
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

COMPOSITIONAL–ARC: ASSESSING SYSTEMATIC
GENERALIZATION IN ABSTRACT SPATIAL REASONING

Anonymous authors
Paper under double-blind review

ABSTRACT

Systematic generalization refers to the capacity to understand and generate novel
combinations from known components. Despite recent progress by large language
models (LLMs) across various domains, these models often fail to extend their
knowledge to novel compositional scenarios, revealing notable limitations in sys-
tematic generalization. There has been an ongoing debate about whether neural
networks possess the capacity for systematic generalization, with recent studies
suggesting that meta-learning approaches designed for compositionality can signif-
icantly enhance this ability. However, these insights have largely been confined to
linguistic problems, leaving their applicability to other tasks an open question. In
this study, we extend meta-learning for compositionality to the domain of abstract
spatial reasoning. To this end, we introduce Compositional-ARC—a dataset de-
signed to evaluate the capacity of models to systematically generalize from known
geometric transformations (e.g., translation, rotation) of abstract two-dimensional
objects to novel combinations of these transformations (e.g., translation+rotation).
Our results show that a small transformer-based encoder-decoder model, trained
via meta-learning for compositionality, can systematically generalize to previ-
ously unseen transformation compositions. Notably, despite having only 5.7M
parameters, this model significantly outperforms state-of-the-art LLMs—including
o3-mini, GPT-4o, and Gemini 2.0 Flash, which fail to exhibit similar systematic
behavior—and performs on par with the winning model of the ARC prize 2024,
an 8B-parameter LLM trained via test-time training. Our findings highlight the
effectiveness of meta-learning in promoting systematicity beyond linguistic tasks,
suggesting a promising direction toward more robust and generalizable models.

1 INTRODUCTION

A fundamental aspect of human cognition is the ability to systematically generalize from known
components to novel combinations (Marcus, 2003; Lake et al., 2017). This capacity is particularly
evident in language, where an infinite number of new sentences can be constructed and interpreted by
extracting meaning from previously acquired expressions and rules (Chomsky, 2002; Szabó, 2012).
Similarly, our spatial perception relies on systematic generalization, enabling individuals to compose
learned spatial principles into novel configurations (Zhou et al., 2024; Dautriche & Chemla, 2025).
For instance, once a person understands how to translate and rotate an object, they can apply these
transformations in combination—translating and rotating the object simultaneously—even if they
have never encountered such a composed transformation before (Fife et al., 2019).

Despite its central role in human cognition, systematic generalization remains a significant challenge
in artificial intelligence (Lake & Baroni, 2018; Loula et al., 2018; Hupkes et al., 2020). While large
language models have recently demonstrated notable progress across various domains (OpenAI, 2024;
Guo et al., 2025), they often fail to combine acquired knowledge in novel scenarios, demonstrating
notable difficulties with systematic generalization (Dziri et al., 2023; Ismayilzada et al., 2025;
Gendron et al., 2024). The question of whether neural networks can achieve systematicity has
been the subject of extensive debate (Fodor & Pylyshyn, 1988; Brakel & Frank, 2009; Calvo &
Symons, 2014, inter alia). Recent research by Lake & Baroni (2023) demonstrates that a transformer-
based encoder-decoder model, trained via meta-learning for compositionality (MLC), can achieve
human-like systematic generalization in processing instructions expressed in a pseudolanguage. By

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

3
3 3 3 3

3 3 3

Input Grid Output Grid

Primitive Transformations

(a) shape-based (Translation down)

4
4 4 4 4 4 4

4

Input Grid Output Grid

Transformation Composition (level=1)

(d) shape+color (Translation+Reflection)

9
9

4
4 4 4

Input Grid
9

9

4
4 4 4

Input Grid

Transformation Composition (level=2)

4
4
4 4
4 4

4 4
4 4
4

4

Input Grid Output Grid

(b) color-based (Reflection horizontal)

9
9

7
7 7 7

9
9

7
7 7 7
7 7 7

Input Grid Output Grid

(e) shape+neighbor (Translation+Extension)

9
9

4
4 4 4

9
9

4 4 4
4 4 4

4

Input Grid Output Grid

(g) shape+color+neighbor
(Translation+Reflection+Extension)

9
9

5 5
5 5

9
9

5 5
5 5
5 5

Input Grid Output Grid

(c) neighbor-based (Extension up)

9
9

4
4 4 4 4

4 4 4

9
9

4 4 4
4 4 4 4
4 4 4 4

4

Input Grid Output Grid

(f) color+neighbor (Reflection+Extension)

Figure 1: A conceptual overview of the data in Compositional-ARC. Primitive transformations refer
to basic geometric transformations (e.g., translation, reflection, extension) based on an object’s (a)
shape, (b) color, or (c) proximity to a neighboring object. Pairs of these indicators, such as (d)
shape+color, (e) shape+neighbor, or (f) color+neighbor, can be combined to form level-1 transfor-
mation compositions. Finally, all three indicators can be combined to form level-2 transformation
compositions, based on the object’s (g) shape+color+neighbor.

training the model to combine basic units of pseudolanguage into novel sequences over a stream
of dynamically changing grammars, Lake & Baroni (2023) show that this model can effectively
generalize to previously unseen compositions of language (see Section 2 for further details). While
this approach presents a promising direction for addressing systematicity in neural networks, its
applicability beyond linguistic contexts remains an open question.

In this study, we extend the MLC framework proposed by Lake & Baroni (2023) to the domain
of abstract spatial reasoning. Inspired by the Abstraction and Reasoning Corpus (ARC) (Chollet,
2019), we introduce Compositional-ARC—a new dataset for assessing systematic generalization in
abstract spatial reasoning. Compositional-ARC presents examples of basic geometric transformations
(e.g., translation, rotation) applied to abstract two-dimensional objects and tests generalization to
previously unseen compositions (e.g., translation+rotation; see Figure 1). Using MLC, we train
a small encoder-decoder model on samples from Compositional-ARC and demonstrate that it can
systematically generalize to unseen transformation compositions. To the best of our knowledge, this
is the first application of MLC to abstract spatial reasoning. In summary, our contributions are:

1. We introduce Compositional-ARC—a novel dataset, inspired by ARC (Chollet, 2019), that
evaluates systematic generalization in abstract spatial reasoning. The dataset includes
examples of basic geometric transformations applied to abstract two-dimensional objects
and tests generalization to unseen transformation compositions (see Figure 1).

2. We demonstrate that MLC enables transformer-based models to generalize to unseen com-
positions of geometric transformations, demonstrating its potential beyond linguistic tasks.

3. We show that a 5.7M-parameter encoder-decoder model trained via MLC significantly
outperforms state-of-the-art general-purpose LLMs such as o3-mini (OpenAI, 2025), GPT-
4o (Achiam et al., 2023), and Gemini 2.0 Flash (DeepMind, 2024), which fail to exhibit
comparable systematic behavior on Compositional-ARC.

4. We find that the same MLC model performs on par with the winning model of the ARC
Prize 2024, an 8B-parameter LLM trained via test-time training (Franzen et al., 2024).

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

2 BACKGROUND: META-LEARNING FOR COMPOSITIONALITY

When learning a new language, humans rely on their ability to recombine known words and expres-
sions to interpret novel sentences (Chomsky et al., 1976; De Beule & Bergen, 2006). For instance,
someone who understands the meanings of “cats drink water” and “dogs like to play” will typically
also understand the meanings of “dogs drink water” and “cats like to play” (Hinzen et al., 2012).
Whether language models possess a comparable degree of systematicity remains an open question, as
current models, including large language models, still struggle with tests of systematic generaliza-
tion (Ismayilzada et al., 2025; Dziri et al., 2023).1 To address these limitations, Lake & Baroni (2023)
propose meta-learning for compositionality (MLC), a framework designed to model human-like
systematic generalization in learning pseudolanguage instructions. Through a series of experiments,
the authors show that models trained via MLC can achieve levels of systematicity comparable to
those of humans when interpreting previously unseen pseudolanguage inputs.

Task setup. In their study, Lake & Baroni (2023) examine few-shot compositional tasks in which
instructions, represented as sequences of pseudowords (e.g., “dax,” “lug,” “fep”), must be mapped
to corresponding sequences of abstract symbols (see Figure 2 for an example). To understand the
meaning of such instructions, an interpretation grammar needs to be deduced from a limited number
of study examples. This grammar maps pseudowords to their symbolic representation through a set
of compositional rewrite rules. For instance, if “dax” corresponds to a green circle, “dax fep” to three
green circles, and “zup” to a red circle, then “zup fep” would denote three red circles. Importantly,
the examples are designed to be highly systematic, progressing from primitive mappings to more
complex compositions. The core challenge lies in the ability to generalize systematically, i.e., to
reuse and combine components from the study examples (left side of Figure 2) to generate correct
outputs for novel query instructions (right side of Figure 2).

Algorithmic approach. To achieve systematic generalization in the instruction-learning task, Lake
& Baroni (2023) train a transformer-based encoder-decoder model through meta-learning for compo-
sitionality. The key idea is to train the model on a dataset of dynamically changing interpretation
grammars, where the mappings from input sequences to output symbols differ across training sam-
ples. This forces the model to rely on the information conveyed in the study examples to infer the
appropriate grammar of a given sample, rather than memorizing static input-output mappings across
the dataset. This flexibility enables the model to adjust to novel scenarios governed by new sets
of examples and rules. Moreover, the compositional structure of both study examples and queries
encourages the model to internalize mechanisms for composing elements presented in the examples.
After training the model over a set of 100,000 distinct interpretation grammars, it demonstrates the
capacity to generalize to previously unseen instructions and grammars. For specific details regarding
training procedures, we refer to Appendix C.3 and the original paper (Lake & Baroni, 2023).

While Lake & Baroni (2023) also evaluate MLC on COGS (Kim & Linzen, 2020) and SCAN (Lake
& Baroni, 2018), which test systematic lexical generalization to novel word combinations, their

1For an extended literature review on systematic generalization in LLMs, please refer to Appendix A.

Study instructions
Primitives
dax wif
zup lug

Function 1
wif fep
dax fep

Function 2
lug blicket wif
wif blicket dax

Function 3
lug kiki wif
dax kiki lug

Function compositions
lug fep kiki wif
lug kiki wif fep
wif kiki dax blicket lug
wif blicket dax kiki lug

Query Instructions
Target Responses
zup fep
zup kiki dax
dax blicket zup
zup fep kiki lug

Figure 2: An example of the few-shot instruction learning task adapted from Lake & Baroni (2023).
Study instructions illustrate the mapping of pseudolanguage expressions to abstract symbols.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

experiments are confined to the linguistic domain. In the following section, we propose Compositional-
ARC to show how MLC can be extended to support systematic generalization in abstract spatial
reasoning, demonstrating its potential beyond linguistic tasks.

3 METHOD

3.1 COMPOSITIONAL-ARC

To test systematicity in abstract spatial reasoning, we leverage the closure property of combined
geometric transformations, where the composition of two valid transformations—such as transla-
tion, rotation, and reflection—yields another valid geometric transformation (Brannan et al., 2011).
Drawing inspiration from the Abstraction and Reasoning Corpus (ARC) (Chollet, 2019), we design a
task in which abstract objects, defined in a two-dimensional grid environment, are subjected to basic
geometric transformations and their compositions (see Figure 1 for examples). We use fixed-size
10×10 grids, each of which can be represented as a two-dimensional array of integers, where different
values correspond to distinct colors. We use integers from 0 to 9, with 0 denoting a black background
and the remaining integers mapping to unique colors (see Appendix B.1 for more details). Objects are
defined based on color connectivity; that is, each object comprises a group of connected cells sharing
the same color. Connectivity is determined by the Moore neighborhood (Bays, 2010), meaning
that cells are considered connected if they are directly or diagonally adjacent. Each grid contains
either one or two objects. A transformation is represented as a pair of grids, with the input grid
displaying the objects before, and the output grid showing them after the geometric transformation.
Each transformation affects only one of the objects in the grid. For example, in Figure 1a, a single
L-shaped yellow object is translated one step downward. In Figure 1c, a square blue object in the
bottom-right expands toward the neighboring top row. Objects never occlude one another nor extend
beyond the boundaries of the 10× 10 grids.

We limit our dataset to five basic geometric transformations and their compositions: i) translations,
ii) rotations, iii) reflections, iv) extensions, and v) color changes. For our experiments, we further
constrain the configurations of these transformations to establish a controlled setup. Translations
are limited to movements of one cell to the right or one cell downward. Rotations are restricted
to 90 degrees clockwise or counterclockwise around the top-left corner of the object. We consider
horizontal and vertical reflections across the object’s central axis. Extensions mean that the object
grows in a certain direction, and are limited to neighboring cells either leftward or upward. Color
changes are restricted to changing the object’s color to either red or orange. For detailed definitions
of each transformation, please refer to Appendix B.2.

To signal which objects undergo which transformations, we consider three types of indicators: i) shape-
based transformations, which affect objects of a particular shape; ii) color-based transformations,
which affect all objects of a specific color; and iii) neighbor-based transformations, where objects are
transformed when a second, indicator object is present. For instance, in Figure 1, all L-shaped objects
(similar to the object in Figure 1a) undergo a one-step downward translation. All green objects
undergo a horizontal reflection, and any object sharing a grid with the gray diagonal object (e.g., as
seen in Figure 1c) expands into the neighboring top row. This indicator-based approach enables the
definition of transformation compositions. For example, objects that are both L-shaped and green
undergo a one-step downward translation together with a horizontal reflection (see Figure 1d for an
example). We also define different levels of composition: level 1 combines two indicators (e.g., when
an object matches the indicated shape and color, but lacks a the proximity to a neighboring object, as
illustrated in Figure 1d), while level 2 combines all three indicators, specifying the object’s shape,
color, and proximity to an indicator object (see Figure 1g).

