Under review as a conference paper at ICLR 2026

COMPOSITIONAL—ARC: ASSESSING SYSTEMATIC
GENERALIZATION IN ABSTRACT SPATIAL REASONING

Anonymous authors
Paper under double-blind review

ABSTRACT

Systematic generalization refers to the capacity to understand and generate novel
combinations from known components. Despite recent progress by large language
models (LLMs) across various domains, these models often fail to extend their
knowledge to novel compositional scenarios, revealing notable limitations in sys-
tematic generalization. There has been an ongoing debate about whether neural
networks possess the capacity for systematic generalization, with recent studies
suggesting that meta-learning approaches designed for compositionality can signif-
icantly enhance this ability. However, these insights have largely been confined to
linguistic problems, leaving their applicability to other tasks an open question. In
this study, we extend meta-learning for compositionality to the domain of abstract
spatial reasoning. To this end, we introduce Compositional-ARC—a dataset de-
signed to evaluate the capacity of models to systematically generalize from known
geometric transformations (e.g., translation, rotation) of abstract two-dimensional
objects to novel combinations of these transformations (e.g., translation+rotation).
Our results show that a small transformer-based encoder-decoder model, trained
via meta-learning for compositionality, can systematically generalize to previ-
ously unseen transformation compositions. Notably, despite having only 5.7M
parameters, this model significantly outperforms state-of-the-art LLMs—including
03-mini, GPT-40, and Gemini 2.0 Flash, which fail to exhibit similar systematic
behavior—and performs on par with the winning model of the ARC prize 2024,
an 8B-parameter LLM trained via test-time training. Our findings highlight the
effectiveness of meta-learning in promoting systematicity beyond linguistic tasks,
suggesting a promising direction toward more robust and generalizable models.

1 INTRODUCTION

A fundamental aspect of human cognition is the ability to systematically generalize from known
components to novel combinations (Marcus, 2003 [Lake et al., 2017). This capacity is particularly
evident in language, where an infinite number of new sentences can be constructed and interpreted by
extracting meaning from previously acquired expressions and rules (Chomsky), 2002} |Szabd, [2012).
Similarly, our spatial perception relies on systematic generalization, enabling individuals to compose
learned spatial principles into novel configurations (Zhou et al.||2024; Dautriche & Chemla, [2025).
For instance, once a person understands how to translate and rotate an object, they can apply these
transformations in combination—translating and rotating the object simultaneously—even if they
have never encountered such a composed transformation before (Fife et al., 2019).

Despite its central role in human cognition, systematic generalization remains a significant challenge
in artificial intelligence (Lake & Baroni, |2018; |Loula et al., 2018}; |Hupkes et al.|[2020). While large
language models have recently demonstrated notable progress across various domains (OpenAl [2024;
Guo et al., [2025)), they often fail to combine acquired knowledge in novel scenarios, demonstrating
notable difficulties with systematic generalization (Dziri et al., 2023 [smayilzada et al., 2025}
Gendron et al.| 2024). The question of whether neural networks can achieve systematicity has
been the subject of extensive debate (Fodor & Pylyshynl (1988} |Brakel & Frankl 2009; Calvo &
Symons| [2014] inter alia). Recent research by Lake & Baroni|(2023)) demonstrates that a transformer-
based encoder-decoder model, trained via meta-learning for compositionality (MLC), can achieve
human-like systematic generalization in processing instructions expressed in a pseudolanguage. By

Under review as a conference paper at ICLR 2026

Primitive Transformations Transformation Composition (level=1) Transformation Composition (level=2)

Output Grid
[

(a) shape-based (Translation down)

(b) color-based (Reflection horizontal) (g) shape+color+neighbor
(Translation+Reflection+Extension)

|

Input Grid Output Grid
9

(c) neighbor-based (Extension up) (f) color+neighbor (Reflection+Extension)

Figure 1: A conceptual overview of the data in Compositional-ARC. Primitive transformations refer
to basic geometric transformations (e.g., translation, reflection, extension) based on an object’s (a)
shape, (b) color, or (c) proximity to a neighboring object. Pairs of these indicators, such as (d)
shape+color, (e) shape+neighbor, or (f) color+neighbor, can be combined to form level-1 transfor-
mation compositions. Finally, all three indicators can be combined to form level-2 transformation
compositions, based on the object’s (g) shape+color+neighbor.

training the model to combine basic units of pseudolanguage into novel sequences over a stream
of dynamically changing grammars, [Lake & Baroni| (2023)) show that this model can effectively
generalize to previously unseen compositions of language (see Section |2|for further details). While
this approach presents a promising direction for addressing systematicity in neural networks, its
applicability beyond linguistic contexts remains an open question.

In this study, we extend the MLC framework proposed by [Lake & Baroni| (2023) to the domain
of abstract spatial reasoning. Inspired by the Abstraction and Reasoning Corpus (ARC) (Chollet,
2019), we introduce Compositional-ARC—a new dataset for assessing systematic generalization in
abstract spatial reasoning. Compositional-ARC presents examples of basic geometric transformations
(e.g., translation, rotation) applied to abstract two-dimensional objects and tests generalization to
previously unseen compositions (e.g., translation+rotation; see Figure [T). Using MLC, we train
a small encoder-decoder model on samples from Compositional-ARC and demonstrate that it can
systematically generalize to unseen transformation compositions. To the best of our knowledge, this
is the first application of MLC to abstract spatial reasoning. In summary, our contributions are:

1. We introduce Compositional-ARC—a novel dataset, inspired by ARC (Chollet, [2019), that
evaluates systematic generalization in abstract spatial reasoning. The dataset includes
examples of basic geometric transformations applied to abstract two-dimensional objects
and tests generalization to unseen transformation compositions (see Figure|I).

2. We demonstrate that MLC enables transformer-based models to generalize to unseen com-
positions of geometric transformations, demonstrating its potential beyond linguistic tasks.

3. We show that a 5.7M-parameter encoder-decoder model trained via MLC significantly
outperforms state-of-the-art general-purpose LLMs such as 03-mini (OpenAl, [2025), GPT-
40 (Achiam et al., [2023)), and Gemini 2.0 Flash (DeepMind, 2024), which fail to exhibit
comparable systematic behavior on Compositional-ARC.

4. We find that the same MLC model performs on par with the winning model of the ARC
Prize 2024, an 8B-parameter LLM trained via test-time training (Franzen et al., 2024)).

Under review as a conference paper at ICLR 2026

2 BACKGROUND: META-LEARNING FOR COMPOSITIONALITY

When learning a new language, humans rely on their ability to recombine known words and expres-
sions to interpret novel sentences (Chomsky et al.,|1976; De Beule & Bergenl 2006)). For instance,
someone who understands the meanings of “cats drink water” and “dogs like to play” will typically
also understand the meanings of “dogs drink water” and “cats like to play” (Hinzen et al.,|2012).
Whether language models possess a comparable degree of systematicity remains an open question, as
current models, including large language models, still struggle with tests of systematic generaliza-
tion (Ismayilzada et al.,|2025; Dziri et al., 2023)[7_] To address these limitations, Lake & Baroni|(2023))
propose meta-learning for compositionality (MLC), a framework designed to model human-like
systematic generalization in learning pseudolanguage instructions. Through a series of experiments,
the authors show that models trained via MLC can achieve levels of systematicity comparable to
those of humans when interpreting previously unseen pseudolanguage inputs.

Task setup. In their study,|Lake & Baroni|(2023)) examine few-shot compositional tasks in which
instructions, represented as sequences of pseudowords (e.g., “dax,” “lug,” “fep”), must be mapped
to corresponding sequences of abstract symbols (see Figure 2] for an example). To understand the
meaning of such instructions, an interpretation grammar needs to be deduced from a limited number
of study examples. This grammar maps pseudowords to their symbolic representation through a set
of compositional rewrite rules. For instance, if “dax” corresponds to a green circle, “dax fep” to three
green circles, and “zup” to a red circle, then “zup fep” would denote three red circles. Importantly,
the examples are designed to be highly systematic, progressing from primitive mappings to more
complex compositions. The core challenge lies in the ability to generalize systematically, i.e., to
reuse and combine components from the study examples (left side of Figure[2) to generate correct
outputs for novel query instructions (right side of Figure [2)).

Algorithmic approach. To achieve systematic generalization in the instruction-learning task, |Lake
& Baroni|(2023) train a transformer-based encoder-decoder model through meta-learning for compo-
sitionality. The key idea is to train the model on a dataset of dynamically changing interpretation
grammars, where the mappings from input sequences to output symbols differ across training sam-
ples. This forces the model to rely on the information conveyed in the study examples to infer the
appropriate grammar of a given sample, rather than memorizing static input-output mappings across
the dataset. This flexibility enables the model to adjust to novel scenarios governed by new sets
of examples and rules. Moreover, the compositional structure of both study examples and queries
encourages the model to internalize mechanisms for composing elements presented in the examples.
After training the model over a set of 100,000 distinct interpretation grammars, it demonstrates the
capacity to generalize to previously unseen instructions and grammars. For specific details regarding
training procedures, we refer to Appendix [C.3]and the original paper (Lake & Baronil 2023).

While [Lake & Baroni (2023)) also evaluate MLC on COGS (Kim & Linzenl [2020) and SCAN (Lake
& Baronil, [2018), which test systematic lexical generalization to novel word combinations, their

"For an extended literature review on systematic generalization in LLMs, please refer to Appendix

Study instructions Query Instructions
Primitives Function 3 Target Responses

dax e wif lug kiki wif . zupfep o o @

Zup e lug e dax kikilug e o zup kiki dax e o
Function 1 Function compositions dax bliCk?t.ZuP oo
wif fep lug fep kiki wif oo zup fepkikilug o o o o
daxfep o o o lug kiki wif fep o

Function 2 wif kiki dax blicket lug oo o

lug blicket wif o o o wif blicket dax kiki lug oo 0

wif blicket dax °

Figure 2: An example of the few-shot instruction learning task adapted from |Lake & Baroni| (2023).
Study instructions illustrate the mapping of pseudolanguage expressions to abstract symbols.

Under review as a conference paper at ICLR 2026

experiments are confined to the linguistic domain. In the following section, we propose Compositional-
ARC to show how MLC can be extended to support systematic generalization in abstract spatial
reasoning, demonstrating its potential beyond linguistic tasks.

3 METHOD

3.1 COMPOSITIONAL-ARC

To test systematicity in abstract spatial reasoning, we leverage the closure property of combined
geometric transformations, where the composition of two valid transformations—such as transla-
tion, rotation, and reflection—yields another valid geometric transformation (Brannan et al., [2011)).
Drawing inspiration from the Abstraction and Reasoning Corpus (ARC) (Chollet, |2019)), we design a
task in which abstract objects, defined in a two-dimensional grid environment, are subjected to basic
geometric transformations and their compositions (see Figure [I| for examples). We use fixed-size
10 x 10 grids, each of which can be represented as a two-dimensional array of integers, where different
values correspond to distinct colors. We use integers from 0 to 9, with 0 denoting a black background
and the remaining integers mapping to unique colors (see Appendix [B.I]for more details). Objects are
defined based on color connectivity; that is, each object comprises a group of connected cells sharing
the same color. Connectivity is determined by the Moore neighborhood (Bays, [2010), meaning
that cells are considered connected if they are directly or diagonally adjacent. Each grid contains
either one or two objects. A transformation is represented as a pair of grids, with the input grid
displaying the objects before, and the output grid showing them after the geometric transformation.
Each transformation affects only one of the objects in the grid. For example, in Figure[Ta] a single
L-shaped yellow object is translated one step downward. In Figure[Ic] a square blue object in the
bottom-right expands toward the neighboring top row. Objects never occlude one another nor extend
beyond the boundaries of the 10 x 10 grids.

We limit our dataset to five basic geometric transformations and their compositions: i) translations,
ii) rotations, iii) reflections, iv) extensions, and v) color changes. For our experiments, we further
constrain the configurations of these transformations to establish a controlled setup. Translations
are limited to movements of one cell to the right or one cell downward. Rotations are restricted
to 90 degrees clockwise or counterclockwise around the top-left corner of the object. We consider
horizontal and vertical reflections across the object’s central axis. Extensions mean that the object
grows in a certain direction, and are limited to neighboring cells either leftward or upward. Color
changes are restricted to changing the object’s color to either red or orange. For detailed definitions
of each transformation, please refer to Appendix [B.2]

To signal which objects undergo which transformations, we consider three types of indicators: i) shape-
based transformations, which affect objects of a particular shape; ii) color-based transformations,
which affect all objects of a specific color; and iii) neighbor-based transformations, where objects are
transformed when a second, indicator object is present. For instance, in Figure[I] all L-shaped objects
(similar to the object in Figure [Ta) undergo a one-step downward translation. All green objects
undergo a horizontal reflection, and any object sharing a grid with the gray diagonal object (e.g., as
seen in Figure[Ic) expands into the neighboring top row. This indicator-based approach enables the
definition of transformation compositions. For example, objects that are both L-shaped and green
undergo a one-step downward translation together with a horizontal reflection (see Figure[Id] for an
example). We also define different levels of composition: level I combines two indicators (e.g., when
an object matches the indicated shape and color, but lacks a the proximity to a neighboring object, as
illustrated in Figure[Id), while level 2 combines all three indicators, specifying the object’s shape,
color, and proximity to an indicator object (see Figure[Ig).

To test systematicity, we present few-shot examples of primitive transformations and their level-
1 compositions, and evaluate models on previously unseen level-2 compositions. For instance,
in Figure [3] models are asked to infer the correct transformation for a previously unseen level-2
composition of indicators, given a set of 12 study examples illustrating primitive transformations
and their level-1 compositions. Conceptually, our setup is similar to the few-shot compositional task
introduced by [Lake & Baroni| (2023) (see Section [2), but it replaces the lexical interpretation grammar
with a visual interpretation grammar. Specifically, models need to infer which indicator maps to which
transformation, and how to compose them to deduce the correct final transformation. For a detailed
description of how we algorithmically generate dataset samples, please refer to Appendix

Under review as a conference paper at ICLR 2026

Study Examples Query Predictions

Primitive Transformations

Output G Output G

Composition

Output Grid Output Grid Output Grid Output Grid (level=2) Llama
I utpu Output Grid

Transformation Compositions (level=1) Output Grid
In Tnp I

-do

Output Grid
2

Query Target

Figure 3: An episode from Compositional-ARC. Given a set of study examples with primitive
transformations and level-1 transformation compositions, models must predict the output grid for an
unseen level-2 transformation composition. Visual grammar: shape — clockwise rotation, color —
translation to right, neighbor — leftward extension. Model predictions are presented to the right.

