
Published in Transactions on Machine Learning Research (03/2025)

Sample, estimate, aggregate:
A recipe for causal discovery foundation models

Menghua Wu rmwu{at}mit.edu
Department of Computer Science, Massachusetts Institute of Technology

Yujia Bao yujia.bao{at}accenture.com
Center for Advanced AI, Accenture

Regina Barzilay regina{at}csail.mit.edu
Department of Computer Science, Massachusetts Institute of Technology

Tommi S. Jaakkola tommi{at}csail.mit.edu
Department of Computer Science, Massachusetts Institute of Technology

Reviewed on OpenReview: https: // openreview. net/ forum? id= h434zx5SX0

Abstract

Causal discovery, the task of inferring causal structure from data, has the potential to uncover
mechanistic insights from biological experiments, especially those involving perturbations.
However, causal discovery algorithms over larger sets of variables tend to be brittle against
misspecification or when data are limited. For example, single-cell transcriptomics measures
thousands of genes, but the nature of their relationships is not known, and there may be
as few as tens of cells per intervention setting. To mitigate these challenges, we propose a
foundation model-inspired approach: a supervised model trained on large-scale, synthetic
data to predict causal graphs from summary statistics — like the outputs of classical causal
discovery algorithms run over subsets of variables and other statistical hints like inverse
covariance. Our approach is enabled by the observation that typical errors in the outputs of
a discovery algorithm remain comparable across datasets. Theoretically, we show that the
model architecture is well-specified, in the sense that it can recover a causal graph consistent
with graphs over subsets. Empirically, we train the model to be robust to misspecification
and distribution shift using diverse datasets. Experiments on biological and synthetic data
confirm that this model generalizes well beyond its training set, runs on graphs with hundreds
of variables in seconds, and can be easily adapted to different underlying data assumptions.1

1 Introduction

A fundamental aspect of scientific research is to discover and validate causal hypotheses involving variables
of interest. Given observations of these variables, the goal of causal discovery algorithms is to extract
such hypotheses in the form of directed graphs, in which edges denote causal relationships (Spirtes et al.,
2001). There are several challenges to their widespread adoption in basic science. The core issue is that
the correctness of these algorithms is tied to their assumptions on the data-generating processes, which are
unknown in real applications. In principle, one could circumvent this issue by exhaustively running discovery
algorithms with different assumptions and comparing their outputs with surrogate measures that reflect graph
quality (Faller et al., 2023). However, this search would be costly: current algorithms must be optimized
from scratch each time, and they scale poorly to the graph and dataset sizes present in modern scientific big
data (Replogle et al., 2022).

1Our code is available at https://github.com/rmwu/sea.

1

https://openreview.net/forum?id=h434zx5SX0
https://github.com/rmwu/sea

Published in Transactions on Machine Learning Research (03/2025)

Causal discovery algorithms follow two primary approaches that differ in their treatment of the causal graph.
Discrete search algorithms explore the super-exponential space of graphs by proposing and evaluating changes
to a working graph (Glymour et al., 2019). While these methods are fast on small graphs, the combinatorial
space renders them intractable for exploring larger structures. An alternative is to frame causal discovery as
a continuous optimization over weighted adjacency matrices. These algorithms either fit a generative model
to the data and extract the causal graph as a parameter (Zheng et al., 2018), or train a supervised learning
model on simulated data (Petersen et al., 2023). However, these methods may be less robust beyond simple
settings, and their optimization can be nontrivial (Ng et al., 2024).

In this work, we present Sea: Sample, Estimate, Aggregate, a supervised causal discovery framework that
aims to perform well even when data-generating processes are unknown, and to easily incorporate prior
knowledge when it is available. We train a deep learning model to predict causal graphs from two types of
statistical descriptors: the estimates of classical discovery algorithms over small subsets, and graph-level
statistics. Each classical discovery algorithm outputs a representation of a graph’s equivalency class, and
the types of errors that it makes may be comparable across datasets. On the other hand, statistics like
correlation or inverse covariance are fast to compute, and strong indicators for a graph’s overall connectivity.
Theoretically, we illustrate a simple algorithm for recovering larger causal graphs that are consistent with
estimates over subsets, and we show that there exists a set of model parameters that can map sets of subgraph
estimates to the correct global graph. Empirically, our training procedure forces the model to predict causal
graphs across diverse synthetic data, including on datasets that are misaligned with the discovery algorithms’
assumptions, or when insufficient subsets are provided.

Our experiments probe three qualities that we view a foundation model should fulfill, with thorough comparison
to three classical baselines and five deep learning approaches. Specifically, we assess the framework’s ability
to generalize to unseen and out-of-distribution data; to steer predictions based on prior knowledge; and
to perform well in low-data regimes. Sea attains the state-of-the-art results on synthetic and real causal
discovery tasks, while providing 10-1000x faster inference. To incorporate domain knowledge, we show that it
is possible to swap classic discovery algorithms at inference time, for significant improvements on datasets
that match the assumptions of the new algorithm. Our models can also be finetuned at a fraction of the
training cost to accommodate new graph-level statistics that capture different (e.g. nonlinear) relationships.
We extensively analyze Sea in terms of low-data performance, scalability, causal identifiability, and other
design choices. To conclude, while our experiments focus on specific algorithms and architectures, this work
presents a blueprint for designing causal discovery foundation models, in which sampling heuristics, classical
causal discovery algorithms, and summary statistics are the fundamental building blocks.

2 Background and related work

2.1 Causal structure learning

A causal graphical model is a directed graph G = (V, E), where each node i ∈ V corresponds to a random
variable Xi ∈ X and each edge (i, j) ∈ E represents a causal relationship from Xi → Xj . There are a number
of assumptions that relate data distribution PX to G (Spirtes et al., 2001; Hauser & Bühlmann, 2012), which
determine whether G is uniquely identifiable, or identifiable up to an equivalence class. In this work, we
assume causal sufficiency – that is, V contains all the parents πi of every node i. Causal graphical models
can be used, along with other information, to compute the downstream consequences of interventions. An
intervention on node i refers to setting conditional P (Xi | Xπi) to a different distribution P̃ (Xi | Xπi). Our
experiments cover the observational case (no interventions) and the case with perfect interventions on each
node, i.e. for all nodes i, we have access to data where we set P (Xi | Xπi

)← P̃ (Xi).

Given a dataset D ∼ PX , the goal of causal structure learning (causal discovery) is to recover G. There
are two main challenges. First, the number of possible graphs is super-exponential in the number of nodes N ,
so algorithms must navigate this combinatorial search space efficiently. Second, depending on data availability
and the underlying data generation process, causal discovery algorithms may or may not be able to recover
G in practice. In fact, many algorithms are only analyzed in the infinite-data regime and require at least
thousands of data samples for reasonable empirical performance (Spirtes et al., 2001; Brouillard et al., 2020).

2

Published in Transactions on Machine Learning Research (03/2025)

aligned estimates E' alignmarginal estimates E't

global statistics ρ

dataset D

N nodes

M
 e

xa
m

pl
es

batches D1 … DT

Sample subsets of data
and variables

Estimate local structures and
global summary statistics

batch D0

Aggregate statistical
features into causal graphs

graph
prediction ÊInput

Output

b
ex

am
pl

es

N ⨉ N

T ⨉ K N ⨉ N
FM

high quality
graph prediction

(A) Design objectives for a causal
discovery foundation model

1) Outperform dataset-specific algorithms, even
on real, out-of-distribution, or misspecified data

dataset with
unknown

assumptions
???

2) Incorporate domain knowledge at
inference time, or via low-cost finetuning

dataset

data assumptions
"prompt":

"non-linear"
"non-Gaussian"

FM

prediction incorporates
assumptions

3) Scaling up → robust low-data performance

FM
high quality
prediction

small
dataset

(B) Our approach: Sample, Estimate, Aggregate (SEA)
Inference framework: Featurize datasets via summary statistics and outputs of classical discovery
algorithms over small subsets, whose errors are comparable across datasets → Pretrained,
supervised model predicts causal graph.

(C) Training procedure

Aggregator
Sub-sample nodes
and batches with

varying T
Large-scale,

synthetic datasets

Compute statistics,
marginal estimates

graph
predictions

ground truth
(synthetic)

Pretrained
Aggregator

Model

Update
Aggregator

Figure 1: Overview of our goals and approach. (A) Criteria we aim to fulfill. (B-C) Inference and training
procedure. Green: raw data. Blue: graph / features. Yellow: Learned. Gray: Stochastic, but not learned.

Discrete search algorithms encompass diverse strategies for traversing the combinatorial space of possible
graphs. Constraint-based algorithms are based on conditional independence tests, whose discrete results inform
of the presence or absence of edges, and whose statistical power depends directly on dataset size (Glymour et al.,
2019). These include the observational FCI and PC algorithms (Spirtes et al., 1995), and the interventional
JCI algorithm (Mooij et al., 2020). Score-based methods define a continuous score that guides the search
through the discrete space of valid graphs, where the true graph lies at the optimum. Examples include
GES (Chickering, 2002), GIES (Hauser & Bühlmann, 2012), CAM (Bühlmann et al., 2014), and IGSP (Wang
et al., 2017). Finally, semi-parametric methods such as LiNGAM (Shimizu et al., 2006) or additive noise
models (Hoyer et al., 2008) exploit asymmetries implied by the model class to identify graph connectivity
and causal ordering.

Continuous optimization approaches recast the combinatorial space of graphs into a continuous space
of weighted adjacency matrices. Many of these works train a generative model to learn the empirical data
distribution, which is parameterized through the adjacency matrix (Zheng et al., 2018; Lachapelle et al.,
2020; Brouillard et al., 2020). Others focus on properties related to the empirical data distribution, such
as a relationship between the underlying graph and the Jacobian of the learned model (Reizinger et al.,
2023), or between the Hessian of the data log-likelihood and the topological order (Sanchez et al., 2023).
Finally, amortized inference approaches (Ke et al., 2023; Lorch et al., 2022; Petersen et al., 2023) frame
causal discovery as a supervised learning problem, where a neural network is trained to predict (synthetic)
graphs from (synthetic) datasets. To incorporate new information, current supervised methods must simulate
new datasets and re-train. In addition, these models that operate on raw observations scale poorly to larger
datasets. Since this direction is most similar to our own, we include further comparisons in B.2.

2.2 Foundation models

The concept of foundation models has revolutionized the machine learning workflow in a variety of disci-
plines: instead of training domain-specific models from scratch, we start from a pretrained, general-purpose
model (Bommasani et al., 2021). This work describes a blueprint for designing “foundation models” in the
context of causal discovery. The precise definition of a foundation model varies by application, but we aim to
fulfill the following properties (Figure 1A), enjoyed by modern text and image foundation models (Radford
et al., 2021; Brown et al., 2020).

1. A foundation model should enable us to outperform domain-specific models trained from scratch,
even if the former has never seen similar tasks during training (Radford et al., 2019). In the context

3

Published in Transactions on Machine Learning Research (03/2025)

of causal discovery, we would like to train a model that outperforms any individual algorithm on real,
misspecified, and/or out-of-distribution datasets.

2. It should be possible to explicitly steer a foundation model’s behavior towards better performance on
new tasks, either directly at inference time, e.g. “prompting” (Reynolds & McDonell, 2021), or at
low cost compared to pretraining (Ouyang et al., 2022). Here, we would like to easily change our
causal discovery algorithm’s “assumptions” regarding the data, e.g. by incorporating the knowledge
of non-linearity, non-Gaussianity.

3. Scaling up a foundation model should lead to improved performance in few-shot or data-poor
regimes (Brown et al., 2020). This aspect we analyze empirically.

In the following sections, we will revisit these desiderata from both the design and experimental perspectives.

3 Methods

Sample, Estimate, Aggregate (Sea) is a supervised causal discovery framework built upon the intuition that
summary statistics and marginal estimates (outputs of a classical causal discovery algorithm on subsets of
nodes) provide useful hints towards global causal structure. In the following sections, we describe how these
statistics are efficiently estimated from data (Section 3.1), and how we train a neural network to predict
causal graphs from these inputs (Section 3.2). We expand upon the model architecture in Section 3.3, and
conclude with theoretical motivation for this architecture in Section 3.4.

3.1 Inference procedure

Given a new dataset D ∈ RM×N , we sample small batches of nodes and observations; estimate global summary
statistics and local subgraphs; and aggregate these information with a trained neural network (Figure 1B).

Sample: takes as input dataset D; and outputs data batches {D0, D1, . . . , DT } and node subsets {S1, . . . , ST }.

1. Sample T + 1 batches of b≪M observations uniformly at random from D.
2. Initialize selection scores α ∈ RN×N (e.g. correlation or inverse covariance, computed over D0 or D).
3. Sample T node subsets of size k. Each subset St is constructed iteratively as follows.

(a) The initial node is sampled with probability proportional to
∑

j∈V αi,j .
(b) Each subsequent node is added with probability proportional to

∑
j∈St

αi,j (prioritizing connec-
tions to nodes that have already been sampled), until ∥St∥ = k.

(c) We update α, down-weighting αi,j proportional to the number of times i, j have been selected.

We include further details and analyze alternative strategies for sampling nodes in B.6.

Estimate: takes as inputs data batches, node subsets, and (optionally) intervention targets; and outputs
global statistics ρ and marginal estimates {E′

1, . . . , E′
T }.

1. Compute global statistics ρ ∈ RN×N over D0 (e.g. correlation or inverse covariance).
2. Run discovery algorithm f to obtain marginal estimates f(Dt[St]) = E′

t for t = 1 . . . T .

We use Dt[St] to denote the observations in Dt that correspond only to the variables in St. Each estimate E′
t

is a k × k adjacency matrix, corresponding to the k nodes in St.

Aggregate: takes as inputs global statistics, marginal estimates, and node subsets. A trained aggregator
model outputs the predicted global causal graph Ê ∈ (0, 1)N×N (Section 3.3).

3.2 Training procedure

The training procedure mirrors the inference procedure (Figure 1C). We assume access to pairs of simulated
datasets and graphs, (D, G), where each dataset D is generated by a parametric model, whose dependencies
are given by graph G (Section 4.1). Datasets D are summarized into global statistics and marginal estimates
via the sampling and estimation steps. The resultant features are input to the aggregator (neural network),
which is supervised by graphs G.

4

Published in Transactions on Machine Learning Research (03/2025)

Embedding

FFN

Axial attention
block

Axial attention
block

…

marginal estimate
embeddings hE,ℓ-1marginal estimate Ealign ∈ ƐT⨉K

global features ρ ∈ ℝN⨉N

graph prediction
Ê ∈ (0,1)N⨉N

Row Attn

FFN
Col Attn

Row Attn

FFN
Col Attn

+

Linear Wℓ

global feature
embeddings hρ,ℓ-1

concat.
message
E → ρ

message
ρ → E

sum

LN
Row Attn
Dropout

LN
Col Attn
Dropout

LN
FFN

Dropout
+

+

+

Axial Attention LayerAxial Attention Block

2D input

hE,ℓ

hρ,ℓ

N

T
K

N

Model Overview

⨉ L

Embed time Embed node

t (i, j)

FFN

Embed node

{i, j}

Linear Wρ

ρi,j

+

+
i

j

Embed type

E't,e=

+

i
j

Marginal Estimate Embedding

Global Feature Embedding

hρ,0
i,j

hE,0
t,e

Figure 2: Aggregator architecture. Marginal graph estimates and global statistics are embedded into the
model dimension. 1D positional embeddings are added along both rows and columns. Embedded features
pass through a series of axial attention blocks, which attend to the marginal and global features. Final layer
global features pass through a feedforward network to predict the causal graph.

We trained two aggregator models, which employed the Fci algorithm with the Fisherz test and Gies
algorithm with the Bayesian information criterion (Schwarz, 1978). Both estimation algorithms were chosen
for speed, but they differ in their assumptions, discovery strategies, and output formats. Though we only
trained two models, alternate estimation algorithms that produce the same output type2 may be used at
inference time (experiments in Section 5.2). The training dataset contains both data that are correctly and
incorrectly specified (Section 4.1), so the aggregator is forced to predict the correct graph regardless. In
addition, each training instance samples a random number of marginal estimates, which might not cover
every edge. As a result, the aggregator must extrapolate to unseen edges using the available estimates and
the global statistics. For example, if two variables have low correlation, and they are located in different
neighborhoods of the already-identified graph, it may be reasonable to assume that they are unconnected.

3.3 Model architecture

The aggregator is a neural network that takes as input: global statistics ρ ∈ RN×N , marginal estimates
E′

1...T ∈ ET ×k×k, and node subsets S1...T ∈ [N]T ×k (Figure 2), where E is the set of output edge types for
the causal discovery algorithm f .3

We project global statistics into the model dimension via a learned linear projection matrix Wρ : R→ Rd,
and we embed edge types via a learned embedding ebdE : E → Rd. To collect estimates of the same edge over
all subsets, we align entries of E′

1...T into E
′align
T ∈ ET ×K

E
′align
t,e=(i,j) =

{
E′

t,i,j if i ∈ St, j ∈ St

0 otherwise
(1)

where t indexes into the subsets, e = 1 . . . K indexes into the set of unique edges, i.e. the union of pairs (i, j)
over all E′

t. We add learned 1D positional embeddings along both dimensions of each input,

pos-ebd(ρi,j) = ebdnode(i′) + ebdnode(j′)

pos-ebd(E
′align
t,e) = ebdtime(t) + FFN([ebdnode(i′), ebdnode(j′)])

2PC (Spirtes et al., 2001) also predicts CPDAGs (Andersson et al., 1997), so its outputs may be input to the Gies model,
while FCI’s PAG outputs cannot.

3E.g. “no relationship,” “X causes Y ,” “X is not a descendent of Y ”

5

Published in Transactions on Machine Learning Research (03/2025)

where i′, j′ index into a random permutation on V for invariance to node permutation and graph size.4 Due
to the (a)symmetries of their inputs, pos-ebd(ρi,j) is symmetric, while pos-ebd(E

′align
t,e) considers the node

ordering. In summary, the inputs to our axial attention blocks are

hρ
i,j = (Wρρ)i,j + pos-ebd(ρi,j) (2)

hE
t,e = ebdE(E

′align
t,e) + pos-ebd(E

′align
t,e) (3)

for i, j ∈ [N]2, t ∈ [T], e ∈ [K]. Note that attention is permutation invariant, so positional embeddings
are required for the model to know which edges belong to the same subset, or what each edge’s endpoints
endpoints are.

Axial attention An axial attention block contains two axial attention layers (marginal estimates, global
statistics) and a feed-forward network (Figure 2, right). Given a 2D input, an axial attention layer attends
first along the rows, then along the columns. For example, on a matrix of size (R,C,d), one pass of the axial
attention layer is equivalent to running standard self-attention along C with batch size R, followed by the
reverse. For marginal estimates, R is the number of subsets T , and C is the number of unique edges K. For
global statistics, R and C are both the total number of vertices N .

Following Rao et al. (2021), each self-attention mechanism is preceded by layer normalization and followed by
dropout, with residual connections to the input,

x = x + Dropout(Attn(LayerNorm(x))). (4)

We pass messages between the marginal and global layers to propagate information. Let ϕE,ℓ be marginal
layer ℓ, let ϕρ,ℓ be global layer ℓ, and let h·,ℓ denote the hidden representations out of layer ℓ. The marginal
to global message mE→ρ ∈ RN×N×d contains representations of each edge averaged over subsets,

mE→ρ,ℓ
i,j =

{
1

Te

∑
t hE,ℓ

t,e=(i,j) if ∃St, i, j ∈ St

ϵ otherwise.
(5)

where Te is the number of St containing e, and missing entries are padded to learned constant ϵ. The global
to marginal message mρ→E ∈ RK×d is simply the hidden representation itself,

mρ→E,ℓ
t,e=(i,j) = hρ,ℓ

i,j . (6)

We update representations based on these messages as follows.

hE,ℓ = ϕE,ℓ(hE,ℓ−1) (marginal feature) (7)
hρ,ℓ−1 ←W ℓ

[
hρ,ℓ−1, mE→ρ,ℓ

]
(marginal to global) (8)

hρ,ℓ = ϕρ,ℓ(hρ,ℓ−1) (global feature) (9)
hE,ℓ ← hE,ℓ + mρ→E,ℓ (global to marginal) (10)

W ℓ ∈ R2d×d is a learned linear projection, and [·] denotes concatenation.

Graph prediction For each pair of vertices i ̸= j ∈ V , we predict e = 0, 1, or 2 for no edge, i→ j, and
j → i. We do not additionally enforce that our predicted graphs are acyclic, similar in spirit to Lippe et al.
(2022). Given the output of the final axial attention block hρ, we compute logits

z{i,j} = FFN
([

hρ
i,j , hρ

j,i

])
∈ R3 (11)

which correspond to probabilities after softmax normalization. The overall output Ê ∈ {0, 1}N×N is supervised
by the ground truth E. Our model is trained with cross entropy loss and L2 regularization.

4The random permutation i′ = σ(V)i allows us to avoid updating positional embeddings of lower order positions more than
higher order ones, due to the mixing of graph sizes during training.

6

Published in Transactions on Machine Learning Research (03/2025)

Implementation details Unless otherwise noted, inverse covariance is used for the global statistic and
selection score, due to its relationship to partial correlation. We sample batches of size b = 500 over k = 5
nodes each (analysis in 5.4). Our model was implemented with 4 layers with 8 attention heads and hidden
dimension 64. Our model was trained using the AdamW optimizer with a learning rate of 1e-4 (Loshchilov
et al., 2017). See B.4 for additional details about hyperparameters.

Complexity The aggregator should be be invariant to node labeling, while maintaining the order of sampled
subsets, so attention-based architectures were a natural choice (Vaswani et al., 2017). If we concatenated ρ
and E′

1...T into a length N2T input, quadratic-scaling attention would cost O(N4T 2). Instead, we opted for
axial attention blocks, which attend along each of the three axes separately in O(N3T + N2T 2). Both are
parallelizable on GPU, but the latter is more efficient, especially on larger N .

3.4 Theoretical interpretation

Marginal graph resolution It is well-established that estimates of causal graphs over subsets of variables
can be “merged” into consistent graphs over their union (Faller et al., 2023; Tillman et al., 2008; Huang et al.,
2020). In A.1 and A.2, we describe a simple algorithm towards this task, based on the intuition that edges
absent from the global graph should be absent from at least one marginal estimate, and that v-structures
present in the global graph are present in the marginal estimates. We then prove Theorem 3.1, which states
that the axial attention architecture is well-specified as a model class. That is, there exists a setting of
its weights that can map marginal estimates into global graphs. Our construction in A.3 follows the same
reasoning steps as the simple algorithm in A.2, and it provides realistic bounds on the model size.

Theorem 3.1. Let G = (V, E) be a directed acyclic graph with maximum degree d. For S ⊆ V , let E′
S

denote the marginal estimate over S. Let Sd denote the superset that contains all subsets S ⊆ V of size at
most d. Given {E′

S}S∈Sd+2 , a stack of L axial attention blocks has the capacity to recover G’s skeleton and
v-structures in O(N) width, and propagate orientations on paths of O(L) length.

