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Abstract

Hypergraphs are a powerful abstraction for modeling high-order interactions between a set
of entities of interest and have been attracting a growing interest in the graph-learning
literature. In particular, directed hypegraphs are crucial in their capability of representing
real-world phenomena involving group relations where two sets of elements affect one another
in an asymmetric way. Despite such a vast potential, an established, principled solution
to tackle graph-learning tasks on directed hypergraphs is still lacking. For this reason, in
this paper we introduce the Generalized Directed Hypergraph Neural Network (GeDi-HNN),
the first spectral-based Hypergraph Neural Network (HNN) capable of seamlessly handling
hypergraphs featuring both directed and undirected hyperedges. GeDi-HNN relies on a
graph-convolution operator which is built on top of a novel complex-valued Hermitian matrix
which we introduce in this paper: the Generalized Directed Laplacian L⃗N . We prove that
L⃗N generalizes many previously-proposed Laplacian matrices to directed hypergraphs while
enjoying several desirable spectral properties. Extensive computational experiments against
state-of-the-art methods on real-world and synthetically-generated datasets demonstrate the
efficacy of our proposed HNN. Thanks to effectively leveraging the directional information
contained in these datasets, GeDi-HNN achieves a relative-percentage-difference improvement
of 7% on average (with a maximum improvement of 23.19%) on the real-world datasets and
of 65.3% on average on the synthetic ones.

1 Introduction

In recent years, ground-breaking research in the graph-learning literature has been prompted by seminal
works on Graph Neural Networks (GNNs) such as (Scarselli et al., 2009; Micheli, 2009; Li et al., 2016; Kipf
and Welling, 2017; Veličković et al., 2018). Since representing a set of complex relationships solely through
undirected or directed graphs can prove too restrictive in many real-world scenarios, generalizations to
graphs allowing for higher-order (group) relationships, i.e., hypergraphs, have been considered. Hypergraphs
generalize the notion of a graph to the case where an edge (a hyperedge) can connect an arbitrary number
of nodes, thus allowing to capture not just pairwise (dyadic) relationships but also group-wise (polyadic)
dynamics (Schaub et al., 2021). This has led to a new stream of research devoted to the investigation of
Hypergraph Neural Networks (HNNs) (Feng et al., 2019; Chien et al., 2021; Huang and Yang, 2021; Wang
et al., 2023a;b).

While most of the literature on HNNs has focused on undirected hypergraphs, many real-world phenomena
such as chemical reactions are naturally modeled on hypergraphs whose hyperedges have a notion of direction.
Despite this, the directed case has been addressed only sporadically, and often only in application-specific
scenarios such as traffic forecasting (Luo et al., 2022) and music recommendation (La Gatta et al., 2022). To
the best of our knowledge, a general solution based on a convolution operator which is solidly grounded in
spectral graph theory while not being problem-dependent is missing. We aim at bridging such a gap.

In this paper, we introduce the Generalized-Directed Hypergraph Neural Network (GeDi-HNN), the first
spectral-based HNN capable of seamlessly handling hypergraphs featuring both directed and undirected
hyperedges. GeDi-HNN relies on a graph-convolution operator which is built on top of a novel Hermitian
Laplacian matrix which we introduce in this paper: the Generalized Directed Laplacian L⃗N . L⃗N generalizes
various Laplacian matrices: the one proposed in Zhou et al. (2006) and used in Feng et al. (2019) for
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undirected hypergraphs, the Sign-Magnetic Laplacian proposed for directed graphs in (Fiorini et al., 2023),
and the classical Laplacian matrix (Chung and Graham, 1997) used for undirected graphs.

Main Contributions of the Work

• We extend the literature on spectral-based HNNs by introducing GeDi-HNN, the first spectral HNN
capable of handling hypergraphs with both directed and undirected hyperedges.

• We introduce the Generalized Directed Laplacian matrix L⃗N ; we prove that it enjoys several desirable
properties, among which admitting an eigenvalue decomposition, and that it generalizes many existing
Laplacian matrices.

• Compared to state-of-the-art methods, GeDi-HNN achieves a relative-percentage-difference improve-
ment of 7% on average (with a maximum improvement of 23.19%) on the real-world datasets and of
65.3% on average on the synthetic ones. This demonstrates its efficacy in extracting and utilizing the
information encoded in the hyperedge directions.

The paper is organized as follows. Preliminaries and previous works are summarized in Section 2. L⃗N is
introduced in Section 3, along with its properties. Section 4 provides an overview of GeDi-HNN’s architecture,
which is built upon L⃗N . Experimental results are reported in Section 5. Conclusions are drawn in Section 6.
The proofs of our theorems and additional details are provided in the Appendix.

2 Preliminaries and Previous Work

Undirected and Directed Hypergraphs

A hypergraph is an ordered pair H = (V, E), with n := |V | and m := |E|, where V is the set of vertices
(or nodes) and E ⊆ 2V \ {} is the (nonempty) set of hyperedges. The hyperedge weights are stored in the
diagonal matrix W ∈ Rm×m. The vertex and hyperedge degrees are defined as du =

∑
e∈E:u∈e |we| for u ∈ V

and δe = |e| for e ∈ E and are stored in two diagonal matrices Dv ∈ Rn×n and De ∈ Rm×m. Hypergraphs
where δ(e) = k for some k ∈ N for all e ∈ E are called k-uniform. Graphs are 2-uniform hypergraphs.
Following Gallo et al. (1993), we define a directed hypergraph as a hypergraph where each edge e ∈ E is
partitioned in a head set H(e) and a tail set T (e). If T (e) is empty, e is an undirected edge.

Graph Fourier Transform and Graph Convolutions

Let L be a generic Laplacian matrix of a given 2-uniform hypergraph H which embeds its topology. We
assume that L admits an eigenvalue decomposition L = UΛU∗, with U ∈ Cn×n, U∗ is the conjugate transpose
of U , and Λ ∈ Rn×n is a diagonal matrix. Let x ∈ Cn be a graph signal, i.e., a function x : V → C whose
domain coincides with the vertices of H. Following Shuman et al. (2013), we call x̂ = F(x) = U∗x the graph
Fourier transform of x and F−1(x̂) = Ux̂ its inverse transform. The eigenvectors u1, . . . , un (columns of
U) act as Fourier modes and the eigenvalues λ1, . . . , λn (on the diagonal of Λ) as Fourier frequencies. The
convolution y ⊛ x between x and another graph signal y ∈ Cn (taking the role of a filter) has a natural
construction in the frequency space, where it is defined as y ⊛ x = Udiag(U∗y)U∗x. Letting Ŷ := UĜU∗

with Ĝ := diag(U∗y), we can write y ⊛ x in the vertex space as the linear operator Ŷ x.

In the context of a GNN, there are two drawbacks to learning y explicitly as a non-parametric filter:
i) deriving the eigenvalue decomposition of L could be computationally too intensive (Kipf and Welling,
2017); ii) learning y explicitly would require learning a number of parameters proportional to the input size,
which could be inefficient for tasks of high dimension (Defferrard et al., 2016).