3.2 META-LEARNING FOR COMPOSITIONALITY IN ABSTRACT SPATIAL REASONING

To systematically generalize from known geometric transformations to previously unseen trans-
formation compositions, we extend the meta-learning for compositionality (Lake & Baronil 2023)
framework described in Section[2] As in the original MLC approach, we train a transformer-based
encoder-decoder model on a dataset of dynamically changing interpretation grammars. However,
instead of mapping pseudolinguistic instructions to sequences of abstract symbols, we consider a
visual interpretation grammar that associates visual indicators (object shape, color, or proximity to an
indicator object) with specific geometric transformations, as described in Section[3.1] An episode
in Compositional-ARC is defined as a set of study examples that illustrate the underlying grammar,
along with query inputs for which the correct outputs must be inferred. For instance, the episode in
Figure [3|contains 12 study examples: six primitive transformations (two per indicator type) and six
level-1 compositions (two per composition type). Given the study examples, the model is asked to
predict output grids for previously unseen level-2 compositions. By training over a series of episodes
with changing visual interpretation grammars, the model needs to abstract and recombine information
from the examples in order to predict the correct query transformation composition, as it cannot rely
on fixed mappings from indicators to transformations.

Encoding and positional embedding. Each episode is presented to the model as a sequence of
input-output grid pairs (study examples), followed by a query input grid, for which the model must
generate the corresponding output grid (see Figure[3). To encode the two-dimensional grids, we
divide each 10 x 10 grid into 2 x 2 patches (left to right, top to bottom), yielding 25 patches per
grid (Dosovitskiy et al.,|2021). Each patch is mapped to a unique embedding vector. Since each grid
cell can take integer values from 0 to 9, a 2 x 2 patch can yield up to 10,000 distinct configurations,
resulting in 10,000 possible embedding vectors. Two special tokens, | and —, are introduced to
mark the boundaries between study examples and the input-output grids, respectively. The decoder
vocabulary comprises two additional tokens for the start and end of a sequence (SOS and EOS). To
encode positional information, we use standard learnable 1D positional embeddings that capture the
order of grid pairs, as well as a second set of learnable 2D positional embeddings applied to grid

Under review as a conference paper at ICLR 2026

patches. These 2D embeddings are decomposed into separate row and column components, which
are added to each patch embedding to capture two-dimensional spatial information.

Training procedure. The model is trained on a large set of episodes, each defined by a unique visual
interpretation grammar. In each episode, the model is provided with a sequence of study examples
and tasked with predicting the output grid for a given input query (see Figure[3]). Following [Lake
& Baroni| (2023)), we include an auxiliary copy task during training, in which the model must also
reproduce the output grids of each study example. We employ a model with three layers each in the
encoder and decoder, eight attention heads per layer, input and hidden embeddings of size 128, a
feedforward hidden size of 768, and GELU (Hendrycks & Gimpel, 2016)) activations. In total, the
model has 5.7 million trainable parameters. To promote robustness in the decoder, we introduce
minor perturbations by randomly altering the color of individual cells in the target output query with
a small probability (0.001). Unlike |Lake & Baroni| (2023), we do not incorporate systematic noise to
model inductive biases observed in human learning. Further implementation details regarding the
training procedure and hyperparameters can be found in Appendix [C]

4 EXPERIMENTAL SETUP

4.1 TASK SETUP

We consider two task setups in this work. The first, denoted as “3-Shot,” is a standard few-shot
learning task where models must generate an output grid for a query input that performs a level-2
transformation composition. This prediction is based on three examples illustrating the same level-2
transformation. A visual representation of this setup is provided in Figure [5]in the Appendix. This
task evaluates the model’s ability to infer geometric transformations from a limited set of examples.

The second setup, denoted as “Systematicity,” focuses on compositional generalization and differs
from the first in the type of few-shot examples presented. As mentioned in Section the idea is to
test whether models can infer novel compositions from known geometric transformations. To this
end, we replace the level-2 few-shot examples with a set of primitive transformations plus level-1
transformation compositions, and query the model to predict the previously unseen level-2 trans-
formation composition, as illustrated in Figure[3] Specifically, we present six primitive transforma-
tions—two examples for each indicator (shape-based, color-based, neighbor-based)—and six level-1
transformation compositions, two examples for each level-1 indicator composition (shape+-color,
shape+neighbor, color+neighbor).

We generate 100,000 episodes, each comprising three few-shot examples for the “3-Shot” task,
12 systematic study examples for the “Systematicity” setup, and ten query input-output grid pairs
demonstrating the final level-2 transformation composition. Each episode is characterized by a
unique visual interpretation grammar. For instance, in one episode, yellow objects are translated
downward by a single cell, while in another, yellow objects are reflected horizontally. To train our
encoder-decoder model via MLC, we split the data into 82,908 training, 8,546 validation and 8,546
test episodes. Importantly, the data splits are constructed such that the geometric transformations
involved in the final query level-2 compositions differ between the training and evaluation sets.
For instance, while the model is trained on basic transformations and a series of transformation
compositions (e.g., translation+rotation+reflection), it is tested out-of-distribution on compositions
not seen during training (e.g., translation+rotation+extension). For comprehensive statistics of the
dataset splits, please refer to Table[/|in the Appendix.

4.2 LARGE LANGUAGE MODELS

General-purpose LLMs. In addition to the model trained via MLC, we evaluate three state-of-the-
art general-purpose LLMs on the test set of our proposed dataset: 03-mini (low) (OpenAll 2025,
GPT-40 (Achiam et al., 2023)), and Gemini 2.0 Flash (DeepMind, 2024). To textually prompt the
models for a given episode, we represent grids as two-dimensional arrays, consistent with prior
work (Moskvichev et al.||2023). We also test a multimodal setup in which both an image of the study
examples and the input query are provided alongside the text prompt. Due to financial constraints,
each model is evaluated on a single test query for each of the 8,546 episodes in the test set. All textual
and visual prompts, specific model versions, and decoding parameters are detailed in Appendix

Under review as a conference paper at ICLR 2026

Table 1: Comparison of model performance across the two different task setups. We report exact
match accuracy, color accuracy, and shape accuracy as described in Section @

Model Exact Match Accuracy [%] Color Accuracy [%] Shape Accuracy [%]
GPT-40 22.28 99.67 57.02
+ image 19.42 99.75 54.56
Gemini 2.0 Flash 30.08 99.92 52.34
< + image 17.19 99.79 35.86
ﬁl 03-mini (low) 64.04 99.89 68.74
)
Llama-3.2-3B-ReARC 85.85 98.57 86.05
Mistral-NeMO-Minitron-8B-Full 95.71 99.85 96.78
MLC (ours) 99.92 100.00 99.92
GPT-40 0.99 99.23 9.82
+ image 0.86 97.94 7.50
. Gemini 2.0 Flash 2.66 99.68 12.81
5 + image 2.05 99.28 9.60
‘g 03-mini (low) 0.53 99.10 5.65
% Llama3.23B-ReARC 0.87 99.94 2.54
» + test-time training 73.70 100.00 86.88
Mistral-NeMO-Minitron-8B-Full 0.70 99.99 9.75
+ test-time training 78.20 100.00 88.26
MLC (ours) 78.26 97.88 80.49

Domain-specific LLMs. We further consider two LL.Ms specifically tailored to ARC-style data:
(i) Llama-3.2-3B-ReARC, fine-tuned on the re-ARC dataset (Hodel, [2024)—an extension of 1,000
additional generated examples per sample in ARC—and (ii) Mistral-NeMO-Minitron-8B-Full, trained
on a broad range of ARC-style data, including re-ARC, Concept-ARC (Moskvichev et al., [2023)), and
ARC-Heavy (Li et al.,[2025). These models were proposed by [Franzen et al.| (2024) and placed 1st
in the ARC prize 2024 Note that in addition to fine-tuning, these models use an ARC-customized
tokenizer, extensive data augmentation during training and inference, a generation procedure that
leverages depth-first search to produce multiple solution candidates, and a refined candidate-selection
step. The authors also employ test-time training (TTT), which further fine-tunes models on the few-
shot input—output grid pairs from the final test set. We use both models with their default parameters.
For additional details, please refer to the original paper (Franzen et al.,[2024) or Appendix[D.2]

4.3 EVALUATION METRICS

To evaluate the quality of the generated output grids, we use three different metrics: i) exact match
accuracy, ii) color accuracy, and iii) shape accuracy. Exact match accuracy requires that a prediction
is accurate only if every cell matches the target grid. Color accuracy checks whether predicted objects
match target colors, ignoring shape and location. Shape accuracy checks whether predicted objects
match target shapes, ignoring color and location. Formal definitions are provided in Appendix [D.1]

5 RESULTS

In Table [T} we report the performance of the model trained via MLC, alongside the LLMs we evaluate
on the two task setups, as described in Section[d.1]

Standard few-shot learning task. We begin by examining model performance on the “3-Shot” task,
where models are given three input-output examples illustrating the final transformation composition
(see Figure [5]in the Appendix). Despite this guidance and the relatively simple transformations
involved, general-purpose LLMs such as GPT-40 and Gemini 2.0 Flash struggle with the task:
GPT-40 reaches an accuracy of only 22.28%, while Gemini 2.0 Flash performs slightly better at
30.08%. The long-chain-of-thought model 03-mini achieves a modest accuracy of 64.04%. In

“https://arcprize.org/competitions/2024

https://arcprize.org/competitions/2024

Under review as a conference paper at ICLR 2026

contrast, domain-specific models such as Llama-3.2-3B-ReARC, and Mistral-NeMO-Minitron-8B-
Full perform significantly better. While Llama-3.2-3B-ReARC achieves an accuracy of 85.85%,
Mistral-NeMO-Minitron-8B-Full reaches up to 95.71%. Note that we do not employ test-time training
in this setup, as it would contradict the out-of-distribution test setup described in Section[4.1] Notably,
the 5.7M-parameter encoder-decoder model trained via MLC outperforms both general-purpose and
domain-specific LLMs, with an accuracy of 99.92%, despite having only a fraction of the parameters.
We further find that all models predict object color nearly perfectly. For GPT-40 and Gemini 2.0 Flash,
we observe that shape accuracy is significantly higher than exact match accuracy. This discrepancy
suggests that while these models are often able to predict the correct shape and color of an object, they
frequently fail to accurately predict its final position. Interestingly, both models show lower accuracy
when visual input is added to the textual prompt, likely due to modality alignment challenges (Masry:
et al.,[2025)) or limitations in leveraging the visual content for reasoning.

Systematicity task. In the “Systematicity” task, models are asked to infer the correct final transfor-
mation composition from a set of study examples that represent more basic, decomposed transforma-
tions (see Figure[3]for an example). As shown in Table[T] all general-purpose LLMs perform poorly
on this task. For instance, GPT-40 achieves an accuracy of 0.99%, while Gemini 2.0 Flash reaches
2.66%. Interestingly, 03-mini, the best-performing general-purpose model on the “3-Shot” task, per-
forms worst in this setting, with an accuracy of only 0.53%. For the domain-specific LLMs, we find
that test-time training (TTT)—where models are additionally fine-tuned on the study examples’ input-
output grid pairs of the test set—significantly improves performance. While Llama-3.2-3B-ReARC
achieves only 0.70% accuracy without TTT, performance increases to 73.70% with TTT. Similarly,
Mistral-NeMO-Minitron-8B-Full’s accuracy increases from 0.70% to 78.20% with TTT. We hypoth-
esize that training on the systematic study examples of the test data (demonstrating primitive and
level-1 transformations) teaches the models how to abstract and compose transformations for the final
input query. We further find that the much smaller 5.7M-parameter MLC model performs on par with
the domain-specific LLMs trained via TTT, slightly outperforming Mistral-NeMO-Minitron-8B-Full
with an accuracy of 78.26%. Importantly, as described in Section .1 the MLC model has never
seen the specific level-2 compositions of the test data during training, but was instead optimized on a
distinct set of transformation compositions (see data split for seed 1860; Table[/|in the Appendix).
Consistent with our findings from the 3-shot learning task, models generally succeed in predicting
the correct object colors. However, shape accuracy declines markedly. A qualitative example of the
models’ predictions is shown in Figure 3] with additional examples in Figures[8}-[9]in the Appendix.
The strong performance of the small MLC model highlights the effectiveness of this training strategy
in promoting systematic generalization to novel transformation compositions. The model not only
learns to infer a visual interpretation grammar from a limited number of study examples but also
generalizes to novel transformation compositions that it has never encountered during training.

5.1 CONSISTENCY ACROSS DATA SPLITS

To ensure that the strong performance of MLC, as reported in Table I] is not the result of a favorable
data split, we train and evaluate the model on three additional, independently generated data splits for
each task configuration—resulting in four distinct models per task setup. Detailed descriptions of
these data splits are provided in Table[7]in the Appendix. Table [2]summarizes the average accuracy
and corresponding standard deviation across all four splits. For the standard three-shot learning task,

Table 2: Average accuracy and standard deviation across the four different data splits. For the
systematicity task, we ablate different components of the training procedure to assess their individual
contributions and overall impact.

Model Exact Match Accuracy [%] Color Accuracy [%] Shape Accuracy [%]
MLC (3-Shot) 98.78 £+ 1.99 100.00 + 0.00 98.79 £ 1.98
MLC (Systematicity) 86.73 £ 6.03 99.36 £+ 0.70 87.55 £ 545

- no copy task 69.05 £+ 9.23 99.43 £ 0.38 70.60 £ 9.23

- no primitives 7527 £ 12.95 99.56 £ 0.50 76.92 £ 11.23

- no level-1 compositions 21.01 £ 19.07 94.72 £ 7.41 23.03 £ 19.08

Under review as a conference paper at ICLR 2026

MLC consistently achieves high accuracy, with a mean of 98.78% and a standard deviation of 1.99%.
Similarly, for the systematicity task, the model demonstrates robust generalization, achieving an even
higher average accuracy than on the initial data split, with a mean of 86.73%.