To test systematicity, we present few-shot examples of primitive transformations and their level-
1 compositions, and evaluate models on previously unseen level-2 compositions. For instance,
in Figure 3, models are asked to infer the correct transformation for a previously unseen level-2
composition of indicators, given a set of 12 study examples illustrating primitive transformations
and their level-1 compositions. Conceptually, our setup is similar to the few-shot compositional task
introduced by Lake & Baroni (2023) (see Section 2), but it replaces the lexical interpretation grammar
with a visual interpretation grammar. Specifically, models need to infer which indicator maps to which
transformation, and how to compose them to deduce the correct final transformation. For a detailed
description of how we algorithmically generate dataset samples, please refer to Appendix B.3.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

5
5 5

5

4
4 4

4

2
2 2
2 2 2

2 2

2 2 2
2 2 2

2

5
5

6
6 6

4 4
4

4 4
4

6
6 6

5
5 5 5

4
4 4 4

2
2 2
2 2 2

2 2

2 2 2
2 2 2

2

5 5
5 5

6
6 6

4 4 4
4 4

4 4 4
4 4

6
6 6

2
2 2

2 2
2 2

2

3
3 3

3

6
6 6

7
7 7

7

6
6 6

2 2

6
6 6

2 2
2 2

2

6
6 6

2
2 2 2

2
2 2 2

3 3
3 3 3 3

6
6 6

7 7
7 7 7 7

6
6 6

2 2 2

6
6 6

2 2 2
2 2 2

2 2

6
6 6

Input Grid

Output Grid

Input Grid

Output Grid

Input Grid

Output Grid

Input Grid

Output Grid

Input Grid

Output Grid

Input Grid

Output Grid

Input Grid

Output Grid

Input Grid

Output Grid

Input Grid

Output Grid

Input Grid

Output Grid

Input Grid

Output Grid

Input Grid

Output Grid

2
2 2

2

6
6 6

2 2
2 2 2 2

6
6 6

Query Target

Input Grid

Output Grid

2 2
2 2 2 2

6
6 6

2
2 2

2

6
6 6

2
2 2

2

6
6 6

2 2
2 2 2 2

6
6 6

2
2 2 2

6
6 6

2
2 2

2

6
6 6

2 2
2 2 2
2 2
2 2

6
6 6

2 2
2 2 2 2

6
6 6

MLC (ours) Llama

GPT-4o

Llama (TTT)

Gemini 2.0

Mistral

o3-mini

Mistral (TTT)

Output Grid Output Grid

Output Grid

Output Grid

Output Grid

Output Grid

Output Grid

Output Grid

Primitive Transformations

Transformation Compositions (level=1)

Composition
(level=2)

Study Examples Query Predictions

Figure 3: An episode from Compositional-ARC. Given a set of study examples with primitive
transformations and level-1 transformation compositions, models must predict the output grid for an
unseen level-2 transformation composition. Visual grammar: shape → clockwise rotation, color →
translation to right, neighbor → leftward extension. Model predictions are presented to the right.

3.2 META-LEARNING FOR COMPOSITIONALITY IN ABSTRACT SPATIAL REASONING

To systematically generalize from known geometric transformations to previously unseen trans-
formation compositions, we extend the meta-learning for compositionality (Lake & Baroni, 2023)
framework described in Section 2. As in the original MLC approach, we train a transformer-based
encoder-decoder model on a dataset of dynamically changing interpretation grammars. However,
instead of mapping pseudolinguistic instructions to sequences of abstract symbols, we consider a
visual interpretation grammar that associates visual indicators (object shape, color, or proximity to an
indicator object) with specific geometric transformations, as described in Section 3.1. An episode
in Compositional-ARC is defined as a set of study examples that illustrate the underlying grammar,
along with query inputs for which the correct outputs must be inferred. For instance, the episode in
Figure 3 contains 12 study examples: six primitive transformations (two per indicator type) and six
level-1 compositions (two per composition type). Given the study examples, the model is asked to
predict output grids for previously unseen level-2 compositions. By training over a series of episodes
with changing visual interpretation grammars, the model needs to abstract and recombine information
from the examples in order to predict the correct query transformation composition, as it cannot rely
on fixed mappings from indicators to transformations.

Encoding and positional embedding. Each episode is presented to the model as a sequence of
input-output grid pairs (study examples), followed by a query input grid, for which the model must
generate the corresponding output grid (see Figure 3). To encode the two-dimensional grids, we
divide each 10 × 10 grid into 2 × 2 patches (left to right, top to bottom), yielding 25 patches per
grid (Dosovitskiy et al., 2021). Each patch is mapped to a unique embedding vector. Since each grid
cell can take integer values from 0 to 9, a 2× 2 patch can yield up to 10,000 distinct configurations,
resulting in 10,000 possible embedding vectors. Two special tokens, | and →, are introduced to
mark the boundaries between study examples and the input-output grids, respectively. The decoder
vocabulary comprises two additional tokens for the start and end of a sequence (SOS and EOS). To
encode positional information, we use standard learnable 1D positional embeddings that capture the
order of grid pairs, as well as a second set of learnable 2D positional embeddings applied to grid

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

patches. These 2D embeddings are decomposed into separate row and column components, which
are added to each patch embedding to capture two-dimensional spatial information.

Training procedure. The model is trained on a large set of episodes, each defined by a unique visual
interpretation grammar. In each episode, the model is provided with a sequence of study examples
and tasked with predicting the output grid for a given input query (see Figure 3). Following Lake
& Baroni (2023), we include an auxiliary copy task during training, in which the model must also
reproduce the output grids of each study example. We employ a model with three layers each in the
encoder and decoder, eight attention heads per layer, input and hidden embeddings of size 128, a
feedforward hidden size of 768, and GELU (Hendrycks & Gimpel, 2016) activations. In total, the
model has 5.7 million trainable parameters. To promote robustness in the decoder, we introduce
minor perturbations by randomly altering the color of individual cells in the target output query with
a small probability (0.001). Unlike Lake & Baroni (2023), we do not incorporate systematic noise to
model inductive biases observed in human learning. Further implementation details regarding the
training procedure and hyperparameters can be found in Appendix C.

4 EXPERIMENTAL SETUP

4.1 TASK SETUP

We consider two task setups in this work. The first, denoted as “3-Shot,” is a standard few-shot
learning task where models must generate an output grid for a query input that performs a level-2
transformation composition. This prediction is based on three examples illustrating the same level-2
transformation. A visual representation of this setup is provided in Figure 5 in the Appendix. This
task evaluates the model’s ability to infer geometric transformations from a limited set of examples.

The second setup, denoted as “Systematicity,” focuses on compositional generalization and differs
from the first in the type of few-shot examples presented. As mentioned in Section 3.1, the idea is to
test whether models can infer novel compositions from known geometric transformations. To this
end, we replace the level-2 few-shot examples with a set of primitive transformations plus level-1
transformation compositions, and query the model to predict the previously unseen level-2 trans-
formation composition, as illustrated in Figure 3. Specifically, we present six primitive transforma-
tions—two examples for each indicator (shape-based, color-based, neighbor-based)—and six level-1
transformation compositions, two examples for each level-1 indicator composition (shape+color,
shape+neighbor, color+neighbor).

We generate 100,000 episodes, each comprising three few-shot examples for the “3-Shot” task,
12 systematic study examples for the “Systematicity” setup, and ten query input-output grid pairs
demonstrating the final level-2 transformation composition. Each episode is characterized by a
unique visual interpretation grammar. For instance, in one episode, yellow objects are translated
downward by a single cell, while in another, yellow objects are reflected horizontally. To train our
encoder-decoder model via MLC, we split the data into 82,908 training, 8,546 validation and 8,546
test episodes. Importantly, the data splits are constructed such that the geometric transformations
involved in the final query level-2 compositions differ between the training and evaluation sets.
For instance, while the model is trained on basic transformations and a series of transformation
compositions (e.g., translation+rotation+reflection), it is tested out-of-distribution on compositions
not seen during training (e.g., translation+rotation+extension). For comprehensive statistics of the
dataset splits, please refer to Table 7 in the Appendix.

4.2 LARGE LANGUAGE MODELS

General-purpose LLMs. In addition to the model trained via MLC, we evaluate three state-of-the-
art general-purpose LLMs on the test set of our proposed dataset: o3-mini (low) (OpenAI, 2025),
GPT-4o (Achiam et al., 2023), and Gemini 2.0 Flash (DeepMind, 2024). To textually prompt the
models for a given episode, we represent grids as two-dimensional arrays, consistent with prior
work (Moskvichev et al., 2023). We also test a multimodal setup in which both an image of the study
examples and the input query are provided alongside the text prompt. Due to financial constraints,
each model is evaluated on a single test query for each of the 8,546 episodes in the test set. All textual
and visual prompts, specific model versions, and decoding parameters are detailed in Appendix D.2.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: Comparison of model performance across the two different task setups. We report exact
match accuracy, color accuracy, and shape accuracy as described in Section 4.3).

Model Exact Match Accuracy [%] Color Accuracy [%] Shape Accuracy [%]
3-

Sh
ot

GPT-4o 22.28 99.67 57.02
+ image 19.42 99.75 54.56

Gemini 2.0 Flash 30.08 99.92 52.34
+ image 17.19 99.79 35.86

o3-mini (low) 64.04 99.89 68.74

Llama-3.2-3B-ReARC 85.85 98.57 86.05
Mistral-NeMO-Minitron-8B-Full 95.71 99.85 96.78

MLC (ours) 99.92 100.00 99.92

Sy
st

em
at

ic
ity

GPT-4o 0.99 99.23 9.82
+ image 0.86 97.94 7.50

Gemini 2.0 Flash 2.66 99.68 12.81
+ image 2.05 99.28 9.60

o3-mini (low) 0.53 99.10 5.65

Llama-3.2-3B-ReARC 0.87 99.94 2.54
+ test-time training 73.70 100.00 86.88

Mistral-NeMO-Minitron-8B-Full 0.70 99.99 9.75
+ test-time training 78.20 100.00 88.26

MLC (ours) 78.26 97.88 80.49

Domain-specific LLMs. We further consider two LLMs specifically tailored to ARC-style data:
(i) Llama-3.2-3B-ReARC, fine-tuned on the re-ARC dataset (Hodel, 2024)—an extension of 1,000
additional generated examples per sample in ARC—and (ii) Mistral-NeMO-Minitron-8B-Full, trained
on a broad range of ARC-style data, including re-ARC, Concept-ARC (Moskvichev et al., 2023), and
ARC-Heavy (Li et al., 2025). These models were proposed by Franzen et al. (2024) and placed 1st
in the ARC prize 2024.2 Note that in addition to fine-tuning, these models use an ARC-customized
tokenizer, extensive data augmentation during training and inference, a generation procedure that
leverages depth-first search to produce multiple solution candidates, and a refined candidate-selection
step. The authors also employ test-time training (TTT), which further fine-tunes models on the few-
shot input–output grid pairs from the final test set. We use both models with their default parameters.
For additional details, please refer to the original paper (Franzen et al., 2024) or Appendix D.2.

4.3 EVALUATION METRICS

To evaluate the quality of the generated output grids, we use three different metrics: i) exact match
accuracy, ii) color accuracy, and iii) shape accuracy. Exact match accuracy requires that a prediction
is accurate only if every cell matches the target grid. Color accuracy checks whether predicted objects
match target colors, ignoring shape and location. Shape accuracy checks whether predicted objects
match target shapes, ignoring color and location. Formal definitions are provided in Appendix D.1.

5 RESULTS

In Table 1, we report the performance of the model trained via MLC, alongside the LLMs we evaluate
on the two task setups, as described in Section 4.1.

Standard few-shot learning task. We begin by examining model performance on the “3-Shot” task,
where models are given three input-output examples illustrating the final transformation composition
(see Figure 5 in the Appendix). Despite this guidance and the relatively simple transformations
involved, general-purpose LLMs such as GPT-4o and Gemini 2.0 Flash struggle with the task:
GPT-4o reaches an accuracy of only 22.28%, while Gemini 2.0 Flash performs slightly better at
30.08%. The long-chain-of-thought model o3-mini achieves a modest accuracy of 64.04%. In

2https://arcprize.org/competitions/2024

7

https://arcprize.org/competitions/2024


378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

contrast, domain-specific models such as Llama-3.2-3B-ReARC, and Mistral-NeMO-Minitron-8B-
Full perform significantly better. While Llama-3.2-3B-ReARC achieves an accuracy of 85.85%,
Mistral-NeMO-Minitron-8B-Full reaches up to 95.71%. Note that we do not employ test-time training
in this setup, as it would contradict the out-of-distribution test setup described in Section 4.1. Notably,
the 5.7M-parameter encoder-decoder model trained via MLC outperforms both general-purpose and
domain-specific LLMs, with an accuracy of 99.92%, despite having only a fraction of the parameters.
We further find that all models predict object color nearly perfectly. For GPT-4o and Gemini 2.0 Flash,
we observe that shape accuracy is significantly higher than exact match accuracy. This discrepancy
suggests that while these models are often able to predict the correct shape and color of an object, they
frequently fail to accurately predict its final position. Interestingly, both models show lower accuracy
when visual input is added to the textual prompt, likely due to modality alignment challenges (Masry
et al., 2025) or limitations in leveraging the visual content for reasoning.

Systematicity task. In the “Systematicity” task, models are asked to infer the correct final transfor-
mation composition from a set of study examples that represent more basic, decomposed transforma-
tions (see Figure 3 for an example). As shown in Table 1, all general-purpose LLMs perform poorly
on this task. For instance, GPT-4o achieves an accuracy of 0.99%, while Gemini 2.0 Flash reaches
2.66%. Interestingly, o3-mini, the best-performing general-purpose model on the “3-Shot” task, per-
forms worst in this setting, with an accuracy of only 0.53%. For the domain-specific LLMs, we find
that test-time training (TTT)—where models are additionally fine-tuned on the study examples’ input-
output grid pairs of the test set—significantly improves performance. While Llama-3.2-3B-ReARC
achieves only 0.70% accuracy without TTT, performance increases to 73.70% with TTT. Similarly,
Mistral-NeMO-Minitron-8B-Full’s accuracy increases from 0.70% to 78.20% with TTT. We hypoth-
esize that training on the systematic study examples of the test data (demonstrating primitive and
level-1 transformations) teaches the models how to abstract and compose transformations for the final
input query. We further find that the much smaller 5.7M-parameter MLC model performs on par with
the domain-specific LLMs trained via TTT, slightly outperforming Mistral-NeMO-Minitron-8B-Full
with an accuracy of 78.26%. Importantly, as described in Section 4.1, the MLC model has never
seen the specific level-2 compositions of the test data during training, but was instead optimized on a
distinct set of transformation compositions (see data split for seed 1860; Table 7 in the Appendix).
Consistent with our findings from the 3-shot learning task, models generally succeed in predicting
the correct object colors. However, shape accuracy declines markedly. A qualitative example of the
models’ predictions is shown in Figure 3, with additional examples in Figures 8– 9 in the Appendix.
The strong performance of the small MLC model highlights the effectiveness of this training strategy
in promoting systematic generalization to novel transformation compositions. The model not only
learns to infer a visual interpretation grammar from a limited number of study examples but also
generalizes to novel transformation compositions that it has never encountered during training.

5.1 CONSISTENCY ACROSS DATA SPLITS

To ensure that the strong performance of MLC, as reported in Table 1, is not the result of a favorable
data split, we train and evaluate the model on three additional, independently generated data splits for
each task configuration—resulting in four distinct models per task setup. Detailed descriptions of
these data splits are provided in Table 7 in the Appendix. Table 2 summarizes the average accuracy
and corresponding standard deviation across all four splits. For the standard three-shot learning task,

Table 2: Average accuracy and standard deviation across the four different data splits. For the
systematicity task, we ablate different components of the training procedure to assess their individual
contributions and overall impact.

Model Exact Match Accuracy [%] Color Accuracy [%] Shape Accuracy [%]

MLC (3-Shot) 98.78 ± 1.99 100.00 ± 0.00 98.79 ± 1.98

MLC (Systematicity) 86.73 ± 6.03 99.36 ± 0.70 87.55 ± 5.45
- no copy task 69.05 ± 9.23 99.43 ± 0.38 70.60 ± 9.23
- no primitives 75.27 ± 12.95 99.56 ± 0.50 76.92 ± 11.23
- no level-1 compositions 21.01 ± 19.07 94.72 ± 7.41 23.03 ± 19.08

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

MLC consistently achieves high accuracy, with a mean of 98.78% and a standard deviation of 1.99%.
Similarly, for the systematicity task, the model demonstrates robust generalization, achieving an even
higher average accuracy than on the initial data split, with a mean of 86.73%.

