation and regulatory context) and selected the research scope. AI tools assisted with
brainstorming alternative framings, surfacing related work, and suggesting candidate hy-
potheses, but final hypothesis selection, novelty assessment, and scoping decisions were
made by the authors after manual literature curation and feasibility checks.

2. Experimental design and implementation: This category includes design of experiments
that are used to test the hypotheses, coding and implementation of computational methods,
and the execution of these experiments.
Answer: blue[D]
Explanation: Claude generated code for data processing, training, evaluation, and orches-
tration; ChatGPT executed runs, adjusted configs, and proposed fixes. Human authors
provided prompts, objectives, datasets/splits, and acceptance criteria, gave iterative feed-
back, set seeds and compute budgets, monitored runs, and validated outputs via unit/sanity
checks, but did not write code themselves. All artifacts and results were reviewed and
approved by the authors, and no confidential or personal data were shared with AI tools.

3. Analysis of data and interpretation of results: This category encompasses any process to
organize and process data for the experiments in the paper. It also includes interpretations
of the results of the study.
Answer: blue[D]
Explanation: Claude code performed the majority of analysis: ingesting our input data/run
artifacts, generating EDA code, aggregating metrics/logs, producing plots/tables, and draft-
ing preliminary interpretations. We supplied ChatGPT with the data/metadata and prompts,
and requested literature search/summaries for context.

4. Writing: ChatGPT drafted most of the manuscript text (sections, captions, boilerplate)
from our prompts and outlines. Gemini was used for cross-checking (proofreading, con-
sistency, citation verification) and style suggestions. Human authors provided the narrative
framework and section outlines, reviewed every claim, number, and reference, resolved
ambiguities, and finalized figures/tables.
Answer: blue[D]
Explanation: Large language models drafted ≥ 95% of the manuscript text, captions, and
line edits based on our prompts, outlines, and analysis artifacts. Human authors provided
the high-level narrative, verified every claim, number, and citation, corrected inaccuracies,
ensured consistency with results, and finalized figures/tables. We performed link-level ci-
tation checks and unit/metric sanity checks, and we did not provide confidential or personal
data to AI tools. The authors accept full responsibility for the final content and compliance
with venue policies.

5. Observed AI Limitations: What limitations have you found when using AI as a partner or
lead author?
Description: Agentic AI requires explicit, step-by-step guidance; it rarely constructs end-
to-end pipelines without users specifying tools (e.g., scVI, Scanpy, CoVarNet), modules,
and I/O. Its biological insight tends to be shallow—summarizing patterns rather than
proposing mechanistic, novel interpretations. Performance depends heavily on mature,
well-documented frameworks; it is weak at inventing new methods or unconventional
pipelines. Model quality matters: stronger, instruction-tuned models follow workflows
more reliably but still need structured prompts, constraints, and checking. Human exper-
tise remains essential for study design, edge-case handling, statistical validation, and en-
suring claims meet publication standards. Finally, we observe account “memory” effects:
systems that have accumulated prior context, examples, and iterative feedback behave no-
ticeably better, while fresh accounts without history often underperform until seeded with
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scaffolds, datasets, and conventions. Overall, agent AI is a useful accelerator, not an au-
tonomous scientist.
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Agents4Science Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: blue[Yes]
Justification: The abstract and introduction state our contributions and assumptions explic-
itly and do not over-claim beyond the evaluated settings; the claims are supported by the
methods and results presented in the paper and supplemental material.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these
goals are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: blue[Yes]
Justification: We include a dedicated Discussion & Limitations section.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means
that the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate ”Limitations” section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The au-
thors should reflect on how these assumptions might be violated in practice and what
the implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the ap-
proach. For example, a facial recognition algorithm may perform poorly when image
resolution is low or images are taken in low lighting.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to ad-
dress problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used
by reviewers as grounds for rejection, a worse outcome might be that reviewers dis-
cover limitations that aren’t acknowledged in the paper. Reviewers will be specifically
instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Guidelines:
• The answer NA means that the paper does not include theoretical results.

17



• All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

• All assumptions should be clearly stated or referenced in the statement of any theo-
rems.

• The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a
short proof sketch to provide intuition.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclu-
sions of the paper (regardless of whether the code and data are provided or not)?

Answer: blue[Yes]

Justification: We provide full transparency and reproducibility for all analyses support-
ing the main claims and conclusions in the supplementary materials. We clearly describe
the data sources, preprocessing steps, integration pipelines, benchmarking metrics, and
evaluation criteria in the Methods and Supplementary Materials. All datasets used in the
study are either publicly available through CZ CellXGene. We compressed and included
the data (where permissible), analysis scripts, configuration files, and full computational
logs. We archived the full chat memories with Claude AI to document every modeling
choice and intermediate result. Together, these materials allow others to replicate the en-
tire workflow—from raw data to final figures—without requiring additional unpublished
information, ensuring that all key findings can be independently validated and extended.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important.
• If the contribution is a dataset and/or model, the authors should describe the steps

taken to make their results reproducible or verifiable.
• We recognize that reproducibility may be tricky in some cases, in which case authors

are welcome to describe the particular way they provide for reproducibility. In the
case of closed-source models, it may be that access to the model is limited in some
way (e.g., to registered users), but it should be possible for other researchers to have
some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer:
answerYes

Justification: An anonymized archive with code, configs, and scripts is provided in the
supplemental material.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the Agents4Science code and data submission guidelines on the conference

website for more details.
• While we encourage the release of code and data, we understand that this might not

be possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
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6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: blue[Yes]
Justification: We report codes regarding all results, including feature preprocessing, nor-
malization, hyperparameter ranges, and selection criteria in the supplementary.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of

detail that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropri-
ate information about the statistical significance of the experiments?
Answer:blue[Yes]
Justification: We reported in the paper.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer ”Yes” if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, or overall run with given experimental condi-
tions).

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: blue[Yes]
Justification: Typically we use 1 5 CPU units with a 128 256GB memory to run experi-
ments. However, for single-cell data integration via scVI and scib-driven benchmarking,
we use a GPU configuration listed as follows:

• Memory: 256 GB RAM (minimum 128 GB for subsampled analysis)
• CPU: 5–32 threads depending on stage
• GPU: 1 CUDA-enabled GPU (H100)
• Storage: 20 GB for full outputs
• Runtime: about 2 4 hours per full run depending on the GPU configuration
• GPU acceleration for scVI, multithreading for benchmarking & visualization
• Software Environment: Python 3.8+, PyTorch 2.0+, CUDA 11.8

Guidelines:
• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
Agents4Science Code of Ethics (see conference website)?
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Answer: blue[Yes]
Justification: The paper aligns with the Agents4Science Code of Ethics in all key respects:
the AI-driven research is fully transparent about all methods (integration, benchmarking,
analyses), including disclosures of model usage and contributions. The work provides a
reproducible pipeline, open documentation, and public access to code/data. It also includes
broader-impact consideration through choice of dataset (neuroendocrine, biological rele-
vance) and carries out responsible evaluation to avoid misleading conclusions.
Guidelines:

• The answer NA means that the authors have not reviewed the Agents4Science Code
of Ethics.

• If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: gray[NA]
Justification: Our contribution is limited to methods and controlled offline evaluations using
public, de-identified data, without deployment or end-user interaction; therefore broader
societal impacts are not applicable in the present scope.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations,
privacy considerations, and security considerations.

• If there are negative societal impacts, the authors could also discuss possible mitiga-
tion strategies.
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