Ablation studies. To gain deeper insights into the factors influencing model performance, we
conduct a series of ablation studies. First, we evaluate the impact of removing the auxiliary copy task
from the training objective—a setup in which the model is trained not only to predict the output grid for
a given input query but also to reproduce the output grid of each study example (refer to Section [3.2).
Removing this auxiliary task results in a notable decrease in accuracy from 86.73% to 69.05%. This
decline underscores the importance of the copy task in promoting systematic generalization, aligning
with the findings of [Lake & Baroni| (2023). Subsequently, we assess the role of study examples in
model performance. Removing primitive transformations from the study examples (see Figure [3)
results in a moderate reduction in performance, with an average accuracy of 75.27%. This suggests
that examples involving only level-1 transformation compositions are, to some extent, sufficient for
allowing the model to generalize to more complex level-2 compositions. However, removing level-1
transformation compositions leads to a severe performance degradation, reducing accuracy to 21.01%.
We hypothesize that this is due to the increased complexity of composing three primitive operations
directly into a level-2 transformation, as opposed to building on intermediate level-1 compositions.

5.2 ERROR ANALYSIS

To characterize model behavior on the systematicity task, we analyze the models’ prediction errors.
Figure [4] shows the relative frequency of common error types across models. We consider the
following error categories: (i) Format errors (output not a valid 10 x 10 grid with cell values in
0,...,9); (ii) No Transformation (output identical to input); (iii) Primitive (a primitive is applied
instead of the target level-2 composition); (iv) Level-1 (a level-1 composition is applied instead
of the level-2 composition); (v) Invalid Position (correct color and shape, wrong position); (vi)
Invalid Shape (correct color, incorrect shape); and (vii) Other (e.g., wrong number of objects, or
objects with both incorrect shape and color). Models show distinct error profiles. General-purpose
LLMs (GPT-40, Gemini 2.0 Flash, 03-mini) most often predict incorrect shapes that do not match
any primitive or level-1 outcome; for 03-mini, over 30% of errors involve applying a primitive
instead of a level-2 composition, and with image input more than 20% of GPT-40’s errors are format
violations. Llama-3.2-3B-ReARC mainly copies the input (no transformation), whereas Mistral-
NeMO-Minitron-8B-Full most often applies a primitive instead of the target level-2 composition.
After test-time training on the study examples (Section[4.2), errors of both domain-specific LLMs
most often involve level-1 predictions. The MLC model rarely produces primitive or level-1 outputs;
instead, it fails mainly by predicting an incorrect shape. Exact percentages by model and error type,
and a breakdown of primitive and level-1 errors, are reported in Tables [5|and []in the Appendix.

[Gemini 2.0 Flash E Llama-3.2-3B-ReARC [03-mini (low) + image
= GPT-40 [Mistral-NeMO-Minitron-8B-Full B MLC (ours) X + test-time training
100

801

60

Error [%]

401

201

Figure 4: Error distribution by error category across models. Bars show the fraction of prediction
errors assigned to each error category.

Under review as a conference paper at ICLR 2026

5.3 INCREASING DATASET COMPLEXITY

So far, Compositional-ARC has been restricted to i) translations of one cell to the right or downward;
ii) 90-degree clockwise or counterclockwise rotations; iii) horizontal and vertical reflections; iv)
extensions to neighboring cells leftward or upward; and v) color changes to red or orange. We
analyze whether the MLC model still systematically generalizes when we increase the variety of
transformations, and therefore the dataset complexity. To this end, we introduce a new dataset that
additionally allows translations of one or two cells in any direction (left, right, upward, downward),
extensions to neighboring cells in any direction, and color changes to red, orange, yellow, and green.
We generate 100,000 episodes and split the data as described in Section . T} exact dataset statistics
are given in Table [§|in the Appendix. We then train an MLC model following the procedure in
Section[3.2] Even on this more diverse dataset, the MLC model systematically generalizes to unseen
transformation compositions, achieving an exact match accuracy of 88.10% on the test set, a color
accuracy of 99.83%, and a shape accuracy of 88.25%.

6 RELATED WORK

Meta-learning. Meta-learning aims to improve a model’s ability to adapt to novel tasks by leverag-
ing experience over multiple training episodes (Thrun & Pratt, [1998; [Hospedales et al.,2022). It has
been successfully applied to various tasks, such as few-shot learning (Mishra et al.,[2018)), continual
learning (Javed & White}, 2019; [Lee et al., [2023} [Irie et al., [2025)), and reinforcement learning (Duan
et al.,2016; [Wang et al.|[2017; Mishra et al.| [2018)). Related to our work, meta-learning has been used
to improve systematic generalization. |Lake & Baroni (2018) showed that traditional sequence-to-
sequence models struggle with compositional skills, but incorporating meta-learning can significantly
improve performance (Lakel|2019; |Conklin et al.,[2021)). Recent work argues that giving models the
opportunity to practice skills via meta-learning is crucial for addressing challenges such as systematic
generalization, among others (Irie et al.l 2025). Our method builds on meta-learning strategies
inspired by [Lake & Baroni| (2023)), extending them to the domain of abstract spatial reasoning.

ARC:-like puzzles. The abstraction and reasoning corpus (ARC) (Chollet, |2019) is a benchmark
designed to evaluate a model’s capacity to generalize to novel scenarios with limited to no prior
knowledge. Based on a set of few-shot examples, models are required to infer transformations of
abstract objects or patterns within two-dimensional grids. Unlike ARC, which encompasses a broad
range of complex transformations, our work deliberately narrows the scope to the five fundamental
geometric transformations described in Section [3.1] focusing instead on the aspect of systematicity.
Several ARC variants have been proposed, including 1D-ARC (Xu et al.,2024), Mini-ARC (Kim
et al.| 2022)), ConceptARC (Moskvichev et al.,2023)) and MC-LARC (Shin et al., [2024). However, to
the best of our knowledge, Compositional-ARC is the first to focus on compositional generalization.

7 CONCLUSION

In this work, we extend the meta-learning for compositionality framework proposed by |[Lake &
Baroni| (2023)) to the domain of abstract spatial reasoning. To this end, we introduce Compositional-
ARC—a novel dataset designed to evaluate systematicity in this field. Our experiments demonstrate
that models trained via MLC can systematically generalize to novel compositions of geometric
transformations. Moreover, a small MLC model outperforms state-of-the-art general-purpose LLMs
on Compositional-ARC, and performs on par with domain-specific LLMs trained via test-time training.
Our findings suggest that MLC presents a promising direction for enabling systematic generalization
in language models across diverse domains.

Limitations & Future directions. A notable limitation of the current version of Compositional-
ARC is its restriction to fixed-size grids and limited number of transformations. While it is possible
to extend the dataset to more diverse grid setups, it is currently unclear how MLC would perform on
more complex transformations. A promising direction for future work is to train an additional model
that learns how to decompose complex ARC-like problems into primitive transformations, and then
train MLC on these primitives to generalize to unseen, more complex transformation compositions.

10

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our work, we make all code publicly available at:
https://anonymous.4open.science/r/C-ARC-8342. This enables users to reproduce the data described
in Section [3.1]and train models via MLC for the task, as outlined in Section 3.2} Details about the
training procedures and hyperparameters are provided in Section and Appendix [C] Additionally,
we include an exemplary subset of input queries and corresponding API responses from the evaluated
LLMs as part of the supplementary material. Specifics on prompts, model versions, and decoding
parameters are given in Appendix Further details about the datasets can be found in Sec-
tion[3.1] Section[4.1] and Appendix[B| Finally, Appendix[C.2]outlines the software and computational
resources used for model training.

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Iige Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774, 2023.

Anthropic. Introducing the next generation of claude. https://www.anthropic.com/news/
claude—-3-family, March 2024. Accessed: 2025-11-21.

Carter Bays. Introduction to Cellular Automata and Conway’s Game of Life, pp. 1-7. Springer
London, London, 2010. ISBN 978-1-84996-217-9. doi: 10.1007/978-1-84996-217-9_1. URL
https://doi.org/10.1007/978-1-84996-217-9_1.

Philémon Brakel and Stefan Frank. Strong systematicity in sentence processing by simple recurrent
networks. In Proceedings of the Annual Meeting of the Cognitive Science Society, volume 31,
2009.

David A Brannan, Matthew F Esplen, and Jeremy J Gray. Geometry. Cambridge University Press,
2011.

Paco Calvo and John Symons. The architecture of cognition: Rethinking Fodor and Pylyshyn’s
systematicity challenge. MIT Press, 2014.

Hoyeon Chang, Jinho Park, Hanseul Cho, Sohee Yang, Miyoung Ko, Hyeonbin Hwang, Seungpil
Won, Dohaeng Lee, Youbin Ahn, and Minjoon Seo. The coverage principle: A framework for
understanding compositional generalization. arXiv preprint arXiv:2505.20278, 2025.

Francois Chollet. On the measure of intelligence, 2019. URL https://arxiv.org/abs/
1911.01547.

Noam Chomsky. Syntactic structures. Mouton de Gruyter, 2002.
Noam Chomsky et al. Reflections on language. Temple Smith London, 1976.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to solve
math word problems. arXiv preprint arXiv:2110.14168, 2021.

Henry Conklin, Bailin Wang, Kenny Smith, and Ivan Titov. Meta-learning to compositionally
generalize. In Chengqing Zong, Fei Xia, Wenjie Li, and Roberto Navigli (eds.), Proceedings of the
59th Annual Meeting of the Association for Computational Linguistics and the 11th International
Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 3322-3335,
Online, August 2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.acl-long.
258. URL https://aclanthology.org/2021.acl-long.258/.

Isabelle Dautriche and Emmanuel Chemla. Evidence for compositional abilities in one-year-
old infants. Communications Psychology, 3(1):37, 2025. ISSN 2731-9121. doi: 10.1038/
s44271-025-00222-9. URL https://doi.org/10.1038/s44271-025-00222-9.

Joachim De Beule and Benjamin K Bergen. On the emergence of compositionality. In The Evolution
of Language, pp. 35-42. World Scientific, 2006.

11

https://anonymous.4open.science/r/C-ARC-8342
https://www.anthropic.com/news/claude-3-family
https://www.anthropic.com/news/claude-3-family
https://doi.org/10.1007/978-1-84996-217-9_1
https://arxiv.org/abs/1911.01547
https://arxiv.org/abs/1911.01547
https://aclanthology.org/2021.acl-long.258/
https://doi.org/10.1038/s44271-025-00222-9

Under review as a conference paper at ICLR 2026

Google DeepMind. Gemini 2.0 flash, 2024. URL https://deepmind.google/
technologies/gemini/flash/. Accessed: 2025-03-19.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit,
and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at scale.
In International Conference on Learning Representations, 2021. URL https://openreview,
net/forum?id=YicbFdNTTy.

Andrew Drozdov, Nathanael Schirli, Ekin Akyiirek, Nathan Scales, Xinying Song, Xinyun Chen,
Olivier Bousquet, and Denny Zhou. Compositional semantic parsing with large language models.
In The Eleventh International Conference on Learning Representations, 2023. URL https
//openreview.net/forum?id=gJW8hSGBys8.

Yan Duan, John Schulman, Xi Chen, Peter L Bartlett, Ilya Sutskever, and Pieter Abbeel. RI?: Fast
reinforcement learning via slow reinforcement learning. arXiv preprint arXiv:1611.02779, 2016.

Nouha Dziri, Ximing Lu, Melanie Sclar, Xiang (Lorraine) Li, Liwei Jiang, Bill Yuchen Lin, Sean
Welleck, Peter West, Chandra Bhagavatula, Ronan Le Bras, Jena Hwang, Soumya Sanyal, Xiang
Ren, Allyson Ettinger, Zaid Harchaoui, and Yejin Choi. Faith and fate: Limits of transformers on
compositionality. In A. Oh, T. Naumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine (eds.),
Advances in Neural Information Processing Systems, volume 36, pp. 70293-70332. Curran Asso-
ciates, Inc., 2023. URL https://proceedings.neurips.cc/paper_files/paper/
2023/file/deb3c28192f979302c157cb653cl15e90-Paper—-Conference.pdfl

James H. Fife, Kofi James, and Malcolm Bauer. A learning progression for geometric transformations.
ETS Research Report Series, 2019(1):1-16, 2019. doi: https://doi.org/10.1002/ets2.12236. URL
https://onlinelibrary.wiley.com/doi/abs/10.1002/ets2.12236.

Jerry A. Fodor and Zenon W. Pylyshyn. Connectionism and cognitive architecture: A crit-
ical analysis. Cognition, 28(1):3-71, 1988. ISSN 0010-0277. doi: https://doi.org/10.
1016/0010-0277(88)90031-5. URL https://www.sciencedirect.com/science/
article/pii/0010027788900315.

Daniel Franzen, Jan Disselhoff, and David Hartmann. The llm architect: Solving the arc challenge is a
matter of perspective. https://github.com/da-fr/arc-prize-2024/blob/main/
the_architects.pdf, 2024. Accessed: 2025-09-23.

Gaél Gendron, Qiming Bao, Michael Witbrock, and Gillian Dobbie. Large language models are not
strong abstract reasoners. In Proceedings of the Thirty-Third International Joint Conference on
Artificial Intelligence, IJCAI *24, 2024. ISBN 978-1-956792-04-1. doi: 10.24963/ijcai.2024/693.
URL https://doi.org/10.24963/ijcai.2024/693\

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama 3 herd of
models. arXiv preprint arXiv:2407.21783, 2024.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Peiyi Wang, Qihao Zhu, Runxin Xu, Ruoyu
Zhang, Shirong Ma, Xiao Bi, et al. Deepseek-rl incentivizes reasoning in llms through rein-
forcement learning. Nature, 645(8081):633-638, Sep 2025. ISSN 1476-4687. doi: 10.1038/
s41586-025-09422-z. URL https://doi.org/10.1038/s41586-025-09422-7z.

Dan Hendrycks and Kevin Gimpel. Gaussian error linear units (gelus). arXiv preprint
arXiv:1606.08415, 2016.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the MATH dataset. In
Thirty-fifth Conference on Neural Information Processing Systems Datasets and Benchmarks Track
(Round 2),2021. URL https://openreview.net/forum?id=7Bywt2mQsCel.