For these reasons, it is customary in the GNN literature, see Kipf and Welling (2017) and Defferrard et al.
(2016), to work with filters whose graph Fourier transform is a degree-K polynomial function of Λ with a
small K. This leads to a so-called localized filter thanks to which the output (i.e., filtered) signal at a vertex
u ∈ V is a linear combination of the input signals within a K-hop neighborhood of u (Shuman et al., 2013).
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Using either Chebyshev polynomials as done by Hammond et al. (2011) and Kipf and Welling (2017) or
power monomials as done by Singh and Chen (2022), with K = 1 (as typical in the literature) one obtains a
parametric family of linear operators with two (learnable) parameters θ0 and θ1:1

Ŷ := θ0I + θ1L. (1)

Discrete Laplacians for Undirected Hypergraphs

In a hypergraph H = (V, E), the relationship between vertices and hyperedges is classically represented via
an incidence matrix B of size |V | × |E|. When H is undirected, B is defined as:

Bve =
{

1 if v ∈ e

0 otherwise
v ∈ V, e ∈ E. (2)

From B, one can derive Q, the Signless Laplacian Matrix Chung and Graham (1997), as well as its normalized
counterpart QN :

Q := BWB⊤ QN := D
− 1

2
v BWD−1

e B⊤D
− 1

2
v . (3)

When restricting to undirected graphs (i.e., 2-uniform undirected hypergraphs), an alternative Laplacian
matrix, the so-called Signed Laplacian Matrix, can be obtained with a similar construction to equation 3.
This involves applying an arbitrary orientation to the edges of the graph (i.e., arbitrarily multiplying by
−1 exactly one entry per column of B). Calling such a matrix B′, the Signed Laplacian matrix L and its
normalized counterpart LN are defined as follows:

L := B′WB′⊤ LN := D
− 1

2
v B′WD−1

e B′⊤D
− 1

2
v . (4)

By utilizing the standard definitions of weighted adjacency matrix A ∈ Rn×n where Auv = we if e = {u, v} ∈ E
and Auv = 0 otherwise, for undirected graphs we have:

Q = Dv + A L = Dv − A QN = I − LN LN = I − QN . (5)

While the definition of L in equation 4 does not extend nicely to general (not 2-uniform) hypergraphs,
the definition of LN in equation 5 does.2A generalization of the Signed Laplacian to general undirected
hypergraphs which follows LN = I − QN from equation 5 is proposed by Zhou et al. (2006), and reads:3

∆ = I − QN . (6)

Notably, all the Laplacian matrices we introduced satisfy some key properties: i) they are real and symmetric—
and thus diagonalizable with real-valued eigenvalues; ii) they are positive semi-definite; and iii) their
normalized versions possess a bounded spectrum.

Discrete Laplacian Matrices for Directed 2-Uniform Hypergraphs

In directed 2-uniform hypergraphs, the presence of edge directions renders the graph asymmetric and none
of the previous definitions of the graph Laplacian apply. Indeed, those in equation 3, equation 4, and
equation 6 would symmetrize the graph and destroy its directions, while the one in equation 5 would lead
to an asymmetric matrix which does not admit an eigenvalue decomposition and, thus, would prevent the
application of the graph Fourier transform.

1Following w.l.o.g. Singh and Chen (2022), we employ the approximation Ĝ =
∑K

k=0 θkΛk, from which we deduce Ŷ x =
UĜU∗x = U(

∑K
k=0 θkΛk)U∗x =

∑K
k=0 θk(UΛkU∗)x =

∑K
k=0 θkLkx.

2For instance, the choice of which entries of B should be multiplied by −1 would drastically affect L (rendering the orientation
not arbitrary anymore) and L may feature both positive and negative off-diagonal entries, thereby violating LN = I − QN

(notice that QN ≥ 0 holds by construction).
3In Zhou et al. (2006), QN is called Θ.
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The Magnetic Laplacian L(q), proposed by Lieb and Loss (1993) in the context of electromagnetic fields and
adopted within a spectral GNN by Zhang et al. (2021b;a), is a complex-valued and Hermitian Laplacian
matrix. It encodes the directional information of the graph while enjoying an eigenvalue decomposition with a
nonnegative, real spectrum. This Laplacian matrix generalizes the Laplacian L defined in equation 5. Letting
As := 1

2
(
A + A⊤) be the symmetrized version of A and letting Ds := diag(Ase), the Magnetic Laplacian

and its normalized version are defined as follows:

L(q) := Ds − H(q) and L
(q)
N := I − D

− 1
2

s H(q)D
− 1

2
s , with H(q) := As ⊙ exp

(
i 2πq

(
A − A⊤)) ,

where i is the imaginary unit and q ∈ [0, 1].
The Sign-Magnetic Laplacian Lσ is a matrix proposed by Fiorini et al. (2023) which is well-defined also for
graphs with negative edge weights and enjoys some extra desirable properties. If q = 1

4 , Lσ and L(q) coincide
if the latter is first constructed for an unweighted version of the graph and then multiplied component-wise
by As. Thus, Lσ is invariant to a positive weight scaling which could otherwise alter the sign pattern of L(q)

and, thus, the edge direction. Letting D̄s := diag(|As| e) and sign : R → {−1, 0, 1} be the component-wise
signum function, Lσ and its normalized version are defined as follows:

Lσ := D̄s − Hσ and Lσ
N := I − D̄

− 1
2

s HσD̄
− 1

2
s , with Hσ := As ⊙

(
e⊤ − sign(|A − A⊤|) + i sign

(
|A| − |A⊤|

))
.

To the best of our knowledge, no extensions of the Laplacian matrix are known for the case of directed
hypergraphs which are not 2-uniform. Our paper aims to bridge this gap.

3 The Generalized Directed Laplacian

We now introduce our proposed complex-valued Hermitian Laplacian matrix, which is capable of handling
hypergraphs featuring both directed and undirected hyperedges. We also establish some of its key properties.
We refer to this matrix as the Generalized Directed Laplacian. We define it directly in normalized form as:

L⃗N := I − Q⃗N with Q⃗N := D
− 1

2
v B⃗WD−1

e B⃗∗D
− 1

2
v , (7)

where B⃗ is the following complex-valued incidence matrix:

B⃗ve =


1 if v ∈ H(e)
−i if v ∈ T (e)
0 otherwise

v ∈ V, e ∈ E. (8)

To appreciate how L⃗N encodes the directions of the hypergraph, we analyze its scalar form for a pair of
vertices u, v ∈ V :

(L⃗N )uv =



1 −
∑

e∈E:u∈e

we

δe

1
du

u = v−
∑
e∈E:

u,v∈H(e)∨u,v∈T (e)

we

δe
− i

 ∑
e∈E:

u∈T (e)∧v∈H(e)

we

δe
−

∑
e∈E:

u∈H(e)∧v∈T (e)

we

δe


 1√

du

1√
dv

u ̸= v

(9)

The pair u, v affects the value of (L⃗N )uv through each hyperedge e ∈ E where u, v ∈ e. Considering the second
line of equation 9, each hyperedge where u, v take both the role of head (u, v ∈ H(e)) or tail (u, v ∈ T (e))
contributes negatively to the real part, ℜ((L⃗N )uv), by the opposite of its normalized weight (−we/δe). For
undirected hypergraphs, this is the only contribution. Such a behavior is in line with the nature of LN

(equation 4) for undirected graphs and of ∆ (equation 6) for undirected hypergraphs. Hyperedges where
u, v take opposite roles contribute with their normalized weight negatively if u ∈ H(e) and v ∈ T (e) and
positively if u ∈ T (e) and v ∈ H(e). Due to this, the imaginary part, ℑ((L⃗N )uv), is affected by the net
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contribution of u and v across all the directed hyperedges that contain them. This is in line with the net flow
behavior observed by (Fiorini et al., 2023) for Lσ for the case of directed graphs. An example illustrating the
construction of L⃗N for a directed hypergraph is provided in Appendix F.

The relationship between L⃗N and the previously-proposed Laplacian matrices that we introduced in Section 2
as well as its spectral properties are analyzed in more detail in what follows.

On the Relationship between L⃗N and other Laplacian Matrices

The following theorem shows that L⃗N and Q⃗N generalize the Laplacian matrices proposed by Zhou et al.
(2006) for undirected hypergraphs which are defined in equation 3 and equation 6:
Theorem 1. If H is an undirected hypergraph, L⃗N = ∆ and Q⃗N = QN .