There are two practical considerations that motivate a framework like Sea, instead of directly running
classic reconciliation algorithms. First, many of these algorithms rely on specific characterizations of the
data-generating process, e.g. linear non-Gaussian (Huang et al., 2020). While our proof does not constrain the
causal mechanisms or exogenous noise, it assumes that the marginal estimates are correct. These assumptions
may not hold on real data. However, the failure modes of any particular causal discovery algorithm may be
similar across datasets and can be corrected using statistics that capture richer information. For example,
an algorithm that assumes linearity will make (predictably) asymmetric mistakes on non-linear data and
underestimate the presence of edges. However, we may be able to recover nonlinear relationships with statistics
like distance correlation (Sz’ekely et al., 2007). By training a deep learning model to reconcile marginal
estimates and interpret global statistics, we are less sensitive to artifacts of sampling and discretization (e.g.
p-value thresholds, statistics ≶ 0). The second consideration is that checking a combinatorial number of
subsets is wasteful on smaller graphs and infeasible on larger graphs. In fact, if we only leverage marginal
estimates, we must check at least O(N2) subsets to cover each edge at least once. To this end, the classical
Independence Graph algorithm (Spirtes et al., 2001) motivates statistics such as inverse covariance to initialize
the undirected skeleton and reduce the number of independence tests required. This allows us to use marginal
estimates more efficiently, towards answering orientation questions. We verify this latter consideration in
Section 5.4, where we empirically quantify the number of estimates a global statistic is “worth.”

On identifiability The primary goal of this paper is to develop a practical framework for causal discovery,
especially when data assumptions are unknown. Instead of focusing on the identifiability of any particular
setting, we provide these interpretations of our model’s outputs, and show empirically that our model respects
classic identifiability theory (Section 5.3). The model will always output an orientation for all edges, but the
graph can be interpreted as one member of an equivalence class. Metrics can be computed with respect to
either the ground truth graph (if identifiable) or the inferred equivalence class, e.g. the implied CPDAG.
When data do not match the estimation algorithm’s assumptions, performance is inherently an empirical
question, and we show empirically that our model still does well (Section 5.1).

7

Published in Transactions on Machine Learning Research (03/2025)

4 Experimental setup

Our experiments aim to address the three desiderata proposed in Section 2.2 – namely, generalization,
adaptability, and emergent few-shot behavior. These experiments span both real and synthetic data. Real
experiments quantify the practical utility of this framework, while synthetic experiments allow us to probe
and compare each design choice in a controlled setting.

4.1 Datasets

We pretrained Sea models on 6,480 synthetic datasets, which constitute approximately 280 million individual
observations, each of 10-100 variables.5 To assess generalization and robustness, we evaluate on unseen
in-distribution and out-of-distribution synthetic datasets, as well as two real biological datasets (Sachs et al.,
2005; Replogle et al., 2022), using the versions from Wang et al. (2017); Chevalley et al. (2025). To probe for
emergent few-shot behavior, we down-sample both the training and testing sets. We also include experiments
on simulated mRNA datasets with unseen datasets in Appendix C.3 (Dibaeinia & Sinha, 2020).

The training datasets were constructed by 1) sampling Erdős-Rényi and scale free graphs with N = 10, 20, 100
nodes and E = N, 2N, 3N, 4N expected edges; 2) sampling random instantiations of causal mechanisms
(Linear, NN with additive/non-additive Gaussian noise); and 3) iteratively sampling observations in topological
order (details in Appendix B.1). From every causal graphical model (steps 1-2), we generated two datasets,
each with 1000N points: either all observational, or split equally among regimes (observational and perfect
single-node interventions on all nodes). All models that can accommodate interventions were run on the
interventional datasets, with complete knowledge of the intervention target identities. The remaining were
run on the observational datasets. We generated 90 training, 5 validation, and 5 testing datasets for each
combination. For testing, we also sampled out-of-distribution datasets with 1) Sigmoid and Polynomial
mechanisms with Gaussian noise; and 2) Linear with additive non-Gaussian noise.

4.2 Metrics

We report standard causal discovery metrics. These include both discrete and continuous metrics, as neural
networks can be notoriously uncalibrated (Guo et al., 2017), and arbitrary discretization thresholds may
impact the robustness of findings (Ng et al., 2024; Schaeffer et al., 2023). For all continuous metrics, we
exclude the diagonal since several baselines manually set it to zero (Brouillard et al., 2020; Lopez et al., 2022).

SHD: Structural Hamming distance is the minimum number of edge edits required to match two
graphs (Tsamardinos et al., 2006) (predicted and true DAGs, or the implied CPDAGs). Discretization
thresholds are as published or default to 0.5.

mAP: Mean average precision computes the area under precision-recall curve per edge and averages over the
graph (predicted and true DAGs, or undirected skeletons). The random guessing baseline depends on the
positive rate.

AUC: Area under the ROC curve (Bradley, 1997) computed per edge (binary prediction) and averaged over
the graph. For each edge, 0.5 indicates random guessing, while 1 indicates perfect performance.

Orientation accuracy: We compute the accuracy of edge orientations as

OA =
∑

(i,j)∈E 1{P (i, j) > P (j, i)}
∥E∥

. (12)

Since OA is normalized by ∥E∥, it is invariant to the positive rate. In contrast to orientation F1 (Geffner
et al., 2024), it is also invariant to the assignment of forward/reverse edges as 1/0.

53 mechanisms, 3 graph sizes, 4 sparsities, 2 topologies, 1000N examples, 90 datasets → 280,800,000 examples. For a sense of
scale, single cell foundation models are trained on 300K (Rosen et al., 2024) to 30M cells (Cui et al., 2024).

8

Published in Transactions on Machine Learning Research (03/2025)

4.3 Baselines

We compare against several deep learning and classical baselines. All baselines were trained and/or run
from scratch on each testing dataset using their published code and hyperparameters, except Avici (their
recommended checkpoint was trained on their synthetic train and test sets after publication, Appendix B.2).

DCDI (Brouillard et al., 2020) extracts the causal graph as a parameter of a generative model. The G
and Dsf variants use Gaussian or deep sigmoidal flow likelihoods, respectively. DCD-FG (Lopez et al.,
2022) follows DCDI-G, but factorizes the graph into a product of two low-rank matrices for scalability.
DiffAn (Sanchez et al., 2023) uses the trained model’s Hessian to obtain a topological ordering, followed by
a classical pruning algorithm. AVICI (Lorch et al., 2022) uses an amortized inference approach to estimate
P (G | D) over a class of data-generating mechanisms via variational inference. VarSort (a.k.a. “sort and
regress”) (Reisach et al., 2021) sorts nodes by marginal variance and sparsely regresses nodes based on their
predecessors. This naive baseline is intended to reveal artifacts of synthetic data generation. FCI, GIES
quantify the predictive power of FCI and GIES estimates, when run over all nodes. VarSort, Fci, and
Gies were run using non-parametric bootstrapping (Friedman et al., 1999), with 100 estimates of the full
graph (based on 1000 examples each), where the final prediction for each edge is its frequency of appearing
as directed. Since these methods are treated as oracles, the bootstrapping strategy was selected to maximize
test performance. Visualizations of the bootstrapped graph can be found in Figures 7 and 8.

5 Results

We highlight representative results in each section, with additional experiments and analyses in Appendix C.

1. Section 5.1 examines the case where we have no prior knowledge about the data. Our models achieve
high performance out-of-the-box, even when the data are misspecified or out-of-domain.

2. Section 5.2 focuses on the case where we do know (or can estimate) the class of causal mechanisms
or exogenous noise. We show that adapting our pretrained models with this information at zero/low
cost leads to substantial improvement and exceeds the best baseline trained from scratch.

3. Section 5.3 analyzes Sea predictions in context of classic identifiability theory. In particular, we
focus on the linear Gaussian case, and show that Sea approaches “oracle” performance (with respect
to the MEC), while simply running a classic discovery algorithm cannot, on our finite datasets.

4. Section 5.4 contains a variety of ablation studies. In particular, Sea exhibits impressive low-data
performance, requiring only 400 samples to perform well on N = 100 datasets. We also ablate
estimation hyperparameters and the contribution of marginal/global features.

5.1 SEA generalizes to out-of-distribution, misspecified, and real datasets

Table 1 summarizes our controlled experiments on synthetic data. Sea exceeds all baselines in the Linear
case, which matches the models’ assumptions exactly (causal discovery algorithms and inverse covariance).
In the misspecified (NN) or misspecified and out-of-distribution settings (Sigmoid, Polynomial), Sea also
attains the best performance in the vast majority of cases, even though Dcdi and Avici both have access to
the raw data. Furthermore, our models outperform VarSort in every single setting, while most baselines
are unable to do so consistently. This indicates that our models do not simply overfit to spurious features of
the synthetic data generation process.

Table 2 illustrates that we exceed baselines on single cell gene expression data from CausalBench (Chevalley
et al., 2025; Replogle et al., 2022). Furthermore, when we increase the subset size to b = 2000, we achieve
very high precision (0.838) over 2834 predicted edges. Sea runs within 5s on this dataset of 162k cells and
N = 622 genes, while the fastest naive baseline takes 5 minutes and the slowest deep learning baseline takes 9
hours (run in parallel on subsets of genes).

5.2 SEA adapts to new data assumptions with zero to minimal finetuning

We illustrate two strategies that allow us to use pretrained Sea models with different implicit assumptions.
First, if two causal discovery algorithms share the same output format, they can be used interchangeably

9

Published in Transactions on Machine Learning Research (03/2025)

Table 1: Synthetic experiments. Mean/std over 5 distinct Erdős-Rényi graphs, with metrics relative to
ground truth DAG. DiffAn, VarSort, Fci, Sea(Fci) run on observational data only. Evaluation w.r.t.
CPDAG and undirected skeleton in Tables 14 and 15, with additional baselines and ablations in Appendix C.
† indicates o.o.d. setting. ∗ indicates non-parametric bootstrapping. Runtimes with 1 CPU and 1 V100 GPU.

N E Model Linear NN add. Sigmoid† Polynomial† Overall

mAP ↑ SHD ↓ mAP ↑ SHD ↓ mAP ↑ SHD ↓ mAP ↑ SHD ↓ Time(s) ↓

20 20

Dcdi-G 0.59±.12 6.4±.9 0.78±.07 3.0±.7 0.36±.06 42.7±.3 0.42±.08 10.4±.4 4735.7
Dcdi-Dsf 0.66±.16 5.2±.3 0.69±.18 4.2±.5 0.37±.04 43.2±.4 0.26±.08 15.7±.2 3569.1
DiffAn 0.19±.09 40.2±4.4 0.16±.10 38.6±3.1 0.29±.11 19.2±.6 0.09±.03 49.7±4.6 434.3
Avici 0.48±.17 17.2±.1 0.59±.09 10.8±.1 0.42±.13 17.2±.8 0.24±.08 18.4±.1 2.0

VarSort* 0.81±.08 10.0±.4 0.81±.15 6.6±.7 0.50±.13 16.1±.7 0.33±.13 17.1±.1 0.4
Fci* 0.66±.07 19.0±.3 0.42±.19 17.4±.2 0.56±.08 18.5±.5 0.41±.14 18.9±.3 22.2
Gies* 0.84±.08 7.4±.0 0.79±.07 9.0±.1 0.71±.10 12.5±.7 0.62±.09 13.7±.7 482.1

Sea (Fci) 0.96±.03 3.2±.6 0.91±.04 5.0±.8 0.85±.09 6.7±.1 0.69±.09 9.8±.2 4.2
Sea (Gies) 0.97±.02 3.0±.9 0.94±.03 3.4±.4 0.84±.07 8.1±.8 0.69±.12 10.1±.9 3.0

100 400

Dcd-Fg 0.05±.00 3068±131 0.07±.00 3428±154 0.13±.02 3601±272 0.12±.03 3316±698 1838.2
Avici 0.12±.02 391±8 0.17±.01 407±19 0.10±.02 398±11 0.03±.00 402±19 9.3

VarSort* 0.80±.02 224±10 0.18±.03 1139±269 0.51±.05 350±15 0.27±.04 380±17 5.1

Sea (Fci) 0.84±.02 162±12 0.04±.00 403±16 0.63±.03 247±17 0.34±.04 325±22 19.2
Sea (Gies) 0.91±.01 116±7 0.27±.10 364±34 0.69±.03 218±21 0.38±.04 328±22 3.1

Table 2: Results on K562 single cell data, with
STRING database (physical) as ground truth. Base-
lines taken from Chevalley et al. (2025).

Model P ↑ R ↑ F1 ↑ Time(s) ↓

GRNboost 0.070 0.710 0.127 316
Gies 0.190 0.020 0.036 2350

NoTears 0.080 0.620 0.142 32883
Dcdi-G 0.180 0.030 0.051 16561
Dcdi-Dsf 0.140 0.040 0.062 5709
Dcd-Fg 0.110 0.070 0.086 6368

Sea (G)+Corr 0.491 0.109 0.179 4
with b = 2000 0.838 0.093 0.167 5

Table 3: Performance on Sachs (C.5) varies depend-
ing on implicit (Avici training set) and explicit (Sea
variants) assumptions.

Model mAP ↑ AUC ↑ SHD ↓

Dcdi-Dsf 0.20 0.59 20.0

Avici-L 0.35 0.78 20.0
Avici-R 0.29 0.65 18.0
Avici-L+R 0.59 0.83 14.0

Sea (F) 0.23 0.54 24.0
+Kci 0.33 0.63 14.0
+Corr 0.41 0.70 15.0
+Kci+Corr 0.49 0.71 13.0

for marginal estimation. On observational, linear non-Gaussian data, replacing the Ges algorithm with
Lingam (Shimizu et al., 2006) is beneficial without any other change (Table 4). The same improvement
can be observed on Polynomial and Sigmoid non-additive data, when running Fci with a polynomial kernel
conditional independence test (Kci, Zhang et al. (2011)) instead of the Fisherz test, which assumes linearity
(Table 5). In principle, different algorithms might make different mistakes, so this strategy could lead to
out-of-distribution inputs for the pretrained aggregator. While comparing across algorithms is not a primary
focus of this work and requires further theoretical study, we notice similar performance for alternate estimation
algorithms with linear Gaussian assumptions (Table 7), regardless of discovery strategy (GRaSP (Lam et al.,
2022)). The gap is larger for LiNGAM, which assumes non-Gaussianity (Table 25).

Another strategy is to “finetune” the aggregator, either fully or using low-cost methods like LoRA (Hu
et al., 2022). Specifically, we keep the same training set and classification objective, while changing the
input’s featurization, e.g. a different global statistic. Here, we show that finetuning our models for distance
correlation (Dcor) is beneficial in both Tables 4 and 5, and the combination of strategies results in the
highest performance overall, surpassing the best baseline trained from scratch (Dcdi-Dsf).

10

Published in Transactions on Machine Learning Research (03/2025)

Table 4: Adapting Sea to linear non-Gaussian
(Uniform) noise. Lingam run without finetuning;
Sea(G) finetuned for distance correlation.

Model N=10, E=10 N=20, E=20

mAP ↑ SHD ↓ mAP ↑ SHD ↓

Dcdi-Dsf 0.34 22.3 0.32 63.0
Lingam* 0.34 7.2 0.30 18.8

Sea (G) 0.26 12.7 0.12 46.6
+lingam 0.52 10.1 0.22 39.7
+dcor 0.44 8.0 0.21 33.1
+ling+dcor 0.76 4.6 0.67 14.2

Table 5: Adapting Sea to polynomial, sigmoid non-
additive (N=10, E=10). Fci run with Kci test;
Sea(F) finetuned for distance correlation.

Model Polynomial Sigmoid

mAP ↑ SHD ↓ mAP ↑ SHD ↓

Dcdi-Dsf 0.39 9.8 0.81 13.6
Fci* 0.12 10.6 0.53 8.1

Sea (F) 0.22 10.6 0.59 4.8
+kci 0.30 10.6 0.59 5.5
+dcor 0.45 9.6 0.90 2.1
+kci+dcor 0.52 8.2 0.86 3.4

Table 6: Sea respects identifiability theory. Observational setting, standardized (-std) N = 10, E = 10 linear
Gaussian test datasets with > 1 graph in Markov equivalence class (MEC). Top: oracle performance based
on true MEC (see left). Bottom: trained Sea approaches oracle performance, while FCI is very noisy.

"metric over
mean MEC""mean metric over MEC"

"true"
graph

1

2
3

mean over
adjacency
matrices

Model mAP(↑) AUC(↑) SHD(↓) OA(↑)

metric over mean MEC 0.88±.10 0.98±.03 2.0±1.0 0.74±.22

mean metric over MEC 0.74±.21 0.91±.07 1.2±.69 0.84±.13

Sea(Fci)-std 0.83±.16 0.97±.04 3.3±2.3 0.69±.21

Sea(Fci)+Corr-std 0.84±.14 0.96±.03 5.0±4.5 0.85±.14

Fci-std 0.49±.28 0.75±.16 9.3±2.8 0.49±.29

On real data from unknown distributions, these two strategies enable the ability to run causal discovery
with different assumptions, which may be coupled with unsupervised methods for model selection (Faller
et al., 2023). Table 3 illustrates this idea using the Sachs proteomics dataset. Sea can be run directly with a
different estimation algorithm (FCI with polynomial kernel “Kci”), or finetuned for around 4-6 hours on 1
A6000 and < 4 GB of GPU memory (correlation “Corr”). In contrast, methods like Avici must simulate
new datasets based on each new assumption and re-train/finetune on these data (reportedly around 4 days).

5.3 SEA respects identifiability theory

While the identifiability of specific causal models is not a primary focus of this work, we show that Sea still
respects classic identifiability theory. Specifically, while linear Gaussian models are known to be unidentifiable,
Table 1 might suggest that both Sea and Dcdi perform quite well on these data – better than would be
expected if graphs were only identifiable up to their Markov equivalence classes. This empirical “identifiability”
may be the consequence of two findings. Common synthetic data generation schemes tend to result in
marginal variances that reflect topological order (Reisach et al., 2021), and in additive noise models, it has
been shown that marginal variances that are the “same or weakly monotone increasing in the [topological]
ordering” result in uniquely identifiable graphs (Park, 2020). Data standardization can eliminate these
artifacts of synthetic data generation. In Table 5.3, we see that after standardizing linear Gaussian data, our
model performs no better than randomly selecting a graph from the Markov equivalence class (enumerated
via pcalg (Kalisch et al., 2012)). The classic FCI algorithm is unable to reach this upper bound, suggesting
that the amortized inference framework allows us to perform better in finite datasets.

5.4 Ablation studies

In addition to high performance and flexibility, one of the hallmarks of foundation models is their ability to act
as few-shot learners when scaling up (Brown et al., 2020). We first confirm that Sea is indeed data-efficient,
requiring only around 300-400 examples for performance to converge on datasets of N = 100 variables, and
outperforms inverse covariance (computed with 500 examples) at only 200 examples (Figure 4A). To probe

11

Published in Transactions on Machine Learning Research (03/2025)

Table 7: Sea is generally insensitive to swapping estima-
tion other algorithms with linear Gaussian assumptions,
at inference time. Results on N = 10 observational
setting. FCI cannot be used with Sea(g) since FCI
outputs a PAG, not a CPDAG.

Inference
estimator

Sea (Fci) Sea (Gies)
Lin. NN Sig. Poly. Lin. NN Sig. Poly.

FCI 0.98 0.88 0.83 0.62 — — — —

PC 0.93 0.85 0.86 0.64 0.96 0.89 0.82 0.58
GES 0.94 0.85 0.80 0.60 0.95 0.88 0.81 0.57
GRaSP 0.93 0.85 0.80 0.61 0.95 0.88 0.81 0.57

Lin NN Sig Poly
0.00

0.50
0.75
1.00

m
A

P

SEA

Lin NN Sig Poly

Tiny SEA
T=50
T=10

Figure 3: Few-shot learning behavior emerges as train-
ing set increases. “Tiny” Sea trained on 1/4 of the
data is comparable to the full model on N = 10
datasets when given T = 50 batches, but is less robust
with only T = 10.

100 200 300 400 1000 2000
dataset size (M)

0.0

0.5

1.0

m
A

P

(A) mAP vs. dataset size

Linear
Sigmoid

50 100 150 200 300 500
batch size (b)

0.0

0.5

1.0
(B) mAP vs. batch size

Linear
Sigmoid

2 5 10 20 30 40 50 100
number of batches (T)

0.0

0.5

1.0
(C) mAP vs. # batches

Linear,b=500
Linear,b=300

Sigmoid,b=500
Sigmoid,b=300

3 4 5 6 7 8 9 10
variables / subset (k)

0.0

0.5

1.0
(D) mAP vs. subset size

Linear
Sigmoid

Figure 4: Ablations with Sea (Gies) for estimation parameters on N = 100, E = 100. Error bars indicate
95% confidence interval across the 5 i.i.d. datasets of each setting. All parameters are set to the defaults
(Section 3.3) unless otherwise noted. (A) Dashed: inverse covariance at M = 500. (C) Variance is unusually
high for Sigmoid b = 300 until T = 100, indicating that larger batches result in more stable results.

for how this behavior emerges, we trained a “tiny” version of Sea (Gies) on approximately a quarter of the
training data (N = 10, 20 datasets, 64.8 million examples). The tiny model performs nearly as well as the
original on N = 10 datasets when provided T = 50 batches, but exhibits much poorer few-shot behavior with
only T = 10 batches (Figure 3). This demonstrates that Sea is able to ingest large amounts of data, leading
to promising few-shot behavior.6

We also ablate each parameter of the estimation step to inform best practices. The trade-off between the
number and size of batches may be relevant to estimation algorithms that scale poorly with the number
of examples, e.g. kernel-based methods (Zhang et al., 2011). When given T = 100 batches, Sea reaches
reasonable performance at around 250-300 examples per batch (Figure 4B). Figure 4C further illustrates
that on the harder Sigmoid datasets, 5 batches of size b = 500 are roughly equivalent to 100 batches of size
b = 300. Finally, increasing the number of variables in each subset has minimal impact (Figure 4D), which is
encouraging, as there is no need to incur the exponentially-scaling runtimes associated with larger subsets.

Finally, we analyze the impact of removing marginal estimates or global statistics (Table 8). First, we take a
fully pretrained Sea (Gies) and set the corresponding hidden representations to 0. Performance drops more
when hρ is set to 0, indicating that our pretrained aggregator relies more on global statistics, though a sizable
gap emerges in both situations. Then, we re-train Sea (Gies) on the N = 10 datasets, with and without
global statistics, so that lack of ρ is in-distribution for the latter model, and the training sets are comparable.
Here, we see that the “no ρ” version with T = 50 estimates is on par with the original architecture with
T = 10 estimates, so the global statistic is equivalent to ∼ 40 estimates. This roughly aligns with the theory
that global statistics can expedite the skeleton discovery process (Section 3.4), as the number of estimates
required to discover the skeleton of a N = 10 graph is approximately

(10
2

)
= 45 (Prop. A.9).