Wolfram Hinzen, Edouard Machery, and Markus Werning. The Oxford Handbook of Com-
positionality. Oxford University Press, 02 2012. ISBN 9780199541072. doi: 10.1093/
oxfordhb/9780199541072.001.0001. URL https://doi.org/10.1093/oxfordhb/
9780199541072.001.0001L

12

https://deepmind.google/technologies/gemini/flash/
https://deepmind.google/technologies/gemini/flash/
https://openreview.net/forum?id=YicbFdNTTy
https://openreview.net/forum?id=YicbFdNTTy
https://openreview.net/forum?id=gJW8hSGBys8
https://openreview.net/forum?id=gJW8hSGBys8
https://proceedings.neurips.cc/paper_files/paper/2023/file/deb3c28192f979302c157cb653c15e90-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/deb3c28192f979302c157cb653c15e90-Paper-Conference.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002/ets2.12236
https://www.sciencedirect.com/science/article/pii/0010027788900315
https://www.sciencedirect.com/science/article/pii/0010027788900315
https://github.com/da-fr/arc-prize-2024/blob/main/the_architects.pdf
https://github.com/da-fr/arc-prize-2024/blob/main/the_architects.pdf
https://doi.org/10.24963/ijcai.2024/693
https://doi.org/10.1038/s41586-025-09422-z
https://openreview.net/forum?id=7Bywt2mQsCe
https://doi.org/10.1093/oxfordhb/9780199541072.001.0001
https://doi.org/10.1093/oxfordhb/9780199541072.001.0001

Under review as a conference paper at ICLR 2026

Michael Hodel. Addressing the abstraction and reasoning corpus via procedural example generation.
arXiv preprint arXiv:2404.07353, 2024.

Timothy Hospedales, Antreas Antoniou, Paul Micaelli, and Amos Storkey. Meta-Learning in Neural
Networks: A Survey . IEEE Transactions on Pattern Analysis & Machine Intelligence, 44(09):
5149-5169, September 2022. ISSN 1939-3539. doi: 10.1109/TPAMI.2021.3079209. URL
https://doi.ieeecomputersociety.orqg/10.1109/TPAMI.2021.30792009.

Dieuwke Hupkes, Verna Dankers, Mathijs Mul, and Elia Bruni. Compositionality decomposed: How
do neural networks generalise? Journal of Artificial Intelligence Research, 67:757-795, 2020.

Kazuki Irie, Rébert Csordas, and Jiirgen Schmidhuber. Metalearning continual learning algo-
rithms. Transactions on Machine Learning Research, 2025. ISSN 2835-8856. URL https
//openreview.net/forum?id=IaUh7CSD3k!.

Mete Ismayilzada, Defne Circi, Jonne Sélevd, Hale Sirin, Abdullatif Koksal, Bhuwan Dhingra,
Antoine Bosselut, Duygu Ataman, and Lonneke Van Der Plas. Evaluating morphological composi-
tional generalization in large language models. In Luis Chiruzzo, Alan Ritter, and Lu Wang
(eds.), Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the
Association for Computational Linguistics: Human Language Technologies (Volume 1: Long
Papers), pp. 1270-1305, Albuquerque, New Mexico, April 2025. Association for Computa-
tional Linguistics. ISBN 979-8-89176-189-6. doi: 10.18653/v1/2025.naacl-long.59. URL
https://aclanthology.org/2025.naacl-1long.59/.

Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden Low, Alec
Helyar, Aleksander Madry, Alex Beutel, Alex Carney, et al. Openai ol system card. arXiv preprint
arXiv:2412.16720, 2024.

Khurram Javed and Martha White. Meta-learning representations for continual learning. In
H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett (eds.),
Advances in Neural Information Processing Systems, volume 32. Curran Associates, Inc.,
2019. URL https://proceedings.neurips.cc/paper_files/paper/2019/
file/f4dd765cl12f2ef67f98f3558c282a9cd-Paper.pdf.

Daniel Keysers, Nathanael Schirli, Nathan Scales, Hylke Buisman, Daniel Furrer, Sergii Kashubin,
Nikola Momchev, Danila Sinopalnikov, Lukasz Stafiniak, Tibor Tihon, Dmitry Tsarkov, Xiao Wang,
Marc van Zee, and Olivier Bousquet. Measuring compositional generalization: A comprehensive
method on realistic data. In International Conference on Learning Representations, 2020. URL
https://openreview.net/forum?id=SygcCnNKwrl

Najoung Kim and Tal Linzen. COGS: A compositional generalization challenge based on semantic
interpretation. In Bonnie Webber, Trevor Cohn, Yulan He, and Yang Liu (eds.), Proceedings of
the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9087—
9105, Online, November 2020. Association for Computational Linguistics. doi: 10.18653/v1/2020.
emnlp-main.731. URL https://aclanthology.org/2020.emnlp-main.731/,

Subin Kim, Prin Phunyaphibarn, Donghyun Ahn, and Sundong Kim. Playgrounds for abstraction
and reasoning. In NeurIPS 2022 Workshop on Neuro Causal and Symbolic Al (nCSI), 2022.

Takeshi Kojima, Shixiang (Shane) Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwa-
sawa. Large language models are zero-shot reasoners. In S. Koyejo, S. Mo-
hamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh (eds.), Advances in Neural In-
formation Processing Systems, volume 35, pp. 22199-22213. Curran Associates, Inc.,
2022. URL https://proceedings.neurips.cc/paper_files/paper/2022/
file/8bb0d291lacd4acf06ef112099cl6f326-Paper—Conference.pdf.

Brenden Lake and Marco Baroni. Generalization without systematicity: On the compositional skills of
sequence-to-sequence recurrent networks. In Jennifer Dy and Andreas Krause (eds.), Proceedings
of the 35th International Conference on Machine Learning, volume 80 of Proceedings of Machine
Learning Research, pp. 2873-2882. PMLR, 10-15 Jul 2018. URL https://proceedings|
mlr.press/v80/lakel8a.html.

13

https://doi.ieeecomputersociety.org/10.1109/TPAMI.2021.3079209
https://openreview.net/forum?id=IaUh7CSD3k
https://openreview.net/forum?id=IaUh7CSD3k
https://aclanthology.org/2025.naacl-long.59/
https://proceedings.neurips.cc/paper_files/paper/2019/file/f4dd765c12f2ef67f98f3558c282a9cd-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/f4dd765c12f2ef67f98f3558c282a9cd-Paper.pdf
https://openreview.net/forum?id=SygcCnNKwr
https://aclanthology.org/2020.emnlp-main.731/
https://proceedings.neurips.cc/paper_files/paper/2022/file/8bb0d291acd4acf06ef112099c16f326-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/8bb0d291acd4acf06ef112099c16f326-Paper-Conference.pdf
https://proceedings.mlr.press/v80/lake18a.html
https://proceedings.mlr.press/v80/lake18a.html

Under review as a conference paper at ICLR 2026

Brenden M Lake. Compositional generalization through meta sequence-to-sequence learn-
ing. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Gar-
nett (eds.), Advances in Neural Information Processing Systems, volume 32. Curran Asso-
ciates, Inc., 2019. URL https://proceedings.neurips.cc/paper_files/paper/
2019/fi1ile/f4d0e2e7fc057a58f7ca4a391f01940a-Paper.pdf.

Brenden M. Lake and Marco Baroni. Human-like systematic generalization through a meta-
learning neural network. Nature, 623(7985):115-121, 2023. ISSN 1476-4687. doi: 10.1038/
$41586-023-06668-3. URL https://doi.org/10.1038/s41586-023-06668-3.

Brenden M. Lake, Tomer D. Ullman, Joshua B. Tenenbaum, and Samuel J. Gershman. Building
machines that learn and think like people. Behavioral and Brain Sciences, 40:€253, 2017. doi:
10.1017/S0140525X16001837.

Soochan Lee, Jachyeon Son, and Gunhee Kim. Recasting continual learning as sequence mod-
eling. In A. Oh, T. Naumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine (eds.), Ad-
vances in Neural Information Processing Systems, volume 36, pp. 70433-70452. Curran Asso-
ciates, Inc., 2023. URL https://proceedings.neurips.cc/paper_files/paper/
2023/file/dee254cdacbab59f17dcoa8fbdffa59f-Paper—-Conference.pdf.

Wen-Ding Li, Keya Hu, Carter Larsen, Yuqing Wu, Simon Alford, Caleb Woo, Spencer M. Dunn,
Hao Tang, Wei-Long Zheng, Yewen Pu, and Kevin Ellis. Combining induction and transduction
for abstract reasoning. In The Thirteenth International Conference on Learning Representations,
2025. URL https://openreview.net/forum?id=UmdotAAVDe.

Joao Loula, Marco Baroni, and Brenden Lake. Rearranging the familiar: Testing compositional
generalization in recurrent networks. In Tal Linzen, Grzegorz Chrupata, and Afra Alishahi
(eds.), Proceedings of the 2018 EMNLP Workshop BlackboxNLP: Analyzing and Interpreting
Neural Networks for NLP, pp. 108—114, Brussels, Belgium, November 2018. Association for
Computational Linguistics. doi: 10.18653/v1/W18-5413. URL https://aclanthology.
org/W18-5413/!

Amogh Mannekote. Towards compositionally generalizable semantic parsing in large language
models: A survey. arXiv preprint arXiv:2404.13074, 2024.

Gary F Marcus. The algebraic mind: Integrating connectionism and cognitive science. MIT press,
2003.

Ahmed Masry, Juan A. Rodriguez, Tianyu Zhang, Suyuchen Wang, Chao Wang, Aarash Feizi,
Akshay Kalkunte Suresh, Abhay Puri, Xiangru Jian, Pierre-André Noél, Sathwik Tejaswi Mad-
husudhan, Marco Pedersoli, Bang Liu, Nicolas Chapados, Yoshua Bengio, Enamul Hoque, Christo-
pher Pal, Issam H. Laradji, David Vazquez, Perouz Taslakian, Spandana Gella, and Sai Rajeswar.
Alignvlm: Bridging vision and language latent spaces for multimodal understanding, 2025. URL
https://arxiv.org/abs/2502.01341.

Pablo Mendes, Max Jakob, and Christian Bizer. DBpedia: A multilingual cross-domain knowledge
base. In Nicoletta Calzolari, Khalid Choukri, Thierry Declerck, Mehmet Ugur Dogan, Bente
Maegaard, Joseph Mariani, Asuncion Moreno, Jan Odijk, and Stelios Piperidis (eds.), Proceedings
of the Eighth International Conference on Language Resources and Evaluation (LREC’12), pp.
1813-1817, Istanbul, Turkey, May 2012. European Language Resources Association (ELRA).
URLhttps://aclanthology.org/L12-1323/.

Nikhil Mishra, Mostafa Rohaninejad, Xi Chen, and Pieter Abbeel. A simple neural attentive meta-
learner. In International Conference on Learning Representations, 2018.

Arsenii Kirillovich Moskvichev, Victor Vikram Odouard, and Melanie Mitchell. The conceptARC
benchmark: Evaluating understanding and generalization in the ARC domain. Transactions on
Machine Learning Research, 2023. ISSN 2835-8856. URL https://openreview.net/
forum?id=8ykyGbtt2q.

OpenAl. Openai ol system card, 2024. URL https://arxiv.org/abs/2412.16720.

14

https://proceedings.neurips.cc/paper_files/paper/2019/file/f4d0e2e7fc057a58f7ca4a391f01940a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/f4d0e2e7fc057a58f7ca4a391f01940a-Paper.pdf
https://doi.org/10.1038/s41586-023-06668-3
https://proceedings.neurips.cc/paper_files/paper/2023/file/dee254cdacbab59f17dc6a8fbdffa59f-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/dee254cdacbab59f17dc6a8fbdffa59f-Paper-Conference.pdf
https://openreview.net/forum?id=UmdotAAVDe
https://aclanthology.org/W18-5413/
https://aclanthology.org/W18-5413/
https://arxiv.org/abs/2502.01341
https://aclanthology.org/L12-1323/
https://openreview.net/forum?id=8ykyGbtt2q
https://openreview.net/forum?id=8ykyGbtt2q
https://arxiv.org/abs/2412.16720

Under review as a conference paper at ICLR 2026

OpenAl. Openai 03-mini system card, January 2025. URL https://cdn.openai.com/
o3-mini-system-card-febl0.pdf.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style,
high-performance deep learning library. Advances in neural information processing systems, 32,
2019.

Flavio Petruzzellis, Alberto Testolin, and Alessandro Sperduti. Benchmarking GPT-4 on algorithmic
problems: A systematic evaluation of prompting strategies. In Nicoletta Calzolari, Min-Yen Kan,
Veronique Hoste, Alessandro Lenci, Sakriani Sakti, and Nianwen Xue (eds.), Proceedings of
the 2024 Joint International Conference on Computational Linguistics, Language Resources and
Evaluation (LREC-COLING 2024), pp. 2161-2177, Torino, Italia, May 2024. ELRA and ICCL.
URLhttps://aclanthology.org/2024.1lrec-main.195/.

Yusuke Sakai, Hidetaka Kamigaito, and Taro Watanabe. Revisiting compositional generalization
capability of large language models considering instruction following ability. arXiv preprint
arXiv:2506.15629, 2025.

David Maria Schmidt, Raoul Schubert, and Philipp Cimiano. Compost: A benchmark for analyzing
the ability of 1lms to compositionally interpret questions in a qald setting. In Daniel Garijo,
Sabrina Kirrane, Angelo Salatino, Cogan Shimizu, Maribel Acosta, Andrea Giovanni Nuzzolese,
Sebastian Ferrada, Thibaut Soulard, Kouji Kozaki, Hideaki Takeda, and Anna Lisa Gentile (eds.),
The Semantic Web — ISWC 2025, pp. 3-22, Cham, 2025. Springer Nature Switzerland. ISBN
978-3-032-09527-5.

Donghyeon Shin, Seungpil Lee, Klea Lena Kovacec, and Sundong Kim. From generation to
selection: Findings of converting analogical problem-solving into multiple-choice questions. In
Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung Chen (eds.), Findings of the Association for
Computational Linguistics: EMNLP 2024, pp. 66966708, Miami, Florida, USA, November 2024.
Association for Computational Linguistics. doi: 10.18653/v1/2024.findings-emnlp.392. URL
https://aclanthology.org/2024.findings—-emnlp.392/.

Zoltan Gendler Szabé. The case for compositionality. In Markus Werning, Wolfram Hinzen, and
Edouard Machery (eds.), The Oxford Handbook of Compositionality. Oxford University Press,
2012.

Gemini Team, Rohan Anil, Sebastian Borgeaud, Jean-Baptiste Alayrac, Jiahui Yu, Radu Soricut,
Johan Schalkwyk, Andrew M Dai, Anja Hauth, Katie Millican, et al. Gemini: a family of highly
capable multimodal models. arXiv preprint arXiv:2312.11805, 2023.