Focusing on 2-uniform hypergraphs, we show that L⃗N and Q⃗N generalize the Signed and Signless Laplacian
matrices LN and QN defined in equation 3 and equation 4, which are classically used for undirected
graphs (Chung and Graham, 1997):
Corollary 1. If H is an undirected 2-uniform hypergraph, L⃗N = 1

2 LN and Q⃗N = 1
2 QN .

Focusing on the case of directed graphs, we establish under which conditions L⃗N generalizes the Signum-
Magnetic Laplacian proposed by Fiorini et al. (2023) and the Magnetic Laplacian introduced by Lieb and
Loss (1993):
Theorem 2. If H is a directed 2-uniform hypergraph with no antiparallel edges, we have L⃗N = 1

2 Lσ
N with

As = A + A⊤.
Corollary 2. If H is a directed 2-uniform unweighted hypergraph with no antiparallel edges, we have
L⃗N = 1

2 L
(q)
N with q = 1

4 and As = A + A⊤.

Key Spectral Properties of L⃗N

We start by showing that L⃗N and Q⃗N admit an eigenvalue decomposition with real eigenvalues. The result is
structural and follows after showing that both matrices are Hermitian:
Theorem 3. L⃗N and Q⃗N are diagonalizable with real eigenvalues.

Next, we show that the spectrum of Q⃗N is nonnegative. This result is obtained by showing that Q⃗N can be
decomposed as the product of the matrix D

− 1
2

v B⃗W
1
2 D

− 1
2

e and its conjugate transpose:
Theorem 4. Q⃗N is positive semidefinite.

To show that L⃗N is positive semidefinite, we first derive the equation of ||x||2
L⃗N

, i.e. the p-Dirichlet energy
function with p = 2 induced by the Generalized Directed Laplacian for a signal x ∈ Cn. In line with the
2-uniform case (Shuman et al., 2013), such a function provides a measure of global smoothness for x across
the entire hypergraph.
Theorem 5. Let x = a + ib ∈ Cn, with a, b ∈ Rn. The 2-Dirichlet energy function ||x||2

L⃗N
= x∗L⃗N x of x

induced by L⃗N is the following quadratic form:

1
2
∑
e∈E

w(e)
δ(e)

∑
u,v∈E

(((
au√
du

− av√
dv

)2
+
(

bu√
du

− bv√
dv

)2
)

1u,v∈H(e)∨u,v∈T (e)

+
((

au√
du

+ bv√
dv

)2
+
(

av√
dv

− bu√
du

)2
)

1u∈H(e),v∈T (e)

+
((

au√
du

− bv√
dv

)2
+
(

av√
dv

+ bu√
du

)2
)

1v∈H(e),u∈T (e)

)
, (10)

where 1 is the indicator function.
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Corollary 3. L⃗N is positive semidefinite.

The nonnegativity of the spectra of L⃗N and Q⃗N is an important property, as it shows that their eigenvalues
can be naturally interpreted as graph frequencies, which is in line with the case of the Laplacian matrices of
Section 2 defined for undirected hypergraphs and directed graphs.

Lastly, we combine Theorems 3 and 4 to derive upper bounds on the spectra of L⃗N and Q⃗N :

Corollary 4. λmax(L⃗N ) ≤ 1 and λmax(Q⃗N ) ≤ 1.

While these spectral bounds are not required for the construction of the convolution operator defined
in equation 1, they are necessary to construct localized filters using Chebyshev’s polynomials of degree
K > 1 (Kipf and Welling, 2017; Defferrard et al., 2016; He et al., 2022a), and could be of independent interest.

The proofs of the theorems and corollaries of this section can be found in Appendix B.

4 Generalized Directed Hypergraph Neural Network (GeDi-HNN)

We embed the Generalized Directed Laplacian L⃗N in GeDi-HNN, the first HNN capable of handling
hypergraphs with both undirected and directed edges via a spectral-based convolution operator. For this
purpose, we rely on the localized filter of Section 2 which led to equation 1. Letting L = L⃗N , our convolution
operator is Ŷ x = θ0I + θ1L⃗N .

The adoption of a localized filter with two parameters θ0, θ1 plays an important role towards the generality
and the flexibility of GeDi-HNN, which we highlight next:

Proposition 1. The convolution operator obtained from equation 1 by letting L = L⃗N with parameters θ0, θ1
coincides with the one obtained by letting L = Q⃗N with parameters θ′

0 = θ0 + θ1, θ′
1 = −θ1.

The proposition implies that GeDi-HNN generalizes previously-proposed GNNs and HNNs irrespective of
whether they are designed around a Signed or a Signless Laplacian matrix (provided that either L⃗N or Q⃗N

generalize the matrix such networks employ). This is because, as the proposition shows, GeDi-HNN can
implement the convolution of equation 1 built on top of either Laplacians by learning suitable values for
θ0, θ1.

In our implementation, GeDi-HNN features the following extension of the convolution operator of equation 1.
Let X ∈ Cn×c0 be a c0-dimensional graph signal (a graph signal with c0 input channels), which we compactly
represent as a matrix. We combine θ0 and θ1 with the mixing operator that is commonly applied to X
to linearly combine the c0 channels of the graph signal. In doing so, we introduce two linear operators
Θ0, Θ1 ∈ Cc0×c which can either upscale (if c > c0) or downscale (if c < c0) the number of channels of X. A
similar choice is made in other GNN/HNNs such as MagNet (Zhang et al., 2021b).

Letting ϕ be an activation function applied component-wise to its input matrix, the output Z ∈ Cn×c′ of one
of GeDi-HNN’s convolutional layers is:

Z(X) = ϕ
(

IXΘ0 + L⃗N XΘ1

)
. (11)

As activation function, we adopt a complex extension of the ReLU function, in which, for a given z ∈ C,
ϕ(z) = z if ℜ(z) ≥ 0 and ϕ(z) = 0 otherwise. A similar choice is followed in other GNNs/HNNs works such
as (Fiorini et al., 2023; 2024). We project the complex-valued output of the last convolutional layer into the
reals via an unwind operation by which Z(X) ∈ Cn×c is transformed into (ℜ(Z(X))||ℑ(Z(X))) ∈ Rn×2c,
where || is the concatenation operator.

To obtain the final result, we add ℓ linear layers to GeDi-HNN’s architecture and a residual connection for
every convolutional layer except for the first one. These connections have been proven to aid in training
deeper models by allowing them to retain information from the input of the previous layers (He et al., 2016;
Kipf and Welling, 2017). GeDi-HNN’s architecture is depicted in Figure 1.
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Figure 1: GeDi-HNN’s architecture: after two complex convolutional layers and a residual connection, we
unwind the real and imaginary parts of the feature matrix and apply a fully connected layer.

Complexity of GeDi-HNN. Let us assume w.l.o.g. (as it does not affect the asymptotic analysis of
complexity) that the input and output data of each convolutional layer except for the last one have c channels
and that the output of the last convolutional layer and the number of channels of each linear layer are equal
to c′. With ℓ convolutional layers and S linear layers, GeDi-HNN’s complexity is O(ℓ(n2c + nc2) + nc + (S −
1)(nc′2) + nc′d + nd), where d is the number of hidden node classes (the last channel of the last linear layer).
Letting c̄ := max{c, c′, d} be the largest number of channels throughout the network, we have a complexity of
O(ℓ(n2c̄) + (ℓ + S)(nc̄2)). Such a quantity is quadratic w.r.t. the number of nodes n and the largest number
of channels c̄, which is in line with previous GNNs and HNNs architectures. For more details see Appendix C.

5 Numerical Experiments

We now illustrate the results of an extensive set of experiments carried out to evaluate the performance of
GeDi-HNN on directed hypergraphs. We compare our proposal against 11 state-of-the-art methods from
the hypergraph-learning literature: HGNN (Feng et al., 2019), HCHA4 (Bai et al., 2021), HCHA with
the attention mechanism (Bai et al., 2021), HNHN (Dong et al., 2020), HyperGCN (Yadati et al., 2019),
UniGCNII (Huang and Yang, 2021), HyperDN (Tudisco et al., 2021), AllDeepSets (Chien et al., 2021),
AllSetTransformer (Chien et al., 2021), LEGCN Yang et al. (2022), ED-HNN (Wang et al., 2023a), and
PhenomNN (Wang et al., 2023b). The hyperparameters of these baselines and of our proposed model are
selected via grid search (see Appendix E).