Ablation studies. To gain deeper insights into the factors influencing model performance, we
conduct a series of ablation studies. First, we evaluate the impact of removing the auxiliary copy task
from the training objective—a setup in which the model is trained not only to predict the output grid for
a given input query but also to reproduce the output grid of each study example (refer to Section 3.2).
Removing this auxiliary task results in a notable decrease in accuracy from 86.73% to 69.05%. This
decline underscores the importance of the copy task in promoting systematic generalization, aligning
with the findings of Lake & Baroni (2023). Subsequently, we assess the role of study examples in
model performance. Removing primitive transformations from the study examples (see Figure 3)
results in a moderate reduction in performance, with an average accuracy of 75.27%. This suggests
that examples involving only level-1 transformation compositions are, to some extent, sufficient for
allowing the model to generalize to more complex level-2 compositions. However, removing level-1
transformation compositions leads to a severe performance degradation, reducing accuracy to 21.01%.
We hypothesize that this is due to the increased complexity of composing three primitive operations
directly into a level-2 transformation, as opposed to building on intermediate level-1 compositions.

5.2 ERROR ANALYSIS

To characterize model behavior on the systematicity task, we analyze the models’ prediction errors.
Figure 4 shows the relative frequency of common error types across models. We consider the
following error categories: (i) Format errors (output not a valid 10 × 10 grid with cell values in
0, . . . , 9); (ii) No Transformation (output identical to input); (iii) Primitive (a primitive is applied
instead of the target level-2 composition); (iv) Level-1 (a level-1 composition is applied instead
of the level-2 composition); (v) Invalid Position (correct color and shape, wrong position); (vi)
Invalid Shape (correct color, incorrect shape); and (vii) Other (e.g., wrong number of objects, or
objects with both incorrect shape and color). Models show distinct error profiles. General-purpose
LLMs (GPT-4o, Gemini 2.0 Flash, o3-mini) most often predict incorrect shapes that do not match
any primitive or level-1 outcome; for o3-mini, over 30% of errors involve applying a primitive
instead of a level-2 composition, and with image input more than 20% of GPT-4o’s errors are format
violations. Llama-3.2-3B-ReARC mainly copies the input (no transformation), whereas Mistral-
NeMO-Minitron-8B-Full most often applies a primitive instead of the target level-2 composition.
After test-time training on the study examples (Section 4.2), errors of both domain-specific LLMs
most often involve level-1 predictions. The MLC model rarely produces primitive or level-1 outputs;
instead, it fails mainly by predicting an incorrect shape. Exact percentages by model and error type,
and a breakdown of primitive and level-1 errors, are reported in Tables 5 and 6 in the Appendix.

Format

No Tra
nsformation

Primitive
Level-1

Invalid Positio
n

Invalid Shape
Other

0

20

40

60

80

100

Er
ro

r [
%

]

Gemini 2.0 Flash
GPT-4o

Llama-3.2-3B-ReARC
Mistral-NeMO-Minitron-8B-Full

o3-mini (low)
MLC (ours)

+ image
+ test-time training

Figure 4: Error distribution by error category across models. Bars show the fraction of prediction
errors assigned to each error category.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

5.3 INCREASING DATASET COMPLEXITY

So far, Compositional-ARC has been restricted to i) translations of one cell to the right or downward;
ii) 90-degree clockwise or counterclockwise rotations; iii) horizontal and vertical reflections; iv)
extensions to neighboring cells leftward or upward; and v) color changes to red or orange. We
analyze whether the MLC model still systematically generalizes when we increase the variety of
transformations, and therefore the dataset complexity. To this end, we introduce a new dataset that
additionally allows translations of one or two cells in any direction (left, right, upward, downward),
extensions to neighboring cells in any direction, and color changes to red, orange, yellow, and green.
We generate 100,000 episodes and split the data as described in Section 4.1; exact dataset statistics
are given in Table 8 in the Appendix. We then train an MLC model following the procedure in
Section 3.2. Even on this more diverse dataset, the MLC model systematically generalizes to unseen
transformation compositions, achieving an exact match accuracy of 88.10% on the test set, a color
accuracy of 99.83%, and a shape accuracy of 88.25%.

6 RELATED WORK

Meta-learning. Meta-learning aims to improve a model’s ability to adapt to novel tasks by leverag-
ing experience over multiple training episodes (Thrun & Pratt, 1998; Hospedales et al., 2022). It has
been successfully applied to various tasks, such as few-shot learning (Mishra et al., 2018), continual
learning (Javed & White, 2019; Lee et al., 2023; Irie et al., 2025), and reinforcement learning (Duan
et al., 2016; Wang et al., 2017; Mishra et al., 2018). Related to our work, meta-learning has been used
to improve systematic generalization. Lake & Baroni (2018) showed that traditional sequence-to-
sequence models struggle with compositional skills, but incorporating meta-learning can significantly
improve performance (Lake, 2019; Conklin et al., 2021). Recent work argues that giving models the
opportunity to practice skills via meta-learning is crucial for addressing challenges such as systematic
generalization, among others (Irie et al., 2025). Our method builds on meta-learning strategies
inspired by Lake & Baroni (2023), extending them to the domain of abstract spatial reasoning.

ARC-like puzzles. The abstraction and reasoning corpus (ARC) (Chollet, 2019) is a benchmark
designed to evaluate a model’s capacity to generalize to novel scenarios with limited to no prior
knowledge. Based on a set of few-shot examples, models are required to infer transformations of
abstract objects or patterns within two-dimensional grids. Unlike ARC, which encompasses a broad
range of complex transformations, our work deliberately narrows the scope to the five fundamental
geometric transformations described in Section 3.1, focusing instead on the aspect of systematicity.
Several ARC variants have been proposed, including 1D-ARC (Xu et al., 2024), Mini-ARC (Kim
et al., 2022), ConceptARC (Moskvichev et al., 2023) and MC-LARC (Shin et al., 2024). However, to
the best of our knowledge, Compositional-ARC is the first to focus on compositional generalization.

7 CONCLUSION

In this work, we extend the meta-learning for compositionality framework proposed by Lake &
Baroni (2023) to the domain of abstract spatial reasoning. To this end, we introduce Compositional-
ARC—a novel dataset designed to evaluate systematicity in this field. Our experiments demonstrate
that models trained via MLC can systematically generalize to novel compositions of geometric
transformations. Moreover, a small MLC model outperforms state-of-the-art general-purpose LLMs
on Compositional-ARC, and performs on par with domain-specific LLMs trained via test-time training.
Our findings suggest that MLC presents a promising direction for enabling systematic generalization
in language models across diverse domains.

Limitations & Future directions. A notable limitation of the current version of Compositional-
ARC is its restriction to fixed-size grids and limited number of transformations. While it is possible
to extend the dataset to more diverse grid setups, it is currently unclear how MLC would perform on
more complex transformations. A promising direction for future work is to train an additional model
that learns how to decompose complex ARC-like problems into primitive transformations, and then
train MLC on these primitives to generalize to unseen, more complex transformation compositions.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our work, we make all code publicly available at:
https://anonymous.4open.science/r/C-ARC-8342. This enables users to reproduce the data described
in Section 3.1 and train models via MLC for the task, as outlined in Section 3.2. Details about the
training procedures and hyperparameters are provided in Section 3.2 and Appendix C. Additionally,
we include an exemplary subset of input queries and corresponding API responses from the evaluated
LLMs as part of the supplementary material. Specifics on prompts, model versions, and decoding
parameters are given in Appendix D.2. Further details about the datasets can be found in Sec-
tion 3.1, Section 4.1, and Appendix B. Finally, Appendix C.2 outlines the software and computational
resources used for model training.

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774, 2023.

Anthropic. Introducing the next generation of claude. https://www.anthropic.com/news/
claude-3-family, March 2024. Accessed: 2025-11-21.

Carter Bays. Introduction to Cellular Automata and Conway’s Game of Life, pp. 1–7. Springer
London, London, 2010. ISBN 978-1-84996-217-9. doi: 10.1007/978-1-84996-217-9 1. URL
https://doi.org/10.1007/978-1-84996-217-9_1.

Philémon Brakel and Stefan Frank. Strong systematicity in sentence processing by simple recurrent
networks. In Proceedings of the Annual Meeting of the Cognitive Science Society, volume 31,
2009.

David A Brannan, Matthew F Esplen, and Jeremy J Gray. Geometry. Cambridge University Press,
2011.

Paco Calvo and John Symons. The architecture of cognition: Rethinking Fodor and Pylyshyn’s
systematicity challenge. MIT Press, 2014.

Hoyeon Chang, Jinho Park, Hanseul Cho, Sohee Yang, Miyoung Ko, Hyeonbin Hwang, Seungpil
Won, Dohaeng Lee, Youbin Ahn, and Minjoon Seo. The coverage principle: A framework for
understanding compositional generalization. arXiv preprint arXiv:2505.20278, 2025.

François Chollet. On the measure of intelligence, 2019. URL https://arxiv.org/abs/
1911.01547.

Noam Chomsky. Syntactic structures. Mouton de Gruyter, 2002.

Noam Chomsky et al. Reflections on language. Temple Smith London, 1976.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to solve
math word problems. arXiv preprint arXiv:2110.14168, 2021.

Henry Conklin, Bailin Wang, Kenny Smith, and Ivan Titov. Meta-learning to compositionally
generalize. In Chengqing Zong, Fei Xia, Wenjie Li, and Roberto Navigli (eds.), Proceedings of the
59th Annual Meeting of the Association for Computational Linguistics and the 11th International
Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 3322–3335,
Online, August 2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.acl-long.
258. URL https://aclanthology.org/2021.acl-long.258/.

Isabelle Dautriche and Emmanuel Chemla. Evidence for compositional abilities in one-year-
old infants. Communications Psychology, 3(1):37, 2025. ISSN 2731-9121. doi: 10.1038/
s44271-025-00222-9. URL https://doi.org/10.1038/s44271-025-00222-9.

Joachim De Beule and Benjamin K Bergen. On the emergence of compositionality. In The Evolution
of Language, pp. 35–42. World Scientific, 2006.

11

https://anonymous.4open.science/r/C-ARC-8342
https://www.anthropic.com/news/claude-3-family
https://www.anthropic.com/news/claude-3-family
https://doi.org/10.1007/978-1-84996-217-9_1
https://arxiv.org/abs/1911.01547
https://arxiv.org/abs/1911.01547
https://aclanthology.org/2021.acl-long.258/
https://doi.org/10.1038/s44271-025-00222-9


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Google DeepMind. Gemini 2.0 flash, 2024. URL https://deepmind.google/
technologies/gemini/flash/. Accessed: 2025-03-19.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit,
and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at scale.
In International Conference on Learning Representations, 2021. URL https://openreview.
net/forum?id=YicbFdNTTy.

Andrew Drozdov, Nathanael Schärli, Ekin Akyürek, Nathan Scales, Xinying Song, Xinyun Chen,
Olivier Bousquet, and Denny Zhou. Compositional semantic parsing with large language models.
In The Eleventh International Conference on Learning Representations, 2023. URL https:
//openreview.net/forum?id=gJW8hSGBys8.

Yan Duan, John Schulman, Xi Chen, Peter L Bartlett, Ilya Sutskever, and Pieter Abbeel. Rl2: Fast
reinforcement learning via slow reinforcement learning. arXiv preprint arXiv:1611.02779, 2016.

Nouha Dziri, Ximing Lu, Melanie Sclar, Xiang (Lorraine) Li, Liwei Jiang, Bill Yuchen Lin, Sean
Welleck, Peter West, Chandra Bhagavatula, Ronan Le Bras, Jena Hwang, Soumya Sanyal, Xiang
Ren, Allyson Ettinger, Zaid Harchaoui, and Yejin Choi. Faith and fate: Limits of transformers on
compositionality. In A. Oh, T. Naumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine (eds.),
Advances in Neural Information Processing Systems, volume 36, pp. 70293–70332. Curran Asso-
ciates, Inc., 2023. URL https://proceedings.neurips.cc/paper_files/paper/
2023/file/deb3c28192f979302c157cb653c15e90-Paper-Conference.pdf.

James H. Fife, Kofi James, and Malcolm Bauer. A learning progression for geometric transformations.
ETS Research Report Series, 2019(1):1–16, 2019. doi: https://doi.org/10.1002/ets2.12236. URL
https://onlinelibrary.wiley.com/doi/abs/10.1002/ets2.12236.

Jerry A. Fodor and Zenon W. Pylyshyn. Connectionism and cognitive architecture: A crit-
ical analysis. Cognition, 28(1):3–71, 1988. ISSN 0010-0277. doi: https://doi.org/10.
1016/0010-0277(88)90031-5. URL https://www.sciencedirect.com/science/
article/pii/0010027788900315.

Daniel Franzen, Jan Disselhoff, and David Hartmann. The llm architect: Solving the arc challenge is a
matter of perspective. https://github.com/da-fr/arc-prize-2024/blob/main/
the_architects.pdf, 2024. Accessed: 2025-09-23.

Gaël Gendron, Qiming Bao, Michael Witbrock, and Gillian Dobbie. Large language models are not
strong abstract reasoners. In Proceedings of the Thirty-Third International Joint Conference on
Artificial Intelligence, IJCAI ’24, 2024. ISBN 978-1-956792-04-1. doi: 10.24963/ijcai.2024/693.
URL https://doi.org/10.24963/ijcai.2024/693.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama 3 herd of
models. arXiv preprint arXiv:2407.21783, 2024.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Peiyi Wang, Qihao Zhu, Runxin Xu, Ruoyu
Zhang, Shirong Ma, Xiao Bi, et al. Deepseek-r1 incentivizes reasoning in llms through rein-
forcement learning. Nature, 645(8081):633–638, Sep 2025. ISSN 1476-4687. doi: 10.1038/
s41586-025-09422-z. URL https://doi.org/10.1038/s41586-025-09422-z.

Dan Hendrycks and Kevin Gimpel. Gaussian error linear units (gelus). arXiv preprint
arXiv:1606.08415, 2016.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the MATH dataset. In
Thirty-fifth Conference on Neural Information Processing Systems Datasets and Benchmarks Track
(Round 2), 2021. URL https://openreview.net/forum?id=7Bywt2mQsCe.

Wolfram Hinzen, Edouard Machery, and Markus Werning. The Oxford Handbook of Com-
positionality. Oxford University Press, 02 2012. ISBN 9780199541072. doi: 10.1093/
oxfordhb/9780199541072.001.0001. URL https://doi.org/10.1093/oxfordhb/
9780199541072.001.0001.