Jonathan Thomm, Giacomo Camposampiero, Aleksandar Terzic, Michael Hersche, Bern-
hard Scholkopf, and Abbas Rahimi. Limits of transformer language models on learn-
ing to compose algorithms. In A. Globerson, L. Mackey, D. Belgrave, A. Fan, U. Pa-
quet, J. Tomczak, and C. Zhang (eds.), Advances in Neural Information Processing
Systems, volume 37, pp. 7631-7674. Curran Associates, Inc., 2024. doi: 10.52202/
079017-0245. URL https://proceedings.neurips.cc/paper_files/paper/
2024/file/0e797d513%9ad94fc2dc2080c09119f29-Paper—-Conference.pdfl

Sebastian Thrun and Lorien Pratt. Learning to Learn: Introduction and Overview, pp. 3—17. Springer
US, Boston, MA, 1998. ISBN 978-1-4615-5529-2. doi: 10.1007/978-1-4615-5529-2_1. URL
https://doi.org/10.1007/978-1-4615-5529-2_1.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Roziere, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023.

Jane Wang, Zeb Kurth-Nelson, Hubert Soyer, Joel Leibo, Dhruva Tirumala, Remi Munos, Charles

Blundell, Dharshan Kumaran, and Matt Botvinick. Learning to reinforcement learn. In Proceedings
of the Annual Meeting of the Cognitive Science Society, volume 39, 2017.

15

https://cdn.openai.com/o3-mini-system-card-feb10.pdf
https://cdn.openai.com/o3-mini-system-card-feb10.pdf
https://aclanthology.org/2024.lrec-main.195/
https://aclanthology.org/2024.findings-emnlp.392/
https://proceedings.neurips.cc/paper_files/paper/2024/file/0e797d5139ad94fc2dc2080c09119f29-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/0e797d5139ad94fc2dc2080c09119f29-Paper-Conference.pdf
https://doi.org/10.1007/978-1-4615-5529-2_1

Under review as a conference paper at ICLR 2026

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V Le, Ed H. Chi, Sharan Narang, Aakanksha
Chowdhery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language
models. In The Eleventh International Conference on Learning Representations, 2023a. URL
https://openreview.net/forum?id=1PLINIMMrw.

Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Alisa Liu, Noah A. Smith, Daniel Khashabi, and
Hannaneh Hajishirzi. Self-instruct: Aligning language models with self-generated instructions. In
Anna Rogers, Jordan Boyd-Graber, and Naoaki Okazaki (eds.), Proceedings of the 61st Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 13484—
13508, Toronto, Canada, July 2023b. Association for Computational Linguistics. doi: 10.18653/
v1/2023.acl-long.754. URL https://aclanthology.org/2023.acl-long.754/l

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, brian ichter, Fei Xia, Ed Chi, Quoc V
Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language mod-
els. In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh (eds.), Ad-
vances in Neural Information Processing Systems, volume 35, pp. 24824-24837. Curran Asso-
ciates, Inc., 2022. URL https://proceedings.neurips.cc/paper_files/paper/
2022/file/9d5609613524ecfd4fl5af0f7/b3labcad—-Paper—-Conference.pdfl

Sondre Wold, Lucas Georges Gabriel Charpentier, and Etienne Simon. Systematic generalization in
language models scales with information entropy. In Wanxiang Che, Joyce Nabende, Ekaterina
Shutova, and Mohammad Taher Pilehvar (eds.), Findings of the Association for Computational
Linguistics: ACL 2025, pp. 1807-1819, Vienna, Austria, July 2025. Association for Computational
Linguistics. ISBN 979-8-89176-256-5. doi: 10.18653/v1/2025.findings-acl.90. URL https:
//aclanthology.org/2025.findings—acl.90/.

Yudong Xu, Wenhao Li, Pashootan Vaezipoor, Scott Sanner, and Elias Boutros Khalil. LLMs and
the abstraction and reasoning corpus: Successes, failures, and the importance of object-based
representations. Transactions on Machine Learning Research, 2024. ISSN 2835-8856. URL
https://openreview.net/forum?id=E8m8oySvPJ.

Haoran Yang, Hongyuan Lu, Wai Lam, and Deng Cai. Exploring compositional generalization
of large language models. In Yang (Trista) Cao, Isabel Papadimitriou, Anaelia Ovalle, Marcos
Zampieri, Francis Ferraro, and Swabha Swayamdipta (eds.), Proceedings of the 2024 Conference of
the North American Chapter of the Association for Computational Linguistics: Human Language
Technologies (Volume 4: Student Research Workshop), pp. 16-24, Mexico City, Mexico, June
2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.naacl-srw.3. URL
https://aclanthology.org/2024 .naacl-srw.3/l

Jun Zhao, Jingqi Tong, Yurong Mou, Ming Zhang, Qi Zhang, and Xuanjing Huang. Exploring
the compositional deficiency of large language models in mathematical reasoning through trap
problems. In Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung Chen (eds.), Proceedings of the 2024
Conference on Empirical Methods in Natural Language Processing, pp. 16361-16376, Miami,
Florida, USA, November 2024. Association for Computational Linguistics. doi: 10.18653/v1/
2024.emnlp-main.915. URL https://aclanthology.org/2024.emnlp-main.915/.

Yanli Zhou, Reuben Feinman, and Brenden M. Lake. Compositional diversity in visual concept
learning. Cognition, 244:105711, 2024. ISSN 0010-0277. doi: https://doi.org/10.1016/j.cognition.
2023.105711. URL https://www.sciencedirect.com/science/article/pii/
S0010027723003451L

A SYSTEMATIC GENERALIZATION IN LLMS

The question of whether neural networks, and more recently large language models, have the capacity
to generalize systematically from known components to novel combinations has been, and continues
to be, the subject of extensive debate (Fodor & Pylyshyn, 1988} |[Brakel & Frank| 2009; Lake &
Baroni|, 2023; [Mannekotel 2024, inter alia). This section offers an extended literature review on
systematic generalization in LLMs, presenting an overview of recent studies that assess systematicity
in current language models.

16

https://openreview.net/forum?id=1PL1NIMMrw
https://aclanthology.org/2023.acl-long.754/
https://proceedings.neurips.cc/paper_files/paper/2022/file/9d5609613524ecf4f15af0f7b31abca4-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/9d5609613524ecf4f15af0f7b31abca4-Paper-Conference.pdf
https://aclanthology.org/2025.findings-acl.90/
https://aclanthology.org/2025.findings-acl.90/
https://openreview.net/forum?id=E8m8oySvPJ
https://aclanthology.org/2024.naacl-srw.3/
https://aclanthology.org/2024.emnlp-main.915/
https://www.sciencedirect.com/science/article/pii/S0010027723003451
https://www.sciencedirect.com/science/article/pii/S0010027723003451

Under review as a conference paper at ICLR 2026

Following |[Hupkes et al.| (2020), different aspects of compositionality need to be distinguished. Sys-
tematicity refers to the capacity to recombine known parts and rules into novel combinations (Szabo,
2012; |Hupkes et al.| 2020; |Lake & Baroni, [2023)). More formally, this capacity can be defined as:

Definition 1 (Systematic generalization). The capacity to recombine previously observed or
learned parts and rules, i.e., primitives ej, eo, . . . , €,, to generalize to novel, previously unseen
compositions of them (e.g., e; X e2).

According to|Hupkes et al.| (2020), systematicity is different from other aspects of compositionality,
such as productivity: the capacity to predict expressions beyond the length of those already encoun-
tered, or substitutivity: the ability to handle synonym substitutions. For more details on the different
aspects of compositionality, we refer to the original study by Hupkes et al.| (2020).

Systematicity in current LLMs. A growing body of research evaluates whether large language
models satisfy the criteria of systematicity, i.e., whether they can generalize systematically from
known or previously seen components to novel combinations. Thomm et al.|(2024)) study whether
LLMs such as LLaMA (Touvron et al.,[2023)), GPT-4 (Achiam et al.,[2023)), and Gemini-Pro (Team
et al.,[2023) can solve compositional algorithmic tasks by reusing previously encountered primitives.
Training a small LLaMA-style model from scratch on four compositional algorithmic tasks shows
that, while the model is able to learn all sub-tasks or primitives reliably, it fails to properly compose
them. Instead, the model exhibits extreme sample inefficiency: it is able to solve the compositional
task only when the amount of training data is increased by almost one order of magnitude. The
authors further present a complexity-theoretic argument that gradient-descent training of fixed-depth
feedforward models is asymptotically data-inefficient on combinatorial problems. Prompt-based
evaluations of GPT-4 and Gemini-Pro further show that these models struggle with the tasks, even
when strong hints are provided or techniques such as chain-of-thought (CoT) prompting (Wei et al.,
2022) are used. Dziri et al.| (2023)) also highlight compositional limits of LLMs on multiplication,
logic-grid puzzles, and a dynamic-programming task: performance is near-perfect in-distribution
but collapses as computation graphs deepen or branch beyond training complexity. Petruzzellis et al.
(2024) complement these findings with a systematic study of LLMs’ performance on algorithmic
tasks where both the number of operands per operation and their nesting depth can be controlled.
While the authors show that LLMs such as GPT-4 fail on highly nested, multi-operand formulas,
they find that advanced prompting strategies such as zero-shot CoT (Kojima et al.| [2022)) with
self-consistency (Wang et al.,|2023a)) can improve performance on less complex compositions.

Zhao et al.[(2024) introduce MATHTRAP, where standard problems from GSMS8K (Cobbe et al.,
2021)) and MATH (Hendrycks et al., [2021) are modified with logical “traps” (e.g., undefined con-
cepts, missing conditions, contradictions) that require combining ordinary math-solving competence
with the capacity to identify such inconsistencies. The authors show that LLMs such as Llama-3
(70B) (Grattafiori et al., [2024), Claude3-Opus (Anthropic, [2024), and GPT-4 score well on the original
problems and on standalone questions about the logical inconsistencies presented, yet their accuracy
drops dramatically on such trap problems. Prompting that warns about traps, few-shot demonstrations,
fine-tuning, and OpenAI’s ol “slow thinking” (Jaech et al.,[2024) improve performance but still leave
a substantial gap to human performance on the task.

In semantic parsing, where natural language must be translated into a structured (often symbolic)
form, systematic generalization plays an important role when novel compositional queries that have
not been seen during training are introduced (Mannekotel 2024). Schmidt et al.| (2025) propose
CompoST, a controlled semantic-parsing benchmark for evaluating systematic generalization in
question answering over linked data from DBpedia (Mendes et al., 2012). Models need to map
natural-language questions to SPARQL queries where all atomic graph-pattern constituents have
been presented, while novel combinations appear at test time. Across zero-shot, few-shot, and fine-
tuned settings on three difficulty splits, performance drops sharply as structural deviation increases.
The authors conclude that current LLMs struggle to systematically recombine known SPARQL
constituents into correct queries, indicating weak systematic generalization in this domain. In
contrast, |Drozdov et al.| (2023) show that models can achieve high systematic generalization on
semantic parsing datasets such as CFQ (Keysers et al.;,[2020) and COGS (Kim & Linzen, 2020) when
explicitly prompted to decompose problems. The authors introduce dynamic least-to-most prompting,
where models first decompose the input and then solve subproblems sequentially. Compared to

17

Under review as a conference paper at ICLR 2026

standard few-shot prompting, least-to-most prompting achieves near-SOTA OOD performance on
CFQ and COGS, suggesting that systematicity is not reliably expressed by default but can be
elicited.|Yang et al.|(2024) study “order-n”’ compositional instructions derived via self-instruct (Wang
et al.,[2023b). Training on higher-order compositions improves performance on lower-order ones, but
training on simpler orders does not transfer to longer compositions, revealing an asymmetry typical
of non-systematic learners. Sakai et al.| (2025) introduce Ordered CommonGen, where four known
concepts must be embedded in a sentence in a specified order across permutations. While unordered
concept coverage is high, ordered coverage remains substantially lower even for LLMs, indicating
difficulty in faithfully recombining familiar concepts under novel structural constraints. Ismayilzada
et al.| (2025) extend systematicity tests to morphology in agglutinative languages (Turkish, Finnish):
LLMs struggle to generate or validate novel morpheme compositions, particularly for nonce roots
and longer affix chains, and performance degrades with compositional length.

Two data-centric accounts help explain when LL.Ms succeed or fail. Wold et al.| (2025)) argue that
systematic generalization scales with the information entropy of the training distribution over primi-
tives; in modified SCAN, higher-entropy coverage of verbs and contexts yields smooth improvements
in systematic generalization. |(Chang et al.| (2025) formalize the coverage principle, showing that
systematic generalization in transformer-based models largely reduces to substituting functionally
equivalent fragments observed in shared contexts. They show that data requirements for multi-hop
systematicity grow at least quadratically in component set size and are largely insensitive to parameter
scaling.

Summary. Overall, the studies surveyed suggest that modern LLMs do not reliably exhibit human-
like systematic generalization under standard training and evaluation: performance often correlates
with training data coverage and degrades on genuinely novel compositions. However, prompting
techniques for explicit decomposition and compositional training curricula might be able to elicit
systematicity, consistent with a view that compositional abilities are partly latent but not automatically
deployed.

B DATASET

In this work, we present Compositional-ARC, a dataset designed to study systematicity in abstract
spatial reasoning. As outlined in Section Compositional-ARC evaluates a model’s capacity
to systematically generalize learned geometric transformations (e.g., translation, rotation) of two-
dimensional objects to novel compositions of these transformations (e.g., translation+rotation). The
subsequent sections offer a detailed description of the dataset, including formal definitions of the
grid-based environment and the set of transformations it includes.

B.1 GRID SETUP

We define the structure of the 10 x 10 grid environment and the notion of objects within it. Each grid
is represented as a matrix X € N'0*10 where each element corresponds to a cell with a discrete
color value. Objects are defined based on color connectivity using the Moore neighborhood (Bays|
2010).

Definition 2 (Grid & Object). Let X € N!0X10 be a matrix with rows i and columns j ,
referred to as a grid, where each element X;; € {0,...,9}. The value X,;; = 0 represents a
background cell, and values X;; € {1,...,9} represent object colors.

An object is a set of coordinates
0 c{o,...,9}?

such that each (4, j) € O satisfies X;; = ¢, and the elements in O form a single connected
component.

Two elements X;; and X, are considered connected if:

max(|i — k[, [—1]) <1

18

Under review as a conference paper at ICLR 2026

We define the following color mapping: 0 — black, 1 — red, 2 — orange, 3 — yellow, 4 — green,
5 — blue, 6 — purple, 7 — pink, 8 — cyan, and 9 — gray.

B.2 GEOMETRIC TRANSFORMATIONS

We formally define the five basic geometric transformations used in our dataset: translation, rotation,
reflection, extension, and color change. Each transformation operates on objects within the grid
environment as defined in Appendix A transformation is considered valid if all transformed
coordinates lie within the grid bounds and do not overlap with existing objects in the original grid.