The experiments are carried out on the node classification task of predicting the class associated with each
node, which is the same task that was consistently used throughout the papers where the 11 baselines
were proposed. The comparison is carried out on on real-world datasets (Subsection 5.1) and on synthetic
hypergraphs (Subsection 5.2).

Throughout the following tables, the best results are reported in boldface and the second-best are underlined.
The datasets and code we used are publicly available on GitHub (see Appendix A).

5.1 Node Classification Task on Real-World Datasets

We test GeDi-HNN on 10 real-world datasets from the literature: Cora, Citeseer, and PubMed (Zhang et al.,
2022); email-Enron and email-Eu (Benson et al., 2018); Texas, Wisconsin, and Cornell (Pei et al., 2020);
WikiCS (Mernyei and Cangea, 2020); and Telegram (Bovet and Grindrod, 2020). We test the 11 baselines
(which, we recall, are not designed to handle directed hypergraphs) on an undirected version of the 10 datasets
which is compiled following the procedure of (Feng et al., 2019). Differently, we test GeDi-HNN, which is the
only method designed to handle directed hypergraphs, on a directed version of these instances, which we
compile following a slight modification to the previous procedure. For every node p sharing a relationship with
nodes a, b, c, d, we create the hyperedge e with H(e) = {p} and T (e) = {a, b, c, d}. Considering, e.g., a citation
relationship in CiteSeer where paper p cites papers a, b, c, d, in the undirected case we follow (Feng et al.,
2019) and create the hyperedge {a, b, c, d} to semantically represent the paper p whereas, in the directed case,
we set {p} as head and {a, b, c, d} as tail. We adopt the split proposed by Zhang et al. (2021b) for Telegram,

4Among the many versions of HCHA in Dong et al. (2020), we use the one implemented in https://github.com/Graph-COM/
ED-HNN, which coincides with HGNN+ (Gao et al., 2022).
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Texas, Wisconsin, and Cornell and the split of Chien et al. (2021) on the other ones. All the experiments
are conducted using 10-fold cross-validation. More details on the datasets can be found in Appendix D.

Table 1: Mean accuracy and standard deviation obtained on the node classification task on the real-world
datasets. The results of Cora, Citeseer, and PubMed are taken from Table 3 of (Wang et al., 2023b).

Method Cora Citeseer Pubmed email-Eu email-Enron
HGNN 79.39 ± 1.36 72.45 ± 1.16 86.44 ± 0.44 39.80 ± 2.77 44.32 ± 5.44
HCHA/HGNN+ 79.14 ± 1.02 72.42 ± 1.42 86.41 ± 0.36 41.01 ± 3.55 44.59 ± 6.77
HCHA w/ Attention 58.20 ± 2.53 68.44 ± 1.27 79.90 ± 1.70 28.75 ± 2.82 35.68 ± 6.96
HNHN 76.36 ± 1.92 72.64 ± 1.57 86.90 ± 0.30 29.92 ± 1.88 30.01 ± 12.56
HyperGCN 78.45 ± 1.26 71.28 ± 0.82 82.84 ± 8.67 30.81 ± 2.80 36.76 ± 5.87
UniGCNII 78.81 ± 1.05 73.05 ± 2.21 88.25 ± 0.40 40.81 ± 2.76 41.62 ± 5.28
LEGCN 74.74 ± 1.25 72.74 ± 0.86 88.12 ± 0.74 30.16 ± 2.28 35.41 ± 5.76
HyperND 79.20 ± 1.14 72.62 ± 1.49 86.68 ± 0.43 29.23 ± 1.80 35.41 ± 5.62
AllDeepSets 76.88 ± 1.80 70.83 ± 1.63 88.75 ± 0.33 29.92 ± 1.88 36.76 ± 7.01
AllSetTransformer 78.58 ± 1.47 73.08 ± 1.20 88.72 ± 0.37 41.58 ± 5.13 45.41 ± 8.43
ED-HNN 80.31 ± 1.35 73.70 ± 1.38 89.03 ± 0.53 30.85 ± 2.87 42.97 ± 7.37
PhenomNN 82.29 ± 1.42 75.10 ± 1.59 88.07 ± 0.48 31.09 ± 3.83 37.03 ± 7.21
GeDi-HNN 84.04 ± 1.15 75.68 ± 1.04 89.80 ± 0.51 49.27 ± 3.17 52.43 ± 5.28
GeDi-HNN w/o directions 78.85 ± 1.75 74.08 ± 1.15 88.67 ± 0.58 46.88 ± 3.04 48.38 ± 6.55

Method Telegram Texas Wisconsin Cornell WikiCS
HGNN 59.42 ± 6.04 71.08 ± 7.32 75.69 ± 4.64 70.81 ± 4.73 77.95 ± 5.69
HCHA/HGNN+ 52.12 ± 3.32 71.35 ± 6.77 73.53 ± 5.41 70.81 ± 5.06 76.50 ± 5.07
HCHA w/ attention 57.69 ± 2.86 72.97 ± 6.50 70.59 ± 6.40 73.51 ± 4.73 11.67 ± 4.79
HNHN 50.77 ± 8.27 75.41 ± 7.26 81.18 ± 3.72 74.32 ± 5.14 26.47 ± 18.1
HyperGCN 55.77 ± 3.95 65.95 ± 9.03 70.98 ± 5.05 68.39 ± 6.87 75.80 ± 6.16
UniGCNII 55.58 ± 5.01 84.17 ± 5.44 86.47 ± 5.02 76.76 ± 5.13 83.24 ± 1.07
LEGCN 45.19 ± 5.15 79.19 ± 4.78 84.51 ± 5.35 73.78 ± 6.12 78.73 ± 1.19
HyperND 43.65 ± 4.35 81.62 ± 6.60 85.10 ± 4.45 74.87 ± 4.60 72.28 ± 3.14
AllDeepSets 38.46 ± 6.08 82.97 ± 5.85 84.51 ± 5.43 78.11 ± 3.70 83.00 ± 1.10
AllSetTransformer 57.12 ± 5.21 80.27 ± 5.56 81.96 ± 6.26 76.47 ± 5.41 83.37 ± 3.77
ED-HNN 54.42 ± 6.01 83.78 ± 7.64 86.27 ± 2.45 77.84 ± 5.67 82.12 ± 1.57
PhenomNN 54.61 ± 4.72 84.59 ± 5.41 86.28 ± 4.62 76.49 ± 5.56 80.07 ± 0.61
GeDi-HNN 75.01 ± 4.96 84.59 ± 4.78 88.43 ± 3.31 80.54 ± 2.79 82.23 ± 1.47
GeDi-HNN w/o directions 64.80 ± 6.60 83.51 ± 4.51 86.66 ± 4.96 77.83 ± 4.65 82.52 ± 1.19

The accuracy obtained across the different methods and datasets is reported in Table 1. The results show
that, across the whole testbed, GeDi-HNN achieves an average additive performance improvement over
the best-performing competitor of approximately 4.20 percentage points. In terms of Relative Percentage
Difference (RPD)5, we have an average RPD improvement of 7.06%. The most significant improvement is
observed for Telegram, where GeDi-HNN achieves an average RPD improvement of approximately 23.19%
and an average additive improvement of 15.59 percentage points w.r.t. the best competitor from the literature
(HGNN). Overall, GeDi-HNN ranks first on 9 out of 10 datasets and fourth on the 10th dataset, where it
achieves an accuracy of 82.23, which is only 1.14 percentage points less than the best one recorded for the
experiment.