6Due to computational limitations, we were unable to train larger models, as our existing training set requires several hundred
GB in memory, and our file system does not support fast dynamic loading.

12

Published in Transactions on Machine Learning Research (03/2025)

Table 8: Ablating marginal and global features on Sea (Gies). Top: We set marginal and global represen-
tations to 0 (lack of E′/ρ is out-of-distribution) and observe that the pretrained model is more robust to
removing E′, perhaps since we sample varying T during training. Bottom: Re-train Sea (Gies) on N = 10
datasets, with and without global features (lack of ρ is in-distribution). We observe that global features are
“worth” T ≈ 40 estimates of k = 5 variables each.

Model Linear NN add. NN. Sigmoid Polynomial

mAP ↑ SHD ↓ mAP ↑ SHD ↓ mAP ↑ SHD ↓ mAP ↑ SHD ↓ mAP ↑ SHD ↓

Sea (Gies) 0.99±.01 1.2±.7 0.94±.06 2.6±.8 0.91±.07 3.2±.3 0.85±.12 4.0±.5 0.70±.11 5.8±.6

hρ ← 0 0.30±.17 29.2±.4 0.27±.18 29.4±.8 0.19±.09 29.0±.0 0.35±.17 27.4±.4 0.31±.15 27.1±.9

hE ← 0 0.85±.09 6.4±.7 0.82±.11 10.2±.9 0.78±.07 13.2±.2 0.63±.21 10.2±.8 0.55±.19 13.4±.6

T = 2 0.20±.04 31.2±.5 0.25±.06 29.2±.4 0.33±.10 27.8±.1 0.19±.07 30.2±.9 0.24±.09 28.1±.9

T = 10 0.62±.16 8.0±.8 0.69±.11 9.6±.6 0.66±.13 11.2±.9 0.62±.20 9.2±.6 0.50±.22 8.9±.2

T = 50, no ρ 0.63±.13 6.8±.1 0.53±.07 6.2±.9 0.68±.20 6.0±.1 0.58±.15 7.1±.1 0.50±.14 7.1±.5

6 Discussion

Interventional experiments have formed the basis of scientific discovery throughout history, and in recent years,
advances in the life sciences have led to datasets of unprecedented scale and resolution (Replogle et al., 2022;
Nadig et al., 2024). The goal of these perturbation experiments is to extract causal relationships between
biological entities, such as genes or proteins. However, the sheer size, sparsity, and noise level of these data
pose significant challenges to existing causal discovery algorithms. Moreover, these real datasets do not fit
cleanly into causal frameworks that are designed around fixed sets of data assumptions, either explicit (Spirtes
et al., 1995) or implicit (Lorch et al., 2022). In this work, we approached these challenges through a causal
discovery “foundation model.” Central to this concept were three goals. First, this model should generalize to
unseen datasets whose data-generating mechanisms are unknown, and potentially out-of-distribution. Second,
it should be easy to steer the model’s predictions with inductive biases about the data. Finally, scaling up the
model should lead to data-efficiency. We proposed Sea, a framework that yields causal discovery foundation
models. Sea was motivated by the idea that classical statistics and discovery algorithms provide powerful
descriptors of data that are fast to compute and robust across datasets. Given these statistics, we trained a
deep learning model to reproduce faithful causal graphs. Theoretically, we demonstrated that it is possible
to infer causal graphs consistent with correct marginal estimates, and that our model is well-specified with
respect to this task. Empirically, we implemented two proofs of concept of Sea that perform well across a
variety of causal discovery tasks, easily incorporate inductive biases when they are available, and exhibit
excellent few-shot behavior when scaled up.

While Sea provides a high-level framework for supervised causal discovery, there are several empirical
limitations of the two implementations describe in this paper. These include: 1) an arbitrary, hard-coded
maximum of 1000 variables, 2) poor generalization to synthetic cyclic data, 3) erring on the side of sparsity on
real data, 4) numeric instability of inverse covariance on larger graphs, and as a result, 5) training requires full
precision. The first three aspects may be addressed by modifying the architecture and/or synthetic training
datasets, while the latter two can be addressed with more numerically stable statistics, like correlation.

More broadly, the success of supervised causal discovery algorithms derives from the fidelity of the data
simulation procedure. In this paper, we present proofs of concept for the modeling framework, but we do not
solve the problem of simulating realistic data. Of the data that may exist in the real world, the training data
used here represent only a small, perhaps unrealistic, fraction. To achieve any semblance of trustworthiness
on real applications, it is crucial to study the characteristics of each domain in detail – including common
graph topologies and functional forms (Aguirre et al., 2024); the degree and nature of missing data (Hicks
et al., 2018); and sources of measurement error or other covariates (Tran et al., 2020). When possible, we
recommend that any insights be triangulated with other sources of knowledge. For example, while this work
does not directly provide an inference framework, the predicted structure could be used to parametrize a
generative model, whose likelihood could be evaluated on held-out interventions (Hägele et al., 2023). It is

13

Published in Transactions on Machine Learning Research (03/2025)

also important to check whether the inferred relationships compound upon any existing biases in the data.
This is particularly important for sensitive domains like healthcare or legal applications.

This work also opens several directions for further investigation. The framework we describe utilizes a
single causal discovery algorithm and a single global statistic. Classic causal discovery algorithms leverage
diverse insights for identifying causal structure, e.g. the non-Gaussianity of noise (Shimizu et al., 2006) vs.
conditional independence (Spirtes et al., 1995). Thus, different discovery algorithms or summary statistics
may reveal different aspects of the causal structure. Learning to resolve these potentially conflicting views
remains unexplored, both from experimental and theoretical perspectives. Furthermore, this work only shows
that the axial attention architecture is well-specified as a model class and probes generalization empirically.
This motivates theoretical studies into supervised causal discovery with regards to what information can be
provably learned, e.g. in the style of of PAC (probably approximately correct) learning (Allen-Zhu et al.,
2019).

In summary, we hope that this work will inspire a new avenue of research into causal discovery algorithms
that are applicable to and informed by real applications.

Acknowledgements

We thank Bowen Jing, Felix Faltings, Sean Murphy, and Wenxian Shi for helpful discussions regarding the
writing; as well as Jiaqi Zhang, Romain Lopez, Caroline Uhler, and Stephen Bates for helpful feedback
regarding the framing of this project. Finally, we thank our action editor Bryon Aragam and our anonymous
reviewers for their invaluable suggestions towards improving this paper during the review process.

This material is based upon work supported by the National Science Foundation Graduate Research Fellowship
under Grant No. 1745302. We would like to acknowledge support from the NSF Expeditions grant
(award 1918839: Collaborative Research: Understanding the World Through Code), Machine Learning
for Pharmaceutical Discovery and Synthesis (MLPDS) consortium, and the Abdul Latif Jameel Clinic for
Machine Learning in Health.

14

Published in Transactions on Machine Learning Research (03/2025)

References
Matthew Aguirre, Jeffrey P Spence, Guy Sella, and Jonathan K Pritchard. Gene regulatory network structure

informs the distribution of perturbation effects. bioRxiv, 2024. doi: 10.1101/2024.07.04.602130.

Hirotugu Akaike. Information theory and an extension of the maximum likelihood principle. In 2nd
International Symposium on Information Theory, pp. 267–281. Akadémiai Kiadó Location Budapest,
Hungary, 1973.

Zeyuan Allen-Zhu, Yuanzhi Li, and Yingyu Liang. Learning and generalization in overparameterized neural
networks, going beyond two layers. Advances in Neural Information Processing Systems, 32, 2019.

Steen A. Andersson, David Madigan, and Michael D. Perlman. A characterization of Markov equivalence
classes for acyclic digraphs. The Annals of Statistics, 25(2):505 – 541, 1997. doi: 10.1214/aos/1031833662.

Bryon Aragam, Arash A Amini, and Qing Zhou. Learning directed acyclic graphs with penalized neighbourhood
regression. arXiv preprint arXiv:1511.08963, 2015.

Rishi Bommasani, Drew A Hudson, Ehsan Adeli, Russ Altman, Simran Arora, Sydney von Arx, Michael S
Bernstein, Jeannette Bohg, Antoine Bosselut, Emma Brunskill, et al. On the opportunities and risks of
foundation models. arXiv preprint arXiv:2108.07258, 2021.

Andrew P. Bradley. The use of the area under the roc curve in the evaluation of machine learning algorithms.
Pattern Recognition, 30(7):1145–1159, 1997. ISSN 0031-3203. doi: https://doi.org/10.1016/S0031-3203(96)
00142-2.

Philippe Brouillard, Sébastien Lachapelle, Alexandre Lacoste, Simon Lacoste-Julien, and Alexandre Drouin.
Differentiable causal discovery from interventional data. Advances in Neural Information Processing
Systems, 33:21865–21877, 2020.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are few-shot learners.
Advances in Neural Information Processing Systems, 33:1877–1901, 2020.

Peter Bühlmann, Jonas Peters, and Jan Ernest. CAM: Causal additive models, high-dimensional order search
and penalized regression. The Annals of Statistics, 42(6):2526 – 2556, 2014. doi: 10.1214/14-AOS1260.

Mathieu Chevalley, Yusuf H Roohani, Arash Mehrjou, Jure Leskovec, and Patrick Schwab. A large-scale
benchmark for network inference from single-cell perturbation data. Communications Biology, 8(1):412,
2025.

David Maxwell Chickering. Optimal structure identification with greedy search. Journal of Machine Learning
Research, 3:507–554, November 2002.

Haotian Cui, Chloe Wang, Hassaan Maan, Kuan Pang, Fengning Luo, Nan Duan, and Bo Wang. scGPT:
toward building a foundation model for single-cell multi-omics using generative AI. Nature Methods, pp.
1–11, 2024.

George Cybenko. Approximation by superpositions of a sigmoidal function. Mathematics of control, signals
and systems, 2(4):303–314, 1989.

Russell Davidson and James G MacKinnon. Several tests for model specification in the presence of alternative
hypotheses. Econometrica: Journal of the Econometric Society, pp. 781–793, 1981.

Payam Dibaeinia and Saurabh Sinha. SERGIO: A single-cell expression simulator guided by gene regulatory
networks. Cell Systems, 11(3):252–271.e11, 2020. ISSN 2405-4712. doi: https://doi.org/10.1016/j.cels.2020.
08.003.

Frederick Eberhardt, Clark Glymour, and Richard Scheines. N-1 experiments suffice to determine the causal
relations among n variables. Innovations in machine learning: Theory and applications, pp. 97–112, 2006.

15

Published in Transactions on Machine Learning Research (03/2025)

Philipp M. Faller, Leena Chennuru Vankadara, Atalanti A. Mastakouri, Francesco Locatello, Dominik Janzing
Karlsruhe Institute of Technology, and Amazon Research Tuebingen. Self-compatibility: Evaluating causal
discovery without ground truth. International Conference on Artificial Intelligence and Statistics, 2023.

Nir Friedman, Moisés Goldszmidt, and Abraham J. Wyner. Data analysis with Bayesian networks: A
bootstrap approach. Proceedings of the Fifteenth Conference on Uncertainty in Artificial Intelligence,
UAI’99, pp. 196–205, 1999.

Tomas Geffner, Javier Antoran, Adam Foster, Wenbo Gong, Chao Ma, Emre Kiciman, Amit Sharma, Angus
Lamb, Martin Kukla, Nick Pawlowski, Agrin Hilmkil, Joel Jennings, Meyer Scetbon, Miltiadis Allamanis,
and Cheng Zhang. Deep end-to-end causal inference. Transactions on Machine Learning Research, 2024.
ISSN 2835-8856.

Clark Glymour, Kun Zhang, and Peter Spirtes. Review of causal discovery methods based on graphical
models. Frontiers in Genetics, 10, 2019. ISSN 1664-8021. doi: 10.3389/fgene.2019.00524.

Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q. Weinberger. On calibration of modern neural networks. In
International Conference on Machine Learning, 2017.

Alain Hauser and Peter Bühlmann. Characterization and greedy learning of interventional Markov equivalence
classes of directed acyclic graphs. Journal of Machine Learning Research, 13(79):2409–2464, 2012.

Stephanie C Hicks, F William Townes, Mingxiang Teng, and Rafael A Irizarry. Missing data and technical
variability in single-cell rna-sequencing experiments. Biostatistics, 19(4):562–578, 2018.

Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer feedforward networks are universal
approximators. Neural Networks, 2(5):359–366, 1989. ISSN 0893-6080. doi: https://doi.org/10.1016/
0893-6080(89)90020-8.

Patrik Hoyer, Dominik Janzing, Joris M Mooij, Jonas Peters, and Bernhard Schölkopf. Nonlinear causal
discovery with additive noise models. Advances in Neural Information Processing Systems, 21, 2008.

Edward J Hu, yelong shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and Weizhu
Chen. LoRA: Low-rank adaptation of large language models. In International Conference on Learning
Representations, 2022.

Biwei Huang, Kun Zhang, Mingming Gong, and Clark Glymour. Causal discovery from multiple data sets
with non-identical variable sets. Proceedings of the AAAI Conference on Artificial Intelligence, 34(06):
10153–10161, Apr. 2020. doi: 10.1609/aaai.v34i06.6575.

Chin-Wei Huang, David Krueger, Alexandre Lacoste, and Aaron Courville. Neural autoregressive flows. In
International Conference on Machine Learning, pp. 2078–2087. PMLR, 2018.

Alexander Hägele, Jonas Rothfuss, Lars Lorch, Vignesh Ram Somnath, Bernhard Schölkopf, and Andreas
Krause. BaCaDI: Bayesian causal discovery with unknown interventions. In International Conference on
Artificial Intelligence and Statistics, pp. 1411–1436. PMLR, 2023.

Chi Jin, Praneeth Netrapalli, and Michael Jordan. What is local optimality in nonconvex-nonconcave minimax
optimization? In International Conference on Machine Learning, pp. 4880–4889. PMLR, 2020.

Diviyan Kalainathan, Olivier Goudet, and Ritik Dutta. Causal discovery toolbox: Uncovering causal
relationships in Python. Journal of Machine Learning Research, 21(37):1–5, 2020.

Markus Kalisch, Martin Mächler, Diego Colombo, Marloes H Maathuis, and Peter Bühlmann. Causal
inference using graphical models with the R package pcalg. Journal of statistical software, 47:1–26, 2012.

Nan Rosemary Ke, Silvia Chiappa, Jane X Wang, Jorg Bornschein, Anirudh Goyal, Melanie Rey, Theophane
Weber, Matthew Botvinick, Michael Curtis Mozer, and Danilo Jimenez Rezende. Learning to induce causal
structure. In International Conference on Learning Representations, 2023.

16

Published in Transactions on Machine Learning Research (03/2025)

Sébastien Lachapelle, Philippe Brouillard, Tristan Deleu, and Simon Lacoste-Julien. Gradient-based neural
DAG learning. In International Conference on Learning Representations, 2020.

Wai-Yin Lam, Bryan Andrews, and Joseph Ramsey. Greedy relaxations of the sparsest permutation algorithm.
In James Cussens and Kun Zhang (eds.), Proceedings of the Thirty-Eighth Conference on Uncertainty in
Artificial Intelligence, volume 180 of Proceedings of Machine Learning Research, pp. 1052–1062. PMLR,
01–05 Aug 2022.

Olivier Ledoit and Michael Wolf. A well-conditioned estimator for large-dimensional covariance matrices.
Journal of Multivariate Analysis, 88(2):365–411, 2004. ISSN 0047-259X. doi: https://doi.org/10.1016/
S0047-259X(03)00096-4.

Phillip Lippe, Taco Cohen, and Efstratios Gavves. Efficient neural causal discovery without acyclicity
constraints. In International Conference on Learning Representations, 2022.

Po-Ling Loh and Peter Bühlmann. High-dimensional learning of linear causal networks via inverse covariance
estimation. The Journal of Machine Learning Research, 15(1):3065–3105, 2014.

Romain Lopez, Jan-Christian Hütter, Jonathan K. Pritchard, and Aviv Regev. Large-scale differentiable
causal discovery of factor graphs. In Advances in Neural Information Processing Systems, 2022.

Lars Lorch, Scott Sussex, Jonas Rothfuss, Andreas Krause, and Bernhard Schölkopf. Amortized inference for
causal structure learning. Advances in Neural Information Processing Systems, 35:13104–13118, 2022.

Ilya Loshchilov, Frank Hutter, et al. Fixing weight decay regularization in Adam. arXiv preprint
arXiv:1711.05101, 5, 2017.

Vitaly Maiorov and Allan Pinkus. Lower bounds for approximation by MLP neural networks. Neurocomputing,
25(1-3):81–91, 1999.

Peter McCullagh. What is a statistical model? The Annals of Statistics, 30(5):1225–1310, 2002.

Joris M Mooij, Sara Magliacane, and Tom Claassen. Joint causal inference from multiple contexts. Journal
of Machine Learning Research, 21(99):1–108, 2020.

Ajay Nadig, Joseph M. Replogle, Angela N. Pogson, Steven A McCarroll, Jonathan S. Weissman, Elise B.
Robinson, and Luke J. O’Connor. Transcriptome-wide characterization of genetic perturbations. bioRxiv,
2024. doi: 10.1101/2024.07.03.601903.

Yatin Nandwani, Abhishek Pathak, and Parag Singla. A primal dual formulation for deep learning with
constraints. Advances in Neural Information Processing Systems, 32, 2019.

Ignavier Ng, Biwei Huang, and Kun Zhang. Structure learning with continuous optimization: A sober look
and beyond. In Causal Learning and Reasoning, pp. 71–105. PMLR, 2024.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow instructions with
human feedback. Advances in Neural Information Processing Systems, 35:27730–27744, 2022.

Gunwoong Park. Identifiability of additive noise models using conditional variances. Journal of Machine
Learning Research, 21(75):1–34, 2020.

Anne Helby Petersen, Joseph Ramsey, Claus Thorn Ekstrøm, and Peter Spirtes. Causal discovery for
observational sciences using supervised machine learning. Journal of Data Science, 21(2):255–280, 2023.
ISSN 1680-743X. doi: 10.6339/23-JDS1088.

Jorge Pérez, Javier Marinković, and Pablo Barceló. On the Turing completeness of modern neural network
architectures. In International Conference on Learning Representations, 2019.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language models
are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

17

Published in Transactions on Machine Learning Research (03/2025)

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry,
Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual models from natural
language supervision. In International Conference on Machine Learning, pp. 8748–8763. PMLR, 2021.

Roshan M Rao, Jason Liu, Robert Verkuil, Joshua Meier, John Canny, Pieter Abbeel, Tom Sercu, and
Alexander Rives. MSA transformer. In Proceedings of the 38th International Conference on Machine
Learning, volume 139 of Proceedings of Machine Learning Research, pp. 8844–8856. PMLR, 18–24 Jul 2021.

Alexander G. Reisach, Christof Seiler, and Sebastian Weichwald. Beware of the simulated DAG! causal
discovery benchmarks may be easy to game. Advances in Neural Information Processing Systems, 34, 2021.

Patrik Reizinger, Yash Sharma, Matthias Bethge, Bernhard Schölkopf, Ferenc Huszár, and Wieland Brendel.
Jacobian-based causal discovery with nonlinear ICA. Transactions on Machine Learning Research, 2023.
ISSN 2835-8856.

J. M. Replogle, R. A. Saunders, A. N. Pogson, J. A. Hussmann, A. Lenail, A. Guna, L. Mascibroda, E. J.
Wagner, K. Adelman, G. Lithwick-Yanai, N. Iremadze, F. Oberstrass, D. Lipson, J. L. Bonnar, M. Jost,
T. M. Norman, and J. S. Weissman. Mapping information-rich genotype-phenotype landscapes with
genome-scale Perturb-seq. Cell, 185(14):2559–2575, Jul 2022.

Laria Reynolds and Kyle McDonell. Prompt programming for large language models: Beyond the few-shot
paradigm. In Extended abstracts of the 2021 CHI conference on human factors in computing systems, pp.
1–7, 2021.

Yanay Rosen, Maria Brbić, Yusuf Roohani, Kyle Swanson, Ziang Li, and Jure Leskovec. Toward universal
cell embeddings: integrating single-cell RNA-seq datasets across species with SATURN. Nature Methods,
pp. 1–9, 2024.

Karen Sachs, Omar Perez, Dana Pe’er, Douglas A. Lauffenburger, and Garry P. Nolan. Causal protein-
signaling networks derived from multiparameter single-cell data. Science, 308(5721):523–529, 2005. doi:
10.1126/science.1105809.

Pedro Sanchez, Xiao Liu, Alison Q. O’Neil, and Sotirios A. Tsaftaris. Diffusion models for causal discovery
via topological ordering. In The Eleventh International Conference on Learning Representations, ICLR
2023, Kigali, Rwanda, May 1-5, 2023. OpenReview.net, 2023.

Clayton Sanford, Daniel J Hsu, and Matus Telgarsky. Representational strengths and limitations of Trans-
formers. Advances in Neural Information Processing Systems, 36, 2024.

Rylan Schaeffer, Brando Miranda, and Oluwasanmi Koyejo. Are emergent abilities of large language models
a mirage? Advances in Neural Information Processing Systems, abs/2304.15004, 2023.

Gideon Schwarz. Estimating the dimension of a model. The Annals of Statistics, 6(2):461 – 464, 1978. doi:
10.1214/aos/1176344136.

Han Shao, Omar Montasser, and Avrim Blum. A theory of PAC learnability under transformation invariances.
Advances in Neural Information Processing Systems, 35:13989–14001, 2022.

Zuowei Shen, Haizhao Yang, and Shijun Zhang. Optimal approximation rate of relu networks in terms of
width and depth. Journal de Mathématiques Pures et Appliquées, 157:101–135, 2022.

Shohei Shimizu, Patrik O. Hoyer, Aapo Hyvarinen, and Antti Kerminen. A linear non-Gaussian acyclic model
for causal discovery. Journal of Machine Learning Research, 7(72):2003–2030, 2006.

Peter Spirtes, Clark Glymour, and Richard Scheines. Causality from probability. In Conference Proceedings:
Advanced Computing for the Social Sciences, 1990.

Peter Spirtes, Christopher Meek, and Thomas Richardson. Causal inference in the presence of latent variables
and selection bias. In Proceedings of the Eleventh Conference on Uncertainty in Artificial Intelligence,
UAI’95, pp. 499–506, San Francisco, CA, USA, 1995. Morgan Kaufmann Publishers Inc. ISBN 1558603859.

18

Published in Transactions on Machine Learning Research (03/2025)

Peter Spirtes, Clark Glymour, and Richard Scheines. Causation, Prediction, and Search. MIT Press, 2001.
doi: https://doi.org/10.7551/mitpress/1754.001.0001.

G’abor J. Sz’ekely, Maria L. Rizzo, and Nail K. Bakirov. Measuring and testing dependence by correlation of
distances. Annals of Statistics, 35:2769–2794, 2007.

Robert Tillman, David Danks, and Clark Glymour. Integrating locally learned causal structures with
overlapping variables. Advances in Neural Information Processing Systems, 21:1665–1672, 01 2008.