12

https://deepmind.google/technologies/gemini/flash/
https://deepmind.google/technologies/gemini/flash/
https://openreview.net/forum?id=YicbFdNTTy
https://openreview.net/forum?id=YicbFdNTTy
https://openreview.net/forum?id=gJW8hSGBys8
https://openreview.net/forum?id=gJW8hSGBys8
https://proceedings.neurips.cc/paper_files/paper/2023/file/deb3c28192f979302c157cb653c15e90-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/deb3c28192f979302c157cb653c15e90-Paper-Conference.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002/ets2.12236
https://www.sciencedirect.com/science/article/pii/0010027788900315
https://www.sciencedirect.com/science/article/pii/0010027788900315
https://github.com/da-fr/arc-prize-2024/blob/main/the_architects.pdf
https://github.com/da-fr/arc-prize-2024/blob/main/the_architects.pdf
https://doi.org/10.24963/ijcai.2024/693
https://doi.org/10.1038/s41586-025-09422-z
https://openreview.net/forum?id=7Bywt2mQsCe
https://doi.org/10.1093/oxfordhb/9780199541072.001.0001
https://doi.org/10.1093/oxfordhb/9780199541072.001.0001


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Michael Hodel. Addressing the abstraction and reasoning corpus via procedural example generation.
arXiv preprint arXiv:2404.07353, 2024.

Timothy Hospedales, Antreas Antoniou, Paul Micaelli, and Amos Storkey. Meta-Learning in Neural
Networks: A Survey . IEEE Transactions on Pattern Analysis & Machine Intelligence, 44(09):
5149–5169, September 2022. ISSN 1939-3539. doi: 10.1109/TPAMI.2021.3079209. URL
https://doi.ieeecomputersociety.org/10.1109/TPAMI.2021.3079209.

Dieuwke Hupkes, Verna Dankers, Mathijs Mul, and Elia Bruni. Compositionality decomposed: How
do neural networks generalise? Journal of Artificial Intelligence Research, 67:757–795, 2020.

Kazuki Irie, Róbert Csordás, and Jürgen Schmidhuber. Metalearning continual learning algo-
rithms. Transactions on Machine Learning Research, 2025. ISSN 2835-8856. URL https:
//openreview.net/forum?id=IaUh7CSD3k.

Mete Ismayilzada, Defne Circi, Jonne Sälevä, Hale Sirin, Abdullatif Köksal, Bhuwan Dhingra,
Antoine Bosselut, Duygu Ataman, and Lonneke Van Der Plas. Evaluating morphological composi-
tional generalization in large language models. In Luis Chiruzzo, Alan Ritter, and Lu Wang
(eds.), Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the
Association for Computational Linguistics: Human Language Technologies (Volume 1: Long
Papers), pp. 1270–1305, Albuquerque, New Mexico, April 2025. Association for Computa-
tional Linguistics. ISBN 979-8-89176-189-6. doi: 10.18653/v1/2025.naacl-long.59. URL
https://aclanthology.org/2025.naacl-long.59/.

Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden Low, Alec
Helyar, Aleksander Madry, Alex Beutel, Alex Carney, et al. Openai o1 system card. arXiv preprint
arXiv:2412.16720, 2024.

Khurram Javed and Martha White. Meta-learning representations for continual learning. In
H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett (eds.),
Advances in Neural Information Processing Systems, volume 32. Curran Associates, Inc.,
2019. URL https://proceedings.neurips.cc/paper_files/paper/2019/
file/f4dd765c12f2ef67f98f3558c282a9cd-Paper.pdf.

Daniel Keysers, Nathanael Schärli, Nathan Scales, Hylke Buisman, Daniel Furrer, Sergii Kashubin,
Nikola Momchev, Danila Sinopalnikov, Lukasz Stafiniak, Tibor Tihon, Dmitry Tsarkov, Xiao Wang,
Marc van Zee, and Olivier Bousquet. Measuring compositional generalization: A comprehensive
method on realistic data. In International Conference on Learning Representations, 2020. URL
https://openreview.net/forum?id=SygcCnNKwr.

Najoung Kim and Tal Linzen. COGS: A compositional generalization challenge based on semantic
interpretation. In Bonnie Webber, Trevor Cohn, Yulan He, and Yang Liu (eds.), Proceedings of
the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9087–
9105, Online, November 2020. Association for Computational Linguistics. doi: 10.18653/v1/2020.
emnlp-main.731. URL https://aclanthology.org/2020.emnlp-main.731/.

Subin Kim, Prin Phunyaphibarn, Donghyun Ahn, and Sundong Kim. Playgrounds for abstraction
and reasoning. In NeurIPS 2022 Workshop on Neuro Causal and Symbolic AI (nCSI), 2022.

Takeshi Kojima, Shixiang (Shane) Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwa-
sawa. Large language models are zero-shot reasoners. In S. Koyejo, S. Mo-
hamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh (eds.), Advances in Neural In-
formation Processing Systems, volume 35, pp. 22199–22213. Curran Associates, Inc.,
2022. URL https://proceedings.neurips.cc/paper_files/paper/2022/
file/8bb0d291acd4acf06ef112099c16f326-Paper-Conference.pdf.

Brenden Lake and Marco Baroni. Generalization without systematicity: On the compositional skills of
sequence-to-sequence recurrent networks. In Jennifer Dy and Andreas Krause (eds.), Proceedings
of the 35th International Conference on Machine Learning, volume 80 of Proceedings of Machine
Learning Research, pp. 2873–2882. PMLR, 10–15 Jul 2018. URL https://proceedings.
mlr.press/v80/lake18a.html.

13

https://doi.ieeecomputersociety.org/10.1109/TPAMI.2021.3079209
https://openreview.net/forum?id=IaUh7CSD3k
https://openreview.net/forum?id=IaUh7CSD3k
https://aclanthology.org/2025.naacl-long.59/
https://proceedings.neurips.cc/paper_files/paper/2019/file/f4dd765c12f2ef67f98f3558c282a9cd-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/f4dd765c12f2ef67f98f3558c282a9cd-Paper.pdf
https://openreview.net/forum?id=SygcCnNKwr
https://aclanthology.org/2020.emnlp-main.731/
https://proceedings.neurips.cc/paper_files/paper/2022/file/8bb0d291acd4acf06ef112099c16f326-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/8bb0d291acd4acf06ef112099c16f326-Paper-Conference.pdf
https://proceedings.mlr.press/v80/lake18a.html
https://proceedings.mlr.press/v80/lake18a.html


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Brenden M Lake. Compositional generalization through meta sequence-to-sequence learn-
ing. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Gar-
nett (eds.), Advances in Neural Information Processing Systems, volume 32. Curran Asso-
ciates, Inc., 2019. URL https://proceedings.neurips.cc/paper_files/paper/
2019/file/f4d0e2e7fc057a58f7ca4a391f01940a-Paper.pdf.

Brenden M. Lake and Marco Baroni. Human-like systematic generalization through a meta-
learning neural network. Nature, 623(7985):115–121, 2023. ISSN 1476-4687. doi: 10.1038/
s41586-023-06668-3. URL https://doi.org/10.1038/s41586-023-06668-3.

Brenden M. Lake, Tomer D. Ullman, Joshua B. Tenenbaum, and Samuel J. Gershman. Building
machines that learn and think like people. Behavioral and Brain Sciences, 40:e253, 2017. doi:
10.1017/S0140525X16001837.

Soochan Lee, Jaehyeon Son, and Gunhee Kim. Recasting continual learning as sequence mod-
eling. In A. Oh, T. Naumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine (eds.), Ad-
vances in Neural Information Processing Systems, volume 36, pp. 70433–70452. Curran Asso-
ciates, Inc., 2023. URL https://proceedings.neurips.cc/paper_files/paper/
2023/file/dee254cdacbab59f17dc6a8fbdffa59f-Paper-Conference.pdf.

Wen-Ding Li, Keya Hu, Carter Larsen, Yuqing Wu, Simon Alford, Caleb Woo, Spencer M. Dunn,
Hao Tang, Wei-Long Zheng, Yewen Pu, and Kevin Ellis. Combining induction and transduction
for abstract reasoning. In The Thirteenth International Conference on Learning Representations,
2025. URL https://openreview.net/forum?id=UmdotAAVDe.

João Loula, Marco Baroni, and Brenden Lake. Rearranging the familiar: Testing compositional
generalization in recurrent networks. In Tal Linzen, Grzegorz Chrupała, and Afra Alishahi
(eds.), Proceedings of the 2018 EMNLP Workshop BlackboxNLP: Analyzing and Interpreting
Neural Networks for NLP, pp. 108–114, Brussels, Belgium, November 2018. Association for
Computational Linguistics. doi: 10.18653/v1/W18-5413. URL https://aclanthology.
org/W18-5413/.

Amogh Mannekote. Towards compositionally generalizable semantic parsing in large language
models: A survey. arXiv preprint arXiv:2404.13074, 2024.

Gary F Marcus. The algebraic mind: Integrating connectionism and cognitive science. MIT press,
2003.

Ahmed Masry, Juan A. Rodriguez, Tianyu Zhang, Suyuchen Wang, Chao Wang, Aarash Feizi,
Akshay Kalkunte Suresh, Abhay Puri, Xiangru Jian, Pierre-André Noël, Sathwik Tejaswi Mad-
husudhan, Marco Pedersoli, Bang Liu, Nicolas Chapados, Yoshua Bengio, Enamul Hoque, Christo-
pher Pal, Issam H. Laradji, David Vazquez, Perouz Taslakian, Spandana Gella, and Sai Rajeswar.
Alignvlm: Bridging vision and language latent spaces for multimodal understanding, 2025. URL
https://arxiv.org/abs/2502.01341.

Pablo Mendes, Max Jakob, and Christian Bizer. DBpedia: A multilingual cross-domain knowledge
base. In Nicoletta Calzolari, Khalid Choukri, Thierry Declerck, Mehmet Uğur Doğan, Bente
Maegaard, Joseph Mariani, Asuncion Moreno, Jan Odijk, and Stelios Piperidis (eds.), Proceedings
of the Eighth International Conference on Language Resources and Evaluation (LREC’12), pp.
1813–1817, Istanbul, Turkey, May 2012. European Language Resources Association (ELRA).
URL https://aclanthology.org/L12-1323/.

Nikhil Mishra, Mostafa Rohaninejad, Xi Chen, and Pieter Abbeel. A simple neural attentive meta-
learner. In International Conference on Learning Representations, 2018.

Arsenii Kirillovich Moskvichev, Victor Vikram Odouard, and Melanie Mitchell. The conceptARC
benchmark: Evaluating understanding and generalization in the ARC domain. Transactions on
Machine Learning Research, 2023. ISSN 2835-8856. URL https://openreview.net/
forum?id=8ykyGbtt2q.

OpenAI. Openai o1 system card, 2024. URL https://arxiv.org/abs/2412.16720.

14

https://proceedings.neurips.cc/paper_files/paper/2019/file/f4d0e2e7fc057a58f7ca4a391f01940a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/f4d0e2e7fc057a58f7ca4a391f01940a-Paper.pdf
https://doi.org/10.1038/s41586-023-06668-3
https://proceedings.neurips.cc/paper_files/paper/2023/file/dee254cdacbab59f17dc6a8fbdffa59f-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/dee254cdacbab59f17dc6a8fbdffa59f-Paper-Conference.pdf
https://openreview.net/forum?id=UmdotAAVDe
https://aclanthology.org/W18-5413/
https://aclanthology.org/W18-5413/
https://arxiv.org/abs/2502.01341
https://aclanthology.org/L12-1323/
https://openreview.net/forum?id=8ykyGbtt2q
https://openreview.net/forum?id=8ykyGbtt2q
https://arxiv.org/abs/2412.16720


756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

OpenAI. Openai o3-mini system card, January 2025. URL https://cdn.openai.com/
o3-mini-system-card-feb10.pdf.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style,
high-performance deep learning library. Advances in neural information processing systems, 32,
2019.

Flavio Petruzzellis, Alberto Testolin, and Alessandro Sperduti. Benchmarking GPT-4 on algorithmic
problems: A systematic evaluation of prompting strategies. In Nicoletta Calzolari, Min-Yen Kan,
Veronique Hoste, Alessandro Lenci, Sakriani Sakti, and Nianwen Xue (eds.), Proceedings of
the 2024 Joint International Conference on Computational Linguistics, Language Resources and
Evaluation (LREC-COLING 2024), pp. 2161–2177, Torino, Italia, May 2024. ELRA and ICCL.
URL https://aclanthology.org/2024.lrec-main.195/.

Yusuke Sakai, Hidetaka Kamigaito, and Taro Watanabe. Revisiting compositional generalization
capability of large language models considering instruction following ability. arXiv preprint
arXiv:2506.15629, 2025.

David Maria Schmidt, Raoul Schubert, and Philipp Cimiano. Compost: A benchmark for analyzing
the ability of llms to compositionally interpret questions in a qald setting. In Daniel Garijo,
Sabrina Kirrane, Angelo Salatino, Cogan Shimizu, Maribel Acosta, Andrea Giovanni Nuzzolese,
Sebastián Ferrada, Thibaut Soulard, Kouji Kozaki, Hideaki Takeda, and Anna Lisa Gentile (eds.),
The Semantic Web – ISWC 2025, pp. 3–22, Cham, 2025. Springer Nature Switzerland. ISBN
978-3-032-09527-5.

Donghyeon Shin, Seungpil Lee, Klea Lena Kovacec, and Sundong Kim. From generation to
selection: Findings of converting analogical problem-solving into multiple-choice questions. In
Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung Chen (eds.), Findings of the Association for
Computational Linguistics: EMNLP 2024, pp. 6696–6708, Miami, Florida, USA, November 2024.
Association for Computational Linguistics. doi: 10.18653/v1/2024.findings-emnlp.392. URL
https://aclanthology.org/2024.findings-emnlp.392/.

Zoltán Gendler Szabó. The case for compositionality. In Markus Werning, Wolfram Hinzen, and
Edouard Machery (eds.), The Oxford Handbook of Compositionality. Oxford University Press,
2012.

Gemini Team, Rohan Anil, Sebastian Borgeaud, Jean-Baptiste Alayrac, Jiahui Yu, Radu Soricut,
Johan Schalkwyk, Andrew M Dai, Anja Hauth, Katie Millican, et al. Gemini: a family of highly
capable multimodal models. arXiv preprint arXiv:2312.11805, 2023.

Jonathan Thomm, Giacomo Camposampiero, Aleksandar Terzic, Michael Hersche, Bern-
hard Schölkopf, and Abbas Rahimi. Limits of transformer language models on learn-
ing to compose algorithms. In A. Globerson, L. Mackey, D. Belgrave, A. Fan, U. Pa-
quet, J. Tomczak, and C. Zhang (eds.), Advances in Neural Information Processing
Systems, volume 37, pp. 7631–7674. Curran Associates, Inc., 2024. doi: 10.52202/
079017-0245. URL https://proceedings.neurips.cc/paper_files/paper/
2024/file/0e797d5139ad94fc2dc2080c09119f29-Paper-Conference.pdf.

Sebastian Thrun and Lorien Pratt. Learning to Learn: Introduction and Overview, pp. 3–17. Springer
US, Boston, MA, 1998. ISBN 978-1-4615-5529-2. doi: 10.1007/978-1-4615-5529-2 1. URL
https://doi.org/10.1007/978-1-4615-5529-2_1.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023.

Jane Wang, Zeb Kurth-Nelson, Hubert Soyer, Joel Leibo, Dhruva Tirumala, Remi Munos, Charles
Blundell, Dharshan Kumaran, and Matt Botvinick. Learning to reinforcement learn. In Proceedings
of the Annual Meeting of the Cognitive Science Society, volume 39, 2017.