Table 1 also presents the results of an ablation study aimed at demonstrating that a significant portion of
the superior performance of GeDi-HNN is attributable to the Generalized Directed Laplacian L⃗N rather
than to the network’s architecture. In this study, we compare GeDi-HNN to GeDi-HNN w/o directions,
a version which employs the undirected hypergraph Laplacian ∆ proposed in Zhou et al. (2006) (which
disregards hyperedge directions) instead of L⃗N . As shown in Table 1, GeDi-HNN outperforms GeDi-HNN
w/o directions with an RPD improvement of 4.90% (an additive difference of 3.35 percentage points) on
average across 9 out of 10 datasets and achieves nearly identical performance on the 10th dataset (WikiCS),
where the difference between the two versions is negligible (of, additively, only 0.29 percentage points). The
largest improvement, observed on Telegram, is of a RPD of 14.61% (an additive difference of 10.21 percentage
points).

These results underscore the importance of incorporating the directionality of the hyperedges and suggest that,
thanks to the Generalized Directed Laplacian, GeDi-HNN effectively captures and utilizes this information.

5The RPD of two values P1, P2 is the percentage ratio of their difference to their average, i.e., |P1 − P2|/ P1+P2
2 %.
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5.2 Node Classification Task on Synthetic Datasets

To emphasize the importance of leveraging the hypergraph’s directions in identifying the class of each node, we
conduct a set of experiments on synthetic datasets specifically designed to exhibit a high degree of correlation
between node classes and hyperedge directions.

Figure 2: Schematic representation of
the direction of the flow induced by the
hyperedges in a synthetic dataset with
5 classes (c = 5).

Drawing inspiration from the methodology proposed in Zhang et al.
(2021b), we rely on a collection of datasets which are generated as
follows. First, the set V of vertices is partitioned into c equally-sized
classes C1, . . . , Cc with uniform probability. Subsequently, for each
class C, Ii intra-class undirected hyperedges are created, each with
a cardinality uniformly sampled from {hmin, . . . , hmax}, containing
vertices of the same class, also sampled with uniform probability.
Similarly, for each pair of classes Ci and Cj with i < j, Io inter-
class directed hyperedges are created. The head and tail sets are
sampled from Ci and Cj , respectively, with uniform probability, and
both have a cardinality uniformly sampled from {hmin, . . . , hmax}.
Figure 2 portrays the directional flow that the hyperedges induce
among the classes of a synthetic dataset with 5 classes. Notice how
the flow is directed from a class Ci to a class Cj only if i < j.

Using this methodology, we generate three distinct datasets with
the parameters n = 500, c = 5, hmin = 3, hmax = 10, Ii = 30, and
an increasing number of inter-class hyperedges Io = 10, 30, 50. For
these datasets, we implement a 50%/25%/25% split for training,
validation, and testing, respectively. The experiments are conducted
using 10-fold cross-validation.

Table 2: Mean accuracy and standard deviation obtained on the node classification tasks on the synthetic
datasets.

Method Io = 10 Io = 30 Io = 50
HGNN 30.02 ± 5.99 31.52 ± 4.20 32.40 ± 3.36
HCHA/HGNN+ 33.60 ± 4.76 36.96 ± 4.60 39.04 ± 2.66
HCHA w/ Attention 17.28 ± 2.42 18.64 ± 2.64 20.44 ± 2.24
HNHN 19.28 ± 4.16 20.16 ± 3.88 19.28 ± 2.86
HyperGCN 21.04 ± 3.99 21.28 ± 3.11 17.84 ± 3.33
UniGCNII 20.80 ± 3.94 21.52 ± 3.72 20.40 ± 4.67
LEGCN 17.84 ± 1.31 19.76 ± 5.27 19.84 ± 4.04
HyperND 18.16 ± 3.11 18.40 ± 3.85 18.16 ± 4.06
AllDeepSets 18.32 ± 4.12 19.20 ± 4.33 18.72 ± 4.40
AllSetTransformer 19.44 ± 4.42 18.96 ± 4.30 22.72 ± 5.06
ED-HNN 19.12 ± 3.32 21.12 ± 3.56 18.96 ± 3.33
PhenomNN 20.88 ± 4.24 21.20 ± 4.30 20.32 ± 4.62
GeDi-HNN 65.92 ± 3.98 71.84 ± 3.31 78.24 ± 5.64
GeDi-HNN w/o directions 36.72 ± 5.84 29.68 ± 6.78 28.16 ± 10.65

The experimental results, summarized in Table 2, indicate a substantial performance difference between
GeDi-HNN and the other 11 baselines, which increases with higher values of Io. On average, GeDi-HNN
achieves an accuracy that surpasses the best competitor from the literature with an RPD improvement of
65.31% (an additive improvement of 35.47 percentage points). The additive difference compared to the
second-best performer is of up to 39.19 percentage points.

We conclude with the ablation study where GeDi-HNN is compared to GeDi-HNN w/o directions. The
results reveals a substantial accuracy difference of 40.48 percentage points (on average) between GeDi-
HNN and GeDi-HNN w/o directions Notably, as the number of inter-class hyperedges (Io) increases,
the performance of GeDi-HNN improves, while that of GeDi-HNN w/o directions declines. This finding
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underscores the significant contribution of our proposed Generalized Directed Laplacian to the superior
performance of GeDi-HNN.

6 Conclusion

We introduced GeDi-HNN, the first spectral HNN capable of handling hypergraphs with both undirected
and directed edges. GeDi-HNN is built upon a novel complex-valued Laplacian matrix, the Generalized
Directed Laplacian, which is a Hermitian matrix that employs a complex-number representation of the
hyperedge directions. This approach naturally generalizes several previously proposed Laplacians for both
graphs and hypergraphs. Our proposal enables the seamless integration of directionality in HNNs, which is
crucial for accurately modeling various real-world phenomena involving asymmetric high-order interactions.
Our proposed GeDi-HNN model utilizes this new Laplacian matrix to perform spectral convolutions on
hypergraphs featuring both undirected and directed hyperedges.

Extensive computational experiments on both real-world and synthetic datasets have demonstrated the
superior performance of GeDi-HNN in 12 out of 13 experiments compared to a comprehensive representative
group of state-of-the-art methods for the node classification task. These findings underscore the importance
of incorporating directional information within GeDi-HNN’s convolution operator. Specifically, GeDi-HNN
consistently outperforms existing models across various datasets, achieving an average relative-percentage-
difference improvement of 7% on real-world dataset (with a maximum improvement of 23.19%) and of 65.3%
on synthetic datasets. The superiority of our method is particularly evident in the experiments on synthetic
hypergraphs. These results highlight the potential of adopting GeDi-HNN to significantly enhance the
modeling of complex, directed interactions within a hypergraph to the benefit of the hypergraph-learning
task at hand.

Broader Impact Statement

All the data we used are publicly available for research purposes and do not contain personally identifiable
information or offensive content (see Appendix A for more details). The methods presented here have an
impact on society comparable to other graph neural network algorithms.
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A Code Repository and Licensing

The code written for this research work is available at https://anonymous.4open.science/r/GD_HNN-A8C5
and freely distributed under the Apache 2.0 license.6

The Texas, Wisconsin, Cornell, WikiCS, and Telegram datasets were obtained from the PyTorch Geometric
Signed Directed (He et al., 2022b) library (provided under the MIT license). The Cora, Citeseer, and
PubMed datasets are available at https://linqs.org/datasets/. The email-Eu and email-Enron datasets
are available at https://www.cs.cornell.edu/~arb/data/.

The code for the baselines used in the experimental analysis is available at https://github.com/Graph-COM/
ED-HNN and https://github.com/yxzwang/PhenomNN under the MIT license.7

B Properties of Our Proposed Laplacian L⃗N

This section contains the proofs of the theorems, corollaries, propositions, and lemmata reported in the main
paper.
Theorem 1. If H is an undirected hypergraph, L⃗N = ∆ and Q⃗N = QN .