Translation. Moves an object by one cell along a specified direction (downward or rightward). A
formal definition is given in the text box below.

Definition 3 (Translation). Let @ C {0, ...,9}? be an object in a grid X € N19X10 and et
v = (v1,v2) € {(1,0), (0,1)} be the translation direction (downward or rightward).

The translated object is:
TLrans,'u(@) = {(7/ +v17j —l—’Uz) | (7’73) € ©}

The translation is valid if:

V(i/,j/) € T;rans,'u(@))a 0 S i/ajl < 107 Xi’j’ =0

. J

Rotation. Rotates an object 90° clockwise or counterclockwise around the top-left of its bounding
box. A more formal definition is given in the text box below.

4 \

Definition 4 (Rotation). Let O C {0, ...,9}2 be a set of grid cells with row—column coordinates
(i,7). Letip = min; j)ep i and jo = min; j)ep j. We set the pivot P = (i, jo) as the top-left
of the bounding box.

For each (i, j) € O, we specify the offset from the pivot as:
(Ai, Aj) = (4 — tmin, J — Jmin)-
We define a rotation by £90° as:
Rigoo(Ai, Aj) = (Aj, —Ad), R_goe(Ai, Aj) = (—Aj, Ad),
where +90° is clockwise and —90° is counterclockwise under the row-down convention.

Given a 90° rotation, either clockwise or counterclockwise, the rotated object is:
Trot,iQOO ((O)) = { (imin + AZa jmin + A]) | (7/’.7) €0 }

The rotation is valid if:

V(ilvj/) S Tl'ot,(?(@)a 0 S ilaj/ <]-O, xi’j/ S 0

19

Under review as a conference paper at ICLR 2026

Reflection. Reflects an object across its vertical or horizontal axis, reversing the relative positions of
its coordinates while preserving overall structure.

Definition 5 (Reflection). Let O C {0,...,9}2 be an object in a grid X € N'0*10 and let
d € {horizontal, vertical } indicate the axis of reflection.

Let:
imin = min{i | (¢,5) € O}, imax = max{i | (¢,5) € O}

Jmin = mln{] | (7’7.7) € (O)}a Jmax = max{j | (Z,]) € (O)}
Then the reflected object is:

{(imax — (¢ = min), 7) | (4,7) € O} if d = horizontal

T = . 3 ; I i i
f,d((D)) {{(17 Jmax — (] - .]min)) | (’L’j) € @} if d = vertical

The reflection is valid if:

v(ilvj/) € j}ef,d(@)y 0< Z‘/7]‘/ < 10, Xi’j’ =0

\ J

Extension. Adds a new cell in the upward or leftward direction for each coordinate in the object.

Definition 6 (Extension). Let O C {0, ...,9}? be an object in a grid X € N19%10 with color
¢ > 0. Letd € {up, left} indicate the extension direction.

Let the set of new cells adjacent to the object in direction d be:

T W65 -1) ¢ 0| (6,5) €0, j >0, 2,1 =0} ifd=left

Then the extended object is:
Text,a(0) = O U Ny (0)
The extension is valid if:

V(i',j') € Ng(0), 0<i,j <10,, Xy; =0

All new cells (i, j') € Ny4(O) are assigned the color of the original object:
X{/ i = C

e’y
\. J

Color change. Alters the color of an object to either red or orange, without changing its structure or
position.

Definition 7 (Color Change). Let O C {0,...,9}? be an object in a grid X € N'0X10 with
color ¢ > 0. Let ¢’ € {1, 2} be the new color (representing red or orange).

The resulting grid X' is given by:

o _J¢ ifG)eo
7| X,;; otherwise

j

B.3 DATASET GENERATION

To generate episodes that comprise primitive transformations, level-1 transformation compositions,
and level-2 transformation compositions, we developed a script that systematically generates the
corresponding input-output grid pairs for each transformation. The complete code repository for data
generation is publicly available at: https://anonymous.4open.science/r/C-ARC-8342. In the following,

20

https://anonymous.4open.science/r/C-ARC-8342

Under review as a conference paper at ICLR 2026

we provide a brief overview of the procedure used to generate input-output grid pairs for each sample
within an episode. As detailed in Section[3.1]and Appendix [B.2] we consider five basic geometric
transformations, along with three types of transformation indicators: shape-based, color-based, and
neighbor-based. These allow us to define a total of ten distinct transformation triplets, each mapping
the indicators to corresponding transformations (e.g., shape-based: translation, color-based: reflection,
neighbor-based: extension). For each episode, a transformation triplet is uniformly sampled from
this set to define the visual interpretation grammar of the episode. Once the transformations are
determined, we randomly assign a specific shape for the shape-based transformation, a specific color
for the color-based transformation, and an indicator object for the neighbor-based transformation.
Importantly, the indicator object is constrained to neither share the shape associated with the shape-
based transformation nor the color linked to the color-based transformation.

Using these specifications, we generate input-output grid pairs representing primitive, level-1, and
level-2 transformations. For each transformation mapping, we randomly place an object on a 10 x 10
grid, ensuring it possesses the designated shape, color, and/or proximity to the indicator object as
required. The specified transformation is then applied to this object. If the resulting transformed
object remains within the grid bounds and does not overlap with any other object, the corresponding
input-output grid pair is accepted as a valid sample for the episode. Otherwise, a new object location
is sampled and the process is repeated until a valid pair is obtained. Finally, we make sure that each
episode follows a unique grammar, i.e., that no two combinations of shape, color, and indicator
objects correspond to the same set of transformations within the dataset.

Once the dataset is generated, we apply a systematicity-aware data split into training, validation,
and test sets. As mentioned before, the five basic geometric transformations, along with three types
of transformation indicators, allow us to define a total of ten distinct transformation triplets (e.g.,
shape-based: translation, color-based: reflection, neighbor-based: extension). We split the data as
follows: we randomly designate 20% of all triplets as test-only and 80% as train-only (see Table 7).
This means that the geometric transformations involved in the final query level-2 compositions differ
between the training and evaluation sets. For instance, for seed 1860, all episodes whose triplet falls
in the train set yield 82,908 training episodes, and evaluation-only triplets form a 17,092-episode
pool, which we split evenly into 8,546 validation and 8,546 test episodes.

B.4 DATASET STATISTICS

Table[7] presents detailed statistics for the datasets used in this study. As outlined in Section[5.1] we
train and evaluate models via MLC across four distinct dataset splits to mitigate the influence of
randomness in the data split process. The table includes the number of training, validation, and test
samples for each split. Additionally, it provides information on the query transformation compositions
present in the training and test sets, along with the frequency of each basic geometric transformation
within the train dataset.

In a similar vein, Table [§] shows the statistics for the dataset version that includes more diverse
transformations, as described in Section[5.3] The table provides information on the query transforma-
tion compositions present in the training and test sets, along with the frequency of each geometric
transformation within the training dataset.

C TRAINING DETAILS

As outlined in Section[3.2] we use a transformer-based encoder-decoder model trained using MLC to
predict the correct output grid for a given input query, given a set of study examples. Specifically,
we generate a dataset of 100,000 episodes and split it into train, validation and test sets (for more
information see Section.T]and Table[7). The model is optimized using cross-entropy loss, averaged
over the predicted patch embeddings, as described in Section To place greater emphasis on
non-background regions, patches corresponding exclusively to black 2 x 2 cells are down-weighted
by a factor of 0.2 during loss computation.

Each episode includes a collection of study examples and queries. In the standard few-shot learning
task (Section[4.T), the model receives three input-output grid pairs, along with the input query. For the
systematicity task, 12 systematic study examples are provided. In both tasks, the model is required to
predict the correct output grid for ten distinct input queries.

21

Under review as a conference paper at ICLR 2026

Table 3: Hyperparameter configuration for models trained via MLC.

Parameter Value Parameter Value
number layers in decoder 3 learning rate after training 5x 1074
number layers in decoder 3 dropout 0.0
number of attention heads 8 weight decay 0.01
hidden dimension 128 noise probability 0.001
feedforward hidden size 768 gradient accumulation over k batches 2
learning rate 0.01 background patch loss weight 0.2

Training is conducted over 200 epochs with a batch size of 200 for the standard few-shot learning
task (i.e., 200 - 10 = 2000 queries per batch), and over 300 epochs with the same batch size for the
systematicity task. A learning rate of 0.01 is used in both cases. Following the approach of |Lake
& Baroni| (2023)), we apply a warm-up phase during the first episode, beginning with a learning
rate of 1 x 10~%, followed by a linear decay to 5 x 10~% over the course of training. Additional
hyperparameter settings are provided in Section|C.I]and summarized in Table[3]

C.1 HYPERPARAMETERS

To identify suitable hyperparameters for model training, we conduct Bayesian search over a predefined
range of values: learning rate € [1 x 10721 x 1073,1 x 10~*], final learning rate after linear
decay € [1 x 1074,5 x 10~%], dropout rate € [0.0,0.1,0.2], gradient accumulation over k € [1,2]
batches, cell color perturbation probability pyoise € [0.0,0.01,0.001], feedforward hidden dimension
€ [512, 768], loss weighting for background (all-black) patches € [0.2,0.4, 1.0], number of encoder
layers € [2, 3, 4], and number of decoder layers € 2, 3, 4.

For the hyperparamter search, the model is trained for 40 epochs on the systematicity task and
evaluated on its corresponding validation set. Across 25 independent runs, we select the configuration
that achieves the highest validation accuracy. The final hyperparameter settings, presented in Table 3]
are employed consistently across both task setups.

C.2 IMPLEMENTATION DETAILS

All experiments were conducted using PyTorch (Paszke et al., 2019) as the primary development
framework. Comprehensive details regarding supporting software and versioning are available in our
code repository. Experiments were executed on NVIDIA A100 and H200 GPUs. Training models
with MLC on the standard three-shot learning task over 200 epochs required approximately 40 GPU
hours on a single A100 GPU. For the systematicity experiments with 12 study examples, training
over 300 epochs on the designated dataset consumed roughly 100 GPU hours on a single H200 GPU.

C.3 ORIGINAL MLC TRAINING

In the original MLC setup, |[Lake & Baroni| (2023) train a standard seq2seq transformer (3-layer
encoder/decoder, 8§ attention heads, hidden dimension 128) with Adam on 100,000 dynamically
generated episodes of pseudo-language instructions. Each episode is defined by a latent compositional
grammar and contains multiple study examples and queries concatenated into a single input sequence,
as described in Section 2] Training minimizes token-level cross-entropy for 50 epochs using a batch
size of 25 episodes, a learning rate of 103 with a one-epoch warm-up followed by linear decay, and
dropout of 0.1. Compared to our approach, their model targets linguistic sequences rather than visual
grids and does not use patch-wise losses or background reweighting. Additionally, we train longer
with larger batches and a loss designed to emphasize non-background spatial structure.

22

Under review as a conference paper at ICLR 2026

D EXPERIMENT DETAILS

This section provide further details regarding our experimental setup. Specifically, Section [D.1]
presents formal definitions of the evaluation metrics used to assess the performance of the models
studied in this work, while Section outlines additional information on how we interact with
API-based LLMs.

D.1 EVALUATION METRICS

As described in Section we use three different evaluation metrics to assess model performance
in this study: 1) exact match accuracy, ii) color accuracy, and iii) shape accuracy. These metrics are
formally defined based on the grid-based environment X and the concept of an object O, as specified
in Definition 2

Let Xtarget, Xpred ¢ N19X10 denote the target and predicted grids, respectively. Each cell X it;rg et

(or X fjred) contains an integer in 0, . . ., 9, where 0 represents the background and values from 1 to 9
correspond to cells occupied by colored objects. The set of objects—defined as maximal connected
cells of a consistent color under the Moore neighborhood (see Section —extracted from X target
and XPred are denoted P (X 279¢t) and P(XPred), respectively. For each object in grid O € P(X),

we assign a color label ¢(Q) € 1,...,9 and define its normalized shape as follows:
S(0) = {(i — imin, j — Jmin) : (4,5) € O}, ()
where
imin = min{i : (4,7) € O} and jmin = min{y : (¢,5) € O}. 2)

This transformation “anchors” the object to the top-left corner by translating it to a coordinate system
with its minimum row and column indices set to zero.

Accuracy. The exact match accuracy evaluates whether the predicted grid X?7¢ is identical to the
target grid X *279¢¢ on a cell-by-cell basis:

. pred __ target .. 2
1L, if X770 = XG5 V(i,7) € {0,...,9}%,
0, otherwise.

Accuracy(XPred, xtargety — { 3)

In other words, this metric yields a value of 1 if and only if the entire predicted grid matches the
target grid exactly, i.e., X*"9¢* = XPred The mean accuracy over the dataset D is then defined as:

1
Accuracy = D] Z Accuracy(XPred | xtargety)
(Xpred Xtarget)eD

Color accuracy. Color accuracy assesses whether the predicted grid contains the same number of
objects of each color as the target grid, irrespective of their locations or shapes. For a given color
cel,...,9let

m(c,X) =[{0 € P(X): ¢(0) = c}|. 5)

denote the number of objects of color c in grid X. Then, color accuracy is defined as:

Color Accuracy(XPred xtargety —]l{Vc e{1,...,9}: m(c, X" = m(c, Xt‘”'get)}, (6)

where 1- is the indicator function, returning 1 if the condition is satisfied for all colors and 0 otherwise.
The mean color accuracy over the dataset D is given by:

Color Accuracy = Z Color Accuracy(XPred, xtarget) (7

1
|D| (Xpred Xtarget)eD

23

Under review as a conference paper at ICLR 2026

Shape accuracy. Shape accuracy measures the agreement in object shapes between the predicted
and target grids, independent of color and position. For each object in a grid O € P(X), we consider
its normalized shape S(Q) as defined in Equation The count of objects with a specific normalized
shape s in grid X is given by:

n(s,X)=[{0 e P(X):S(0) = s} ®)

Accordingly, shape accuracy is defined as:

Shape Accuracy(X P ed, xtargety — 1{\15 : n(s, XPred) = n(s, Xt”g‘ff)}.)