15

https://cdn.openai.com/o3-mini-system-card-feb10.pdf
https://cdn.openai.com/o3-mini-system-card-feb10.pdf
https://aclanthology.org/2024.lrec-main.195/
https://aclanthology.org/2024.findings-emnlp.392/
https://proceedings.neurips.cc/paper_files/paper/2024/file/0e797d5139ad94fc2dc2080c09119f29-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/0e797d5139ad94fc2dc2080c09119f29-Paper-Conference.pdf
https://doi.org/10.1007/978-1-4615-5529-2_1


810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V Le, Ed H. Chi, Sharan Narang, Aakanksha
Chowdhery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language
models. In The Eleventh International Conference on Learning Representations, 2023a. URL
https://openreview.net/forum?id=1PL1NIMMrw.

Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Alisa Liu, Noah A. Smith, Daniel Khashabi, and
Hannaneh Hajishirzi. Self-instruct: Aligning language models with self-generated instructions. In
Anna Rogers, Jordan Boyd-Graber, and Naoaki Okazaki (eds.), Proceedings of the 61st Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 13484–
13508, Toronto, Canada, July 2023b. Association for Computational Linguistics. doi: 10.18653/
v1/2023.acl-long.754. URL https://aclanthology.org/2023.acl-long.754/.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, brian ichter, Fei Xia, Ed Chi, Quoc V
Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language mod-
els. In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh (eds.), Ad-
vances in Neural Information Processing Systems, volume 35, pp. 24824–24837. Curran Asso-
ciates, Inc., 2022. URL https://proceedings.neurips.cc/paper_files/paper/
2022/file/9d5609613524ecf4f15af0f7b31abca4-Paper-Conference.pdf.

Sondre Wold, Lucas Georges Gabriel Charpentier, and Étienne Simon. Systematic generalization in
language models scales with information entropy. In Wanxiang Che, Joyce Nabende, Ekaterina
Shutova, and Mohammad Taher Pilehvar (eds.), Findings of the Association for Computational
Linguistics: ACL 2025, pp. 1807–1819, Vienna, Austria, July 2025. Association for Computational
Linguistics. ISBN 979-8-89176-256-5. doi: 10.18653/v1/2025.findings-acl.90. URL https:
//aclanthology.org/2025.findings-acl.90/.

Yudong Xu, Wenhao Li, Pashootan Vaezipoor, Scott Sanner, and Elias Boutros Khalil. LLMs and
the abstraction and reasoning corpus: Successes, failures, and the importance of object-based
representations. Transactions on Machine Learning Research, 2024. ISSN 2835-8856. URL
https://openreview.net/forum?id=E8m8oySvPJ.

Haoran Yang, Hongyuan Lu, Wai Lam, and Deng Cai. Exploring compositional generalization
of large language models. In Yang (Trista) Cao, Isabel Papadimitriou, Anaelia Ovalle, Marcos
Zampieri, Francis Ferraro, and Swabha Swayamdipta (eds.), Proceedings of the 2024 Conference of
the North American Chapter of the Association for Computational Linguistics: Human Language
Technologies (Volume 4: Student Research Workshop), pp. 16–24, Mexico City, Mexico, June
2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.naacl-srw.3. URL
https://aclanthology.org/2024.naacl-srw.3/.

Jun Zhao, Jingqi Tong, Yurong Mou, Ming Zhang, Qi Zhang, and Xuanjing Huang. Exploring
the compositional deficiency of large language models in mathematical reasoning through trap
problems. In Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung Chen (eds.), Proceedings of the 2024
Conference on Empirical Methods in Natural Language Processing, pp. 16361–16376, Miami,
Florida, USA, November 2024. Association for Computational Linguistics. doi: 10.18653/v1/
2024.emnlp-main.915. URL https://aclanthology.org/2024.emnlp-main.915/.

Yanli Zhou, Reuben Feinman, and Brenden M. Lake. Compositional diversity in visual concept
learning. Cognition, 244:105711, 2024. ISSN 0010-0277. doi: https://doi.org/10.1016/j.cognition.
2023.105711. URL https://www.sciencedirect.com/science/article/pii/
S0010027723003451.

A SYSTEMATIC GENERALIZATION IN LLMS

The question of whether neural networks, and more recently large language models, have the capacity
to generalize systematically from known components to novel combinations has been, and continues
to be, the subject of extensive debate (Fodor & Pylyshyn, 1988; Brakel & Frank, 2009; Lake &
Baroni, 2023; Mannekote, 2024, inter alia). This section offers an extended literature review on
systematic generalization in LLMs, presenting an overview of recent studies that assess systematicity
in current language models.

16

https://openreview.net/forum?id=1PL1NIMMrw
https://aclanthology.org/2023.acl-long.754/
https://proceedings.neurips.cc/paper_files/paper/2022/file/9d5609613524ecf4f15af0f7b31abca4-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/9d5609613524ecf4f15af0f7b31abca4-Paper-Conference.pdf
https://aclanthology.org/2025.findings-acl.90/
https://aclanthology.org/2025.findings-acl.90/
https://openreview.net/forum?id=E8m8oySvPJ
https://aclanthology.org/2024.naacl-srw.3/
https://aclanthology.org/2024.emnlp-main.915/
https://www.sciencedirect.com/science/article/pii/S0010027723003451
https://www.sciencedirect.com/science/article/pii/S0010027723003451


864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Following Hupkes et al. (2020), different aspects of compositionality need to be distinguished. Sys-
tematicity refers to the capacity to recombine known parts and rules into novel combinations (Szabó,
2012; Hupkes et al., 2020; Lake & Baroni, 2023). More formally, this capacity can be defined as:

Definition 1 (Systematic generalization). The capacity to recombine previously observed or
learned parts and rules, i.e., primitives e1, e2, . . . , en, to generalize to novel, previously unseen
compositions of them (e.g., e1 × e2).

According to Hupkes et al. (2020), systematicity is different from other aspects of compositionality,
such as productivity: the capacity to predict expressions beyond the length of those already encoun-
tered, or substitutivity: the ability to handle synonym substitutions. For more details on the different
aspects of compositionality, we refer to the original study by Hupkes et al. (2020).

Systematicity in current LLMs. A growing body of research evaluates whether large language
models satisfy the criteria of systematicity, i.e., whether they can generalize systematically from
known or previously seen components to novel combinations. Thomm et al. (2024) study whether
LLMs such as LLaMA (Touvron et al., 2023), GPT-4 (Achiam et al., 2023), and Gemini-Pro (Team
et al., 2023) can solve compositional algorithmic tasks by reusing previously encountered primitives.
Training a small LLaMA-style model from scratch on four compositional algorithmic tasks shows
that, while the model is able to learn all sub-tasks or primitives reliably, it fails to properly compose
them. Instead, the model exhibits extreme sample inefficiency: it is able to solve the compositional
task only when the amount of training data is increased by almost one order of magnitude. The
authors further present a complexity-theoretic argument that gradient-descent training of fixed-depth
feedforward models is asymptotically data-inefficient on combinatorial problems. Prompt-based
evaluations of GPT-4 and Gemini-Pro further show that these models struggle with the tasks, even
when strong hints are provided or techniques such as chain-of-thought (CoT) prompting (Wei et al.,
2022) are used. Dziri et al. (2023) also highlight compositional limits of LLMs on multiplication,
logic-grid puzzles, and a dynamic-programming task: performance is near-perfect in-distribution
but collapses as computation graphs deepen or branch beyond training complexity. Petruzzellis et al.
(2024) complement these findings with a systematic study of LLMs’ performance on algorithmic
tasks where both the number of operands per operation and their nesting depth can be controlled.
While the authors show that LLMs such as GPT-4 fail on highly nested, multi-operand formulas,
they find that advanced prompting strategies such as zero-shot CoT (Kojima et al., 2022) with
self-consistency (Wang et al., 2023a) can improve performance on less complex compositions.

Zhao et al. (2024) introduce MATHTRAP, where standard problems from GSM8K (Cobbe et al.,
2021) and MATH (Hendrycks et al., 2021) are modified with logical “traps” (e.g., undefined con-
cepts, missing conditions, contradictions) that require combining ordinary math-solving competence
with the capacity to identify such inconsistencies. The authors show that LLMs such as Llama-3
(70B) (Grattafiori et al., 2024), Claude3-Opus (Anthropic, 2024), and GPT-4 score well on the original
problems and on standalone questions about the logical inconsistencies presented, yet their accuracy
drops dramatically on such trap problems. Prompting that warns about traps, few-shot demonstrations,
fine-tuning, and OpenAI’s o1 “slow thinking” (Jaech et al., 2024) improve performance but still leave
a substantial gap to human performance on the task.

In semantic parsing, where natural language must be translated into a structured (often symbolic)
form, systematic generalization plays an important role when novel compositional queries that have
not been seen during training are introduced (Mannekote, 2024). Schmidt et al. (2025) propose
CompoST, a controlled semantic-parsing benchmark for evaluating systematic generalization in
question answering over linked data from DBpedia (Mendes et al., 2012). Models need to map
natural-language questions to SPARQL queries where all atomic graph-pattern constituents have
been presented, while novel combinations appear at test time. Across zero-shot, few-shot, and fine-
tuned settings on three difficulty splits, performance drops sharply as structural deviation increases.
The authors conclude that current LLMs struggle to systematically recombine known SPARQL
constituents into correct queries, indicating weak systematic generalization in this domain. In
contrast, Drozdov et al. (2023) show that models can achieve high systematic generalization on
semantic parsing datasets such as CFQ (Keysers et al., 2020) and COGS (Kim & Linzen, 2020) when
explicitly prompted to decompose problems. The authors introduce dynamic least-to-most prompting,
where models first decompose the input and then solve subproblems sequentially. Compared to

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

standard few-shot prompting, least-to-most prompting achieves near-SOTA OOD performance on
CFQ and COGS, suggesting that systematicity is not reliably expressed by default but can be
elicited. Yang et al. (2024) study “order-n” compositional instructions derived via self-instruct (Wang
et al., 2023b). Training on higher-order compositions improves performance on lower-order ones, but
training on simpler orders does not transfer to longer compositions, revealing an asymmetry typical
of non-systematic learners. Sakai et al. (2025) introduce Ordered CommonGen, where four known
concepts must be embedded in a sentence in a specified order across permutations. While unordered
concept coverage is high, ordered coverage remains substantially lower even for LLMs, indicating
difficulty in faithfully recombining familiar concepts under novel structural constraints. Ismayilzada
et al. (2025) extend systematicity tests to morphology in agglutinative languages (Turkish, Finnish):
LLMs struggle to generate or validate novel morpheme compositions, particularly for nonce roots
and longer affix chains, and performance degrades with compositional length.

Two data-centric accounts help explain when LLMs succeed or fail. Wold et al. (2025) argue that
systematic generalization scales with the information entropy of the training distribution over primi-
tives; in modified SCAN, higher-entropy coverage of verbs and contexts yields smooth improvements
in systematic generalization. Chang et al. (2025) formalize the coverage principle, showing that
systematic generalization in transformer-based models largely reduces to substituting functionally
equivalent fragments observed in shared contexts. They show that data requirements for multi-hop
systematicity grow at least quadratically in component set size and are largely insensitive to parameter
scaling.

Summary. Overall, the studies surveyed suggest that modern LLMs do not reliably exhibit human-
like systematic generalization under standard training and evaluation: performance often correlates
with training data coverage and degrades on genuinely novel compositions. However, prompting
techniques for explicit decomposition and compositional training curricula might be able to elicit
systematicity, consistent with a view that compositional abilities are partly latent but not automatically
deployed.

B DATASET

In this work, we present Compositional-ARC, a dataset designed to study systematicity in abstract
spatial reasoning. As outlined in Section 3.1, Compositional-ARC evaluates a model’s capacity
to systematically generalize learned geometric transformations (e.g., translation, rotation) of two-
dimensional objects to novel compositions of these transformations (e.g., translation+rotation). The
subsequent sections offer a detailed description of the dataset, including formal definitions of the
grid-based environment and the set of transformations it includes.

B.1 GRID SETUP

We define the structure of the 10× 10 grid environment and the notion of objects within it. Each grid
is represented as a matrix X ∈ N10×10, where each element corresponds to a cell with a discrete
color value. Objects are defined based on color connectivity using the Moore neighborhood (Bays,
2010).

Definition 2 (Grid & Object). Let X ∈ N10×10 be a matrix with rows i and columns j ,
referred to as a grid, where each element Xij ∈ {0, . . . , 9}. The value Xij = 0 represents a
background cell, and values Xij ∈ {1, . . . , 9} represent object colors.

An object is a set of coordinates
O ⊆ {0, . . . , 9}2

such that each (i, j) ∈ O satisfies Xij = c, and the elements in O form a single connected
component.

Two elements Xij and Xkl are considered connected if:

max(|i− k|, |j − l|) ≤ 1

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

We define the following color mapping: 0 → black, 1 → red, 2 → orange, 3 → yellow, 4 → green,
5 → blue, 6 → purple, 7 → pink, 8 → cyan, and 9 → gray.

B.2 GEOMETRIC TRANSFORMATIONS

We formally define the five basic geometric transformations used in our dataset: translation, rotation,
reflection, extension, and color change. Each transformation operates on objects within the grid
environment as defined in Appendix B.1. A transformation is considered valid if all transformed
coordinates lie within the grid bounds and do not overlap with existing objects in the original grid.

Translation. Moves an object by one cell along a specified direction (downward or rightward). A
formal definition is given in the text box below.

Definition 3 (Translation). Let O ⊆ {0, . . . , 9}2 be an object in a grid X ∈ N10×10, and let
v = (v1,v2) ∈ {(1, 0), (0, 1)} be the translation direction (downward or rightward).

The translated object is:

Ttrans,v(O) = {(i+ v1, j + v2) | (i, j) ∈ O}

The translation is valid if:

∀(i′, j′) ∈ Ttrans,v(O), 0 ≤ i′, j′ < 10, Xi′j′ = 0

Rotation. Rotates an object 90◦ clockwise or counterclockwise around the top-left of its bounding
box. A more formal definition is given in the text box below.

Definition 4 (Rotation). Let O ⊆ {0, . . . , 9}2 be a set of grid cells with row–column coordinates
(i, j). Let i0 = min(i,j)∈O i and j0 = min(i,j)∈O j. We set the pivot P = (i0, j0) as the top-left
of the bounding box.

For each (i, j) ∈ O, we specify the offset from the pivot as:

(∆i,∆j) = (i− imin, j − jmin).

We define a rotation by ±90◦ as:

R+90◦(∆i,∆j) = (∆j, −∆i), R−90◦(∆i,∆j) = (−∆j, ∆i),

where +90◦ is clockwise and −90◦ is counterclockwise under the row-down convention.

Given a 90◦ rotation, either clockwise or counterclockwise, the rotated object is:

Trot,±90◦(O) =
{
( imin +∆i, jmin +∆j )

∣∣ (i, j) ∈ O
}
.

The rotation is valid if:

∀(i′, j′) ∈ Trot,θ(O), 0 ≤ i′, j′ < 10, xi′j′ = 0

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Reflection. Reflects an object across its vertical or horizontal axis, reversing the relative positions of
its coordinates while preserving overall structure.

Definition 5 (Reflection). Let O ⊆ {0, . . . , 9}2 be an object in a grid X ∈ N10×10, and let
d ∈ {horizontal, vertical} indicate the axis of reflection.