Proof. Since H = (V, E) is an undirected hypergraph, B⃗ is binary and only takes values 0 and 1 (rather
than being ternary and taking values −0, 1, −i). In particular, for each edge e ∈ E we have B⃗ue = 1 if either
u ∈ H(e) or u ∈ T (e) and B⃗ue = 0 otherwise. Consequently, the directed incident matrix B⃗ is identical to
the non-directed incidence matrix B, i.e., B⃗ = B. Thus, by construction, L⃗N = ∆ and Q⃗N = QN .

Corollary 1. If H is an undirected 2-uniform hypergraph, L⃗N = 1
2 LN and Q⃗N = 1

2 QN .

Proof. Since H is an undirected 2-uniform hypergraph, it follows that:{
B⃗WB⃗∗ = Dv + A

D−1
e = 1

2 I

Based on this, we can rewrite Q⃗N as follows:

Q⃗N = D
− 1

2
v B⃗WD−1

e B⃗∗D
− 1

2
v

= D
− 1

2
v B⃗

(
1
2W

)
B⃗∗D

− 1
2

v

= 1
2

(
D

− 1
2

v (Dv + A) D
− 1

2
v

)
= 1

2

(
I + D

− 1
2

v AD
− 1

2
v

)
= 1

2 (I + AN )

= 1
2QN

This proves the second part of the result. As Q⃗N = 1
2 QN and, due to equation 5, 1

2 LN = I − 1
2 QN , it follows

that 1
2 LN = I − Q⃗N = L⃗N .

Theorem 2. If H is a directed 2-uniform hypergraph with no antiparallel edges, we have L⃗N = 1
2 Lσ

N with
As = A + A⊤.

6https://www.apache.org/licenses/LICENSE-2.0
7https://choosealicense.com/licenses/mit/
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Proof. As H is a directed 2-uniform hypergraph without antiparallel edges, it follows that:{
B⃗WB⃗∗ = D̄s + Hσ

D−1
e = 1

2 I.

As = A + A⊤ implies D̄s = Dv. Thus, we can rewrite L⃗N :

L⃗N = I − D
− 1

2
v B⃗WD−1

e B⃗∗D
− 1

2
v

= I − D
− 1

2
v B⃗

(
1
2W

)
B⃗∗D

− 1
2

v

= I − 1
2

(
D

− 1
2

v

(
D̄s + Hσ

)
D

− 1
2

v

)
= I − 1

2

(
I + D

− 1
2

v HσD
− 1

2
v

)
= 1

2Lσ
N .

Corollary 2. If H is a directed 2-uniform unweighted hypergraph with no antiparallel edges, we have
L⃗N = 1

2 L
(q)
N with q = 1

4 and As = A + A⊤.

Proof. As H is a directed 2-uniform unweighted hypergraph, A ∈ {0, 1}n×n. Thus, as shown by Fiorini et al.
(2023), with q = 1

4 we have Lσ = L(q). Since Theorem 2 states that L⃗N = 1
2 Lσ

N , it follows that

L⃗N = 1
2Lσ

N = 1
2L( 1

4 ).

Theorem 3. L⃗N and Q⃗N are diagonalizable with real eigenvalues.

Proof. This follows from the fact that the two matrices are, by construction, Hermitian.

Theorem 4. Q⃗N is positive semidefinite.

Proof.

x∗Q⃗N x :=x∗
(

D
− 1

2
v B⃗WD−1

e B⃗∗D
− 1

2
v

)
x(

x∗D
− 1

2
v B⃗W

1
2 D

− 1
2

e

)(
D

− 1
2

e W
1
2 B⃗∗D

− 1
2

v x
)

(
D

− 1
2

e W
1
2 B⃗∗D

− 1
2

v x
)∗ (

D
− 1

2
e B⃗∗W

1
2 D

− 1
2

v x
)

||
(

D
− 1

2
e W

1
2 B⃗∗D

− 1
2

v x
)∗

||22 ≥ 0.

Theorem 5. Let x = a + ib ∈ Cn, with a, b ∈ Rn. The 2-Dirichlet energy function ||x||2
L⃗N

= x∗L⃗N x of x

induced by L⃗N is the following quadratic form:

1
2
∑
e∈E

w(e)
δ(e)

∑
u,v∈E

(((
au√
du

− av√
dv

)2
+
(

bu√
du

− bv√
dv

)2
)

1u,v∈H(e)∨u,v∈T (e)

+
((

au√
du

+ bv√
dv

)2
+
(

av√
dv

− bu√
du

)2
)

1u∈H(e),v∈T (e)

+
((

au√
du

− bv√
dv

)2
+
(

av√
dv

+ bu√
du

)2
)

1v∈H(e),u∈T (e)

)
, (12)
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where 1 is the indicator function.

Proof.

x∗L⃗N x =
∑
u∈V

x∗
uxu −

∑
u,v∈V

∑
e∈E

w(e)
δ(e)

B̄(u, e)B̄(v, e)∗√
d(u)

√
d(v)

xux∗
v

=
∑
u∈V

x∗
uxu −

∑
e∈E

∑
u,v∈V

w(e)
δ(e)

B̄(u, e)B̄(v, e)∗√
d(u)

√
d(v)

xux∗
v

=
∑
u∈V

x∗
uxu −

∑
e∈E

w(e)
δ(e)

∑
u,v∈V :u≤v

(
B̄(u, e)B̄(v, e)∗ xux∗

v√
d(u)

√
d(v)

+ B̄(v, e)B̄(u, e)∗ xvx∗
u√

d(v)
√

d(u)

)

=
∑
e∈E

w(e)
δ(e)

∑
u,v∈E:u≤v

(
x∗

uxu

d(u) + x∗
vxv

d(v)

)

−
∑
e∈E

w(e)
δ(e)

∑
u,v∈V :u≤v

(
B̄(u, e)B̄(v, e)∗ xux∗

v√
d(u)

√
d(v)
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u√
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√

d(u)

)

=
∑
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(
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uxu

d(u) + x∗
vxv
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v√

d(u)
√

d(v)
− B̄(v, e)B̄(u, e)∗ xvx∗

u√
d(v)

√
d(u)

)
.

Let us analyze the three possible cases for the summand.

Case 1.a: u ∈ H(e) ∧ v ∈ H(e) ⇔ B̄(u, e) = 1, B̄(v, e) = 1. We have B̄(u, e)B̄(v, e)∗ = B̄(v, e)B̄(u, e)∗ = 1.

Case 1.b: u ∈ T (e) ∧ v ∈ T (e) ⇔ B̄(u, e) = −i, B̄(v, e) = −i. We have B̄(u, e)B̄(v, e)∗ = B̄(v, e)B̄(u, e)∗ =
(−i)(−i)∗ = (−i)(i) = 1.

In both cases, we have:

x∗
uxu

d(u) + x∗
vxv

d(v) − xux∗
v√

d(u)
√

d(v)
− xvx∗

u√
d(v)

√
d(u)

=
(

xu√
d(u)

− xv√
d(v)

)∗(
xu√
d(u)

− xv√
d(v)

)
.

Letting xu = au + ibu and xv = av + ibv, we have:(
au√
du

− av√
dv

)2
+
(

bu√
du

− bv√
dv

)2
.

Case 2.a: u ∈ H(e) ∧ v ∈ T (e) ⇔ B̄(u, e) = 1, B̄(v, e) = −i. We have B̄(u, e)B̄(v, e)∗ = (1)(−i)∗ = i and
B̄(v, e)B̄(u, e)∗ = (−i)(1)∗ = −i.

Thus:
x∗

uxu

d(u) + x∗
vxv

d(v) − i xux∗
v√

d(u)
√

d(v)
+ i xvx∗

u√
d(v)

√
d(u)

Let xu = au + ibu and xv = av + ibv, then we have:(
au√
du

+ bv√
dv

)2
+
(

av√
dv

− bu√
du

)2
.