Hoa Thi Nhu Tran, Kok Siong Ang, Marion Chevrier, Xiaomeng Zhang, Nicole Yee Shin Lee, Michelle Goh,
and Jinmiao Chen. A benchmark of batch-effect correction methods for single-cell RNA sequencing data.
Genome biology, 21:1–32, 2020.

Ioannis Tsamardinos, Laura E Brown, and Constantin F Aliferis. The max-min hill-climbing Bayesian network
structure learning algorithm. Machine learning, 65(1):31–78, 2006.

Sara van de Geer and Peter Bühlmann. l0-penalized maximum likelihood for sparse directed acyclic graphs.
The Annals of Statistics, 41(2):536–567, 2013.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz Kaiser,
and Illia Polosukhin. Attention is all you need. In I. Guyon, U. Von Luxburg, S. Bengio, H. Wallach,
R. Fergus, S. Vishwanathan, and R. Garnett (eds.), Advances in Neural Information Processing Systems,
volume 30, 2017.

Tom S. Verma and Judea Pearl. On the equivalence of causal models. In Proceedings of the Sixth Conference
on Uncertainty in Artificial Intelligence, 1990.

Yuhao Wang, Liam Solus, Karren Yang, and Caroline Uhler. Permutation-based causal inference algorithms
with interventions. In Advances in Neural Information Processing Systems, volume 30, 2017.

Chulhee Yun, Srinadh Bhojanapalli, Ankit Singh Rawat, Sashank Reddi, and Sanjiv Kumar. Are Transformers
universal approximators of sequence-to-sequence functions? In International Conference on Learning
Representations, 2020.

Kun Zhang, J. Peters, Dominik Janzing, and Bernhard Scholkopf. Kernel-based conditional independence
test and application in causal discovery. Conference on Uncertainty in Artificial Intelligence, 2011.

Xun Zheng, Bryon Aragam, Pradeep K Ravikumar, and Eric P Xing. DAGs with no tears: Continuous
optimization for structure learning. Advances in Neural Information Processing Systems, 31, 2018.

Yujia Zheng, Biwei Huang, Wei Chen, Joseph Ramsey, Mingming Gong, Ruichu Cai, Shohei Shimizu, Peter
Spirtes, and Kun Zhang. Causal-learn: Causal discovery in Python. Journal of Machine Learning Research,
25(60):1–8, 2024.

19

Published in Transactions on Machine Learning Research (03/2025)

A Theoretical motivations

Our theoretical contributions focus on two primary directions.

1. We formalize the notion of marginal estimates used in this paper, and prove that given sufficient
marginal estimates, it is possible to recover a pattern faithful to the global causal graph. We provide
lower bounds on the number of marginal estimates required for such a task, and motivate global
statistics as an efficient means to reduce this bound.

2. We show that our proposed axial attention has the capacity to recapitulate the reasoning required
for marginal estimate resolution. We provide realistic, finite bounds on the width and depth required
for this task.

Before these formal discussions, we start with a toy example to provide intuition regarding marginal estimates
and constraint-based causal discovery algorithms.

A.1 Toy example: Resolving marginal graphs

Consider the Y-shaped graph with four nodes in Figure 5. Suppose we run the PC algorithm on all subsets of
three nodes, and we would like to recover the result of the PC algorithm on the full graph. We illustrate how
one might resolve the marginal graph estimates. The PC algorithm consists of the following steps (Spirtes
et al., 2001).

1. Start from the fully connected, undirected graph on N nodes.
2. Remove all edges (i, j) where Xi ⊥⊥ Xj .
3. For each edge (i, j) and subsets S ⊆ [N] \ {i, j} of increasing size n = 1, 2, . . . , d, where d is the

maximum degree in G, and all k ∈ S are connected to either i or j: if Xi ⊥⊥ Xj | S, remove edge
(i, j).

4. For each triplet (i, j, k), such that only edges (i, k) and (j, k) remain, if k was not in the set S that
eliminated edge (i, j), then orient the “v-structure” as i→ k ← j.

5. (Orientation propagation) If i → j, edge (j, k) remains, and edge (i, k) has been removed, orient
j → k. If there is a directed path i⇝ j and an undirected edge (i, j), then orient i→ j.

X

Y
Z W

X

Y
Z W

X

Y
Z W

X

Y
Z W

X

Y
Z W

X

Y
Z W

X

Y
Z

X

Y
W

X
Z W

Y
Z W

Nodes
available

PC algorithm
output

Ground truth (A) (B) (C) (D)

Figure 5: Resolving marginal graphs. Subsets of nodes revealed to the PC algorithm (circled in row 1) and
its outputs (row 2).

In each of the four cases, the PC algorithm estimates the respective graphs as follows.

(A) We remove edge (X, Y) via (2) and orient the v-structure.
(B) We remove edge (X, Y) via (2) and orient the v-structure.
(C) We remove edge (X, W) via (3) by conditioning on Z. There are no v-structures, so the edges remain

undirected.
(D) We remove edge (Y, W) via (3) by conditioning on Z. There are no v-structures, so the edges remain

undirected.

20

Published in Transactions on Machine Learning Research (03/2025)

The outputs (A-D) admit the full PC algorithm output as the only consistent graph on four nodes.

• X and Y are unconditionally independent, so no subset will reveal an edge between (X, Y).

• There are no edges between (X, W) and (Y, W). Otherwise, (C) and (D) would yield the undirected
triangle.

• X, Y, Z must be oriented as X → Z ← Y . Paths X → Z → Y and X ← Z ← Y would induce an
(X, Y) edge in (B). Reversing orientations X ← Z → Y would contradict (A).

• (Y, Z) must be oriented as Y → Z. Otherwise, (A) would remain unoriented.

A.2 Resolving marginal estimates into global graphs

Classical results have characterized the Markov equivalency class of directed acyclic graphs. Two graphs are
observationally equivalent if they have the same skeleton and v-structures (Verma & Pearl, 1990). Thus, a
pattern P is faithful to a graph G if and only if they share the same skeletons and v-structures (Spirtes et al.,
1990).
Definition A.1. Let G = (V, E) be a directed acyclic graph. A pattern P is a set of directed and undirected
edges over V .
Definition A.2 (Theorem 3.4 from Spirtes et al. (2001)). If pattern P is faithful to some directed acyclic
graph, then P is faithful to G if and only if

1. for all vertices X, Y of G, X and Y are adjacent if and only if X and Y are dependent conditional
on every set of vertices of G that does not include X or Y ; and

2. for all vertices X, Y, Z, such that X is adjacent to Y and Y is adjacent to Z and X and Z are not
adjacent, X → Y ← Z is a subgraph of G if and only if X, Z are dependent conditional on every set
containing Y but not X or Z.

Given data faithful to G, a number of classical constraint-based algorithms produce patterns that are faithful
to G. We denote this set of algorithms as F .
Theorem A.3 (Theorem 5.1 from Spirtes et al. (2001)). If the input to the PC, SGS, PC-1, PC-2, PC∗,
or IG algorithms faithful to directed acyclic graph G, the output is a pattern that represents the faithful
indistinguishability class of G.

The algorithms in F are sound and complete if there are no unobserved confounders.

Let PV be a probability distribution that is Markov, minimal, and faithful to G. Let D ∈ RM×N ∼ PV be a
dataset of M observations over all N = |V | nodes.

Consider a subset S ⊆ V . Let D[S] denote the subset of D over S,

D[S] = {xi,v : v ∈ S}N
i=1, (13)

and let G[S] denote the subgraph of G induced by S

G[S] = (S, {(i, j) : i, j ∈ S, (i, j) ∈ E}. (14)

If we apply any f ∈ F to D[S], the results are not necessarily faithful to G[S], as now there may be latent
confounders in V \ S (by construction). We introduce the term marginal estimate to denote the resultant
pattern that, while not faithful to G[S], is still informative.
Definition A.4 (Marginal estimate). A pattern E′ is a marginal estimate of G[S] if and only if

1. for all vertices X, Y of S, X and Y are adjacent if and only if X and Y are dependent conditional
on every set of vertices of S that does not include X or Y ; and

2. for all vertices X, Y, Z, such that X is adjacent to Y and Y is adjacent to Z and X and Z are not
adjacent, X → Y ← Z is a subgraph of S if and only if X, Z are dependent conditional on every set
containing Y but not X or Z.

21

Published in Transactions on Machine Learning Research (03/2025)

Algorithm 1 Resolve marginal estimates of f ∈ F
1: Input: Data DG faithful to G
2: Initialize E′ ← KN as the complete undirected graph on N nodes.
3: for S ∈ Sd+2 do
4: Compute E′

S = f(DG[S])
5: for (i, j) ̸∈ E′

S do
6: Remove (i, j) from E′

7: end for
8: end for
9: for E′

S ∈ {E′
S}Sd+2 do

10: for v-structure i→ j ← k in E′
S do

11: if {i, j}, {j, k} ∈ E′ and {i, k} ̸∈ E′ then
12: Assign orientation i→ j ← k in E′

13: end if
14: end for
15: end for
16: Propagate orientations in E′ (optional).

Proposition A.5. Let G = (V, E) be a directed acyclic graph with maximum degree d. For S ⊆ V , let E′
S

denote the marginal estimate over S. Let Sd denote the superset that contains all subsets S ⊆ V of size at
most d. Algorithm 1 maps {E′

S}S∈Sd+2 to a pattern E′ faithful to G.

On a high level, lines 3-8 recover the undirected “skeleton” graph of E∗, lines 9-15 recover the v-structures,
and line 16 references step 5 in Section A.1.
Remark A.6. In the PC algorithm (Spirtes et al. (2001), A.1), its derivatives, and Algorithm 1, there is no
need to consider separating sets with cardinality greater than maximum degree d, since the maximum number
of independence tests required to separate any node from the rest of the graph is equal to number of its
parents plus its children (due to the Markov assumption).
Lemma A.7. The undirected skeleton of E∗ is equivalent to the undirected skeleton of E′

C∗ := {{i, j} | (i, j) ∈ E∗ or (j, i) ∈ E∗} = {{i, j} | (i, j) ∈ E′ or (j, i) ∈ E′} := C ′. (15)

That is, {i, j} ∈ C∗ ⇐⇒ {i, j} ∈ C ′.

Proof. It is equivalent to show that {i, j} ̸∈ C∗ ⇐⇒ {i, j} ̸∈ C ′

⇒ If {i, j} ̸∈ C∗, then there must exist a separating set S in G of at most size d such that i ⊥⊥ j | S. Then
S ∪ {i, j} is a set of at most size d + 2, where {i, j} ̸∈ C ′

S∪{i,j}. Thus, {i, j} would have been removed from
C ′ in line 6 of Algorithm 1.

⇐ If {i, j} ̸∈ C ′, let S be a separating set in Sd+2 such that {i, j} ̸∈ C ′
S∪{i,j} and i ⊥⊥ j | S. S is also a

separating set in G, and conditioning on S removes {i, j} from C∗.

Lemma A.8. A v-structure i→ j ← k exists in E∗ if and only if there exists the same v-structure in E′.

Proof. V-structures are oriented i→ j ← k in E∗ if there is an edge between {i, j} and {j, k} but not {i, k};
and if j was not in the conditioning set that removed {i, k}. Algorithm 1 orients v-structures i→ j ← k in
E′ if they are oriented as such in any E′

S ; and if {i, j}, {j, k} ∈ E′, {i, k} ̸∈ E′

⇒ Suppose for contradiction that i→ j ← k is oriented as a v-structure in E∗, but not in E′. There are two
cases.

1. No E′
S contains the undirected path i− j − k. If either i− j or j − k are missing from any E′

S , then
E∗ would not contain (i, j) or (k, j). Otherwise, if all S contain {i, k}, then E∗ would not be missing
{i, k} (Lemma A.7).

22

Published in Transactions on Machine Learning Research (03/2025)

2. In every E′
S that contains i−j−k, j is in the conditioning set that removed {i, k}, i.e. i ⊥⊥ k | S, S ∋ j.

This would violate the faithfulness property, as j is neither a parent of i or k in E∗, and the outputs
of the PC algorithm are faithful to the equivalence class of G (Theorem 5.1 Spirtes et al. (2001)).

⇐ Suppose for contradiction that i→ j ← k is oriented as a v-structure in E′, but not in E∗. By Lemma A.7,
the path i− j − k must exist in E∗. There are two cases.

1. If i → j → k or i ← j ← k, then j must be in the conditioning set that removes {i, k}, so no E′
S

containing {i, j, k} would orient them as v-structures.
2. If j is the root of a fork i← j → k, then as the parent of both i and k, j must be in the conditioning

set that removes {i, k}, so no E′
S containing {i, j, k} would orient them as v-structures.

Therefore, all v-structures in E′ are also v-structures in E∗.

Proof of Proposition A.5. Given data that is faithful to G, Algorithm 1 produces a pattern E′ with the same
connectivity and v-structures as E∗. Any additional orientations in both patterns are propagated using
identical, deterministic procedures, so E′ = E∗.

This proof presents a deterministic but inefficient algorithm for resolving marginal subgraph estimates. In
reality, it is possible to recover the undirected skeleton and the v-structures of G without checking all subsets
S ∈ Sd+2.
Proposition A.9 (Skeleton bounds). Let G = (V, E) be a directed acyclic graph with maximum degree d. It
takes O(N2) marginal estimates over subsets of size d + 2 to recover the undirected skeleton of G.

Proof. Following Lemma A.7, an edge (i, j) is not present in C if it is not present in any of the size d + 2
estimates. Therefore, every pair of nodes {i, j} requires only a single estimate of size d + 2, so it is possible
to recover C in

(
N
2
)

estimates.

Proposition A.10 (V-structures bounds). Let G = (V, E) be a directed acyclic graph with maximum degree
d and ν v-structures. It is possible to identify all v-structures in O(ν) estimates over subsets of at most size
d + 2.

Proof. Each v-structure i→ j ← k falls under two cases.

1. i ⊥⊥ k unconditionally. Then an estimate over {i, j, k} will identify the v-structure.
2. i ⊥⊥ k | S, where j ̸∈ S ⊂ V . Then an estimate over S ∪ {i, j, k} will identify the v-structure. Note

that |S| ≤ d + 2 since the degree of i is at least |S|+ 1.

Therefore, each v-structure only requires one estimate, and it is possible to identify all v-structures in O(ν)
estimates.

There are three takeaways from this section.

1. If we exhaustively run a constraint-based algorithm on all subsets of size d + 2, it is trivial to recover
the estimate of the full graph. However, this is no more efficient than running the causal discovery
algorithm on the full graph.

2. In theory, it is possible to recover the undirected graph in O(N2) estimates, and the v-structures in
O(ν) estimates. However, we may not know the appropriate subsets ahead of time.

3. In practice, if we have a surrogate for connectivity, such as the global statistics used in Sea, then
we can vastly reduce the number of estimates used to eliminate edges from consideration, and more
effectively focus on sampling subsets for orientation determination.

23

Published in Transactions on Machine Learning Research (03/2025)

A.3 Model specification

Model specification and universality In classical statistics, a statistical model can be expressed as a
pair (S, Pθ) for θ ∈ Θ, where S is the sample space, P is the family of distributions on S, and Θ is the space
of parameters (McCullagh, 2002). Let x1, . . . , xN be observations of i.i.d. random variables in S, and let P ∗

denote their common distribution. A statistical model is well-specified if P ∗ = Pθ for some θ ∈ Θ. Identifying
the most appropriate class of models has long been an area of interest in statistics (Akaike, 1973). For simple
models like linear regression, there are many ways to test for model specification, where the alternative may
be that the data follow a non-linear relationship (Davidson & MacKinnon, 1981).

In machine learning, however, even the simplest architectures vary immensely. Whether a neural network
is “well-specified” depends on many aspects, such as its width (number of hidden units), depth (number
of layers), activation functions (sources of non-linearity), and more. Thus, instead of testing whether each
neural network architecture is well-specified for each experiment, it is more common to show universality (or
lack thereof). That is, given a class of functions F and the space of parameters Θ, for every f ∈ F does there
exist a θ ∈ Θ that allows the neural network to approximate f to arbitrary accuracy? For example, the most
well-cited work for the universality of multi-layer perceptrons (Hornik et al., 1989) showed that:

“standard multilayer feedforward networks with as few as one hidden layer using arbitrary
squashing functions are capable of approximating any Borel measurable function from one
finite dimensional space to another to any desired degree of accuracy, provided sufficiently
many hidden units are available.”

Note that this definition excludes neural networks that use rectified linear units (ReLU is unbounded), whose
variants are ubiquitous today, as well as neural networks with bounded width. Universality under alternate
assumptions has been addressed by many later works, e.g. Maiorov & Pinkus (1999); Shen et al. (2022).

With respect to modern Transformer architectures (Vaswani et al., 2017), the existing literature are similarly
subject to constraints. For example, Pérez et al. (2019) shows that Transformers equipped with positional
encodings are Turing complete, given infinite precision. Alternatively, Yun et al. (2020) proves that Trans-
formers can approximate arbitrary continuous “sequence-to-sequence” functions, but requires in the worst
case, exponential depth. Finally, Sanford et al. (2024) shows that one-dimensional self attention is unable
to detect arbitrary triples along a sequence, unless the depth scales linearly as the input size (sequence
length). This last case is particularly relevant to our setting, as v-structures are relations of three nodes,
but even modern large language models “only” contain ∼ 100 layers (e.g. GPT-4 is reported to have 120
layers). In general, these works present constructive proofs of either θ (Pérez et al., 2019; Yun et al., 2020) or
pathological cases that cannot be handled (Sanford et al., 2024).

In this paper, we do not consider universality in a general sense, but rather limit our scope to the algorithms
presented in Section A.2. This will allow us to make more realistic assumptions regarding the model class.

Causal identifiability for continuous discovery algorithms Identifiability is central to causal discovery,
as it is important to understand the degree to which a causal model can or cannot be inferred from data. In
contrast to classic approaches, causal discovery algorithms that rely on continuous optimization must consider
several additional aspects with respect to identifiability – namely, their objective; optimization dynamics;
and model specification. We discuss representative works in light of these considerations.

First, the optima of the objectives must correspond to true graphs. NoTears (Zheng et al., 2018) focuses on
the linear SEM case with least-squares loss, and they cite earlier literature regarding the identifiability of this
setup (van de Geer & Bühlmann, 2013; Loh & Bühlmann, 2014; Aragam et al., 2015). Dcdi (Brouillard et al.,
2020) proves that the graph that maximizes their proposed score is I-Markov equivalent to the ground truth,
subject to faithfulness and other regularity conditions. Since amortized causal discovery algorithms tend to
be trained on data from a variety of data-generating processes, the identifiability of an arbitrary graph is less
clear. Ke et al. (2023) cites Eberhardt et al. (2006) and claims that any graph is identifiable “in the limit of
an infinite amount of [single-node hard] interventional data samples.” In our interventional setting, this also
holds. Avici (Lorch et al., 2022) focuses solely on inferring graphs from data, without addressing whether

24

Published in Transactions on Machine Learning Research (03/2025)

they are identifiable. If we suppose that the graphs are identifiable, then in all three cases, the objectives can
be written in terms of the KL divergence between the true and predicted edge distributions, which reaches its
minimum when the predicted graph matches the true graph.

Second, the optimization process must not only converge to an optimum, but also (for amortized models)
generalize to unseen data. This is, in general, difficult to show. Both NoTears and Dcdi acknowledge that
due to the non-convexity of this optimization problem, the optimizer may converge to a stable point, which
is not necessarily the global optimum. Avici includes an explicit acyclicity constraint, so they additionally
cite Nandwani et al. (2019); Jin et al. (2020) for inspiration in constrained optimization of a neural network.
Regarding generalization, existing results on what can be “provably” learned by neural networks are limited
to simple architectures and/or algorithms (Allen-Zhu et al., 2019; Shao et al., 2022). Instead, both Avici and
our work assess generalization empirically, by holding out certain causal mechanisms from training.

Finally, the implementation of each model must be well-specified. Since NoTears assumes linearity, it
directly optimizes the (weighted) adjacency, and the only concern is whether linearity holds. Dcdi cites that
deep sigmoidal flows are universal density approximators (Huang et al., 2018), which in turn invokes the
classic result that a multilayer perceptron with sigmoid activations is a universal approximator (Cybenko,
1989). Avici does not discuss this aspect of their architecture, which is also based on sparse attention,
but is otherwise quite different from ours. The following section proves by construction that our model is
well-specified.

Axial attention architecture is well-specified In the context of Section A.2, we show that three axial
attention blocks (model depth) are sufficient to recover the skeleton and v-structures in O(N) width, and we
require O(L) to propagate orientations along paths of length L. In the following section, we first formalize the
notion of a neural network architecture’s capacity to “implement” an algorithm. Then we prove Theorem 3.1
by construction.
Definition A.11. Let f be a map from finite sets Q to F , and let ϕ be a map from finite sets QΦ to FΦ.
We say ϕ implements f if there exists injection gin : Q→ QΦ and surjection gout : FΦ → F such that

∀q ∈ Q, gout(ϕ(gin(q))) = f(q). (16)

Definition A.12. Let Q, F, QΦ, FΦ be finite sets. Let f be a map from Q to F , and let Φ be a finite set
of maps {ϕ : QΦ → FΦ}. We say Φ has the capacity to implement f if and only if there exists at least one
element ϕ ∈ Φ that implements f .

That is, a single model implements an algorithm f if for every input to f , the model outputs the corresponding
output. A class of models parametrized by ϕ ∈ Φ has the capacity to implement an algorithm if there exists
at least one ϕ that implements f .
Theorem 3.1. Let G = (V, E) be a directed acyclic graph with maximum degree d. For S ⊆ V , let E′

S

denote the marginal estimate over S. Let Sd denote the superset that contains all subsets S ⊆ V of size at
most d. Given {E′

S}S∈Sd+2 , a stack of L axial attention blocks has the capacity to recover G’s skeleton and
v-structures in O(N) width, and propagate orientations on paths of O(L) length.

Proof. We consider axial attention blocks with dot-product attention and omit layer normalization from our
analysis, as is common in the Transformer universality literature Yun et al. (2020). Our inputs X ∈ Rd×R×C

consist of d-dimension embeddings over R rows and C columns. Since our axial attention only operates over
one dimension at a time, we use X·,c to denote a 1D sequence of length R, given a fixed column c, and Xr,· to
denote a 1D sequence of length C, given a fixed row r. A single axial attention layer (with one head) consists
of two attention layers and a feedforward network,

Attnrow(X·,c) = X·,c + WOWV X·,c · σ
[
(WKX·,c)T WQX·,c

]
, (17)

X ← Attnrow(X)
Attncol(Xr,·) = Xr,· + WOWV Xr,· · σ

[
(WKXr,·)T WQXr,·

]
, (18)

X ← Attncol(X)
FFN(X) = X + W2 · ReLU(W1 ·X + b11T

L) + b21T
L, (19)

25

Published in Transactions on Machine Learning Research (03/2025)

where WO ∈ Rd×d, WV , WK , WQ ∈ Rd×d, W2 ∈ Rd×m, W1 ∈ Rm×d, b2 ∈ Rd, b1 ∈ Rm, and m is the hidden
layer size of the feedforward network. For concision, we have omitted the r and c subscripts on the W s,
but the row and column attentions use different parameters. Any row or column attention can take on the
identity mapping by setting WO, WV , WK , WQ to d× d matrices of zeros.