Let:
imin = min{i | (i, j) ∈ O}, imax = max{i | (i, j) ∈ O}
jmin = min{j | (i, j) ∈ O}, jmax = max{j | (i, j) ∈ O}

Then the reflected object is:

Tref,d(O) =

{
{(imax − (i− imin), j) | (i, j) ∈ O} if d = horizontal
{(i, jmax − (j − jmin)) | (i, j) ∈ O} if d = vertical

The reflection is valid if:

∀(i′, j′) ∈ Tref,d(O), 0 ≤ i′, j′ < 10, Xi′j′ = 0

Extension. Adds a new cell in the upward or leftward direction for each coordinate in the object.

Definition 6 (Extension). Let O ⊆ {0, . . . , 9}2 be an object in a grid X ∈ N10×10, with color
c > 0. Let d ∈ {up, left} indicate the extension direction.

Let the set of new cells adjacent to the object in direction d be:

Nd(O) =

{
{(i− 1, j) /∈ O | (i, j) ∈ O, i > 0, xi−1,j = 0} if d = up
{(i, j − 1) /∈ O | (i, j) ∈ O, j > 0, xi,j−1 = 0} if d = left

Then the extended object is:
Text,d(O) = O ∪Nd(O)

The extension is valid if:

∀(i′, j′) ∈ Nd(O), 0 ≤ i′, j′ < 10, , Xi′j′ = 0

All new cells (i′, j′) ∈ Nd(O) are assigned the color of the original object:

X ′
i′j′ = c

Color change. Alters the color of an object to either red or orange, without changing its structure or
position.

Definition 7 (Color Change). Let O ⊆ {0, . . . , 9}2 be an object in a grid X ∈ N10×10, with
color c > 0. Let c′ ∈ {1, 2} be the new color (representing red or orange).

The resulting grid X ′ is given by:

X ′
ij =

{
c′ if (i, j) ∈ O
Xij otherwise

B.3 DATASET GENERATION

To generate episodes that comprise primitive transformations, level-1 transformation compositions,
and level-2 transformation compositions, we developed a script that systematically generates the
corresponding input-output grid pairs for each transformation. The complete code repository for data
generation is publicly available at: https://anonymous.4open.science/r/C-ARC-8342. In the following,

20

https://anonymous.4open.science/r/C-ARC-8342


1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

we provide a brief overview of the procedure used to generate input-output grid pairs for each sample
within an episode. As detailed in Section 3.1 and Appendix B.2, we consider five basic geometric
transformations, along with three types of transformation indicators: shape-based, color-based, and
neighbor-based. These allow us to define a total of ten distinct transformation triplets, each mapping
the indicators to corresponding transformations (e.g., shape-based: translation, color-based: reflection,
neighbor-based: extension). For each episode, a transformation triplet is uniformly sampled from
this set to define the visual interpretation grammar of the episode. Once the transformations are
determined, we randomly assign a specific shape for the shape-based transformation, a specific color
for the color-based transformation, and an indicator object for the neighbor-based transformation.
Importantly, the indicator object is constrained to neither share the shape associated with the shape-
based transformation nor the color linked to the color-based transformation.

Using these specifications, we generate input-output grid pairs representing primitive, level-1, and
level-2 transformations. For each transformation mapping, we randomly place an object on a 10× 10
grid, ensuring it possesses the designated shape, color, and/or proximity to the indicator object as
required. The specified transformation is then applied to this object. If the resulting transformed
object remains within the grid bounds and does not overlap with any other object, the corresponding
input-output grid pair is accepted as a valid sample for the episode. Otherwise, a new object location
is sampled and the process is repeated until a valid pair is obtained. Finally, we make sure that each
episode follows a unique grammar, i.e., that no two combinations of shape, color, and indicator
objects correspond to the same set of transformations within the dataset.

Once the dataset is generated, we apply a systematicity-aware data split into training, validation,
and test sets. As mentioned before, the five basic geometric transformations, along with three types
of transformation indicators, allow us to define a total of ten distinct transformation triplets (e.g.,
shape-based: translation, color-based: reflection, neighbor-based: extension). We split the data as
follows: we randomly designate 20% of all triplets as test-only and 80% as train-only (see Table 7).
This means that the geometric transformations involved in the final query level-2 compositions differ
between the training and evaluation sets. For instance, for seed 1860, all episodes whose triplet falls
in the train set yield 82,908 training episodes, and evaluation-only triplets form a 17,092-episode
pool, which we split evenly into 8,546 validation and 8,546 test episodes.

B.4 DATASET STATISTICS

Table 7 presents detailed statistics for the datasets used in this study. As outlined in Section 5.1, we
train and evaluate models via MLC across four distinct dataset splits to mitigate the influence of
randomness in the data split process. The table includes the number of training, validation, and test
samples for each split. Additionally, it provides information on the query transformation compositions
present in the training and test sets, along with the frequency of each basic geometric transformation
within the train dataset.

In a similar vein, Table 8 shows the statistics for the dataset version that includes more diverse
transformations, as described in Section 5.3. The table provides information on the query transforma-
tion compositions present in the training and test sets, along with the frequency of each geometric
transformation within the training dataset.

C TRAINING DETAILS

As outlined in Section 3.2, we use a transformer-based encoder-decoder model trained using MLC to
predict the correct output grid for a given input query, given a set of study examples. Specifically,
we generate a dataset of 100,000 episodes and split it into train, validation and test sets (for more
information see Section 4.1 and Table 7). The model is optimized using cross-entropy loss, averaged
over the predicted patch embeddings, as described in Section 3.2. To place greater emphasis on
non-background regions, patches corresponding exclusively to black 2× 2 cells are down-weighted
by a factor of 0.2 during loss computation.

Each episode includes a collection of study examples and queries. In the standard few-shot learning
task (Section 4.1), the model receives three input-output grid pairs, along with the input query. For the
systematicity task, 12 systematic study examples are provided. In both tasks, the model is required to
predict the correct output grid for ten distinct input queries.

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Table 3: Hyperparameter configuration for models trained via MLC.

Parameter Value Parameter Value

number layers in decoder 3 learning rate after training 5× 10−4

number layers in decoder 3 dropout 0.0
number of attention heads 8 weight decay 0.01
hidden dimension 128 noise probability 0.001
feedforward hidden size 768 gradient accumulation over k batches 2
learning rate 0.01 background patch loss weight 0.2

Training is conducted over 200 epochs with a batch size of 200 for the standard few-shot learning
task (i.e., 200 · 10 = 2000 queries per batch), and over 300 epochs with the same batch size for the
systematicity task. A learning rate of 0.01 is used in both cases. Following the approach of Lake
& Baroni (2023), we apply a warm-up phase during the first episode, beginning with a learning
rate of 1 × 10−4, followed by a linear decay to 5 × 10−4 over the course of training. Additional
hyperparameter settings are provided in Section C.1 and summarized in Table 3.

C.1 HYPERPARAMETERS

To identify suitable hyperparameters for model training, we conduct Bayesian search over a predefined
range of values: learning rate ∈ [1 × 10−2, 1 × 10−3, 1 × 10−4], final learning rate after linear
decay ∈ [1× 10−4, 5× 10−4], dropout rate ∈ [0.0, 0.1, 0.2], gradient accumulation over k ∈ [1, 2]
batches, cell color perturbation probability pnoise ∈ [0.0, 0.01, 0.001], feedforward hidden dimension
∈ [512, 768], loss weighting for background (all-black) patches ∈ [0.2, 0.4, 1.0], number of encoder
layers ∈ [2, 3, 4], and number of decoder layers ∈ 2, 3, 4.

For the hyperparamter search, the model is trained for 40 epochs on the systematicity task and
evaluated on its corresponding validation set. Across 25 independent runs, we select the configuration
that achieves the highest validation accuracy. The final hyperparameter settings, presented in Table 3,
are employed consistently across both task setups.

C.2 IMPLEMENTATION DETAILS

All experiments were conducted using PyTorch (Paszke et al., 2019) as the primary development
framework. Comprehensive details regarding supporting software and versioning are available in our
code repository. Experiments were executed on NVIDIA A100 and H200 GPUs. Training models
with MLC on the standard three-shot learning task over 200 epochs required approximately 40 GPU
hours on a single A100 GPU. For the systematicity experiments with 12 study examples, training
over 300 epochs on the designated dataset consumed roughly 100 GPU hours on a single H200 GPU.

C.3 ORIGINAL MLC TRAINING

In the original MLC setup, Lake & Baroni (2023) train a standard seq2seq transformer (3-layer
encoder/decoder, 8 attention heads, hidden dimension 128) with Adam on 100,000 dynamically
generated episodes of pseudo-language instructions. Each episode is defined by a latent compositional
grammar and contains multiple study examples and queries concatenated into a single input sequence,
as described in Section 2. Training minimizes token-level cross-entropy for 50 epochs using a batch
size of 25 episodes, a learning rate of 10−3 with a one-epoch warm-up followed by linear decay, and
dropout of 0.1. Compared to our approach, their model targets linguistic sequences rather than visual
grids and does not use patch-wise losses or background reweighting. Additionally, we train longer
with larger batches and a loss designed to emphasize non-background spatial structure.

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

D EXPERIMENT DETAILS

This section provide further details regarding our experimental setup. Specifically, Section D.1
presents formal definitions of the evaluation metrics used to assess the performance of the models
studied in this work, while Section D.2 outlines additional information on how we interact with
API-based LLMs.

D.1 EVALUATION METRICS

As described in Section 4.3, we use three different evaluation metrics to assess model performance
in this study: i) exact match accuracy, ii) color accuracy, and iii) shape accuracy. These metrics are
formally defined based on the grid-based environment X and the concept of an object O, as specified
in Definition 2.

Let Xtarget,Xpred ∈ N10×10 denote the target and predicted grids, respectively. Each cell Xtarget
ij

(or Xpred
ij ) contains an integer in 0, . . . , 9, where 0 represents the background and values from 1 to 9

correspond to cells occupied by colored objects. The set of objects—defined as maximal connected
cells of a consistent color under the Moore neighborhood (see Section 3.1)—extracted from Xtarget

and Xpred are denoted P(Xtarget) and P(Xpred), respectively. For each object in grid O ∈ P(X),
we assign a color label c(O) ∈ 1, . . . , 9 and define its normalized shape as follows:

S(O) = {(i− imin, j − jmin) : (i, j) ∈ O}, (1)

where

imin = min{i : (i, j) ∈ O} and jmin = min{j : (i, j) ∈ O}. (2)

This transformation “anchors” the object to the top-left corner by translating it to a coordinate system
with its minimum row and column indices set to zero.

Accuracy. The exact match accuracy evaluates whether the predicted grid Xpred is identical to the
target grid Xtarget on a cell-by-cell basis:

Accuracy(Xpred,Xtarget) =

{
1, if Xpred

ij = Xtarget
ij ∀ (i, j) ∈ {0, . . . , 9}2,

0, otherwise.
(3)

In other words, this metric yields a value of 1 if and only if the entire predicted grid matches the
target grid exactly, i.e., Xtarget = Xpred. The mean accuracy over the dataset D is then defined as:

Accuracy =
1

|D|
∑

(Xpred,Xtarget)∈D

Accuracy(Xpred,Xtarget) (4)

Color accuracy. Color accuracy assesses whether the predicted grid contains the same number of
objects of each color as the target grid, irrespective of their locations or shapes. For a given color
c ∈ 1, . . . , 9, let

m(c,X) =
∣∣{O ∈ P(X) : c(O) = c}

∣∣. (5)

denote the number of objects of color c in grid X . Then, color accuracy is defined as:

Color Accuracy(Xpred,Xtarget) = 1
{
∀ c ∈ {1, . . . , 9} : m(c,Xpred) = m(c,Xtarget)

}
, (6)

where 1· is the indicator function, returning 1 if the condition is satisfied for all colors and 0 otherwise.
The mean color accuracy over the dataset D is given by:

Color Accuracy =
1

|D|
∑

(Xpred,Xtarget)∈D

Color Accuracy(Xpred,Xtarget) (7)

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Shape accuracy. Shape accuracy measures the agreement in object shapes between the predicted
and target grids, independent of color and position. For each object in a grid O ∈ P(X), we consider
its normalized shape S(O) as defined in Equation 1. The count of objects with a specific normalized
shape s in grid X is given by:

n(s,X) =
∣∣{O ∈ P(X) : S(O) = s}

∣∣. (8)

Accordingly, shape accuracy is defined as:

Shape Accuracy(Xpred,Xtarget) = 1
{
∀ s : n(s,Xpred) = n(s,Xtarget)

}
. (9)

That is, the predicted grid Xpred has perfect shape accuracy if the number of objects corresponding
to each normalized shape is identical to that in the target grid Xtarget. Finally, the mean shape
accuracy over the dataset D is given by:

Shape Accuracy =
1

|D|
∑

(Xpred,Xtarget)∈D

Shape Accuracy(Xpred,Xtarget) (10)

D.2 MODEL INFORMATION

General-purpose LLMs. As described in Section 4.2, we evaluate three different general-
purpose LLMs on Compositional-ARC. Specifically, we assess the performance of o3-
mini (OpenAI, 2025) (version o3-mini-2025-01-313), GPT-4o (Achiam et al., 2023)
(version gpt-4o-2024-08-064), and Gemini 2.0 Flash (DeepMind, 2024) (version
gemini-2.0-flash-0015). All models are accessed via their respective batch APIs, enabling
us to process multiple samples per request. Unless otherwise specified, we employ the default API
settings. For GPT-4o and o3-mini, this corresponds to a temperature and top p value of 1.0.6 Due to
financial constraints, the o3-mini model is configured with a “low” reasoning effort. For Gemini 2.0
Flash, the provider does not disclose default parameter settings.

Prompts. The complete set of prompts used in our evaluations is presented in Figures 12 through 15.
To ensure consistency and facilitate meaningful comparisons, we apply the same prompts across all
models. The standard few-shot learning prompt appears in Figure 12, while the prompt used for the
systematicity task is shown in Figure 14. For Gemini 2.0 Flash, we add the instruction: “Do not
generate any code to solve the task” to the output requirements, as the model otherwise does not
adhere to the required output format. As outlined in Section 4.2, we additionally evaluate GPT-4o
and Gemini 2.0 Flash in a multimodal configuration, in which both an image of the study examples
and the input query are provided alongside the text prompt (text+image). The multimodal prompt
for the few-shot learning task is shown in Figure 13, with the accompanying image illustrated in
Figure 10. The corresponding multimodal prompt for the systematicity task is depicted in Figure 15,
with the associated image presented in Figure 11. For the textual prompts, we represent grids as
two-dimensional arrays, consistent with prior work (Moskvichev et al., 2023)). For instance, the final
query input grid in Figure 5 would be represented as:

3https://platform.openai.com/docs/models/o3-mini
4https://platform.openai.com/docs/models/gpt-4o
5https://ai.google.dev/gemini-api/docs/models#gemini-2.0-flash
6https://platform.openai.com/docs/api-reference/chat/create

24

https://platform.openai.com/docs/models/o3-mini
https://platform.openai.com/docs/models/gpt-4o
https://ai.google.dev/gemini-api/docs/models#gemini-2.0-flash
https://platform.openai.com/docs/api-reference/chat/create


1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

[[0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

[0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

[0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

[0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

[0, 5, 0, 0, 0, 0, 0, 0, 0, 0],

[0, 5, 0, 0, 0, 0, 0, 0, 0, 0],

[5, 5, 0, 0, 0, 0, 0, 0, 0, 0],

[0, 5, 0, 0, 0, 0, 0, 0, 0, 0],

[0, 0, 0, 0, 1, 0, 0, 0, 0, 0],

[0, 0, 0, 0, 1, 1, 0, 0, 0, 0]]

Model responses are parsed using regular expressions to identify the expression “output:“, followed
by a two-dimensional array of the form “[[. . .]]”, as specified in the input prompt. If a response does
not contain this pattern, it is excluded from further analysis and omitted from accuracy computations.
Table 4 summarizes the proportion of valid responses for each model.