Case 2.b: u ∈ T (e) ∧ v ∈ H(e) ⇔ B̄(u, e) = −i, B̄(v, e) = 1. We have B̄(u, e)B̄(v, e)∗ = (−i)(1)∗ = −i and
B̄(v, e)B̄(u, e)∗ = (1)(−i)∗ = i. We have:

x∗
uxu

d(u) + x∗
vxv

d(v) + i xux∗
v√

d(u)
√

d(v)
− i xvx∗

u√
d(v)

√
d(u)
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Let xu = au + ibu and xv = av + ibv, then we have:(
au√
du

− bv√
dv

)2
+
(

av√
dv

+ bu√
du

)2
.

The final equation reported in the statement of the theorem is obtained by combining the four cases we just
analyzed.

Corollary 3. L⃗N is positive semidefinite.

Proof. Since L̄N is Hermitian, it can be diagonalized as UΛU∗ for some U ∈ Cn×n and Λ ∈ Rn×n, where
Λ is diagonal and real. We have x∗L⃗N x = x∗UΛU∗x = y∗Λy with y = U∗x. Since Λ is diagonal, we have
y∗Λy =

∑
u∈V λuy2

u. Thanks to Theorem 5, the quadratic form x∗L⃗N x associated with L⃗N is a sum of
squares and, hence, nonnegative. Combined with x∗L⃗N x =

∑
u∈V λuy2

u, we deduce λu ≥ 0 for all u ∈ V .

Corollary 4. λmax(L⃗N ) ≤ 1 and λmax(Q⃗N ) ≤ 1.

Proof. λmax(L⃗N ) ≤ 1 holds if and only if L⃗N − I ⪯ 0. Since L⃗N = I − Q⃗N holds by definition, we need to
prove −Q⃗N ⪯ 0, which holds true due to Theorem 4.

Similarly, λmax(Q⃗N ) ≤ 1 holds if and only if Q⃗N − I ⪯ 0. Since Q⃗N = I − L⃗N holds by definition, we need to
prove −L⃗N ⪯ 0, which holds true due to Theorem 3.

Proposition 1. The convolution operator obtained from equation 1 by letting L = L⃗N with parameters θ0, θ1
coincides with the one obtained by letting L = Q⃗N with parameters θ′

0 = θ0 + θ1, θ′
1 = −θ1.

Proof. Consider the two operators θ0I + θ1L⃗N and θ′
0I + θ′

1Q⃗N . Since L⃗N = I − Q⃗N , the first operator reads:
θ0I + θ1(I − Q⃗N ). This is rewritten as (θ0 + θ1)I − θ1Q⃗N . By operating the choice θ′

0 = θ0 + θ1 and θ1 = −θ′
1,

the second operator is obtained.

C Complexity of GeDi-HNN

The detailed calculations for the (inference) complexity of GeDi-HNN are as follows.

1. The Generalized Directed Laplacian L⃗N is constructed following equation 7 in time O(n2m), where
the factor m is due to the need for computing the product between two rows of B⃗ to calculate each
entry of L⃗N . After L⃗N has been computed, the convolution matrix Ŷ ∈ Cn×n is constructed in time
O(n2). Note that such a construction is carried out entirely in pre-processing and is not required at
inference time.

2. Each of the ℓ convolutional layers of GeDi-HNN requires O(n2c+nc2 +nc) = O(n2c+nc2) elementary
operations across 3 steps. Let X l−1 be the input matrix to layer l = 1, . . . , ℓ. The operations that
are carried out are the following ones.

(a) L⃗N is multiplied by the node-feature matrix X l−1 ∈ Cn×c, obtaining P l1 ∈ Cn×c in time O(n2c)
(we assume matrix multiplications takes cubic time);

(b) The matrices P l0 = IX l−1 = X l−1 and P l1 are multiplied by the weight matrices Θ0, Θ1 ∈ Rc×c

(respectively), obtaining the intermediate matrices P l01 , P l11 ∈ Cn×c in time O(nc2) .
(c) The matrices P l01 and P l11 are additioned in time O(nc) to obtain P l2 .
(d) The activation function ϕ is applied component wise to P l2 in time O(nc), resulting in the

output matrix X l ∈ Cn×c of the l-th convolutional layer.

3. The unwind operator transforms Xℓ (the output of the last convolutional layer ℓ) into the matrix
U0 ∈ Rn×2c in linear time O(nc).
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4. Call Us−1 the input matrix to each linear layer of index s = 1, . . . , S. The application of the s-th
linear layer to Us−1 ∈ Cn×c′ requires multiplying Us−1 by a weight matrix Ms ∈ Cc′×c′ (where c′

is the number of channels from which and into which the feature vector of each node is projected).
This is done in time O(nc′2).

5. In the last linear layer of index S, the input matrix US−1 ∈ Rn×c′ is projected into the output matrix
O ∈ Rn×d in time O(nc′d).

6. The application of the Softmax activation function takes linear time O(nd).

We deduce an overall complexity of O(ℓ(n2c + nc2) + nc + (S − 1)(nc′2) + nc′d + nd) which, letting c̄ =
max{c, c′, d}, coincides with O(ℓ(n2c̄) + (ℓ + S)(nc̄2)).

D Further Details on the Datasets

We test GeDi-HNN on ten real-world dataset. Cora, Citeseer, and PubMed (Zhang et al., 2022); email-Eu,
and email-Enron (Benson et al., 2018); Texas, Wisconsin, and Cornell (Pei et al., 2020); WikiCS (Mernyei
and Cangea, 2020); and Telegram (Bovet and Grindrod, 2020).

Cora, Citeseer, and PubMed are citation networks with node labels based on paper topics. In these citation
networks, the nodes represent papers, their relationships denote citations of one paper by another, and the
node features are the bag-of-words representation of papers.

Email-Enron and email-Eu are two email datasets—one from communications exchanged between Enron
employees (Klimt and Yang, 2004) and the other from a European research institution (Paranjape et al., 2017).
The nodes are email addresses and their relationships are of sender-receiver type. Since no node labeling is
present in these two datasets, we define the node labels (node classes) using the Spinglass algorithm (Reichardt
and Bornholdt, 2006).

Texas, Wisconsin, and Cornell are WebKB data sets extracted from the CMU World Wide Knowledge
Base (Web->KB) project.8 WebKB is a webpage data set collected from computer science departments of
various universities by Carnegie Mellon University. In these networks, the nodes represent web pages, and
the relationship are hyperlinks between them. The node features are the bag-of-words representation of the
web pages. The web pages are manually classified into the five categories: student, project, course, staff, and
faculty.

WikiCS is a directed network whose nodes correspond to Computer Science articles, and the relationships are
on hyperlinks. This network has 10 classes resenting different branches of the field.

Telegram models an influence network built on top of interactions among distinct users who propagate
ideologies of a political nature.

The statistic of these ten real-world datasets and of the synthetic datasets we generate are summarized in
Tables 3 and 4.

E Experiment Details

Hardware. The experiments were conducted on 2 different machines:

1. An Intel(R) Xeon(R) Gold 6326 CPU @ 2.90GHz with 380 GB RAM, equipped with an NVIDIA
Ampere A100 40GB.

2. A 12th Gen Intel(R) Core(TM) i9-12900KF CPU @ 3.20GHz CPU with 64 GB RAM, equipped with
an NVIDIA RTX 4090 GPU.

8http://www.cs.cmu.edu/afs/cs.cmu.edu/project/theo-11/www/wwkb/
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Table 3: Statistics of the ten real-world datasets
Data set # node # hyperedges # classes average |e|
Cora 2708 1579 7 3.03
Citeseer 3312 1079 6 3.20
Pubmed 19717 7963 3 4.35
email-Eu 986 873 10 38.01
email-Enron 143 128 7 20.03
Telegram 245 185 4 48.04
Texas 183 40 5 4.45
Wisconsin 251 65 5 4.77
Cornell 183 41 5 3.88
WikiCS 11701 6827 10 42.08

Table 4: Statistics of the synthetic datasets
Data set # node # hyperedges # classes average |e|
Io = 10 500 250 5 9.05
Io = 30 500 450 5 10.79
Io = 50 500 650 5 11.63

Model Settings. We trained every learning model considered in this paper for up to 500 epochs. We
adopted a learning rate of 5 · 10−3 and employed the optimization algorithm Adam with weight decays equal
to 5 · 10−4 (in order to avoid overfitting). For all the models that adopt the classification layer, we set it to 2.