That is, the predicted grid X?"¢? has perfect shape accuracy if the number of objects corresponding
to each normalized shape is identical to that in the target grid X**"9¢t, Finally, the mean shape
accuracy over the dataset D is given by:

1
Shape Accuracy = ol Z Shape Accuracy(XPred, X target) (10)
| | (Xpre.d’Xtarget)eD

D.2 MODEL INFORMATION

General-purpose LLMs. As described in Section we evaluate three different general-
purpose LLMs on Compositional-ARC. Specifically, we assess the performance of 03-
mini (OpenAl, [2025) (version 03-mini-2025-01-3 l, GPT-40 (Achiam et al., 2023)
(version gpt—-40-2024-08-0 dﬂ), and Gemini 2.0 Flash (DeepMind, [2024) (version
gemini-2.0-flash-00 1E]). All models are accessed via their respective batch APIs, enabling
us to process multiple samples per request. Unless otherwise specified, we employ the default API
settings. For GPT-40 and 03-mini, this corresponds to a temperature and top_p value of 1.0E] Due to
financial constraints, the 03-mini model is configured with a “low” reasoning effort. For Gemini 2.0
Flash, the provider does not disclose default parameter settings.

Prompts. The complete set of prompts used in our evaluations is presented in Figures[12]through[T3]
To ensure consistency and facilitate meaningful comparisons, we apply the same prompts across all
models. The standard few-shot learning prompt appears in Figure while the prompt used for the
systematicity task is shown in Figure[T4 For Gemini 2.0 Flash, we add the instruction: “Do not
generate any code to solve the task™ to the output requirements, as the model otherwise does not
adhere to the required output format. As outlined in Section[4.2] we additionally evaluate GPT-40
and Gemini 2.0 Flash in a multimodal configuration, in which both an image of the study examples
and the input query are provided alongside the text prompt (text+image). The multimodal prompt
for the few-shot learning task is shown in Figure with the accompanying image illustrated in
Figure[I0] The corresponding multimodal prompt for the systematicity task is depicted in Figure[T5]
with the associated image presented in Figure [T1] For the textual prompts, we represent grids as
two-dimensional arrays, consistent with prior work (Moskvichev et al., 2023))). For instance, the final
query input grid in Figure[5]would be represented as:

3https://platform.openai.com/docs/models/o3-mini
*https://platform.openai.com/docs/models/gpt-40
Shttps://ai.google.dev/gemini-api/docs/models#gemini-2.0-flash
Shttps://platform.openai.com/docs/api-reference/chat/create

24

https://platform.openai.com/docs/models/o3-mini
https://platform.openai.com/docs/models/gpt-4o
https://ai.google.dev/gemini-api/docs/models#gemini-2.0-flash
https://platform.openai.com/docs/api-reference/chat/create

Under review as a conference paper at ICLR 2026

(o, o, 0, o, o, 0, 0, 0, 0, 01,
(o, o, o, o, o, o, 0, o, 0, 01,
(o, o, o, o, o0, o, 0, o, 0, 01,
(o, o, 0, 0, o, o, 0, 0, 0, 01,
(o, 5, o, o, o, o0, 0, 0, 0, 01,
(o, 5, o, o, o, 0, 0, 0, 0, 01,
(5, 5, o, 0, o, 0, 0, 0, 0, 01,
(o, 5, o, o, 0, o, 0, o, 0, 01,
(o, o, 0, 0, 1, o0, 0, 0, 0, 01,
(o, o, 0, 0, 1, 1, 0, 0, 0, 011

~
~
~
~
~
~
~
~
~

Model responses are parsed using regular expressions to identify the expression “output:*, followed
by a two-dimensional array of the form “[[. . .]]”, as specified in the input prompt. If a response does
not contain this pattern, it is excluded from further analysis and omitted from accuracy computations.
Table] summarizes the proportion of valid responses for each model.

Domain-specific LLMs. As mentioned in Section 4.2} we also evaluate two LLMs proposed
by Franzen et al.|(2024) that are specifically tailored to ARC-style data: (i) Llama-3.2-3B-ReARC (ver-
sion Llama-3.2-3B-ARChitects-ReArc-bnb- 4bitE]) and (ii) Mistral-NeMO-Minitron-
8B-Full (version Mistral-NeMo-Minit ron—8B—ARChitects—Full—bnb—4bit@. We
use the original codeﬂ provided by the authors to run their models on Compositional-ARC, with
default parameters. This means that the models perform augmented inference on the test set with
rotations and transpositions over all symmetries, in addition to color permutations and example
shuffling. Candidate pruning is further applied with a minimum probability of 0.1. For models
evaluated with test-time training, we follow the authors’ one-epoch LoRA adaptation on the study
examples of the test data repeated 48 times with the same augmentations described before. LoRA
targets the attention and MLP modules, as well as the embeddings, with r = 64, o = 16, and dropout
set to 0. The models are trained with a batch size of 16, gradient accumulation set to 1, a cosine
learning rate of 1 x 10~% (with 1 x 10~° for embeddings), and a warmup ratio of 0.25. The resulting
weights are then used for inference with the same default settings as described earlier.

E ADDITIONAL RESULTS

In this section, we present additional results for the experiments conducted in this study. First, we
present additional qualitative results related to the model predictions on the standard few-shot learning
and the systematicity task. Figures[5|through [7]illustrate representative episodes from the standard
few-shot learning task. Model predictions are shown adjacent to each query, with results for GPT-40
and Gemini 2.0 Flash corresponding to text-only prompts. Across all three episodes, the model
trained using MLC consistently predicts the correct output grid. In contrast, GPT-40 and Gemini
2.0 Flash frequently fail to identify the correct transformation—either misrepresenting the shape
of the transformed object or incorrectly predicting its final position. Notably, 03-mini successfully
predicts the correct output for the episodes in Figures[6|and[7] but fails on the example in Figure[5}
Figures 8] and [9] highlight episodes from the systematicity task. As shown, all general-purpose LLMs
fail to produce accurate transformations, often misplacing the transformed object within the grid. In
contrast, the model trained via MLC consistently predicts the correct transformation.

Response rates. As outlined in Section|[D.2] the general-purpose LLMs we evaluate are instructed to
present their final output grid predictions using the keyword “output:”, followed by a two-dimensional
array of size 10 x 10 in the format “[[. . .]]”. Responses that do not conform to this expected pattern
are excluded from subsequent analyses and are not included in accuracy calculations. Table
provides an overview of the proportion of valid responses for each model. In the standard few-shot

Thttps://huggingface.co/da-fr/Llama-3.2-3B-ARChitects-Re Arc-bnb-4bit
8https://huggingface.co/da-fr/Mistral-NeMo-Minitron-8B-ARChitects-Full-bnb-4bit
“https://github.com/da-fr/arc-prize-2024

25

https://huggingface.co/da-fr/Llama-3.2-3B-ARChitects-ReArc-bnb-4bit
https://huggingface.co/da-fr/Mistral-NeMo-Minitron-8B-ARChitects-Full-bnb-4bit
https://github.com/da-fr/arc-prize-2024

Under review as a conference paper at ICLR 2026

Table 4: The proportion of valid responses generated by the different models reported for the standard
three-shot learning task and the systematicity task. For general-purpose LLMs, valid responses must
contain the string “output:”, followed by a two-dimensional 10 x 10 array of the form “[[...]]".

Model Valid Responses (3-Shot) Valid Responses (Systematicity)
GPT-40 99.95% 99.40%
+ image 99.80% 77.24%
Gemini 2.0 Flash 99.92% 99.74%
+ image 99.51% 94.09%
03-mini (low) 100% 100%
Llama-3.2-3B-ReARC 100% 100%
+ test-time training - 100%
Mistral-NeMO-Minitron-8B-Full 100% 100%
+ test-time training - 100%
MLC (ours) 100% 100%

learning setting, all models demonstrate very high valid response rates, exceeding 99%. However, in
the systematicity task, a slight decrease in valid responses is observed for Gemini 2.0 Flash when
additional visual input (text+image) is introduced, with the rate falling to 94.09%. More significantly,
GPT-40 exhibits a notable drop in valid response rate to 77.24% under multimodal conditions. We
hypothesize that this decline may be attributed to the increased context length resulting from the
additional image input.

Error Analysis. As described in Section[5.2] we analyze the models’ predictions and compare them
with common failure modes. Table[5|shows the percentage of each error type described in Section[5.2]
across models. For errors related to the models predicting a primitive or level-1 transformation instead
of the desired level-2 transformation composition, we further illustrate which specific primitive or
level-1 transformation was applied in Table[6] Specifically, this table shows whether the primitive
transformation applied was based on the object’s shape, color, or neighboring object. Similarly, the
table illustrates which specific level-1 transformation composition was applied.

Training on static data. In addition to the model trained via MLC on a stream of dynamically
changing visual interpretation grammars, as described in Section [3.2] we adopt the approach of [Lake
(2019) and train a transformer-based encoder-decoder on a dataset governed by a fixed visual grammar
(referred to as basic seq2seq). This means that the indicator-transformation mappings are static across
the whole dataset. For instance, if yellow object translates one step downward, then this applies to all
data samples across the dataset. Instead of episodes with few-shot examples, this dataset comprises
individual input-output grid pairs, where the objective is to predict the output grid corresponding to a
given input grid. This more closely resembles a standard training approach.

Table 5: Error distribution by error category across models. Values denote the percentage (%) of
prediction errors assigned to each error category.

Model Format No Transform Primitive Level-1 Invalid Position Invalid Shape Other
GPT-40 0.60 0.46 4.59 7.71 6.62 79.26 0.77
+ image 2291 3.10 4.19 4.09 4.26 59.84 1.60
Gemini 2.0 Flash 0.26 1.56 11.41 22.41 5.73 58.32 0.30
+ image 7.60 0.72 9.05 15.52 4.60 61.83 0.68
03-mini (low) 0.00 5.06 30.86 13.08 0.79 49.31 0.91
Llama-3.2-3B-ReARC 0.00 55.28 25.13 4.77 0.30 14.47 0.06
+ test-time training 0.00 0.44 6.18 67.13 10.72 15.52 0.00
Mistral-NeMO-Minitron-8B-Full 0.00 0.54 53.41 28.89 0.12 17.03 0.01
+ test-time training 0.00 247 5.05 71.55 13.31 7.62 0.00
MLC (ours) 0.05 3.34 3.56 9.11 3.02 70.57 10.35

26

Under review as a conference paper at ICLR 2026

Table 6: Percentages of model errors falling into each primitive and level-1 transformation error
category.

Primitive Transformations Level-1 Transformations
Model Shape Color Neighbor Shape+Color Shape+Neighbor Color+Neighbor
GPT-40 2.09 1.56 0.93 4.68 2.10 0.92
+ image 1.97 1.57 0.66 2.65 1.01 0.42
Gemini 2.0 Flash 4.22 4.70 2.49 16.17 4.05 2.19
+ image 2.96 3.66 243 9.58 3.45 2.49
03-mini (low) 16.67 13.07 1.12 11.16 0.99 0.93
Llama-3.2-3B-ReARC 14.22 6.48 4.43 2.80 1.74 0.24
+ test-time training 0.27 5.16 0.76 8.81 35.68 22.64
Mistral-NeMO-Minitron-8B-Full ~ 39.44 7.46 6.50 15.30 13.49 0.11
+ test-time training 0.05 4.08 0.91 8.05 38.81 24.69
MLC (ours) 0.16 1.08 2.32 5.98 2.16 0.97

We construct a dataset of 1,300 grid pairs, partitioned into 1,260 training samples, 20 validation
samples, and 20 test samples. Samples represent primitive transformations, as well as level-1
and level-2 transformation compositions. As with our other experiments, the test set includes
level-2 transformation compositions that were not observed during training—only their constituent
components and level-1 compositions were seen during training. For instance, the test set might
include transformations composed of shape-based downward translation, color-based horizontal
reflection, and neighbor-based upward extension. However, only their decomposed elements have
been shown during training.

The model is trained for 200 epochs on the dataset using the parameters specified in Section [C|
While it successfully fits the training data (with an accuracy of over 99%), it fails to generalize to
the out-of-distribution test set, achieving a test accuracy of 0.0%. This demonstrates that traditional
model training, sample by sample, does not encourage systematic generalization to unseen composi-
tions. Instead, systematicity requires a training procedure with examples over dynamically varying
interpretation grammars, as described in Section[3.2]

F USE OF AI ASSISTANTS

We used GitHub Copilot for parts of the project’s code, and ChatGPT for minor language revisions.

27

Under review as a conference paper at ICLR 2026

Table 7: Summary of dataset statistics across different dataset splits, each determined by a distinct
random seed. Listed are the number of episodes in the training, validation, and test sets. Additionally,
the final query transformation compositions (level 2) are reported for both the training and evaluation
datasets. The rightmost column details the frequency of each basic geometric transformation present
in the training dataset.

Data Split No. Episodes Query Transformations Basic Transformations
Set No. Type Composition Transformation Freq.
Train 82908 translation+reflection+coloring red coloring 35828
Val 8546 reflection-+rotation+extension orange coloring 35819
Test 8546 translation+reflection+rotation down translation 23398
Train translation+rotation+coloring right translation 27021
seed 1860 reflection+coloring+extension leftward extenélon 22140
reflection+rotation+coloring upward extension 21806
translation+coloring+extension cw. rotation 19551
rotation+coloring+extension ccw. rotation 19394
Test translation+rotation+extension horizontal reflection 21967
translation+reflection+extension vertical reflection 21800
Train 83481 translation+rotation+extension red coloring 27603
Val 8259 translation+reflection+rotation orange coloring 27525
Test 8260 reflection+rotation+extension down translation 31385
Train reflection+coloring+extension right translation 36126
seed 1870 translation+reflection+extension leftward exten§1on 26501
translation+rotation+coloring upward extension 25913
translation+reflection+coloring cw. rotation 15421
translation+coloring+extension ccw. rotation 15283
Test rotation+coloring+extension horizontal reflection 22366
reflection+rotation+coloring vertical reflection 22320
Train 80035 translation+coloring+extension red coloring 25850
Val 9982 translation+rotation+extension orange coloring 25832
Test 9983 translation+rotation+coloring down translation 31385
Train reflection+rotation+extension right translation 36126
seed 1880 translation+reflection+coloring leftward extenélon 24821
translation+reflection+extension upward extension 24147
translation+reflection+rotation cw. rotation 19734
rotation+coloring+extension ccw. rotation 19594
Test reflection+rotation+coloring horizontal reflection 16331
reflection+coloring+extension vertical reflection 16285
Train 80557 translation+coloring+extension red coloring 30227
Val 9721 translation+reflection+rotation orange coloring 30255
Test 9722 rotation+coloring+extension down translation 23279
Train translation+reflection+coloring ri ght translation 24789
seed 1890 reflection+rotation+extension leftward exten§10n 26483
translation+reflection+extension upward extension 26277
reflection+coloring+extension cw. rotation 13949
reflection+rotation+coloring ccw. rotation 13831
Test translation+rotation+coloring horizontal reflection 26329
translation+rotation+extension vertical reflection 26252

28

Under review as a conference paper at ICLR 2026

Table 8: Statistics of the dataset version including more diverse transformations. Listed are the number
of episodes in the training, validation, and test sets. Additionally, the final query transformation
compositions (level 2) are reported for both the training and evaluation datasets. The rightmost
column details the frequency of each basic geometric transformation present in the training dataset.