Domain-specific LLMs. As mentioned in Section 4.2, we also evaluate two LLMs proposed
by Franzen et al. (2024) that are specifically tailored to ARC-style data: (i) Llama-3.2-3B-ReARC (ver-
sion Llama-3.2-3B-ARChitects-ReArc-bnb-4bit7) and (ii) Mistral-NeMO-Minitron-
8B-Full (version Mistral-NeMo-Minitron-8B-ARChitects-Full-bnb-4bit8). We
use the original code9 provided by the authors to run their models on Compositional-ARC, with
default parameters. This means that the models perform augmented inference on the test set with
rotations and transpositions over all symmetries, in addition to color permutations and example
shuffling. Candidate pruning is further applied with a minimum probability of 0.1. For models
evaluated with test-time training, we follow the authors’ one-epoch LoRA adaptation on the study
examples of the test data repeated 48 times with the same augmentations described before. LoRA
targets the attention and MLP modules, as well as the embeddings, with r = 64, α = 16, and dropout
set to 0. The models are trained with a batch size of 16, gradient accumulation set to 1, a cosine
learning rate of 1× 10−4 (with 1× 10−5 for embeddings), and a warmup ratio of 0.25. The resulting
weights are then used for inference with the same default settings as described earlier.

E ADDITIONAL RESULTS

In this section, we present additional results for the experiments conducted in this study. First, we
present additional qualitative results related to the model predictions on the standard few-shot learning
and the systematicity task. Figures 5 through 7 illustrate representative episodes from the standard
few-shot learning task. Model predictions are shown adjacent to each query, with results for GPT-4o
and Gemini 2.0 Flash corresponding to text-only prompts. Across all three episodes, the model
trained using MLC consistently predicts the correct output grid. In contrast, GPT-4o and Gemini
2.0 Flash frequently fail to identify the correct transformation—either misrepresenting the shape
of the transformed object or incorrectly predicting its final position. Notably, o3-mini successfully
predicts the correct output for the episodes in Figures 6 and 7, but fails on the example in Figure 5.
Figures 8 and 9 highlight episodes from the systematicity task. As shown, all general-purpose LLMs
fail to produce accurate transformations, often misplacing the transformed object within the grid. In
contrast, the model trained via MLC consistently predicts the correct transformation.

Response rates. As outlined in Section D.2, the general-purpose LLMs we evaluate are instructed to
present their final output grid predictions using the keyword “output:”, followed by a two-dimensional
array of size 10× 10 in the format “[[. . .]]”. Responses that do not conform to this expected pattern
are excluded from subsequent analyses and are not included in accuracy calculations. Table 4
provides an overview of the proportion of valid responses for each model. In the standard few-shot

7https://huggingface.co/da-fr/Llama-3.2-3B-ARChitects-ReArc-bnb-4bit
8https://huggingface.co/da-fr/Mistral-NeMo-Minitron-8B-ARChitects-Full-bnb-4bit
9https://github.com/da-fr/arc-prize-2024

25

https://huggingface.co/da-fr/Llama-3.2-3B-ARChitects-ReArc-bnb-4bit
https://huggingface.co/da-fr/Mistral-NeMo-Minitron-8B-ARChitects-Full-bnb-4bit
https://github.com/da-fr/arc-prize-2024


1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Table 4: The proportion of valid responses generated by the different models reported for the standard
three-shot learning task and the systematicity task. For general-purpose LLMs, valid responses must
contain the string “output:”, followed by a two-dimensional 10× 10 array of the form “[[. . .]]”.

Model Valid Responses (3-Shot) Valid Responses (Systematicity)

GPT-4o 99.95% 99.40%
+ image 99.80% 77.24%

Gemini 2.0 Flash 99.92% 99.74%
+ image 99.51% 94.09%

o3-mini (low) 100% 100%

Llama-3.2-3B-ReARC 100% 100%
+ test-time training - 100%

Mistral-NeMO-Minitron-8B-Full 100% 100%
+ test-time training - 100%

MLC (ours) 100% 100%

learning setting, all models demonstrate very high valid response rates, exceeding 99%. However, in
the systematicity task, a slight decrease in valid responses is observed for Gemini 2.0 Flash when
additional visual input (text+image) is introduced, with the rate falling to 94.09%. More significantly,
GPT-4o exhibits a notable drop in valid response rate to 77.24% under multimodal conditions. We
hypothesize that this decline may be attributed to the increased context length resulting from the
additional image input.

Error Analysis. As described in Section 5.2, we analyze the models’ predictions and compare them
with common failure modes. Table 5 shows the percentage of each error type described in Section 5.2
across models. For errors related to the models predicting a primitive or level-1 transformation instead
of the desired level-2 transformation composition, we further illustrate which specific primitive or
level-1 transformation was applied in Table 6. Specifically, this table shows whether the primitive
transformation applied was based on the object’s shape, color, or neighboring object. Similarly, the
table illustrates which specific level-1 transformation composition was applied.

Training on static data. In addition to the model trained via MLC on a stream of dynamically
changing visual interpretation grammars, as described in Section 3.2, we adopt the approach of Lake
(2019) and train a transformer-based encoder-decoder on a dataset governed by a fixed visual grammar
(referred to as basic seq2seq). This means that the indicator-transformation mappings are static across
the whole dataset. For instance, if yellow object translates one step downward, then this applies to all
data samples across the dataset. Instead of episodes with few-shot examples, this dataset comprises
individual input-output grid pairs, where the objective is to predict the output grid corresponding to a
given input grid. This more closely resembles a standard training approach.

Table 5: Error distribution by error category across models. Values denote the percentage (%) of
prediction errors assigned to each error category.

Model Format No Transform Primitive Level-1 Invalid Position Invalid Shape Other

GPT-4o 0.60 0.46 4.59 7.71 6.62 79.26 0.77
+ image 22.91 3.10 4.19 4.09 4.26 59.84 1.60

Gemini 2.0 Flash 0.26 1.56 11.41 22.41 5.73 58.32 0.30
+ image 7.60 0.72 9.05 15.52 4.60 61.83 0.68

o3-mini (low) 0.00 5.06 30.86 13.08 0.79 49.31 0.91

Llama-3.2-3B-ReARC 0.00 55.28 25.13 4.77 0.30 14.47 0.06
+ test-time training 0.00 0.44 6.18 67.13 10.72 15.52 0.00

Mistral-NeMO-Minitron-8B-Full 0.00 0.54 53.41 28.89 0.12 17.03 0.01
+ test-time training 0.00 2.47 5.05 71.55 13.31 7.62 0.00

MLC (ours) 0.05 3.34 3.56 9.11 3.02 70.57 10.35

26



1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

Table 6: Percentages of model errors falling into each primitive and level-1 transformation error
category.

Primitive Transformations Level-1 Transformations

Model Shape Color Neighbor Shape+Color Shape+Neighbor Color+Neighbor

GPT-4o 2.09 1.56 0.93 4.68 2.10 0.92
+ image 1.97 1.57 0.66 2.65 1.01 0.42

Gemini 2.0 Flash 4.22 4.70 2.49 16.17 4.05 2.19
+ image 2.96 3.66 2.43 9.58 3.45 2.49

o3-mini (low) 16.67 13.07 1.12 11.16 0.99 0.93

Llama-3.2-3B-ReARC 14.22 6.48 4.43 2.80 1.74 0.24
+ test-time training 0.27 5.16 0.76 8.81 35.68 22.64

Mistral-NeMO-Minitron-8B-Full 39.44 7.46 6.50 15.30 13.49 0.11
+ test-time training 0.05 4.08 0.91 8.05 38.81 24.69

MLC (ours) 0.16 1.08 2.32 5.98 2.16 0.97

We construct a dataset of 1,300 grid pairs, partitioned into 1,260 training samples, 20 validation
samples, and 20 test samples. Samples represent primitive transformations, as well as level-1
and level-2 transformation compositions. As with our other experiments, the test set includes
level-2 transformation compositions that were not observed during training—only their constituent
components and level-1 compositions were seen during training. For instance, the test set might
include transformations composed of shape-based downward translation, color-based horizontal
reflection, and neighbor-based upward extension. However, only their decomposed elements have
been shown during training.

The model is trained for 200 epochs on the dataset using the parameters specified in Section C.
While it successfully fits the training data (with an accuracy of over 99%), it fails to generalize to
the out-of-distribution test set, achieving a test accuracy of 0.0%. This demonstrates that traditional
model training, sample by sample, does not encourage systematic generalization to unseen composi-
tions. Instead, systematicity requires a training procedure with examples over dynamically varying
interpretation grammars, as described in Section 3.2.

F USE OF AI ASSISTANTS

We used GitHub Copilot for parts of the project’s code, and ChatGPT for minor language revisions.

27



1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

Table 7: Summary of dataset statistics across different dataset splits, each determined by a distinct
random seed. Listed are the number of episodes in the training, validation, and test sets. Additionally,
the final query transformation compositions (level 2) are reported for both the training and evaluation
datasets. The rightmost column details the frequency of each basic geometric transformation present
in the training dataset.

Data Split No. Episodes Query Transformations Basic Transformations

Set No. Type Composition Transformation Freq.

seed 1860

Train 82908

Train

translation+reflection+coloring red coloring 35828
Val 8546 reflection+rotation+extension orange coloring 35819
Test 8546 translation+reflection+rotation down translation 23398

translation+rotation+coloring right translation 27021
reflection+coloring+extension leftward extension 22140
reflection+rotation+coloring upward extension 21806
translation+coloring+extension cw. rotation 19551
rotation+coloring+extension ccw. rotation 19394

Test
translation+rotation+extension horizontal reflection 21967
translation+reflection+extension vertical reflection 21800

seed 1870

Train 83481

Train

translation+rotation+extension red coloring 27603
Val 8259 translation+reflection+rotation orange coloring 27525
Test 8260 reflection+rotation+extension down translation 31385

reflection+coloring+extension right translation 36126
translation+reflection+extension leftward extension 26501
translation+rotation+coloring upward extension 25913
translation+reflection+coloring cw. rotation 15421
translation+coloring+extension ccw. rotation 15283

Test
rotation+coloring+extension horizontal reflection 22366
reflection+rotation+coloring vertical reflection 22320

seed 1880

Train 80035

Train

translation+coloring+extension red coloring 25850
Val 9982 translation+rotation+extension orange coloring 25832
Test 9983 translation+rotation+coloring down translation 31385

reflection+rotation+extension right translation 36126
translation+reflection+coloring leftward extension 24821
translation+reflection+extension upward extension 24147
translation+reflection+rotation cw. rotation 19734
rotation+coloring+extension ccw. rotation 19594

Test
reflection+rotation+coloring horizontal reflection 16331
reflection+coloring+extension vertical reflection 16285

seed 1890

Train 80557

Train

translation+coloring+extension red coloring 30227
Val 9721 translation+reflection+rotation orange coloring 30255
Test 9722 rotation+coloring+extension down translation 23279

translation+reflection+coloring right translation 24789
reflection+rotation+extension leftward extension 26483
translation+reflection+extension upward extension 26277
reflection+coloring+extension cw. rotation 13949
reflection+rotation+coloring ccw. rotation 13831

Test
translation+rotation+coloring horizontal reflection 26329
translation+rotation+extension vertical reflection 26252

28



1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

Table 8: Statistics of the dataset version including more diverse transformations. Listed are the number
of episodes in the training, validation, and test sets. Additionally, the final query transformation
compositions (level 2) are reported for both the training and evaluation datasets. The rightmost
column details the frequency of each basic geometric transformation present in the training dataset.

Data Split No. Episodes Query Transformations Basic Transformations

Set No. Type Composition Transformation Freq.

seed 1860

Train 85528

Train

translation+reflection+coloring red coloring 18376
Val 5472 reflection+rotation+extension orange coloring 18627
Test 5473 translation+reflection+rotation yellow coloring 18961

translation+rotation+coloring green coloring 18491
reflection+coloring+extension 1-step left translation 6471
reflection+rotation+coloring 2-step left translation 3671
translation+coloring+extension 1-step right translation 7942
rotation+coloring+extension 2-step right translation 5438

Test
translation+rotation+extension 1-step up translation 6780
translation+reflection+extension 2-step up translation 4051

1-step down translation 6686
2-step down translation 4022
leftward extension 11742
rightward extension 12071
upward extension 11801
downward extension 12909
cw. rotation 20797
ccw. rotation 20799
horizontal reflection 23536
vertical reflection 23413

29



1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

8
5 5 8
5 8

8

8
8
8

5 5 8
5

5 5 8
5 8

8
8

5 5 8 8
5 8 8

8 8
8 8

8 8
8 8

5 5 8 8
5 8 8

5 5
5 8 8

8 8
8 8
8 8

Input Grid

Output Grid

Input Grid

Output Grid

Input Grid

Output Grid

5 5 8
5 8

8
8

5 5
5 8 8

8 8
8 8
8 8

Input Grid

Output Grid

Query Target

5 5 8 8
5 8 8

8 8
8 8

8 8
8 8

5 5 8 8
5 8 8

8 8
8 8

8 8

5 5
5 8 8

8 8
8 8

5 5
5 8 8

8 8
8 8
8 8

5 5
5 8 8

8 8
8 8
8 8

5 5
5 8 8

8 8
8 8
8 8

MLC (ours) Llama Mistral

GPT-4o Gemini 2.0o3-mini
Output Grid

Output Grid Output GridOutput GridFew-Shot Examples

Study Examples Query Predictions

Figure 5: An example of the few-shot learning task. Models are provided with three study examples
that demonstrate the transformation that needs to be inferred for the final input grid. Model predictions
are displayed to the right.

1 1 1
2

2

1 1 1

2
2

1 1 1

2
2

1
1 2
1 2
1

1
1
1
1

2
2

1
1
1 2
1 2

Input Grid

Output Grid

Input Grid

Output Grid

Input Grid

Output Grid

1 1 1

2
2

1
1
1
1

2
2

Input Grid

Output Grid

Query Target

1
1
1
1

2
2

1
1
1

2
2

1
1
1
1
1 2

2

1
1
1
1

2
2

1
1
1
1
1 2

2

1
1
1

2
2

MLC (ours) Llama Mistral

GPT-4o Gemini 2.0o3-mini
Output Grid

Output Grid Output GridOutput GridFew-Shot Examples

Study Examples Query Predictions

Figure 6: A second example of the few-shot learning task. Models are provided with three study
examples that demonstrate the transformation that needs to be inferred for the final input grid. Model
predictions are displayed to the right.