A single axial attention block consists of two axial attention layers ϕE and ϕρ, connected via messages (Section
3.3)

hE,ℓ = ϕE,ℓ(hE,ℓ−1)
hρ,ℓ−1 ←Wρ,ℓ

[
hρ,ℓ−1, mE→ρ,ℓ

]
hρ,ℓ = ϕρ,ℓ(hρ,ℓ−1)
hE,ℓ ← hE,ℓ + mρ→E,ℓ

where hℓ denote the hidden representations of E and ρ at layer ℓ, and the outputs of the axial attention block
are hρ,ℓ, hE,ℓ.

We construct a stack of L ≥ 3 axial attention blocks that implement Algorithm 1.

Model inputs Consider edge estimate E′
i,j ∈ E in a graph of size N . Let ei, ej denote the endpoints of

(i, j). Outputs of the PC algorithm can be expressed by three endpoints: {∅, •,▶}. A directed edge from
i→ j has endpoints (•,▶), the reversed edge i← j has endpoints (▶, •), an undirected edge has endpoints
(•, •), and the lack of any edge between i, j has endpoints (∅,∅).

Let one-hotN (i) denote the N -dimensional one-hot column vector where element i is 1. We define the
embedding of (i, j) as a d = 2N + 6 dimensional vector,

gin(Et,(i,j)) = hE,0
(i,j) =


one-hot3(ei)
one-hot3(ej)
one-hotN (i)
one-hotN (j)

 . (20)

To recover graph structures from hE , we simply read off the indices of non-zero entries (gout). We can set hρ,0

to any Rd×N×N matrix, as we do not consider its values in this analysis and discard it during the first step.

Claim A.13. (Consistency) The outputs of each step

1. are consistent with (20), and
2. are equivariant to the ordering of nodes in edges.

For example, if (i, j) is oriented as (▶, •), then we expect (j, i) to be oriented (•,▶).

Step 1: Undirected skeleton We use the first axial attention block to recover the undirected skeleton
C ′. We set all attentions to the identity, set Wρ,1 ∈ R2d×d to a d× d zeros matrix, stacked on top of a d× d
identity matrix (discard ρ), and set FFNE to the identity (inputs are positive). This yields

hρ,0
i,j = mE→ρ,1

i,j =



Pei(∅)
Pei

(•)
Pei

(▶)
...

one-hotN (i)
one-hotN (j)


, (21)

where Pei
(·) is the frequency that endpoint ei = · within the subsets sampled. FFNs with 1 hidden layer are

universal approximators of continuous functions (Hornik et al., 1989), so we use FFNρ to map

FFNρ(Xi,u,v) =


0 i ≤ 6
0 i > 6, X1,u,v = 0
−Xi,u,v otherwise,

(22)

26

Published in Transactions on Machine Learning Research (03/2025)

where i ∈ [2N + 6] indexes into the feature dimension, and u, v index into the rows and columns. This allows
us to remove edges not present in C ′ from consideration:

mρ→E,1 = hρ,1

hE,1
i,j ← hE,1

i,j + mρ→E,1
i,j =

{
0 (i, j) ̸∈ C ′

hE,0
i,j otherwise.

(23)

This yields (i, j) ∈ C ′ if and only if hρ,1
i,j ≠ 0. We satisfy A.13 since our inputs are valid PC algorithm outputs

for which Pei
(∅) = Pej

(∅).

Step 2: V-structures The second and third axial attention blocks recover v-structures. We run the same
procedure twice, once to capture v-structures that point towards the first node in an ordered pair, and one to
capture v-structures that point towards the latter node.

We start with the first row attention over edge estimates, given a fixed subset t. We set the key and query
attention matrices

WK = k ·


0 0 1

0 1 0
...

IN

−IN

 WQ = k ·


0 0 1

0 1 0
...

IN

IN

 (24)

where k is a large constant, IN denotes the size N identity matrix, and all unmarked entries are 0s.

Recall that a v-structure is a pair of directed edges that share a target node. We claim that two edges
(i, j), (u, v) form a v-structure in E′, pointing towards i = u, if this inner product takes on the maximum
value 〈

(WKhE,1)i,j , (WQhE,1)u,v

〉
= 3. (25)

Suppose both edges (i, j) and (u, v) still remain in C ′. There are two components to consider.

1. If i = u, then their shared node contributes +1 to the inner product (prior to scaling by k). If j = v,
then the inner product accrues −1.

2. Nodes that do not share the same endpoint contribute 0 to the inner product. Of edges that share
one node, only endpoints that match ▶ at the starting node, or • at the ending node contribute +1
to the inner product each. We provide some examples below.

(ei, ej) (eu, ev) contribution note
(▶, •) (•,▶) 0 no shared node
(•,▶) (•,▶) 0 wrong endpoints
(•, •) (•, •) 1 one correct endpoint
(▶, •) (▶, •) 2 v-structure

All edges with endpoints ∅ were “removed” in step 1, resulting in an inner product of zero, since their node
embeddings were set to zero. We set k to some large constant (empirically, k2 = 1000 is more than enough)
to ensure that after softmax scaling, σe,e′ > 0 only if e, e′ form a v-structure.

Given ordered pair e = (i, j), let Vi ⊂ V denote the set of nodes that form a v-structure with e with shared
node i. Note that Vi excludes j itself, since setting of WK , WQ exclude edges that share both nodes. We set
WV to the identity, and we multiply by attention weights σ to obtain

(WV hE,1σ)e=(i,j) =

 ...
one-hotN (i)

αj · binaryN (Vj)

 (26)

where binaryN (S) denotes the N -dimensional binary vector with ones at elements in S, and the scaling factor

αj = (1/∥Vj∥) · 1{∥Vj∥ > 0} ∈ [0, 1] (27)

27

Published in Transactions on Machine Learning Research (03/2025)

results from softmax normalization. We set

WO =
[

0N+6
0.5 · IN

]
(28)

to preserve the original endpoint values, and to distinguish between the edge’s own node identity and newly
recognized v-structures. To summarize, the output of this row attention layer is

Attnrow(X·,c) = X·,c + WOWV X·,c · σ,

which is equal to its input hE,1 plus additional positive values ∈ (0, 0.5) in the last N positions that indicate
the presence of v-structures that exist in the overall E′.

Our final step is to “copy” newly assigned edge directions into all the edges. We set the ϕE column attention,
FFNE and the ϕρ attentions to the identity mapping. We also set Wρ,2 to a d× d zeros matrix, stacked on
top of a d × d identity matrix. This passes the output of the ϕE row attention, aggregated over subsets,
directly to FFNϕ,2.

For endpoint dimensions e = [6], we let FFNϕ,2 implement

FFNρ,2(Xe,u,v) =
{

[0, 0, 1, 0, 1, 0]T −Xe,u,v 0 <
∑

i>N+6 Xi,u,v < 0.5
0 otherwise.

(29)

Subtracting Xe,u,v “erases” the original endpoints and replaces them with (▶, •) after the update

hE,1
i,j ← hE,1

i,j + mρ→E,1
i,j .

The overall operation translates to checking whether any v-structure points towards i, and if so, assigning
edge directions accordingly. For dimensions i > 6,

FFNρ,2(Xi,u,v) =
{
−Xi,u,v Xi,u,v ≤ 0.5
0 otherwise,

(30)

effectively erasing the stored v-structures from the representation and remaining consistent to (20).

At this point, we have copied all v-structures once. However, our orientations are not necessarily symmetric.
For example, given v-structure i→ j ← k, our model orients edges (j, i) and (j, k), but not (i, j) or (k, j).

The simplest way to symmetrize these edges (for the writer and the reader) is to run another axial attention
block, in which we focus on v-structures that point towards the second node of a pair. The only changes are
as follows.

• For WK and WQ, we swap columns 1-3 with 4-6, and columns 7 to N + 6 with the last N columns.

• (hE,2σ)i,j sees the third and fourth blocks swapped.

• WO swaps the N ×N blocks that correspond to i and j’s node embeddings.

• FFNρ,3 sets the endpoint embedding to [0, 1, 0, 0, 0, 1]T −Xe,u,v if i = 7, ..., N + 6 sum to a value
between 0 and 0.5.

The result is hE,3 with all v-structures oriented symmetrically, satisfying A.13.

Step 3: Orientation propagation To propagate orientations, we would like to identify cases (i, j), (i, k) ∈
E′, (j, k) ̸∈ E′ with shared node i and corresponding endpoints (▶, •), (•, •). We use ϕE to identify triangles,
and ϕρ to identify edges (i, j), (i, k) ∈ E′ with the desired endpoints, while ignoring triangles.

28

Published in Transactions on Machine Learning Research (03/2025)

Marginal layer The row attention in ϕE fixes a subset t and varies the edge (i, j).

Given edge (i, j), we want to extract all (i, k) that share node i. We set the key and query attention matrices
to

WK , WQ = k ·


0 1 1 0 1 1
...

IN

±IN

 . (31)

We set WV to the identity to obtain

(WV hEσ)e=(i,k) =


...
...

one-hotN (i)
αk · binaryN (Vk)

 , (32)

where Vk is the set of nodes k that share any edge with i. To distinguish between k and Vk, we again set Wo

to the same as in (28). Finally, we set FFNE to the identity and pass hE directly to ϕρ. To summarize, we
have hE equal to its input, with values ∈ (0, 0.5) in the last N locations indicating 1-hop neighbors of each
edge.

Global layer Now we would like to identify cases (i, k), (j, k) with corresponding endpoints (•,▶), (•, •).
We set the key and query attention matrices

WK = k ·


0 0 1
...

IN

IN

 WQ = k ·


0 1 −1 0 1 −1
...

IN

−IN

 . (33)

The key allows us to check that endpoint i is directed, and the query allows us to check that (i, k) exists in
C ′, and does not already point elsewhere. After softmax normalization, for sufficiently large k, we obtain
σ(i,j),(i,k) > 0 if and only if (i, k) should be oriented (•,▶), and the inner product attains the maximum
possible value

⟨(WKhρ)i,j , (WQhρ)i,k⟩ = 2. (34)
We consider two components.

1. If the endpoints match our desired endpoints, we gain a +1 contribution to the inner product.
2. A match between the first nodes contributes +1. If the second node shares any overlap (either same

edge, or a triangle), then a negative value would be added to the overall inner product.

Therefore, we can only attain the maximal inner product if only one edge is directed, and if there exists no
triangle.

We set Wo to the same as in (28), and we add hρ to the input of the next ϕE . To summarize, we have hρ

equal to its input, with values ∈ (0, 0.5) in the last N locations indicating incoming edges.

Orientation assignment Our final step is to assign our new edge orientations. Let the column attention
take on the identity mapping. For endpoint dimensions e = (4, 5, 6), we let FFNρ implement

FFNρ(Xe,u,v) =
{

[0, 0, 1]T −Xe,u,v 0 <
∑

i>N+6 Xi,u,v < 0.5
0 otherwise.

(35)

This translates to checking whether any incoming edge points towards v, and if so, assigning the new edge
direction accordingly. For dimensions i > 6,

FFNρ(Xi,u,v) =
{

0 Xi,u,v ≤ 0.5
Xi,u,v otherwise,

(36)

29

Published in Transactions on Machine Learning Research (03/2025)

effectively erasing the stored assignments from the representation. Thus, we are left with hE,ℓ that conforms
to the same format as the initial embedding in (20).

To symmetrize these edges, we run another axial attention block, in which we focus on paths that point
towards the second node of a pair. The only changes are as follows.

• For ϕE layer WK and WQ (31), we swap IN and ±IN .

• For ϕρ layer WK and WQ (33), we swap IN and ±IN .

• WO swaps the N ×N blocks that correspond to i and j’s node embeddings.

• For FFNρ (35), we let e = (1, 2, 3) instead.

The result is hE with symmetric 1-hop orientation propagation, satisfying A.13. We may repeat this procedure
k times to capture k-hop paths.

To summarize, we used axial attention block 1 to recover the undirected skeleton C ′, blocks 2-3 to identify and
copy v-structures in E′, and all subsequent L− 3 layers to propagate orientations on paths up to ⌊(L− 3)/2⌋
length. Overall, this particular construction requires O(N) width for O(L) paths.

Final remarks Information theoretically, it should be possible to encode the same information in log N
space, and achieve O(log N) width. For ease of construction, we have allowed for wider networks than optimal.
On the other hand, if we increase the width and encode each edge symmetrically, e.g. (ei, ej , ej , ei | i, j, j, i),
we can reduce the number of blocks by half, since we no longer need to run each operation twice. However,
attention weights scale quadratically, so we opted for an asymmetric construction.

Finally, a strict limitation of our model is that it only considers 1D pairwise interactions. In the graph layer,
we cannot compare different edges’ estimates at different times in a single step. In the feature layer, we cannot
compare (i, j) to (j, i) in a single step either. However, the graph layer does enable us to compare all edges at
once (sparsely), and the feature layer looks at a time-collapsed version of the whole graph. Therefore, though
we opted for this design for computational efficiency, we have shown that it is able to capture significant
graph reasoning.

A.4 Robustness and stability

We discuss the notion of stability informally, in the context of Spirtes et al. (2001). There are two cases in
which our framework may receive erroneous inputs: low/noisy data settings, and functionally misspecified
situations. We consider our framework’s empirical robustness to these cases, in terms of recovering the
skeleton and orienting edges.

In the case of noisy data, edges may be erroneously added, removed, or misdirected from marginal estimates
E′. Our framework provides two avenues to mitigating such noise.

1. We observe that global statistics can be estimated reliably in low data scenarios. For example,
Figure 4 suggests that 300 examples suffice to provide a robust estimate over 100 variables in our
synthetic settings. Therefore, even if the marginal estimates are erroneous, the neural network can
learn the skeleton from the global statistics.

2. Most classical causal discovery algorithms are not stable with respect to edge orientation assignment.
That is, an error in a single edge may propagate throughout the graph. Empirically, we observe that
the majority vote of Gies achieves reasonable accuracy even without any training, while Fci suffers
in this assessment (Table 10). However both Sea (Gies) and Sea (Fci) achieve high edge accuracy.
Therefore, while the underlying algorithms may not be stable with respect to edge orientation, our
pretrained aggregator seems to be robust.

It is also possible that our global statistics and marginal estimates make misspecified assumptions regarding
the data generating mechanisms. The degree of misspecification can vary case by case, so it is hard to

30

Published in Transactions on Machine Learning Research (03/2025)

provide any broad guarantees about the performance of our algorithm, in general. However, we can make the
following observation.

If two variables are independent, Xi ⊥⊥ Xj , they are independent, e.g. under linear Gaussian assumptions.
If Xi, Xj exhibit more complex functional dependencies, they may be erroneously deemed independent.
Therefore, any systematic errors are necessarily one-sided, and the model can learn to recover the connectivity
based on global statistics.

B Experimental details

B.1 Synthetic data generation

Synthetic datasets were generated using code from Dcdi (Brouillard et al., 2020), which extended the Causal
Discovery Toolkit data generators to interventional data (Kalainathan et al., 2020).

We considered the following causal mechanisms. Let y be the node in question, let X be its parents, let E be
an independent noise variable (details below), and let W be randomly initialized weight matrices.

• Linear: y = XW + E.

• Polynomial: y = W0 + XW1 + X2W2 +×E

• Sigmoid: y =
∑d

i=1 Wi · sigmoid(Xi) +×E

• Randomly initialized neural network (NN): y = Tanh((X, E)Win)Wout

• Randomly initialized neural network, additive (NN additive): y = Tanh(XWin)Wout + E

Root causal mechanisms, noise variables, and interventional distributions maintained the Dcdi defaults.

• Root causal mechanisms were set to Uniform(−2, 2).

• Noise was set to E ∼ 0.4 · N (0, σ2) where σ2 ∼ Uniform(1, 2).

• Interventions were applied to all nodes (one at a time) by setting their causal mechanisms to N (0, 1).

Ablation datasets with N > 100 nodes contained 100,000 points each (same as N = 100). We set random
seeds for each dataset using the hash of the output filename.

B.2 Related work and baselines

We considered the following baselines. All baselines were run using official implementations published by the
authors.

AVICI (Lorch et al., 2022) is the most similar method to this work, though there are significant differences in
both the causal discovery strategy and the implementation. Both works simulate diverse datasets for training,
which differ in graph topology, causal mechanism, and type of exogenous noise; and both are attention-based
architectures (Vaswani et al., 2017). The primary difference is that Avici operates over raw data, while we
operate over summary statistics. While access to raw data may allow for richer modeling of relationships, it
also increases the computational cost on large datasets. In fact, Avici’s model complexity scales quadratically
as the number of samples and quadratically as the number of nodes. Our model does not explicitly depend on
the number of data samples, but scales cubically as the number of nodes, as we attend over richer, pairwise
features.

Both Avici and Sea are equivariant to the ordering of nodes. Avici is additionally invariant to the ordering
of samples. Due to the two-track design of our aggregator, we also include message passing operations between
the two input types (global statistics, marginal features), while Avici directly stacks Transformer layers.

31

Published in Transactions on Machine Learning Research (03/2025)

Finally, Avici explicitly regularizes for acyclicity. We follow the ENCO (Lippe et al., 2022) formulation
(edges i→ j and j → i cannot co-exist), since it is easier to optimize. Empirically, our predictions are still
99% acyclic (Table 18).

Avici was run on all test datasets using the authors’ pretrained scm-v0 model, recommended for “arbitrary
real-valued data.” Note that this model is different from the models described in their paper (denoted
Avici-L and Avici-R), as it was trained on all of their synthetic data, including test sets. We sampled 1000
observations per dataset uniformly at random, with their respective interventions (the maximum number of
synthetic samples used in their original paper), except for Sachs, which used the entire dataset (as in their
paper). Though the authors provided separate weights for synthetic mRNA data, we were unable to use it
since we did not preserve the raw gene counts in our simulated mRNA datasets.

Dcdi (Brouillard et al., 2020) was trained on each of the N = 10, 20 datasets using their published
hyperparameters. We denote the Gaussian and Deep Sigmoidal Flow versions as DCDI-G and DCDI-DSF
respectively. DCDI could not scale to graphs with N = 100 due to memory constraints (did not fit on a
32GB V100 GPU).

DCD-FG (Lopez et al., 2022) was trained on all of the test datasets using their published hyperparameters.
We set the number of factors to 5, 10, 20 for each of N = 10, 20, 100, based on their ablation studies. Due to
numerical instability on N = 100, we clamped augmented Lagrangian multipliers µ and γ to 10 and stopped
training if elements of the learned adjacency matrix reached NaN values. After discussion with the authors,
we also tried adjusting the µ multiplier from 2 to 1.1, but the model did not converge within 48 hours.

DECI (Geffner et al., 2024) was trained on all of the test datasets using their published hyperparameters.
However, on all N = 100 cases, the model failed to produce any meaningful results (adjacency matrices nearly
all remained 0s with AUCs of 0.5). Thus, we only report results on N = 10, 20.

DiffAN (Sanchez et al., 2023) was trained on the each of the N = 10, 20 datasets using their published
hyperparameters. The authors write that “most hyperparameters are hard-coded into [the] constructor of
the DiffAN class and we verified they work across a wide set of datasets.” We used the original, non-
approximation version of their algorithm by maintaining residue=True in their codebase. We were unable
to consistently run DiffAN with both R and GPU support within a Docker container, and the authors did
not respond to questions regarding reproducibility, so all models were trained on the CPU only. We observed
approximately a 10x speedup in the < 5 cases that were able to complete running on the GPU.

InvCov computes inverse covariance over 1000 examples. This does not orient edges, but it is a strong
connectivity baseline. We discretize based on ground truth positive rate.

Corr and D-Corr are computed similarly, using global correlation and distance correlation, respectively
(See C.1 for details).

B.3 Metrics

Throughout our evaluation, we compute metrics with respect to the ground truth graph. This means that in
the observational setting, the “oracle” value of each metric will vary depending on the size of the equivalence
class (e.g. if multiple graphs are observationally equivalent, the expected SHD is > 0; see Section 5.3 for
more analysis). While it is more correct to evaluate (observational) models with respect to the CPDAG that
is implied by the predicted DAG, there were several reasons we also chose to evaluate with respect to the
ground truth DAG.

• This practice is quite common among continuous causal discovery algorithms, regardless of whether
interventional data are available (Lorch et al., 2022; Brouillard et al., 2020; Hägele et al., 2023) or
not (Sanchez et al., 2023). This may be primarily because their predicted graphs contain continuous
probabilities, and metrics that reflect uncertainty (mAP, AUROC) are difficult to translate to the
equivalence class.

• It has been reported that common simulators produce “identifiable” linear Gaussian datasets, if
the data are unstandardized (hence the VarSort baseline, Reisach et al. (2021)). This would mean

32

Published in Transactions on Machine Learning Research (03/2025)

that the MEC is actually smaller than expected. While it is possible to normalize all the data, it is
unknown whether there are additional artifacts of the data generating process that may influence the
(empirical) identifiability of the graphs, and thus, the “true” size of the equivalence class.

• Our models and baselines are evaluated on the same graphs, but not all can incorporate interventional
information. For comparability, we evaluated all predictions against the same ground truth, while
noting that the equivalence class is larger in the observational case.

• Fci, Gies, and VarSort don’t necessarily produce acyclic graphs, due to bootsrapping. In Ap-
pendix C, we also include the symmetric summary statistics as baselines, to quantify the “cost”
of not directing edges, and of not using marginal estimates. In these cases, we cannot compute a
corresponding CPDAG.

• Practically, it was somewhat expensive to compute the CPDAG, especially for larger dense graphs
(N = 100, E = 400 and beyond).

B.4 Training and hardware details

Hyperparameters and architectural choices were selected by training the model on 20% of the the training
and validation data for approximately 50k steps (several hours). We considered the following parameters in
sequence.

• learned positional embedding vs. sinusoidal positional embedding

• number of layers × number of heads: {4, 8} × {4, 8}

• learning rate η = {1e− 4, 5e− 5, 1e− 5}

For our final model, we selected learned positional embeddings, 4 layers, 8 heads, and learning rate η = 1e− 4.

The models were trained across 2 NVIDIA RTX A6000 GPUs and 60 CPU cores. We used the GPU exclusively
for running the aggregator, and retained all classical algorithm execution on the CPUs (during data loading).
The total pretraining time took approximately 14 hours for the final FCI model and 16 hours for the final
GIES model.

For finetuning, we used rank r = 2 adapters on the axial attention model’s key, query, and feedforward
weights (Hu et al., 2022). We trained until convergence on the validation set (no improvement for 100 epochs),
which took 4-6 hours with 40 CPUs and around 10 hours with 20 CPUs. We used a single NVIDIA RTX
A6000 GPU, but the bottleneck was CPU availability.