Data Split No. Episodes Query Transformations Basic Transformations
Set No. Type Composition Transformation Freq.
Train 85528 translation+reflection+coloring red coloring 18376
Val 5472 reflection+rotation+extension orange coloring 18627
Test 5473 translation+reflection+rotation yellow coloring 18961
Train translation+rotation+coloring green coloring 18491
reflection+coloring+extension 1-step left translation 6471
reflection+rotation+coloring 2-step left translation 3671
translation+coloring+extension 1-step right translation 7942
rotation+coloring+extension 2-step 1 ight translation 5438
Test translation+rotation+extension 1-step up translation 6780
seed 1860 translation+reflection+extension 2-step up translation 4051
1-step down translation 6686
2-step down translation 4022
leftward extension 11742
rightward extension 12071
upward extension 11801
downward extension 12909
cw. rotation 20797
ccw. rotation 20799
horizontal reflection 23536
vertical reflection 23413

29

Under review as a conference paper at ICLR 2026

Study Examples Query Predictions

Few-Shot Examples

03-mini

Output Grid

Output Grid Output Grid

Query Target

Figure 5: An example of the few-shot learning task. Models are provided with three study examples
that demonstrate the transformation that needs to be inferred for the final input grid. Model predictions
are displayed to the right.

Study Examples Query Predictions

Few-Shot Examples Output Grid Output Grid Output Grid

Input Grid Input Grid Input Grid Input Grid

03-mini GPT-40 Gemini 2.0

put Grid Outpu

[L]
Query Target MLC (ours) Llama

Figure 6: A second example of the few-shot learning task. Models are provided with three study
examples that demonstrate the transformation that needs to be inferred for the final input grid. Model
predictions are displayed to the right.

Study Examples Query Predictions

03-mini

Output Grid

Output Grid Output Grid Output Grid

[11 BN | [[N [1 BNy |

Output Grid

[[ey [}

|
MLC (ours) Llama Mistral

Query Target

Figure 7: A third example of the few-shot learning task. Models are provided with three study
examples that demonstrate the transformation that needs to be inferred for the final input grid. Model
predictions are displayed to the right.

30

Under review as a conference paper at ICLR 2026

Study Examples

Query Predictions

Primitive Transformations

Output Grid

Output Grid Output Grid
[[Ry T IT [T “HEE

Composition H
(level=2) MLC (ours) Llama

Input Grid

Transformation Compositions (level=1)

Input Grid Input Grid Input Grid Input Grid Input Grid
& |

Input Grid

Hn
03-mini Llama (TTT)

Output Grid Output Grid

Query Target

Figure 8: An episode from the systematicity task. Given a set of study examples comprising primitive
transformations and level-1 transformation compositions, models are asked to predict the output
grid for a previously unseen level-2 transformation composition. Predictions of different models are

presented to the right.

Study Examples

Query Predictions

Primitive Transformations

Output Grid

Output Grid Output Grid

Composition

(level=2) MLC (ours) Llama
Input Grid Output Grid Output Grid

Transformation Compositions (level=1)
Input Grid Input Gi Input G

Hn
03-mini Llama (TTT)
Output Grid Output Output Grid
Input Grid

Query Target

Figure 9: Another episodes from the systematicity task. Given a set of study examples comprising
primitive transformations and level-1 transformation compositions, models are asked to predict the
output grid for a previously unseen level-2 transformation composition. Predictions of different

models are presented to the right.

31

Under review as a conference paper at ICLR 2026

Study Examples

Example input 1 Example output 1

—_—
Example input 2 Example output 2
—
N
Query Final input:
—

Figure 10: An exemplary visual input used in the multimodal prompt for the 3-shot learning task.

Study Examples

Example input 1: Example output 1 Example input 7: Example output 7.

Example input 2 Example output 2 Example input 8- Example output 8

Example input 3: Example output 3 Example input9: Example output 9

Example input 4 Example output 4 Example input 10: Example output 10

Example input 5: Example output 5 Example input 11: Example output 11

Example input 6 Example output 6 Example input 12: Example output 12

Query

Final input:

Figure 11: An exemplary visual input used in the multimodal prompt for the systematicity task.

32

Under review as a conference paper at ICLR 2026

Text-Only 3-Shot Prompt]
J

#i## Task Description:
You must solve an abstract visual reasoning task by identifying geometric transformations (e.g., rotation,
translation, color changes, etc.) applied to objects within a 10x10 grid.

To infer the correct geometric transformation, you are given a series of 3 pairs of input-output examples. Each

example pair consists of:

e Aninput grid: a 10x10 list of lists (2d array), where each element is an integer (0-9).

* A corresponding output grid: a 10x10 list of lists (2d array) that has undergone a transformation based on a
specific geometric rule.

For the prediction you need to understand the transformations displayed in the provided examples and apply
them to the final input grid.

Your Task:

1. Analyze the example pairs to infer the transformation rules applied to each input grid.
2. Identify how these transformations are applied to generate the output grids.

3. Apply the deduced transformations to the final input grid.

4. Output the correctly transformed 10x10 grid.

Output Requirements:

¢ Return only the final output grid.

* Do not include any extra text, explanations, or comments.

* The output must be formatted exactly as: ‘output: [[...]]°

* The output grid must be a 10x10 list of lists containing only integers between 0 and 9 (inclusive).
* Do not include unnecessary line breaks or additional text beyond the specified format.

Input Format:
You will receive the following data:

1. Study examples: A list of 3 few-shot example pairs, formatted as:
‘example input 1: [[...]], example output 1: [[...]], ..., example input 3: [[...]], example output 3: [[...]]

2. Final input: A single 10x10 list of lists on which you must apply the inferred transformation(s).

Your goal is to determine the correct transformation and return the final output grid.

Input:

Study examples:

example input 1: <2-dimensional array representing the input grid of example 1>
example output 1: <2-dimensional array representing the output grid of example 1>

example input 3: <2-dimensional array representing the input grid of example 3>
example output 3: <2-dimensional array representing the output grid of example 3>

Final input: <2-dimensional array representing the final query input grid>

Figure 12: The prompt used for the few-shot experiment when instructing LLMs in (text-only) mode.
Text enclosed in sharp brackets < ... > is replaced by the actual examples.

33

Under review as a conference paper at ICLR 2026

Text+Image 3-Shot Prompt]
J

Task Description:
You must solve an abstract visual reasoning task by identifying geometric transformations (e.g., rotation,

translation, color changes, etc.) applied to objects within a 10x10 grid.

To infer the correct geometric transformation, you are given a series of 3 pairs of input-output examples. Each

example pair consists of:

¢ An input grid: a 10x10 list of lists (2d array), where each element is an integer (0-9).

* A corresponding output grid: a 10x10 list of lists (2d array) that has undergone a transformation based on a
specific geometric rule.

For the prediction you need to understand the transformations displayed in the provided examples and apply
them to the final input grid.

Your Task:

1. Analyze the example pairs to infer the transformation rules applied to each input grid.
2. Identify how these transformations are applied to generate the output grids.

3. Apply the deduced transformations to the final input grid.

4. Output the correctly transformed 10x10 grid.

Output Requirements:

* Return only the final output grid.

* Do not include any extra text, explanations, or comments.

¢ The output must be formatted exactly as: ‘output: [[...]]*

* The output grid must be a 10x10 list of lists containing only integers between 0 and 9 (inclusive).
¢ Do not include unnecessary line breaks or additional text beyond the specified format.

Input Format:
You will receive the following data:

1. Study examples: A list of 3 few-shot example pairs, formatted as:
‘example input 1: [[...]], example output 1: [[...]], ..., example input 3: [[...]], example output 3: [[...]]

2. Final input: A single 10x10 list of lists on which you must apply the inferred transformation(s).

3. Image input: Additionally, you receive an image that visualizes the 3 few-shot example pairs and the final
input query.

Your goal is to determine the correct transformation and return the final output grid.

Input:

Study examples:

example input 1: <2-dimensional array representing the input grid of example 1>
example output 1: <2-dimensional array representing the output grid of example 1>

example input 3: <2-dimensional array representing the input grid of example 3>
example output 3: <2-dimensional array representing the output grid of example 3>

Final input: <2-dimensional array representing the final query input grid>

Figure 13: The prompt used for the few-shot experiment when instructing LLMs in (text+image)
mode. Text enclosed in sharp brackets < ... > is replaced by the actual examples. Additionally, the
model is provided with the image in Figure @

34

Under review as a conference paper at ICLR 2026

Text-Only Systematicity Prompt]
J

#i## Task Description:
You must solve an abstract visual reasoning task by identifying geometric transformations (e.g., rotation,
translation, color changes, etc.) applied to objects within a 10x10 grid.

To infer the correct geometric transformation, you are given a series of 12 pairs of input-output ex-
amples. Each example pair consists of:
e Aninput grid: a 10x10 list of lists (2d array), where each element is an integer (0-9).

* A corresponding output grid: a 10x10 list of lists (2d array) that has undergone a transformation based on a
specific geometric rule.

The first 6 example pairs demonstrate primitive transformations based on the object’s color, shape, or the
presence of an additional object. For instance, objects of a certain color within the 10x10 input grid might
undergo a translation, while objects of a certain shape (distinct numerical pattern) are being rotated.

The latter 6 example pairs involve composite transformations, meaning multiple transformations are
applied simultaneously. For instance, for objects that have the appropriate color and shape, both a translation
and rotation are applied simultaneously.

For the final prediction you need to understand and further combine the transformations displayed in
the provided examples and apply them to the final input grid.

Your Task:

1. Analyze the example pairs to infer the transformation rules applied to each input grid.
2. Identify how these transformations might combine to generate the output grids.

3. Apply the deduced transformations to the final input grid.

4. Output the correctly transformed 10x10 grid.

Output Requirements:

¢ Return only the final output grid.

* Do not include any extra text, explanations, or comments.

* The output must be formatted exactly as: ‘output: [[...]]°

* The output grid must be a 10x10 list of lists containing only integers between 0 and 9 (inclusive).
* Do not include unnecessary line breaks or additional text beyond the specified format.

Input Format:
You will receive the following data:

1. Study examples: A list of 12 study example pairs, formatted as:
‘example input 1: [[...]], example output 1: [[...]], ..., example input 12: [[...]], example output 12: [[...]]*

2. Final input: A single 10x10 list of lists on which you must apply the inferred transformation(s).

Your goal is to determine the correct transformation and return the final output grid.

Input:

Study examples:

example input 1: <2-dimensional array representing the input grid of example 1>
example output 1: <2-dimensional array representing the output grid of example 1>

example input 12: <2-dimensional array representing the input grid of example 12>
example output 12: <2-dimensional array representing the output grid of example 12>

Final input: <2-dimensional array representing the final query input grid>

Figure 14: The prompt used for the systematicity experiment when instructing LLMs in (text-only)
mode. Text enclosed in sharp brackets < ... > is replaced by the actual examples.

35

Under review as a conference paper at ICLR 2026

Text+Image Systematicity Prompt]
J

##t# Task Description:
You must solve an abstract visual reasoning task by identifying geometric transformations (e.g., rotation,
translation, color changes, etc.) applied to objects within a 10x10 grid.

To infer the correct geometric transformation, you are given a series of 12 pairs of input-output ex-

amples. Each example pair consists of:

* Aninput grid: a 10x10 list of lists (2d array), where each element is an integer (0-9).

A corresponding output grid: a 10x10 list of lists (2d array) that has undergone a transformation based on a
specific geometric rule.

The first 6 example pairs demonstrate primitive transformations based on the object’s color, shape, or the
presence of an additional object. For instance, objects of a certain color within the 10x10 input grid might
undergo a translation, while objects of a certain shape (distinct numerical pattern) are being rotated.

The latter 6 example pairs involve composite transformations, meaning multiple transformations are
applied simultaneously. For instance, for objects that have the appropriate color and shape, both a translation
and rotation are applied simultaneously.

For the final prediction you need to understand and further combine the transformations displayed in
the provided examples and apply them to the final input grid.

Your Task:

1. Analyze the example pairs to infer the transformation rules applied to each input grid.
2. Identify how these transformations might combine to generate the output grids.

3. Apply the deduced transformations to the final input grid.

4. Output the correctly transformed 10x10 grid.

Output Requirements:

* Return only the final output grid.

* Do not include any extra text, explanations, or comments.

* The output must be formatted exactly as: ‘output: [[...]]*

* The output grid must be a 10x10 list of lists containing only integers between 0 and 9 (inclusive).
* Do not include unnecessary line breaks or additional text beyond the specified format.

Input Format:
You will receive the following data:

1. Study examples: A list of 12 study example pairs, formatted as:
‘example input 1: [[...]], example output 1: [[...]], ..., example input 12: [[...]], example output 12: [[...]]*

2. Final input: A single 10x10 list of lists on which you must apply the inferred transformation(s).

3. Image input: Additionally, you receive an image that visualizes the 12 study example pairs and the final
input query.

Your goal is to determine the correct transformation and return the final output grid.
Input:

Study examples:

example input 1: <2-dimensional array representing the input grid of example 1>

example output 1: <2-dimensional array representing the output grid of example 1>

example input 12: <2-dimensional array representing the input grid of example 12>
example output 12: <2-dimensional array representing the output grid of example 12>

Final input: <2-dimensional array representing the final query input grid>

Figure 15: The prompt used for the systematicity experiment when instructing LLMs in (text+image)
mode. Text enclosed in sharp brackets < ... > is replaced by the actual examples. Additionally, the
model is provided with the image in Figure @

36

	Introduction
	Background: meta-learning for compositionality
	Method
	Compositional-ARC
	Meta-learning for compositionality in abstract spatial reasoning

	Experimental setup
	Task setup
	Large language models
	Evaluation metrics

	Results
	Consistency across data splits
	Error analysis
	Increasing dataset complexity

	Related work
	Conclusion
	Systematic generalization in LLMs
	Dataset
	Grid setup
	Geometric transformations
	Dataset generation
	Dataset statistics

	Training details
	Hyperparameters
	Implementation details
	Original MLC training

	Experiment details
	Evaluation metrics
	Model information

	Additional results
	Use of AI assistants