4 4
4 4

2
2

4 4
4 4

2
2

4 4
2 4 4

2

4 4
4 4

2
2 2

2

4 4
4 4

2
2 2

2

4 4
2 4 4
2 2

2

Input Grid

Output Grid

Input Grid

Output Grid

Input Grid

Output Grid

4 4
4 4

2
2

4 4
4 4

2
2 2

2

Input Grid

Output Grid

Query Target

4 4
4 4

2
2 2

2

4 4
4 4

2
2 2

2

4 4
4 4

2 2
2 2
2

4 4
4 4

2
2 2

2

4 4
4 4

2
2 2

2

4 4
4 4

2
2 2

2

MLC (ours) Llama Mistral

GPT-4o Gemini 2.0o3-mini
Output Grid

Output Grid Output GridOutput GridFew-Shot Examples

Study Examples Query Predictions

Figure 7: A third example of the few-shot learning task. Models are provided with three study
examples that demonstrate the transformation that needs to be inferred for the final input grid. Model
predictions are displayed to the right.

30



1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

5 5
5 5

1 1
1 1

8
8

8
4
4

3 3
3

4 5 5
4 5 5

5 5 5 5

5
5 5

5

1
1 1

1

8 8
8 8

8 8
4
4

3 3
3

4 5 5
4 5 5

5 5 5 5

8 8
8 8

8 8
8 8

4 6 6
4 6 6

4
4

3 3
3 3

4
4

8
8

4
4

8 8
8

8 8
8 8 8

8 8 8 8
8 8 8

8 8

4 6
4 6 6

6

4
4

3
3 3

3

4
4

8 8
8 8

4
4

8 8 8
8 8

Input Grid

Output Grid

Input Grid

Output Grid

Input Grid

Output Grid

Input Grid

Output Grid

Input Grid

Output Grid

Input Grid

Output Grid

Input Grid

Output Grid

Input Grid

Output Grid

Input Grid

Output Grid

Input Grid

Output Grid

Input Grid

Output Grid

Input Grid

Output Grid

4
4

8 8
8 8

4
4

8 8
8 8 8

8 8

Query Target

Input Grid

Output Grid

4
4

8 8
8 8 8

8 8

4
4

8 8
8 8

4
4

8 8
8 8 8

8 8

4
4

8 8
8 8 8

8 8

4
4

8 8 8
8 8

4
4

8 8
8 8 8

8 8

4
4

8 8
8 8 8

8 8

4
4

8 8
8 8 8

8 8

MLC (ours) Llama

GPT-4o

Llama (TTT)

Gemini 2.0

Mistral

o3-mini

Mistral (TTT)

Output Grid Output Grid

Output Grid

Output Grid

Output Grid

Output Grid

Output Grid

Output Grid

Primitive Transformations

Transformation Compositions (level=1)

Composition
(level=2)

Study Examples Query Predictions

Figure 8: An episode from the systematicity task. Given a set of study examples comprising primitive
transformations and level-1 transformation compositions, models are asked to predict the output
grid for a previously unseen level-2 transformation composition. Predictions of different models are
presented to the right.

8
8

9
9 3

3 3 3
3 3

3

3 3
3 3
3 3

5 5
5 5 5 5

1
1 1

1 2
1 1

8
8

9
9

3
3 3 3

3 3
3

3 3
3 3
3 3

5 5
5 5 5 5 5 5

5 5 5 5
1
1 1

2
1 2
1 1

3
3

3
3

1
1 1

6
6

1
1 1

9
9

3 3
3 3

3 3
1 3
1 1 3

1
1 1 3 3

3 3
3 3 3

3
3

3
3

1
1 1 6

6 6
6

1
1 1

9
9 9
9

3 3
3 3

3 3 3
1 3 3
1 1 3 3

3

1
1 1 3 3

3 3 3
3 3 3
3 3 3

Input Grid

Output Grid

Input Grid

Output Grid

Input Grid

Output Grid

Input Grid

Output Grid

Input Grid

Output Grid

Input Grid

Output Grid

Input Grid

Output Grid

Input Grid

Output Grid

Input Grid

Output Grid

Input Grid

Output Grid

Input Grid

Output Grid

Input Grid

Output Grid

3
3

1
1 1

3
3 3

1 3
1 1

Query Target

Input Grid

Output Grid

3
3 3

1 3
1 1

3
3 3

1
1 1

3
3

1
1 1

3
3 3

1 3
1 1

3
3 3

3
1
1 1

3
3

1
1 1

3
3
3

1
1 1

3
3 3

1 3
1 1

MLC (ours) Llama

GPT-4o

Llama (TTT)

Gemini 2.0

Mistral

o3-mini

Mistral (TTT)

Output Grid Output Grid

Output Grid

Output Grid

Output Grid

Output Grid

Output Grid

Output Grid

Primitive Transformations

Transformation Compositions (level=1)

Composition
(level=2)

Study Examples Query Predictions

Figure 9: Another episodes from the systematicity task. Given a set of study examples comprising
primitive transformations and level-1 transformation compositions, models are asked to predict the
output grid for a previously unseen level-2 transformation composition. Predictions of different
models are presented to the right.

31



1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

Figure 10: An exemplary visual input used in the multimodal prompt for the 3-shot learning task.

Figure 11: An exemplary visual input used in the multimodal prompt for the systematicity task.

32



1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

### Task Description:
You must solve an abstract visual reasoning task by identifying geometric transformations (e.g., rotation,
translation, color changes, etc.) applied to objects within a 10x10 grid.

To infer the correct geometric transformation, you are given a series of 3 pairs of input-output examples. Each
example pair consists of:

• An input grid: a 10x10 list of lists (2d array), where each element is an integer (0-9).
• A corresponding output grid: a 10x10 list of lists (2d array) that has undergone a transformation based on a

specific geometric rule.

For the prediction you need to understand the transformations displayed in the provided examples and apply
them to the final input grid.

### Your Task:

1. Analyze the example pairs to infer the transformation rules applied to each input grid.
2. Identify how these transformations are applied to generate the output grids.
3. Apply the deduced transformations to the final input grid.
4. Output the correctly transformed 10x10 grid.

### Output Requirements:

• Return only the final output grid.
• Do not include any extra text, explanations, or comments.
• The output must be formatted exactly as: ‘output: [[...]]‘
• The output grid must be a 10x10 list of lists containing only integers between 0 and 9 (inclusive).
• Do not include unnecessary line breaks or additional text beyond the specified format.

### Input Format:
You will receive the following data:

1. Study examples: A list of 3 few-shot example pairs, formatted as:
‘example input 1: [[...]], example output 1: [[...]], ..., example input 3: [[...]], example output 3: [[...]]‘

2. Final input: A single 10x10 list of lists on which you must apply the inferred transformation(s).

Your goal is to determine the correct transformation and return the final output grid.

### Input:
Study examples:
example input 1: <2-dimensional array representing the input grid of example 1>
example output 1: <2-dimensional array representing the output grid of example 1>
...
example input 3: <2-dimensional array representing the input grid of example 3>
example output 3: <2-dimensional array representing the output grid of example 3>

Final input: <2-dimensional array representing the final query input grid>

Text-Only 3-Shot Prompt

Figure 12: The prompt used for the few-shot experiment when instructing LLMs in (text-only) mode.
Text enclosed in sharp brackets < . . . > is replaced by the actual examples.

33



1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

### Task Description:
You must solve an abstract visual reasoning task by identifying geometric transformations (e.g., rotation,
translation, color changes, etc.) applied to objects within a 10x10 grid.

To infer the correct geometric transformation, you are given a series of 3 pairs of input-output examples. Each
example pair consists of:

• An input grid: a 10x10 list of lists (2d array), where each element is an integer (0-9).
• A corresponding output grid: a 10x10 list of lists (2d array) that has undergone a transformation based on a

specific geometric rule.

For the prediction you need to understand the transformations displayed in the provided examples and apply
them to the final input grid.

### Your Task:

1. Analyze the example pairs to infer the transformation rules applied to each input grid.
2. Identify how these transformations are applied to generate the output grids.
3. Apply the deduced transformations to the final input grid.
4. Output the correctly transformed 10x10 grid.

### Output Requirements:

• Return only the final output grid.
• Do not include any extra text, explanations, or comments.
• The output must be formatted exactly as: ‘output: [[...]]‘
• The output grid must be a 10x10 list of lists containing only integers between 0 and 9 (inclusive).
• Do not include unnecessary line breaks or additional text beyond the specified format.

### Input Format:
You will receive the following data:

1. Study examples: A list of 3 few-shot example pairs, formatted as:
‘example input 1: [[...]], example output 1: [[...]], ..., example input 3: [[...]], example output 3: [[...]]‘

2. Final input: A single 10x10 list of lists on which you must apply the inferred transformation(s).
3. Image input: Additionally, you receive an image that visualizes the 3 few-shot example pairs and the final

input query.

Your goal is to determine the correct transformation and return the final output grid.

### Input:
Study examples:
example input 1: <2-dimensional array representing the input grid of example 1>
example output 1: <2-dimensional array representing the output grid of example 1>
...
example input 3: <2-dimensional array representing the input grid of example 3>
example output 3: <2-dimensional array representing the output grid of example 3>

Final input: <2-dimensional array representing the final query input grid>

Text+Image 3-Shot Prompt

Figure 13: The prompt used for the few-shot experiment when instructing LLMs in (text+image)
mode. Text enclosed in sharp brackets < . . . > is replaced by the actual examples. Additionally, the
model is provided with the image in Figure 10.

34



1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

### Task Description:
You must solve an abstract visual reasoning task by identifying geometric transformations (e.g., rotation,
translation, color changes, etc.) applied to objects within a 10x10 grid.

To infer the correct geometric transformation, you are given a series of 12 pairs of input-output ex-
amples. Each example pair consists of:

• An input grid: a 10x10 list of lists (2d array), where each element is an integer (0-9).
• A corresponding output grid: a 10x10 list of lists (2d array) that has undergone a transformation based on a

specific geometric rule.

The first 6 example pairs demonstrate primitive transformations based on the object’s color, shape, or the
presence of an additional object. For instance, objects of a certain color within the 10x10 input grid might
undergo a translation, while objects of a certain shape (distinct numerical pattern) are being rotated.

The latter 6 example pairs involve composite transformations, meaning multiple transformations are
applied simultaneously. For instance, for objects that have the appropriate color and shape, both a translation
and rotation are applied simultaneously.

For the final prediction you need to understand and further combine the transformations displayed in
the provided examples and apply them to the final input grid.

### Your Task:

1. Analyze the example pairs to infer the transformation rules applied to each input grid.
2. Identify how these transformations might combine to generate the output grids.
3. Apply the deduced transformations to the final input grid.
4. Output the correctly transformed 10x10 grid.

### Output Requirements:

• Return only the final output grid.
• Do not include any extra text, explanations, or comments.
• The output must be formatted exactly as: ‘output: [[...]]‘
• The output grid must be a 10x10 list of lists containing only integers between 0 and 9 (inclusive).
• Do not include unnecessary line breaks or additional text beyond the specified format.

### Input Format:
You will receive the following data:

1. Study examples: A list of 12 study example pairs, formatted as:
‘example input 1: [[...]], example output 1: [[...]], ..., example input 12: [[...]], example output 12: [[...]]‘

2. Final input: A single 10x10 list of lists on which you must apply the inferred transformation(s).

Your goal is to determine the correct transformation and return the final output grid.

### Input:
Study examples:
example input 1: <2-dimensional array representing the input grid of example 1>
example output 1: <2-dimensional array representing the output grid of example 1>
...
example input 12: <2-dimensional array representing the input grid of example 12>
example output 12: <2-dimensional array representing the output grid of example 12>

Final input: <2-dimensional array representing the final query input grid>

Text-Only Systematicity Prompt

Figure 14: The prompt used for the systematicity experiment when instructing LLMs in (text-only)
mode. Text enclosed in sharp brackets < . . . > is replaced by the actual examples.

35



1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2026

### Task Description:
You must solve an abstract visual reasoning task by identifying geometric transformations (e.g., rotation,
translation, color changes, etc.) applied to objects within a 10x10 grid.

To infer the correct geometric transformation, you are given a series of 12 pairs of input-output ex-
amples. Each example pair consists of:

• An input grid: a 10x10 list of lists (2d array), where each element is an integer (0-9).
• A corresponding output grid: a 10x10 list of lists (2d array) that has undergone a transformation based on a

specific geometric rule.

The first 6 example pairs demonstrate primitive transformations based on the object’s color, shape, or the
presence of an additional object. For instance, objects of a certain color within the 10x10 input grid might
undergo a translation, while objects of a certain shape (distinct numerical pattern) are being rotated.

The latter 6 example pairs involve composite transformations, meaning multiple transformations are
applied simultaneously. For instance, for objects that have the appropriate color and shape, both a translation
and rotation are applied simultaneously.

For the final prediction you need to understand and further combine the transformations displayed in
the provided examples and apply them to the final input grid.

### Your Task:

1. Analyze the example pairs to infer the transformation rules applied to each input grid.
2. Identify how these transformations might combine to generate the output grids.
3. Apply the deduced transformations to the final input grid.
4. Output the correctly transformed 10x10 grid.

### Output Requirements:

• Return only the final output grid.
• Do not include any extra text, explanations, or comments.
• The output must be formatted exactly as: ‘output: [[...]]‘
• The output grid must be a 10x10 list of lists containing only integers between 0 and 9 (inclusive).
• Do not include unnecessary line breaks or additional text beyond the specified format.

### Input Format:
You will receive the following data:

1. Study examples: A list of 12 study example pairs, formatted as:
‘example input 1: [[...]], example output 1: [[...]], ..., example input 12: [[...]], example output 12: [[...]]‘

2. Final input: A single 10x10 list of lists on which you must apply the inferred transformation(s).
3. Image input: Additionally, you receive an image that visualizes the 12 study example pairs and the final

input query.

Your goal is to determine the correct transformation and return the final output grid.

### Input:
Study examples:
example input 1: <2-dimensional array representing the input grid of example 1>
example output 1: <2-dimensional array representing the output grid of example 1>
...
example input 12: <2-dimensional array representing the input grid of example 12>
example output 12: <2-dimensional array representing the output grid of example 12>

Final input: <2-dimensional array representing the final query input grid>

Text+Image Systematicity Prompt

Figure 15: The prompt used for the systematicity experiment when instructing LLMs in (text+image)
mode. Text enclosed in sharp brackets < . . . > is replaced by the actual examples. Additionally, the
model is provided with the image in Figure 11.

36


	Introduction
	Background: meta-learning for compositionality
	Method
	Compositional-ARC
	Meta-learning for compositionality in abstract spatial reasoning

	Experimental setup
	Task setup
	Large language models
	Evaluation metrics

	Results
	Consistency across data splits
	Error analysis
	Increasing dataset complexity

	Related work
	Conclusion
	Systematic generalization in LLMs
	Dataset
	Grid setup
	Geometric transformations
	Dataset generation
	Dataset statistics

	Training details
	Hyperparameters
	Implementation details
	Original MLC training

	Experiment details
	Evaluation metrics
	Model information

	Additional results
	Use of AI assistants