For the scope of this paper, our models and datasets are fairly small. We did not scale further due to hardware
constraints. Our primary bottlenecks to scaling up lay in availability of CPU cores and networking speed
across nodes, rather than GPU memory or utilization. The optimal CPU:GPU ratio for Sea ranges from 20:1
to 40:1.

We are able to run inference comfortably over N = 500 graphs with T = 500 subsets of k = 5 nodes each, on
a single 32GB V100 GPU. For runtime analysis, we used a batch size of 1, with 1 data worker per dataset.
Our runtime could be further improved if we amortized the GPU utilization across batches.

B.5 Choice of classical causal discovery algorithm

For training, we selected FCI (Spirtes et al., 1995) as the underlying discovery algorithm in the observational
setting over GES (Chickering, 2002), GRaSP (Lam et al., 2022), and LiNGAM (Shimizu et al., 2006)
due to its speed and superior downstream performance. We hypothesize this may be due to its richer
output (ancestral graph) providing more signal to the Transformer model. We also tried Causal Additive
Models (Bühlmann et al., 2014), but its runtime was too slow for consistent GPU utilization. Observational
algorithm implementations were provided by the causal-learn library (Zheng et al., 2024). The code for
running these alternative classical algorithms is available in our codebase.

33

Published in Transactions on Machine Learning Research (03/2025)

We selected GIES as the discovery algorithm in the interventional setting because an efficient Python
implementation was readily available at https://github.com/juangamella/gies.

We tried incorporating implementations from the Causal Discovery Toolbox via a Docker image (Kalainathan
et al., 2020), but there was excessive overhead associated with calling an R subroutine and reading/writing
the inputs/results from disk.

Finally, we considered other independence tests for richer characterization, such as kernel-based methods.
However, due to speed, we chose to remain with the default Fisherz conditional independence test for FCI,
and BIC for GIES (Schwarz, 1978).

B.6 Sampling procedure

Selection scores: We consider three strategies for computing selection scores α. We include an empirical
comparison of these strategies in Table 9.

1. Random selection: α is an N ×N matrix of ones.
2. Global-statistic-based selection: α = ρ.
3. Uncertainty-based selection: α = Ĥ(Et), where H denotes the information entropy

αi,j = −
∑

e∈{0,1,2}

p(e) log p(e). (37)

Let ct
i,j be the number of times edge (i, j) was selected in S1 . . . St−1, and let αt = α/

√
ct

i,j . We consider two
strategies for selecting St based on αt.

Greedy selection: Throughout our experiments, we used a greedy algorithm for subset selection. We
normalize probabilities to 1 before constructing each Categorical. Initialize

St ← {i : i ∼ Categorical(αt
1 . . . αt

N)}. (38)

where αt
i =

∑
j ̸=i∈V αt

i,j . While |St| < k, update

St ← St ∪ {j : j ∼ Categorical(αt
1,St

. . . αt
N,St

)) (39)

where

αj,St =
{∑

i∈St
αt

i,j j ̸∈ St

0 otherwise.
(40)

Subset selection: We also considered the following subset-level selection procedure, and observed minor
performance gain for significantly longer runtime (linear program takes around 1 second per batch). Therefore,
we opted for the greedy method instead.

We solve the following integer linear program to select a subset St of size k that maximizes
∑

i∈St
αt

i,j . Let
νi ∈ {0, 1} denote the selection of node i, and let ϵi,j ∈ {0, 1} denote the selection of edge (i, j). Our objective
is to

maximize
∑

i,j at
i,j · ϵi,j

subject to
∑

i νi = k subset size
ϵi,j ≥ νi + νj − 1 node-edge consistency
ϵi,j ≤ νi

ϵi,j ≤ νj ,
νi ∈ {0, 1}
ϵi,j ∈ {0, 1}

for i, j ∈ V × V , i ∈ V . St is the set of non-zero indices in ν.

The final algorithm used the greedy selection strategy, with the first half of batches sampled according to
global statistics, and the latter half sampled randomly, with visit counts shared. This strategy was selected

34

https://github.com/juangamella/gies

Published in Transactions on Machine Learning Research (03/2025)

Table 9: Comparison between heuristics-based sampler (random and inverse covariance) vs. model confidence-
based sampler. The suffix -L indicates the greedy confidence-based sampler. Each setting encompasses 5
distinct Erdős-Rényi graphs. The symbol † indicates that Sea was not pretrained on this setting. Bold
indicates best of all models considered (including baselines not pictured).

N E Model Linear NN add. NN non-add. Sigmoid† Polynomial†

mAP↑ OA↑ shd↓ mAP↑ OA↑ shd↓ mAP↑ OA↑ shd↓ mAP↑ OA↑ shd↓ mAP↑ OA↑ shd↓

10 10

Sea-f 0.97 0.92 1.6 0.95 0.92 2.4 0.92 0.94 2.8 0.83 0.76 3.7 0.69 0.71 6.7
Sea-g 0.99 0.94 1.2 0.94 0.88 2.6 0.91 0.93 3.2 0.85 0.84 4.0 0.70 0.79 5.8

Sea-f-l 0.97 0.93 1.0 0.95 0.87 2.4 0.92 0.98 3.4 0.84 0.77 3.9 0.70 0.79 5.8
Sea-g-l 0.98 0.93 1.4 0.94 0.91 2.8 0.91 0.94 4.0 0.88 0.84 3.6 0.70 0.80 5.8

10 40

Sea-f 0.90 0.87 14.4 0.91 0.94 11.2 0.87 0.86 16.0 0.81 0.85 22.7 0.81 0.92 33.4
Sea-g 0.94 0.91 12.8 0.91 0.95 10.4 0.89 0.89 17.2 0.81 0.87 24.5 0.89 0.93 29.5

Sea-f-l 0.91 0.90 15.6 0.91 0.92 15.8 0.88 0.86 14.2 0.81 0.84 23.2 0.82 0.93 33.8
Sea-g-l 0.93 0.91 13.4 0.91 0.93 10.4 0.88 0.85 16.2 0.79 0.83 25.5 0.90 0.94 28.3

20 20

Sea-f 0.97 0.92 3.2 0.94 0.97 3.2 0.84 0.93 7.2 0.84 0.85 7.6 0.71 0.80 10.2
Sea-g 0.97 0.89 3.0 0.94 0.95 3.4 0.83 0.94 7.8 0.84 0.83 8.1 0.69 0.78 10.1

Sea-f-l 0.97 0.92 2.8 0.93 0.95 3.8 0.85 0.94 6.8 0.85 0.85 7.5 0.67 0.78 9.9
Sea-g-l 0.97 0.90 2.6 0.94 0.98 3.4 0.83 0.97 7.0 0.84 0.84 7.9 0.67 0.79 10.6

20 80

Sea-f 0.86 0.93 29.6 0.55 0.90 73.6 0.72 0.93 51.8 0.77 0.85 42.8 0.61 0.89 61.8
Sea-g 0.89 0.92 26.8 0.58 0.88 71.4 0.73 0.92 50.6 0.76 0.84 45.0 0.65 0.89 60.1

Sea-f-l 0.86 0.92 32.0 0.55 0.90 74.0 0.74 0.93 49.2 0.76 0.87 41.8 0.59 0.88 62.3
Sea-g-l 0.89 0.92 28.4 0.58 0.89 71.6 0.75 0.92 49.4 0.75 0.85 45.7 0.65 0.88 60.6

heuristically, and we did not observe significant improvements or drops in performance when switching to
other strategies (e.g. all greedy statistics-based, greedy uncertainty-based, linear program uncertainty-based,
etc.)

Table 9 compares the heuristics-based greedy sampler (inverse covariance + random) with the model
uncertainty-based greedy sampler. Runtimes are plotted in Figure 6. The latter was run on CPU only, since
it was non-trivial to access the GPU within a PyTorch data loader. We ran a forward pass to obtain an
updated selection score every 10 batches, so this accrued over 10 times the number of forward passes, all
on CPU. With proper engineering, this model-based sampler is expected to be much more efficient than
reported. Still, it is faster than nearly all baselines.

Figure 6: Runtime for heuristics-based greedy sampler vs. model uncertainty-based greedy sampler (suffix
-l). For sampling, the model was run on CPU only, due to the difficulty of invoking GPU in the PyTorch
data sampler.

35

Published in Transactions on Machine Learning Research (03/2025)

C Additional analyses

C.1 Choice of global statistic

We selected inverse covariance as our global feature due to its ease of computation and its relationship to
partial correlation. For context, we also provide the performance analysis of several alternatives. Tables
11 and 12 compare the results of different graph-level statistics on our synthetic datasets. Discretization
thresholds for SHD were obtained by computing the pth quantile of the computed values, where p = 1−(E/N).
This is not entirely fair, as no other baseline receives the same calibration, but these ablation studies only seek
to compare state-of-the-art causal discovery methods with the “best” possible (oracle) statistical alternatives.

Corr refers to global correlation,

ρi,j = E (XiXj)− E (Xi)E (Xj)√
E (X2

i)− E (Xi)2 ·
√

E
(
X2

j

)
− E (Xj)2

. (41)

D-Corr refers to distance correlation, computed between all pairs of variables. Distance correlation captures
both linear and non-linear dependencies, and D-Corr(Xi, Xj) = 0 if and only if Xi ⊥⊥ Xj . Please refer
to Sz’ekely et al. (2007) for the full derivation. Despite its power to capture non-linear dependencies, we
opted not to use D-Corr because it is quite slow to compute between all pairs of variables.

InvCov refers to inverse covariance, computed globally,

ρ = E
(
(X − E (X))(X − E (X))T

)−1
. (42)

For graphs N < 100, inverse covariance was computed directly using NumPy. For graphs N ≥ 100, inverse
covariance was computed using Ledoit-Wolf shrinkage at inference time Ledoit & Wolf (2004). Unfortunately
we only realized this after training our models, so swapping to Ledoit-Wolf leads to some distribution shift
(and drop in performance) on Sea results for large graphs.

C.2 Visualization of denoising statistical features

Figure 7 illustrates the input features and our predictions for a N = 10, E = 10 linear graph. Compared to
the inputs, our method is able to produce a much cleaner graph. Gies may orient edges the wrong direction
in some of the bootstrap samples, but Sea can generally identify the right direction. This example also
illustrates how Sea can triangulate between Gies and the global statistic, to avoid naive predictions of edges
wherever the global statistic has a high value. In the example marked in teal, though the global statistic has
a moderate value, the edge is absent from a substantial number of estimates (if we consider both directions).
This reflects the theory in A.2 that edges absent from some marginal estimate should be absent from the
final skeleton. Sea was able to (rather confidently) reject the edge in the final graph.

In contrast to Gies, Fci tends to identify much fewer edges (Figure 8). Note that this does not hurt
performance on metrics, as continuous metrics consider “sliding” thresholds, while discrete metrics are
computed with respect to the true edge rate (for the oracle Fci baseline). However, it does highlight that
Fci has a much lower signal-to-noise ratio when used alone.

C.3 Results on simulated mRNA data

We generated mRNA data using the SERGIO simulator Dibaeinia & Sinha (2020). We sampled datasets
with the Hill coefficient set to {0.25, 0.5, 1, 2, 4} for training, and 2 for testing (2 was default). We set the
decay rate to the default 0.8, and the noise parameter to the default of 1.0. We sampled 400 graphs for each
of N = {10, 20} and E = {N, 2N}.

These data distributions are quite different from typical synthetic datasets, as they simulate steady-state
measurements and the data are lower bounded at 0 (gene counts). Thus, we trained a separate model on
these data using the Sea (Fci) architecture. Table 13 shows that Sea performs best across the board.

36

Published in Transactions on Machine Learning Research (03/2025)

Inv. Cov. GIES bootstrap Ours (GIES) True Graph

Figure 7: Left to right: magnitude value of global features with diagonals zeroed; Gies run over all variables
via non-parametric bootstrapping (frequency of edge); Sea predictions; and the ground truth. Sea is able to
denoise the input features much better than naive aggregation schemes.

Inv. Cov. FCI (mean) FCI (any) Ours (FCI) True Graph

Figure 8: Left to right: magnitude value of global features with diagonals zeroed; Fci run over all variables
via non-parametric bootstrapping, aggregation via frequency of edge vs. binarized (appear or not); Sea
predictions; and the ground truth. Fci produces sparser outputs than Gies, so Fci alone is less able to
distinguish between noisy and genuine edges.

C.4 Results and ablation studies on synthetic data

For completeness, we include additional results and analysis on the synthetic datasets. Table 14 contains our
evaluations in the observational setting, with metrics computed over the inferred CPDAG, rather than the
predicted DAG. We find that the SHD varies slightly when evaluating DAGS or converted CPDAGs, but the
difference is minimal, compared to the overall gaps in performance between methods.

Tables 19 and 20 compare all baselines across all metrics and graph sizes on Erdős-Rényi graphs. Tables 21
and 22 include the same evaluation on scale-free graphs. Tables 23 and 24 assess N = 100 graphs.

Table 17 ablates the contribution of the global and marginal features by setting their hidden representations
to zero. Note that our model has never seen this type of input during training, so drops in performance may
be conflated with input distributional shift. Overall, removing the joint statistics (hρ ← 0) leads to a higher
performance drop than removing the marginal estimates (hE ← 0). However, the gap between these ablation
studies and our final performance may be quite large in some cases, so both inputs are important to the
prediction.

Table 18 shows that despite omitting the DAG constraint, we find that our predicted graphs (test split) are
nearly all acyclic, with a naive discretization threshold of 0.5. Unlike Lippe et al. (2022), which also omits
the acyclicity constraint during training but optionally enforces it at inference time, we do not require any
post-processing to achieve high performance. Empirically, we found existing DAG constraints to be unstable
(Lagrangian) and slow to optimize (Zheng et al., 2018; Brouillard et al., 2020). DAG behavior would not
emerge until late in training, when the regularization term is of 1e-8 scale or smaller.

Alternatively, we could quantify the raw information content provided by these two features through the
InvCov, Fci*, and Gies* baselines (Tables 19, 20, 21, 22). Overall, InvCov and Fci* are comparable
to worse-performing baselines. Gies* performs very well, sometimes approaching the strongest baselines.

37

Published in Transactions on Machine Learning Research (03/2025)

Table 10: Synthetic experiments, edge direction accuracy (higher is better). All standard deviations were
within 0.2. The symbol † indicates that Sea was not pretrained on this setting.

N E Model Linear NN add NN Sig.† Poly.†

10 10

Dcdi-G 0.74 0.80 0.85 0.41 0.44
Dcdi-Dsf 0.79 0.62 0.68 0.38 0.39
Dcd-Fg 0.50 0.47 0.70 0.43 0.54
DiffAn 0.61 0.55 0.26 0.53 0.47
Deci 0.50 0.43 0.62 0.63 0.75
Avici 0.80 0.92 0.83 0.81 0.75

Fci* 0.52 0.43 0.41 0.55 0.40
Gies* 0.76 0.49 0.69 0.67 0.63

Sea (Fci) 0.92 0.92 0.94 0.76 0.71
Sea (Gies) 0.94 0.88 0.93 0.84 0.79

20 80

Dcdi-G 0.47 0.43 0.82 0.40 0.24
Dcdi-Dsf 0.50 0.49 0.78 0.41 0.28
Dcd-Fg 0.58 0.65 0.75 0.62 0.48
DiffAn 0.46 0.28 0.36 0.45 0.21
Deci 0.30 0.47 0.35 0.48 0.57
Avici 0.57 0.67 0.74 0.63 0.62

Fci* 0.19 0.19 0.22 0.33 0.23
Gies* 0.56 0.73 0.59 0.62 0.61

Sea (Fci) 0.93 0.90 0.93 0.85 0.89
Sea (Gies) 0.92 0.88 0.92 0.84 0.89

100 400

Dcd-Fg 0.46 0.60 0.70 0.67 0.53
Avici 0.61 0.68 0.72 0.54 0.42

Sea (Fci) 0.93 0.90 0.91 0.87 0.82
Sea (Gies) 0.94 0.91 0.92 0.87 0.84

Table 11: Comparison of global statistics (continuous metrics). All standard deviations within 0.1.

N E Model Linear NN add. NN non-add. Sigmoid Polynomial

mAP ↑ AUC ↑ mAP ↑ AUC ↑ mAP ↑ AUC ↑ mAP ↑ AUC ↑ mAP ↑ AUC ↑

10 10
Corr 0.45 0.87 0.41 0.86 0.41 0.85 0.46 0.86 0.45 0.85
D-Corr 0.42 0.86 0.41 0.87 0.40 0.87 0.43 0.86 0.45 0.89
InvCov 0.49 0.87 0.45 0.86 0.36 0.81 0.44 0.86 0.45 0.83

10 40
Corr 0.47 0.53 0.47 0.52 0.46 0.52 0.48 0.53 0.48 0.54
D-Corr 0.46 0.53 0.46 0.51 0.46 0.54 0.48 0.53 0.47 0.54
InvCov 0.50 0.57 0.48 0.52 0.47 0.53 0.47 0.50 0.48 0.52

100 100
Corr 0.42 0.99 0.25 0.94 0.25 0.93 0.42 0.98 0.35 0.91
D-Corr 0.41 0.99 0.25 0.96 0.26 0.96 0.41 0.98 0.37 0.94
InvCov 0.40 0.99 0.22 0.94 0.16 0.87 0.40 0.97 0.36 0.90

100 400
Corr 0.19 0.80 0.10 0.63 0.14 0.72 0.27 0.84 0.20 0.72
D-Corr 0.19 0.80 0.10 0.63 0.14 0.75 0.26 0.84 0.21 0.74
InvCov 0.25 0.91 0.09 0.62 0.14 0.77 0.27 0.86 0.20 0.67

However, there remains a large gap in performance between these ablations and our method, highlighting the
value of learning non-linear transformations of these inputs.

Table 16 and Figure 10 show that the current implementations of Sea can generalize to graphs up to 4×
larger than those seen during training. During training, we did not initially anticipate testing on much larger

38

Published in Transactions on Machine Learning Research (03/2025)

Table 12: Comparison of global statistics (SHD). Discretization thresholds for SHD were obtained by
computing the pth quantile of the computed values, where p = 1− (E/N).

N E Model Linear NN add. NN non-add. Sigmoid Polynomial

10 10
Corr 10.6±2.8 10.2±4.6 12.0±1.9 11.1±4.3 9.9±2.8

D-Corr 10.4±2.6 9.8±4.7 12.2±2.6 10.8±3.3 10.2±3.2

InvCov 11.0±2.8 11.4±5.5 13.6±2.9 11.4±4.1 10.9±3.5

10 40
Corr 39.2±2.4 38.0±1.8 38.2±0.7 38.8±3.3 38.2±2.0

D-Corr 38.8±2.0 38.8±1.5 37.0±0.6 38.9±3.2 38.0±2.0

InvCov 35.8±2.3 39.2±1.5 37.6±2.7 40.7±2.2 38.4±1.2

100 100
Corr 113.0±4.9 132.2±18.0 144.6±5.2 106.5±11.5 110.3±6.1

D-Corr 113.8±5.3 133.2±17.9 144.2±6.7 108.5±11.9 109.5±5.7

InvCov 124.4±8.1 130.0±17.2 158.8±6.2 112.3±14.8 106.3±4.6

100 400
Corr 580.4±24.5 666.0±13.5 626.2±23.4 516.5±18.5 562.5±20.1

D-Corr 578.2±24.7 665.4±15.4 626.6±21.9 522.3±17.6 557.2±20.4

InvCov 557.0±11.7 667.8±15.4 639.0±9.7 514.7±23.1 539.4±18.4

Table 13: Causal discovery results on simulated mRNA data. Each setting encompasses 5 distinct scale-free
graphs. Data were generated via SERGIO Dibaeinia & Sinha (2020).

N E Model mAP ↑ AUC ↑ SHD ↓ OA ↑

10 10

Dcdi-G 0.48±0.1 0.73±0.1 16.1±3.3 0.59±0.2

Dcdi-Dsf 0.63±0.1 0.84±0.1 18.5±2.7 0.79±0.2

Dcd-Fg 0.59±0.2 0.82±0.1 81.0±0.0 0.79±0.2

Avici 0.58±0.2 0.85±0.1 6.4±4.7 0.72±0.2

Sea (Fci) 0.92±0.1 0.98±0.0 1.9±2.0 0.92±0.1

10 20

Dcdi-G 0.32±0.1 0.57±0.1 26.2±1.3 0.47±0.2

Dcdi-Dsf 0.44±0.1 0.64±0.1 25.7±1.3 0.63±0.1

Dcd-Fg 0.43±0.1 0.69±0.1 73.0±0.0 0.67±0.2

Avici 0.22±0.1 0.44±0.2 16.8±1.5 0.27±0.3

Sea (Fci) 0.76±0.1 0.90±0.1 8.8±1.5 0.85±0.1

20 20

Dcdi-G 0.48±0.1 0.86±0.1 37.3±2.8 0.65±0.1

Dcdi-Dsf 0.45±0.1 0.92±0.0 51.9±15.8 0.81±0.1

Dcd-Fg 0.34±0.2 0.87±0.0 361±0 0.66±0.2

Avici 0.32±0.2 0.78±0.1 18.7±4.9 0.66±0.2

Sea (Fci) 0.54±0.2 0.94±0.0 16.6±3.3 0.83±0.1

20 40

Dcdi-G 0.31±0.1 0.65±0.1 54.7±2.7 0.49±0.1

Dcdi-Dsf 0.40±0.1 0.71±0.1 54.6±4.4 0.63±0.1

Dcd-Fg 0.36±0.1 0.77±0.1 343±0 0.67±0.1

Avici 0.17±0.1 0.54±0.1 37.1±1.9 0.46±0.1

Sea (Fci) 0.50±0.1 0.85±0.1 31.4±4.9 0.78±0.1

graphs. As a result, there are two minor issues with the current implementation with respect to scaling. First,
we set an insufficient maximum subset positional embedding size of 500, so it was impossible to encode more
subsets. Second, we did not sample random starting subset indices to ensure that higher-order embeddings
are updated equally. Since we never sampled up to 500 subsets during training, these higher-order embeddings
were essentially random. We anticipate that increasing the limit on the number of subsets and ensuring that
all embeddings are sufficiently learned will improve the generalization capacity on larger graphs. Nonetheless,
our current model already obtains reasonable performance on larger graphs, out of the box.

39

Published in Transactions on Machine Learning Research (03/2025)

Table 14: SHD on synthetic graphs, observational setting, between predicted vs. true DAG and inferred
vs. true CPDAG. Mean/std over 5 distinct Erdős-Rényi graphs. † indicates o.o.d. setting. ∗ indicates
non-parametric bootstrapping. DAG results from Table 1.