We adopted a hyperparameter optimization procedure to identify the best set of parameters for each model.
In particular, the hyperparameter values are:

• For AllDeepSets and ED-HNN, the number of basic block is chosen in {2, 4, 8}, the number of MLPs
per block in {1, 2}, the dimension of the hidden MLP (i.e., the number of filters) in {64, 128, 256, 512},
and the classifier hidden dimension in {64, 128, 256}.

• For AllSetTransformer the number of basic block is chosen in {2, 4, 8}, the number of MLPs per block
in {1, 2}, the dimension of the hidden MLP in {64, 128, 256, 512}, the classifier hidden dimension in
{64, 128, 256}, and the number of heads in {1, 4, 8}.

• For UniGCNII, HGNN, HNHN, HCHA/HGNN+, LEGCN, and HCHA with the attention mechanism,
the number of basic blocks is chosen in {2, 4, 8} and the hidden dimension of the MLP layer in
{64, 128, 256, 512}.

• For HyperGCN, the number of basic blocks is chosen in {2, 4, 8}.

• For HyperND, the classifier hidden dimension is chosen in {64, 128, 256}.

• For PhenomNN, the number of basic blocks is chosen in {2, 4, 8}. We select four different settings:

1. λ0 = 0.1, λ1 = 0.1 and prop step= 8,
2. λ0 = 0, λ1 = 50 and prop step= 16,
3. λ0 = 1, λ1 = 1 and prop step= 16,
4. λ0 = 0, λ1 = 20 and prop step= 16.

• For GeDi-HNN and GeDi-HNN w/o directionality, the number of convolutional layers is chosen
in {1, 2, 3}, the number of filters in {64, 128, 256, 512}, and the classifier hidden dimension in
{64, 128, 256}. We tested GeDi-HNN both with the input feature matrix X ∈ Cn×c where ℜ(X) =
ℑ(X) ̸= 0 and with ℑ(X) = 0.
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Node Features. For Cora, Citeseer, PubMed, Texas, Wisconsin, Cornell, WikiCS, and Telegram, we
retain the datasets’ original features. For email-Eu, email-Enron, and the synthetic datasets, the feature
vectors are generated using the vertex degree of each node.

F From a Directed Hypergraph to the Generalized Directed Laplacian

To illustrate the representation of a directed hypergraph in our Generalized Directed Laplacian, consider a
directed hypergraph H = (V, E) with V = {v1, v2, v3, v4, v5} and E = {e1, e2}. The incidence relationships
are defined as follows: v1, v2 ∈ H(e1), v3 ∈ T (e1), v4, v5 ∈ H(e2), and v1, v2 ∈ T (e2). The hyperedges have
unit weights (i.e., W = I). The hyperedge cardinalities are δe1 = 3 and δe2 = 4.

For this hypergraph, we construct our Generalized Directed Laplacian using the following matrices: the
incidence matrix B⃗, its conjugate transpose B⃗∗, the vertex degree matrix Dv, and the hyperedge degree
matrix De.

B⃗ =


1 i
1 i

−i 0
0 1
0 1

 B⃗∗ =
[
1 1 i 0 0
i i 0 1 1

]
Dv =


2 0 0 0 0
0 2 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

 De =
[
3 0
0 4

]
.

Based on these matrices, we build the Q̄N :

Q⃗N =


0.29 0.29 i0.24 −i0.18 −i0.18
0.29 0.29 i0.24 −i0.18 −i0.18

−i0.24 −i0.24 0.33 0 0
i0.18 i0.18 0 0.25 0.25
i0.18 i0.18 0 0.25 0.25


and then our Generalized Directed Laplacian:

L⃗N =


0.71 −0.29 −i0.24 i0.18 i0.18

−0.29 0.71 −i0.24 i0.18 i0.18
i0.24 i0.24 0.66 0 0

−i0.18 −i0.18 0 0.75 −0.25
−i0.18 −i0.18 0 −0.25 0.75


By inspecting L⃗N , one can observe that it encodes the elements of the hypergraph in the following way:

1. The presence of nodes belonging to the same head or tail set, i.e., v1, v2 ∈ H(e1), v4, v5 ∈ H(e2),
and v1, v2 ∈ T (e2), is encoded in the real part. Specifically, (L⃗N )v1v2 = (L⃗N )v2v1 = −0.29 and
(L⃗N )v4v5 = (L⃗N )v5v4 = −0.25.

2. The directed hyperedges are encoded via the imaginary component. For example, considering nodes
v1 and v3, we have (L⃗N )v1v3 = −(L⃗N )v3v1 = −i0.24.

3. The absence of relationships between nodes is encoded by 0. Specifically, (L⃗N )v3v4 = (L⃗N )v4v3 = 0
and (L⃗N )v3v5 = (L⃗N )v5v3 = 0.

4. The "self-loop information" (a measure of how strongly the feature of a node depends on its current
value within the convolution operator) is encoded by the diagonal of L⃗N .
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G Further insights on the relationship between L(q), Lσ, and L⃗N .

We introduce the following modified version of the Magnetic Laplacian:

L′(q) := Ds − H ′(q) and L
′(q)
N := I − D

− 1
2

s H ′(q)D
− 1

2
s ,

where
H ′(q) := As ⊙ exp

(
sin
(
2πq

(
A − A⊤))+ i2 cos

(
2πq

(
A − A⊤))),

and the following modified version of the Sign-Magnetic Laplacian:

L′σ := D̄s − H ′σ and Lσ
N := I − D̄

− 1
2

s H ′σD̄
− 1

2
s ,

with
H ′σ := As ⊙

(
ee⊤ − sgn(|A − A⊤|) + i2 sign

(
|A| − |A⊤|

))
.

Both versions differ from their original definitions due to featuring an imaginary part which is twice as large.
Such a modification is introduced to amend the asymmetric way in which vertex degrees and edge weights
are accounted for in both Laplacians. Let us illustrate the rationale.

For undirected graphs, Auv = Avu = 1 signifies that the graph contains the edge {u, v}. Since Asuv = Asvu = 1,
such an edge is correctly accounted for both in As and in the degree matrices Ds and D̄s (we recall that
Ds := diag(As e) and D̄s := diag(|As| e)).

For directed graphs, though, Auv = Avu = 1 signifies that the graph contains two directed edges (u, v)
and (v, u), rather than just one. In spite of this, in the original definitions of L(q) and Lσ we only have
Asuv

= Asvu
= 1, which implies that only one of these edges is accounted for both in As and in the degree

matrices Dv and D̄v. A similar issue arises when either Auv = 0 (or Avu = 0). In such a case, we have
Asuv

= 1
2 , implying than only half of the edge (u, v) (or (v, u)) is accounted for both in As and in Dv and D̄v.

In the modified versions of the two Laplacians, i.e., L′(q) and L′σ, such an issue is amended thanks to
upscaling by 2 the imaginary part of both matrices (which is the only part containing the information related
to directed edges).

With these definitions, Theorem 2 and Corollary 2 can be extended as follows:

• If H is a directed 2-uniform hypergraph, we have L⃗N = 1
2 L′σ

N .

• If H is a directed 2-uniform unweighted hypergraph, then L⃗N = 1
2 L

′(q)
N with q = 1

4 .
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