N E Model Linear NN add. Sigmoid† Polynomial†

DAG ↓ CPDAG ↓ DAG ↓ CPDAG ↓ DAG ↓ CPDAG ↓ DAG ↓ CPDAG ↓

10 10

DiffAn 14.0±.4 16.4±.4 13.6±2.9 13.6±3.4 12.0±.0 12.9±.3 15.0±.1 16.3±.6

VarSort* 6.0±.4 7.0±.3 4.0±.8 4.4±.2 7.6±.5 8.0±.1 9.3±.5 9.5±.8

Fci* 10.0±.3 11.0±.8 8.2±.8 8.4±.8 9.1±.5 10.3±.3 10.0±.3 10.1±.2

Sea (Fci) 1.0±.1 1.4±.7 3.0±.2 2.6±.3 3.9±.9 3.5±.3 6.1±.7 6.4±.1

20 20

DiffAn 40.2±4.4 41.8±5.7 38.6±3.1 39.8±5.2 19.2±.6 21.6±.2 49.7±4.6 52.7±5.0

VarSort* 10.0±.4 11.0±.0 6.6±.7 7.2±.5 16.1±.7 16.8±.2 17.1±.1 17.7±.0

Fci* 19.0±.3 21.4±.3 17.4±.2 18.0±.6 18.5±.5 20.6±.4 18.9±.3 19.1±.2

Sea (Fci) 3.2±.6 2.6±.1 5.0±.8 4.8±.7 6.7±.1 6.2±.1 9.8±.2 11.0±.2

Table 15: mAP on synthetic graphs, between predicted vs. true DAG and undirected skeletons E∗. Mean/std
over 5 distinct Erdős-Rényi graphs. † indicates o.o.d. setting. ∗ indicates non-parametric bootstrapping.
DAG results from Table 1.

N E Model Linear NN add. Sigmoid† Polynomial†

DAG ↑ E∗ ↑ DAG ↑ E∗ ↑ DAG ↑ E∗ ↑ DAG ↑ E∗ ↑

10 10

Dcdi-G 0.74±.16 0.88±.10 0.79±.12 0.85±.12 0.46±.24 0.64±.20 0.41±.13 0.58±.15

Dcdi-Dsf 0.82±.20 0.93±.09 0.57±.24 0.88±.11 0.38±.21 0.63±.19 0.29±.13 0.61±.20

DiffAn 0.25±.06 0.54±.09 0.32±.16 0.62±.19 0.24±.10 0.63±.12 0.20±.08 0.50±.07

Avici 0.45±.14 0.93±.06 0.81±.15 0.98±.03 0.52±.16 0.86±.13 0.31±.06 0.75±.13

VarSort* 0.70±.13 0.88±.07 0.76±.13 0.90±.09 0.52±.24 0.88±.10 0.40±.14 0.80±.09

Fci* 0.52±.11 0.70±.20 0.38±.20 0.69±.22 0.56±.16 0.75±.18 0.41±.13 0.61±.14

Gies* 0.81±.12 1.0±.00 0.61±.16 0.97±.06 0.70±.14 0.98±.03 0.61±.10 0.89±.06

Sea (Fci) 0.98±.02 1.0±.0 0.88±.09 0.96±.05 0.83±.18 0.99±.02 0.62±.09 0.87±.06

Sea (Gies) 0.99±.01 1.0±.0 0.94±.06 0.97±.05 0.85±.12 0.98±.03 0.70±.11 0.86±.05

20 20

Dcdi-G 0.59±.12 0.89±.04 0.78±.07 0.93±.07 0.36±.06 0.84±.05 0.42±.08 0.58±.10

Dcdi-Dsf 0.66±.16 0.91±.04 0.69±.18 0.93±.10 0.37±.04 0.86±.05 0.26±.08 0.55±.15

DiffAn 0.19±.09 0.47±.16 0.16±.10 0.44±.15 0.29±.11 0.67±.12 0.09±.03 0.32±.07

Avici 0.48±.17 0.84±.07 0.59±.09 0.85±.07 0.42±.13 0.78±.10 0.24±.08 0.62±.08

VarSort* 0.81±.08 0.93±.04 0.81±.15 0.88±.14 0.50±.13 0.88±.09 0.33±.13 0.76±.11

Fci* 0.66±.07 0.79±.07 0.42±.19 0.54±.22 0.56±.08 0.67±.07 0.41±.14 0.61±.13

Gies* 0.84±.08 0.99±.00 0.79±.07 0.94±.04 0.71±.10 0.95±.03 0.62±.09 0.85±.09

Sea (Fci) 0.96±.03 1.0±.00 0.91±.04 0.95±.03 0.85±.09 0.97±.02 0.69±.09 0.86±.09

Sea (Gies) 0.97±.02 1.0±.00 0.94±.03 0.96±.03 0.84±.07 0.95±.03 0.69±.12 0.82±.11

Finally, we note that Avici scales very poorly to graphs significantly beyond the scope of their training
set. For example, N = 100 is only 2× their largest training graphs, but the performance already drops
dramatically.

Figure 9 depicts the model runtimes. Sea continues to run quickly on much larger graphs, while Avici
runtimes increase significantly with graph size.

Dcdi learns a new generative model over each dataset, and its more powerful, deep sigmoidal flow variant
seems to perform well in some (but not all) of these harder cases.

C.5 Results on real datasets

The Sachs flow cytometry dataset (Sachs et al., 2005) measured the expression of phosphoproteins and
phospholipids at the single cell level. We use the subset proposed by Wang et al. (2017). The ground truth

40

Published in Transactions on Machine Learning Research (03/2025)

Table 16: Scaling to synthetic graphs, larger than those seen in training. Each setting encompasses 5 distinct
Erdős-Rényi graphs. All Sea runs in this table used T = 500 subsets of nodes, with b = 500 examples per
batch. For Avici, we took M = 2000 samples per dataset (higher than maximum analyzed in their paper),
since it performed better than M = 1000. Here, the mean AUC values are artificially high due to the high
negative rates, as actual edges scale linearly as N , while the number of possible edges scales quadratically.

N Model Linear, E = N Linear, E = 4N

mAP ↑ AUC ↑ SHD ↓ OA ↑ mAP ↑ AUC ↑ SHD ↓ OA ↑

100

InvCov 0.43±0.0 0.99±0.0 117±7 — 0.30±0.0 0.93±0.0 512±11 —
Corr 0.42±0.0 0.99±0.0 113±5 — 0.19±0.0 0.80±0.0 579±25 —

Avici 0.03±0.0 0.43±0.1 109±6 0.49±0.0 0.11±0.0 0.55±0.1 394±14 0.58±0.0

Sea (Fci) 0.97±0.0 1.00±0.0 11.6±4.3 0.93±0.0 0.88±0.0 0.98±0.0 129±10 0.94±0.0

Sea (Gies) 0.97±0.0 1.00±0.0 12.8±4.7 0.91±0.0 0.91±0.0 0.99±0.0 105±6 0.95±0.0

200

InvCov 0.45±0.0 1.00±0.0 218±11 — 0.33±0.0 0.96±0.0 1000±23 —
Corr 0.42±0.0 0.99±0.0 223±8 — 0.18±0.0 0.86±0.0 1184±25 —

Avici 0.00±0.0 0.36±0.1 207±10 0.41±0.1 0.05±0.0 0.53±0.1 827±37 0.54±0.1

Sea (Fci) 0.91±0.0 1.00±0.0 49.9±5.4 0.87±0.0 0.82±0.0 0.97±0.0 327±52 0.92±0.0

Sea (Gies) 0.95±0.0 1.00±0.0 35.4±5.7 0.91±0.0 0.86±0.0 0.98±0.0 272±50 0.92±0.0

300

InvCov 0.46±0.0 1.00±0.0 308±20 — 0.35±0.0 0.98±0.0 1445±56 —
Corr 0.42±0.0 1.00±0.0 326±21 — 0.20±0.0 0.89±0.0 1710±82 —

Avici 0.01±0.0 0.70±0.0 298±19 0.64±0.0 0.02±0.0 0.50±0.0 1214±68 0.51±0.0

Sea (Fci) 0.80±0.0 1.00±0.0 121±14 0.78±0.0 0.70±0.0 0.95±0.0 693±67 0.86±0.0

Sea (Gies) 0.88±0.0 1.00±0.0 88.9±11.3 0.84±0.0 0.78±0.0 0.96±0.0 556±71 0.87±0.0

400

InvCov 0.47±0.0 1.00±0.0 418±7 — 0.36±0.0 0.98±0.0 1883±28 —
Corr 0.42±0.0 1.00±0.0 445±14 — 0.20±0.0 0.91±0.0 2269±52 —

Avici 0.01±0.0 0.68±0.0 411±7 0.62±0.0 0.01±0.0 0.46±0.0 1614±21 0.47±0.0

Sea (Fci) 0.49±0.2 0.93±0.1 314±107 0.61±0.1 0.56±0.1 0.90±0.1 1103±190 0.75±0.1

Sea (Gies) 0.70±0.1 0.99±0.0 226±57 0.71±0.1 0.70±0.0 0.94±0.0 872±44 0.80±0.0

500

InvCov 0.47±0.0 1.00±0.0 504±19 — 0.38±0.0 0.99±0.0 2300±34 —
Corr 0.42±0.0 1.00±0.0 543±18 — 0.21±0.0 0.93±0.0 2790±78 —

Avici 0.00±0.0 0.70±0.0 497±19 0.63±0.0 0.01±0.0 0.48±0.0 2004±25 0.48±0.0

Sea (Fci) 0.27±0.1 0.90±0.1 758±297 0.51±0.0 0.29±0.1 0.86±0.1 1824±273 0.56±0.1

Sea (Gies) 0.41±0.2 0.98±0.0 485±170 0.57±0.1 0.48±0.1 0.92±0.0 1654±505 0.67±0.0

“consensus graph” consists of 11 nodes and 17 edges over 5,845 samples, of which 1,755 are observational
and 4,091 are interventional. The observational data were generated by a “general perturbation” which
activated signaling pathways, and the interventional data were generated by perturbations intended to target
individual proteins. Despite the popularity of this dataset in causal discovery literature (due to lack of better
alternatives), biological networks are known to be time-resolved and cyclic, so the validity of the ground
truth “consensus” graph has been questioned by experts Mooij et al. (2020). Nonetheless, we benchmark all
methods on this dataset in Table 26.

41

Published in Transactions on Machine Learning Research (03/2025)

Table 17: Causal discovery ablations by setting hidden representations to zero. Each setting encompasses 5
distinct Erdős-Rényi graphs. The symbol † indicates that Sea was not pretrained on this setting. We set
T = 100.

N E Model Linear NN add. NN non-add. Sigmoid† Polynomial†

mAP ↑ SHD ↓ mAP ↑ SHD ↓ mAP ↑ SHD ↓ mAP ↑ SHD ↓ mAP ↑ SHD ↓

10 10
Sea (Fci) 0.97 1.6 0.95 2.4 0.92 2.8 0.83 3.7 0.69 6.7
hρ ← 0 0.20 29.8 0.27 22.4 0.34 24.2 0.26 22.6 0.24 26.0
hE ← 0 0.61 24.0 0.71 28.8 0.76 27.8 0.49 26.7 0.51 26.7

Sea (Gies) 0.99 1.2 0.94 2.6 0.91 3.2 0.85 4.0 0.70 5.8
hρ ← 0 0.30 29.2 0.27 29.4 0.19 29.0 0.35 27.4 0.31 27.1
hE ← 0 0.85 6.4 0.82 10.2 0.78 13.2 0.63 10.2 0.55 13.4

20 80
Sea (Fci) 0.86 29.6 0.55 73.6 0.72 51.8 0.77 42.8 0.61 61.8
hρ ← 0 0.23 128.4 0.27 110.6 0.22 119.6 0.23 110.7 0.23 111.1
hE ← 0 0.79 50.4 0.52 99.6 0.71 76.4 0.58 93.6 0.59 87.5

Sea (Gies) 0.89 26.8 0.58 71.4 0.73 50.6 0.76 45.0 0.65 60.1
hρ ← 0 0.25 125.2 0.21 123.0 0.24 113.6 0.27 118.0 0.24 129.8
hE ← 0 0.86 35.2 0.55 76.8 0.70 53.4 0.69 47.1 0.59 63.5

100 400
Sea (Fci) 0.90 122.0 0.28 361.2 0.60 273.2 0.69 226.9 0.38 327.0
hρ ← 0 0.05 726.4 0.04 639.4 0.05 637.0 0.05 760.2 0.04 658.3
hE ← 0 0.82 167.4 0.04 403.4 0.51 352.4 0.64 263.8 0.33 366.1

Sea (Gies) 0.91 116.6 0.27 364.4 0.61 266.8 0.69 218.3 0.38 328.0
hρ ← 0 0.05 780.0 0.04 846.0 0.05 715.4 0.04 744.4 0.04 769.8
hE ← 0 0.86 134.8 0.03 403.4 0.52 357.8 0.67 224.1 0.32 359.6

Table 18: Our predicted graphs are highly acyclic, on synthetic ER test sets.

N Acyclic Total Proportion

10 434 440 0.99
20 431 440 0.98
100 433 440 0.98

Figure 9: Sea scales very well in terms of runtime on much larger graphs, while Avici runtimes suffer as
graph sizes increase.

42

Published in Transactions on Machine Learning Research (03/2025)

Table 19: Full results on synthetic datasets (continuous metrics). Mean/std over 5 distinct Erdős-Rényi
graphs. † indicates o.o.d. setting. ∗ indicates non-parametric bootstrapping. All standard deviations within
0.03 (most within 0.01).

N E Model Linear NN add. NN non-add. Sigmoid† Polynomial†

mAP ↑ AUC ↑ mAP ↑ AUC ↑ mAP ↑ AUC ↑ mAP ↑ AUC ↑ mAP ↑ AUC ↑

10 10

Dcdi-G 0.74 0.88 0.79 0.91 0.89 0.95 0.46 0.72 0.41 0.68
Dcdi-Dsf 0.82 0.92 0.57 0.83 0.50 0.81 0.38 0.69 0.29 0.64
Dcd-Fg 0.45 0.68 0.41 0.67 0.59 0.79 0.40 0.64 0.50 0.72
DiffAn 0.25 0.73 0.32 0.70 0.12 0.51 0.24 0.70 0.20 0.65
Deci 0.18 0.63 0.16 0.63 0.23 0.71 0.29 0.72 0.46 0.83
Avici 0.45 0.80 0.81 0.97 0.65 0.89 0.52 0.81 0.31 0.70

VarSort* 0.70 0.84 0.76 0.90 0.83 0.93 0.52 0.72 0.40 0.71
InvCov 0.46 0.88 0.43 0.86 0.34 0.81 0.43 0.86 0.43 0.83
Fci* 0.52 0.78 0.38 0.71 0.40 0.70 0.56 0.79 0.41 0.71
Gies* 0.81 0.96 0.61 0.93 0.71 0.92 0.70 0.95 0.61 0.87

Sea (Fci) 0.98 1.00 0.88 0.98 0.88 0.97 0.83 0.97 0.62 0.88
Sea (Gies) 0.99 1.00 0.94 0.99 0.91 0.98 0.85 0.97 0.70 0.89

10 40

Dcdi-G 0.65 0.72 0.65 0.74 0.84 0.88 0.54 0.59 0.56 0.61
Dcdi-Dsf 0.65 0.72 0.59 0.67 0.84 0.90 0.52 0.58 0.57 0.62
Dcd-Fg 0.51 0.57 0.57 0.63 0.53 0.59 0.65 0.68 0.65 0.68
DiffAn 0.40 0.49 0.36 0.37 0.41 0.53 0.40 0.45 0.37 0.40
Deci 0.45 0.49 0.50 0.58 0.44 0.52 0.53 0.61 0.63 0.72
Avici 0.46 0.47 0.63 0.65 0.79 0.86 0.49 0.53 0.47 0.55

VarSort* 0.81 0.83 0.87 0.89 0.71 0.73 0.69 0.72 0.56 0.62
InvCov 0.49 0.57 0.46 0.50 0.46 0.53 0.47 0.50 0.48 0.53
Fci* 0.43 0.50 0.50 0.53 0.46 0.52 0.50 0.51 0.45 0.50
Gies* 0.49 0.53 0.56 0.64 0.49 0.53 0.44 0.46 0.61 0.62

Sea (Fci) 0.83 0.85 0.85 0.89 0.86 0.90 0.74 0.75 0.69 0.67
Sea (Gies) 0.94 0.95 0.91 0.94 0.89 0.92 0.81 0.85 0.89 0.92

20 20

Dcdi-G 0.59 0.87 0.78 0.94 0.75 0.91 0.36 0.81 0.42 0.74
Dcdi-Dsf 0.66 0.89 0.69 0.91 0.41 0.83 0.37 0.82 0.26 0.71
Dcd-Fg 0.48 0.85 0.58 0.91 0.51 0.87 0.50 0.78 0.44 0.76
DiffAn 0.19 0.73 0.16 0.69 0.20 0.72 0.29 0.79 0.09 0.65
Deci 0.14 0.70 0.14 0.72 0.16 0.73 0.24 0.79 0.35 0.84
Avici 0.48 0.87 0.59 0.91 0.67 0.90 0.42 0.84 0.24 0.69

VarSort* 0.81 0.91 0.81 0.92 0.57 0.83 0.50 0.76 0.33 0.69
InvCov 0.40 0.90 0.31 0.90 0.31 0.84 0.42 0.92 0.41 0.87
Fci* 0.66 0.86 0.42 0.74 0.40 0.77 0.56 0.80 0.41 0.76
Gies* 0.84 0.99 0.79 0.97 0.56 0.93 0.71 0.97 0.62 0.91

Sea (Fci) 0.96 1.00 0.91 0.99 0.82 0.97 0.85 0.98 0.69 0.91
Sea (Gies) 0.97 1.00 0.94 0.99 0.83 0.97 0.84 0.97 0.69 0.92

20 80

Dcdi-G 0.46 0.73 0.41 0.71 0.82 0.93 0.48 0.71 0.37 0.62
Dcdi-Dsf 0.48 0.75 0.44 0.74 0.74 0.92 0.48 0.71 0.38 0.63
Dcd-Fg 0.32 0.61 0.33 0.64 0.41 0.73 0.47 0.74 0.49 0.69
DiffAn 0.21 0.53 0.19 0.41 0.18 0.46 0.22 0.55 0.18 0.37
Deci 0.25 0.57 0.29 0.61 0.26 0.59 0.31 0.66 0.43 0.73
Avici 0.34 0.63 0.46 0.73 0.49 0.74 0.34 0.64 0.30 0.59

VarSort* 0.76 0.86 0.50 0.81 0.47 0.69 0.59 0.76 0.38 0.63
InvCov 0.36 0.72 0.26 0.54 0.30 0.64 0.35 0.72 0.32 0.61
Fci* 0.30 0.59 0.31 0.57 0.30 0.59 0.41 0.66 0.34 0.61
Gies* 0.41 0.75 0.44 0.74 0.46 0.73 0.50 0.78 0.49 0.69

Sea (Fci) 0.80 0.92 0.55 0.81 0.70 0.89 0.74 0.85 0.55 0.67
Sea (Gies) 0.89 0.95 0.58 0.84 0.73 0.90 0.76 0.90 0.65 0.84

43

Published in Transactions on Machine Learning Research (03/2025)

Table 20: Full results on synthetic datasets (discrete metrics). Mean/std over 5 distinct Erdős-Rényi graphs.
† indicates o.o.d. setting. ∗ indicates non-parametric bootstrapping. All OA standard deviations within 0.2.

N E Model Linear NN add. NN non-add. Sigmoid† Polynomial†

OA ↑ SHD ↓ OA ↑ SHD ↓ OA ↑ SHD ↓ OA ↑ SHD ↓ OA ↑ SHD ↓

10 10

Dcdi-G 0.73 2.8±2 0.84 2.2±3 0.88 1.0±1 0.46 5.8±3 0.33 8.9±6

Dcdi-Dsf 0.81 2.0±3 0.73 3.0±3 0.60 4.2±1 0.43 6.3±3 0.24 11.2±5

Dcd-Fg 0.50 20.4±3 0.47 21.2±4 0.70 19.2±4 0.43 19.8±4 0.54 18.5±5

DiffAn 0.61 14.0±5 0.55 13.6±14 0.26 21.8±8 0.53 12.0±5 0.47 15.0±6

Deci 0.50 19.4±5 0.43 13.8±6 0.62 16.2±3 0.63 13.9±7 0.75 7.8±4

Avici 0.58 8.2±4 0.79 4.2±3 0.65 5.6±3 0.54 8.3±3 0.35 9.6±4

VarSort* 0.70 6.0±2 0.74 4.0±2 0.90 4.2±3 0.52 7.6±3 0.48 9.3±3

InvCov — 10.6±3 — 10.2±6 — 13.6±3 — 11.1±4 — 10.4±3

Fci* 0.52 10.0±3 0.43 8.2±4 0.41 9.8±2 0.55 9.1±3 0.40 10.0±4

Gies* 0.76 3.6±2 0.49 6.0±5 0.69 4.8±2 0.67 5.9±3 0.63 7.1±3

Sea (Fci) 0.93 1.0±1 0.82 3.0±4 0.90 3.8±2 0.73 3.9±2 0.70 6.1±3

Sea (Gies) 0.94 1.2±1 0.88 2.6±4 0.93 3.2±1 0.84 4.0±3 0.79 5.8±3

10 40

Dcdi-G 0.50 19.8±2 0.64 17.4±3 0.82 8.0±2 0.25 30.8±4 0.23 31.0±2

Dcdi-Dsf 0.48 19.8±3 0.55 21.6±7 0.87 6.0±3 0.25 31.4±3 0.25 30.0±3

Dcd-Fg 0.35 28.6±4 0.40 26.0±1 0.36 26.8±4 0.45 24.4±5 0.41 25.5±4

DiffAn 0.41 27.6±4 0.29 33.4±4 0.49 26.4±4 0.38 29.4±6 0.32 31.8±4

Deci 0.43 27.6±5 0.55 22.4±4 0.50 25.4±3 0.54 21.5±3 0.57 18.4±3

Avici 0.44 33.0±5 0.68 28.4±7 0.85 20.0±4 0.50 35.0±3 0.50 38.8±2

VarSort* 0.76 21.8±5 0.81 15.4±4 0.61 24.0±4 0.67 33.6±5 0.46 37.6±2

InvCov — 40.2±2 — 44.6±2 — 41.0±3 — 44.2±3 — 42.3±2

Fci* 0.16 39.2±2 0.24 38.8±3 0.22 36.2±3 0.22 38.8±2 0.16 39.9±2

Gies* 0.44 33.4±4 0.60 33.0±5 0.51 32.0±3 0.38 36.7±2 0.63 34.6±3

Sea (Fci) 0.80 18.6±2 0.89 15.4±4 0.87 18.8±4 0.78 24.4±6 0.69 26.9±4

Sea (Gies) 0.91 12.8±4 0.95 10.4±6 0.89 17.2±3 0.87 24.5±3 0.93 29.5±3

20 20

Dcdi-G 0.75 6.4±2 0.90 3.0±2 0.84 4.4±2 0.39 42.7±6 0.48 10.4±3

Dcdi-Dsf 0.77 5.2±3 0.85 4.2±4 0.64 11.6±3 0.41 43.2±6 0.45 15.7±5

Dcd-Fg 0.76 51.2±12 0.88 177±57 0.85 193±27 0.65 251±35 0.60 52.7±19

DiffAn 0.56 40.2±27 0.47 38.6±26 0.53 35.0±26 0.63 19.2±8 0.42 49.7±15

Deci 0.54 52.0±17 0.56 41.0±14 0.56 39.0±8 0.65 30.0±9 0.73 18.9±6

Avici 0.56 17.2±5 0.69 10.8±2 0.79 11.2±3 0.53 17.2±5 0.37 18.4±4

VarSort* 0.84 10.0±3 0.88 6.6±6 0.74 14.6±8 0.50 16.1±4 0.40 17.1±4

InvCov — 23.6±6 — 24.6±5 — 24.6±6 — 22.9±5 — 20.0±5

Fci* 0.70 19.0±5 0.45 17.4±2 0.50 19.4±6 0.57 18.5±4 0.44 18.9±5

Gies* 0.80 7.4±2 0.77 9.0±5 0.71 14.0±3 0.75 12.5±4 0.68 13.7±4

Sea (Fci) 0.92 3.2±3 0.93 5.0±3 0.94 8.8±3 0.79 6.7±3 0.76 9.8±4

Sea (Gies) 0.89 3.0±1 0.95 3.4±2 0.94 7.8±3 0.83 8.1±3 0.78 10.1±4

20 80

Dcdi-G 0.54 44.0±6 0.53 61.6±11 0.89 37.4±34 0.46 44.2±5 0.26 59.7±5

Dcdi-Dsf 0.57 41.2±3 0.61 60.0±12 0.85 28.4±26 0.47 43.6±6 0.30 57.6±5

Dcd-Fg 0.58 172±27 0.65 156±41 0.75 162±49 0.62 80.1±13 0.48 79.8±7

DiffAn 0.46 127±5 0.28 154±10 0.36 145±7 0.45 117±21 0.21 157±7

Deci 0.30 87.2±3 0.47 104±7 0.35 79.6±9 0.48 71.0±7 0.57 58.9±11

Avici 0.51 75.6±10 0.69 72.8±6 0.69 61.2±10 0.50 70.6±6 0.50 75.5±7

VarSort* 0.82 44.8±4 0.84 73.6±13 0.61 65.2±10 0.67 63.4±5 0.39 75.6±5

InvCov — 97.6±6 — 121±4 — 104±9 — 95.6±7 — 97.8±4

Fci* 0.19 75.8±11 0.19 80.2±5 0.22 74.4±8 0.33 72.3±6 0.23 76.6±5

Gies* 0.56 70.0±11 0.73 75.2±4 0.59 67.4±7 0.62 65.6±7 0.61 68.1±5

Sea (Fci) 0.86 39.8±12 0.87 73.8±12 0.92 52.0±9 0.82 42.9±6 0.69 57.0±5

Sea (Gies) 0.92 26.8±8 0.88 71.4±8 0.92 50.6±7 0.84 45.0±7 0.89 60.1±6

44

Published in Transactions on Machine Learning Research (03/2025)

Table 21: Full results on synthetic datasets (continuous metrics). Mean over 5 distinct scale-free graphs. †
indicates o.o.d setting. ∗ indicates non-parametric bootstrapping. All standard deviations were within 0.02.

N E Model Linear NN add. NN non-add. Sigmoid† Polynomial†

mAP ↑ AUC ↑ mAP ↑ AUC ↑ mAP ↑ AUC ↑ mAP ↑ AUC ↑ mAP ↑ AUC ↑

10 10

Dcdi-G 0.54 0.90 0.59 0.88 0.69 0.89 0.48 0.77 0.50 0.73
Dcdi-Dsf 0.70 0.92 0.71 0.88 0.36 0.83 0.46 0.75 0.49 0.76
Dcd-Fg 0.56 0.76 0.47 0.72 0.50 0.73 0.44 0.68 0.57 0.75
DiffAn 0.25 0.73 0.15 0.66 0.16 0.62 0.31 0.75 0.24 0.63
Deci 0.17 0.65 0.17 0.67 0.20 0.72 0.27 0.73 0.49 0.82
Avici 0.51 0.87 0.55 0.85 0.76 0.95 0.44 0.81 0.27 0.71

VarSort* 0.67 0.84 0.69 0.86 0.76 0.88 0.45 0.69 0.46 0.73
InvCov 0.50 0.92 0.41 0.87 0.38 0.84 0.47 0.90 0.45 0.86
Fci* 0.56 0.80 0.51 0.80 0.43 0.74 0.60 0.82 0.34 0.68
Gies* 0.87 0.98 0.61 0.94 0.69 0.94 0.75 0.96 0.71 0.91

Sea (Fci) 0.96 0.99 0.88 0.98 0.88 0.97 0.79 0.96 0.73 0.90
Sea (Gies) 0.95 0.99 0.94 0.98 0.92 0.98 0.85 0.98 0.74 0.90

10 40

Dcdi-G 0.70 0.85 0.74 0.85 0.88 0.91 0.56 0.66 0.53 0.64
Dcdi-Dsf 0.74 0.87 0.73 0.84 0.71 0.90 0.56 0.69 0.51 0.63
Dcd-Fg 0.37 0.58 0.45 0.61 0.45 0.58 0.49 0.63 0.63 0.73
DiffAn 0.29 0.50 0.25 0.38 0.28 0.46 0.31 0.53 0.27 0.44
Deci 0.30 0.51 0.41 0.65 0.33 0.51 0.38 0.60 0.59 0.77
Avici 0.41 0.57 0.65 0.81 0.55 0.67 0.41 0.59 0.40 0.61

VarSort* 0.77 0.83 0.74 0.87 0.59 0.71 0.66 0.76 0.50 0.66
InvCov 0.44 0.71 0.38 0.59 0.42 0.62 0.44 0.67 0.42 0.62
Fci* 0.47 0.64 0.41 0.60 0.40 0.58 0.48 0.64 0.41 0.59
Gies* 0.43 0.68 0.43 0.63 0.44 0.61 0.49 0.69 0.59 0.71

Sea (Fci) 0.85 0.91 0.80 0.90 0.77 0.88 0.76 0.83 0.66 0.71
Sea (Gies) 0.92 0.96 0.84 0.93 0.83 0.90 0.79 0.88 0.78 0.87

20 20

Dcdi-G 0.41 0.95 0.50 0.94 0.69 0.96 0.37 0.83 0.37 0.77
Dcdi-Dsf 0.48 0.95 0.55 0.93 0.33 0.90 0.37 0.79 0.35 0.82
Dcd-Fg 0.51 0.87 0.39 0.83 0.48 0.84 0.56 0.84 0.50 0.84
DiffAn 0.27 0.80 0.11 0.65 0.11 0.66 0.26 0.77 0.12 0.69
Deci 0.13 0.69 0.15 0.71 0.15 0.73 0.15 0.71 0.25 0.79
Avici 0.53 0.88 0.66 0.89 0.74 0.92 0.46 0.87 0.32 0.77

VarSort* 0.67 0.85 0.84 0.93 0.59 0.86 0.45 0.72 0.44 0.73
InvCov 0.44 0.94 0.35 0.91 0.30 0.89 0.43 0.93 0.41 0.87
Fci* 0.63 0.84 0.44 0.78 0.43 0.79 0.60 0.86 0.47 0.78
Gies* 0.82 0.99 0.58 0.95 0.57 0.96 0.75 0.98 0.61 0.90

Sea (Fci) 0.94 1.00 0.87 0.98 0.83 0.97 0.82 0.98 0.72 0.92
Sea (Gies) 0.93 1.00 0.91 0.98 0.88 0.98 0.82 0.98 0.70 0.91

20 80

Dcdi-G 0.62 0.88 0.61 0.89 0.76 0.94 0.44 0.76 0.36 0.60
Dcdi-Dsf 0.58 0.87 0.55 0.86 0.58 0.92 0.43 0.78 0.35 0.66
Dcd-Fg 0.38 0.70 0.30 0.69 0.48 0.80 0.48 0.75 0.53 0.73
DiffAn 0.18 0.55 0.15 0.44 0.16 0.53 0.19 0.56 0.15 0.38
Deci 0.21 0.58 0.24 0.64 0.26 0.66 0.30 0.68 0.41 0.75
Avici 0.29 0.61 0.54 0.80 0.60 0.85 0.35 0.65 0.28 0.63

VarSort* 0.79 0.90 0.57 0.83 0.62 0.81 0.57 0.77 0.38 0.64
InvCov 0.38 0.81 0.22 0.56 0.32 0.73 0.38 0.78 0.33 0.67
Fci* 0.31 0.63 0.30 0.62 0.30 0.62 0.41 0.68 0.32 0.62
Gies* 0.51 0.87 0.43 0.78 0.47 0.81 0.52 0.82 0.47 0.73

Sea (Fci) 0.87 0.96 0.59 0.87 0.70 0.90 0.73 0.87 0.53 0.71
Sea (Gies) 0.92 0.98 0.63 0.89 0.73 0.91 0.77 0.92 0.62 0.84

45

Published in Transactions on Machine Learning Research (03/2025)

Table 22: Full results on synthetic datasets (discrete metrics). Mean/std over 5 distinct scale-free graphs. †
indicates o.o.d. setting. ∗ indicates non-parametric bootstrapping. All OA standard deviations within 0.2.

N E Model Linear NN add. NN non-add. Sigmoid† Polynomial†

OA ↑ SHD ↓ OA ↑ SHD ↓ OA ↑ SHD ↓ OA ↑ SHD ↓ OA ↑ SHD ↓

10 10

Dcdi-G 0.51 16.6±1 0.61 17.4±2 0.71 16.2±2 0.59 16.9±5 0.63 16.6±3

Dcdi-Dsf 0.70 16.2±2 0.75 15.4±3 0.36 16.8±2 0.48 18.1±3 0.67 18.0±2

Dcd-Fg 0.60 16.4±5 0.57 22.2±4 0.57 20.0±4 0.47 17.9±4 0.59 16.8±5

DiffAn 0.55 9.2±4 0.49 14.6±4 0.36 11.6±4 0.59 7.7±4 0.42 14.8±6

Deci 0.51 17.4±5 0.55 17.4±5 0.58 12.0±2 0.62 12.6±5 0.74 8.2±6

Avici 0.64 6.8±3 0.59 5.4±3 0.77 3.6±1 0.48 7.8±3 0.35 9.5±3

VarSort* 0.82 4.4±1 0.78 4.8±2 0.80 3.4±2 0.47 7.3±3 0.55 8.1±3

InvCov — 8.8±3 — 9.2±2 — 9.8±1 — 9.7±3 — 10.2±2

Fci* 0.62 8.4±2 0.51 7.8±2 0.45 8.0±2 0.61 9.2±3 0.34 9.6±2

Gies* 0.83 2.2±2 0.60 6.0±2 0.75 4.2±2 0.72 4.9±3 0.73 5.7±2

Sea (Fci) 0.89 1.4±2 0.90 2.6±2 0.93 2.2±1 0.71 4.0±3 0.72 5.2±2

Sea (Gies) 0.85 1.4±1 0.96 1.8±1 0.94 2.0±1 0.86 3.4±3 0.83 5.0±2

10 40

Dcdi-G 0.82 24.0±4 0.85 27.8±5 0.87 19.6±2 0.62 31.4±3 0.52 32.6±4

Dcdi-Dsf 0.79 22.8±5 0.79 24.4±4 0.82 20.4±2 0.64 31.6±2 0.58 33.3±3

Dcd-Fg 0.36 24.8±4 0.41 25.2±5 0.38 25.6±8 0.41 23.2±6 0.54 18.5±3

DiffAn 0.40 29.8±8 0.28 37.0±2 0.38 32.6±2 0.45 28.0±6 0.33 32.7±5

Deci 0.43 27.8±3 0.66 22.6±3 0.48 28.6±3 0.52 22.2±4 0.66 13.3±3

Avici 0.43 20.2±4 0.84 17.2±4 0.61 20.4±8 0.52 24.8±3 0.49 26.5±2

VarSort* 0.75 13.4±2 0.89 12.6±2 0.60 20.6±3 0.65 20.8±4 0.50 26.4±2

InvCov — 31.4±3 — 37.2±4 — 36.0±4 — 32.3±5 — 34.8±3

Fci* 0.33 23.8±2 0.28 27.2±2 0.25 27.6±4 0.36 26.1±2 0.24 27.3±2

Gies* 0.46 21.8±3 0.50 24.4±2 0.48 25.2±5 0.52 22.7±3 0.64 22.5±2

Sea (Fci) 0.80 10.0±4 0.88 14.0±2 0.87 15.8±3 0.79 15.6±3 0.64 18.5±3

Sea (Gies) 0.88 6.6±3 0.98 14.0±5 0.88 14.4±3 0.87 14.1±3 0.93 19.1±3

20 20

Dcdi-G 0.54 40.4±2 0.70 44.8±8 0.88 39.8±6 0.47 41.1±4 0.53 38.4±6

Dcdi-Dsf 0.64 40.4±3 0.65 42.4±8 0.40 42.2±8 0.37 41.1±4 0.45 49.3±18

Dcd-Fg 0.68 252±23 0.77 183±52 0.78 181±27 0.70 251±45 0.69 278±68

DiffAn 0.67 23.6±13 0.40 42.2±22 0.42 34.0±11 0.59 22.6±12 0.50 46.8±13

Deci 0.50 42.0±5 0.54 43.0±11 0.57 40.0±13 0.51 34.7±7 0.65 25.3±6

Avici 0.68 11.8±3 0.79 9.2±2 0.80 7.8±2 0.60 15.3±4 0.45 18.3±5

VarSort* 0.74 10.4±3 0.91 6.2±2 0.76 13.0±6 0.49 13.7±4 0.51 16.7±6

InvCov — 20.2±3 — 24.4±5 — 23.8±5 — 21.2±4 — 20.8±5

Fci* 0.67 13.8±2 0.52 17.4±1 0.53 17.8±5 0.65 16.7±4 0.50 18.9±5

Gies* 0.82 6.4±3 0.71 12.6±2 0.68 13.2±3 0.75 11.4±5 0.73 13.4±4

Sea (Fci) 0.90 2.8±1 0.87 7.0±2 0.91 8.2±5 0.73 7.7±3 0.71 9.5±4

Sea (Gies) 0.85 4.0±2 0.95 3.6±2 0.93 6.2±4 0.80 7.9±4 0.82 9.9±3

20 80

Dcdi-G 0.81 93.0±10 0.73 104±7 0.91 67.8±8 0.61 82.5±8 0.53 79.7±5

Dcdi-Dsf 0.75 103±7 0.73 94.8±11 0.77 63.8±7 0.65 84.4±8 0.52 82.6±5

Dcd-Fg 0.63 188±24 0.70 187±14 0.78 190±26 0.71 217±38 0.71 235±32

DiffAn 0.42 111±18 0.30 145±11 0.40 119±13 0.41 100±22 0.21 149±11

Deci 0.33 72.2±10 0.48 81.4±10 0.48 67.0±9 0.50 60.4±12 0.58 47.2±7

Avici 0.45 56.0±5 0.77 47.6±8 0.76 42.6±3 0.50 54.0±6 0.47 62.2±5

VarSort* 0.85 32.4±5 0.84 54.8±8 0.75 40.2±6 0.64 54.0±6 0.37 60.1±5

InvCov — 79.4±6 — 106±5 — 87.4±2 — 78.8±9 — 86.2±4

Fci* 0.26 58.2±6 0.22 58.4±4 0.26 55.0±7 0.37 59.3±6 0.23 62.9±4

Gies* 0.65 48.4±5 0.71 53.6±3 0.68 48.0±4 0.64 53.6±6 0.61 54.9±5

Sea (Fci) 0.91 25.6±6 0.88 51.6±6 0.89 42.2±4 0.83 36.1±6 0.71 47.4±5

Sea (Gies) 0.92 17.6±3 0.93 49.2±9 0.89 37.2±5 0.88 35.1±7 0.89 48.1±5

46

Published in Transactions on Machine Learning Research (03/2025)

Table 23: Causal discovery results on synthetic datasets with 100 nodes, continuous metrics. Each setting
encompasses 5 distinct Erdős-Rényi graphs. The symbol † indicates that the model was not trained on this
setting. All standard deviations were within 0.1.

N E Model Linear NN add. NN non-add. Sigmoid† Polynomial†

mAP ↑ AUC ↑ mAP ↑ AUC ↑ mAP ↑ AUC ↑ mAP ↑ AUC ↑ mAP ↑ AUC ↑

100 100

Dcd-Fg 0.11 0.75 0.12 0.71 0.18 0.73 0.20 0.72 0.06 0.60

InvCov 0.40 0.99 0.22 0.94 0.16 0.87 0.40 0.97 0.36 0.90

Sea (Fci) 0.96 1.00 0.83 0.97 0.75 0.97 0.79 0.97 0.56 0.88
Sea (Gies) 0.97 1.00 0.82 0.98 0.74 0.96 0.80 0.97 0.54 0.85

100 400

Dcd-Fg 0.05 0.59 0.07 0.64 0.10 0.72 0.13 0.72 0.12 0.64

InvCov 0.25 0.91 0.09 0.62 0.14 0.77 0.27 0.86 0.20 0.67

Sea (Fci) 0.90 0.99 0.28 0.82 0.60 0.92 0.69 0.92 0.38 0.80
Sea (Gies) 0.91 0.99 0.27 0.82 0.61 0.92 0.69 0.91 0.38 0.78

Table 24: Causal discovery results on synthetic datasets with 100 nodes, discrete metrics. Each setting
encompasses 5 distinct Erdős-Rényi graphs. The symbol † indicates that the model was not trained on this
setting.

N E Model Linear NN add. NN non-add. Sigmoid† Polynomial†

OA ↑ SHD ↓ OA ↑ SHD ↓ OA ↑ SHD ↓ OA ↑ SHD ↓ OA ↑ SHD ↓

100 100

Dcd-Fg 0.63 3075.8 0.58 2965.0 0.60 2544.4 0.59 3808.0 0.34 1927.9

InvCov — 124.4 — 130.0 — 158.8 — 112.3 — 106.3

Sea (Fci) 0.91 13.4 0.90 34.4 0.91 47.2 0.78 40.3 0.69 59.2
Sea (Gies) 0.91 13.6 0.93 32.8 0.91 45.8 0.78 38.6 0.68 60.3

100 400

Dcd-Fg 0.46 3068.2 0.60 3428.8 0.70 3510.8 0.67 3601.8 0.53 3316.7

InvCov — 557.0 — 667.8 — 639.0 — 514.7 — 539.4

Sea (Fci) 0.93 122.0 0.90 361.2 0.91 273.2 0.87 226.9 0.82 327.0
Sea (Gies) 0.94 116.6 0.91 364.4 0.92 266.8 0.87 218.3 0.84 328.0

Figure 10: mAP on graphs larger than seen during training. During training, we only sampled a maximum of
100 subsets, so performance drop may be due to extrapolation beyond trained embeddings. We did not have
time to finetune these embeddings for more samples. These values correspond to the numbers in Table 16.

47

Published in Transactions on Machine Learning Research (03/2025)

Table 25: Swapping to estimation algorithms with significantly different assumptions (LiNGAM) leads to a
larger performance drop. Interestingly, the GIES model seems to depend more on marginal estimates, while
the FCI depends more on global statistics. Results on N = 10, E = 10 observational setting.

Train Inference Linear NN add. NN non-add. Sigmoid† Polynomial†

mAP ↑ SHD ↓ mAP ↑ SHD ↓ mAP ↑ SHD ↓ mAP ↑ SHD ↓ mAP ↑ SHD ↓

FCI

FCI 0.96±.03 3.2±.6 0.91±.04 5.0±.8 0.82±.05 8.8±.9 0.85±.09 6.7±.1 0.69±.09 9.8±.2
PC 0.95±.04 3.6±.4 0.91±.05 4.6±.6 0.81±.06 10.0±.3 0.84±.07 7.4±.2 0.65±.14 10.8±.5
GES 0.94±.05 4.4±.3 0.91±.05 4.2±.6 0.81±.06 9.6±.6 0.81±.10 8.4±.9 0.61±.16 11.5±.2
GRaSP 0.94±.05 4.0±.0 0.91±.05 4.4±.9 0.81±.06 10.0±.0 0.81±.10 8.5±.0 0.61±.16 11.5±.2
LiNGAM 0.88±.08 8.0±.5 0.84±.05 6.0±.3 0.74±.05 10.8±.3 0.71±.06 12.5±.5 0.59±.12 14.4±.6

GIES

PC 0.96±.02 1.8±.7 0.91±.05 2.8±.4 0.89±.10 3.2±.2 0.82±.14 4.1±.5 0.58±.20 6.7±.3
GES 0.95±.03 2.0±.9 0.91±.05 2.6±.1 0.88±.11 3.4±.5 0.81±.15 4.1±.5 0.57±.19 6.8±.1
GRaSP 0.95±.03 1.8±.7 0.92±.05 3.0±.8 0.88±.11 3.2±.2 0.81±.15 4.0±.4 0.57±.19 6.9±.0
LiNGAM 0.60±.14 5.6±.8 0.40±.23 9.0±.6 0.40±.15 9.4±.2 0.53±.15 7.2±.0 0.51±.14 7.9±.0

Table 26: Complete results on Sachs flow cytometry dataset (Sachs et al., 2005), using the subset proposed
by (Wang et al., 2017).

Model mAP ↑ AUC ↑ SHD ↓

Dcdi-G 0.17 0.55 21
Dcdi-Dsf 0.20 0.59 20
Dcd-Fg 0.32 0.59 27
DiffAn 0.14 0.45 37
Deci 0.21 0.62 28
Avici-L 0.35 0.78 20
Avici-R 0.29 0.65 18
Avici-L+R 0.59 0.83 14

Fci* 0.27 0.59 18
Gies* 0.21 0.59 17

Sea (Fci) 0.23 0.54 24
+Kci 0.33 0.63 14
+Corr 0.41 0.70 15
+Kci+Corr 0.49 0.71 13
Sea (Gies) 0.23 0.60 14

48

	Introduction
	Background and related work
	Causal structure learning
	Foundation models

	Methods
	Inference procedure
	Training procedure
	Model architecture
	Theoretical interpretation

	Experimental setup
	Datasets
	Metrics
	Baselines

	Results
	SEA generalizes to out-of-distribution, misspecified, and real datasets
	SEA adapts to new data assumptions with zero to minimal finetuning
	SEA respects identifiability theory
	Ablation studies

	Discussion
	Theoretical motivations
	Toy example: Resolving marginal graphs
	Resolving marginal estimates into global graphs
	Model specification
	Robustness and stability

	Experimental details
	Synthetic data generation
	Related work and baselines
	Metrics
	Training and hardware details
	Choice of classical causal discovery algorithm
	Sampling procedure

	Additional analyses
	Choice of global statistic
	Visualization of denoising statistical features
	Results on simulated mRNA data
	Results and ablation studies on synthetic data
	Results on real datasets

