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Abstract

Graphs are ubiquitous in nature and can therefore serve as models for many practical but also
theoretical problems. For this purpose, they can be defined as many different types which
suitably reflect the individual contexts of the represented problem. To address cutting-edge
problems based on graph data, the research field of Graph Neural Networks (GNNs) has
emerged. Despite the field’s youth and the speed at which new models are developed, many
recent surveys have been published to keep track of them. Nevertheless, it has not yet
been gathered which GNN can process what kind of graph types. In this survey, we give a
detailed overview of already existing GNNs and, unlike previous surveys, categorize them
according to their ability to handle different graph types and properties. We consider GNNs
operating on static and dynamic graphs of different structural constitutions, with or without
node or edge attributes. Moreover, we distinguish between GNN models for discrete-time or
continuous-time dynamic graphs and group the models according to their architecture. We
find that there are still graph types that are not or only rarely covered by existing GNN
models. We point out where models are missing and give potential reasons for their absence.

1 Introduction

Over the last decades, neural networks (NNs) have become increasingly important. Their development
dates back to the early 1940s (Anderson & Rosenfeld, 1988) 1. With increasing computational power
and the possibility of utilizing Deep Learning (DL), their applications have reached most parts of society,
from detecting cancer (McKinney et al., 2020) to playing computer games (Ibarz et al., 2018; Silver et al.,
∗All authors contributed equally.
1Anderson & Rosenfeld (1988) provides a historical overview up to the end of the 1980s.
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2018). Nevertheless, classical NNs are limited to Euclidean data. Given the rising amount of non-Euclidean
data (Bronstein et al., 2017) and the fact that graphs are a suitable mathematical representation for many
theoretical and practical problems, several authors started investigating NNs on particular graph problems
(Cimikowski & Shope, 1996; Lai et al., 1994) or so-called “structures” (Sperduti, 1997; Sperduti & Starita,
1997) in the 90s. With an ever-increasing amount of graph data available (see, e.g., repositories Rossi &
Ahmed (2015), or OGB Hu et al. (2020)) in many applications (e.g., traffic (Ma et al., 2020; Rossi & Ahmed,
2015), citation (Feng et al., 2019; Ioannidis et al., 2019; Ren et al., 2020; Tran & Tran, 2020), biological or
medical (La Gatta et al., 2020; Wang et al., 2020; Yadati et al., 2019; Zitnik et al., 2018), social (Pareja et al.,
2020; Rossi et al., 2020; Trivedi et al., 2019), recommendation (Sankar et al., 2020; Wang et al., 2021; Yang
et al., 2020)), so-called Graph Neural Networks (GNNs) have become a thriving research field.

Therefore, many surveys have recently conducted intensive research on GNN models, e.g., Barros et al.
(2021); Kazemi et al. (2020); Skarding et al. (2021); Zhou et al. (2020). However, most GNN models are
either limited to a specific graph type or developed to address particular problems. E.g., Hier-GNN Chen
et al. (2022) is developed especially for hierarchical graphs, MXMNet Zhang et al. (2020a) for multiplex
graphs, and EpiGNN La Gatta et al. (2020) focuses on learning the evolution of an epidemic. On the other
hand, real-world graphs are diverse. In many cases, they contain heterogeneous nodes or edges and evolve
dynamically. One example of a heterogeneous graph is a power grid representation in which the nodes could
have different types, such as “solar power plants”, “wind parks”, or “nuclear power plants”. An example of a
dynamic graph is a social network with time-changing nodes and the connections among them. However,
no comprehensive overview is available that investigates which graph types are addressed by existing GNN
models. Since the graph type plays a vital role in choosing a model to solve a graph problem, it is essential
to provide an overview of the latest collection of GNNs.

This survey aims to fill this gap by providing an outline of GNNs for all graph types and pointing out the
absent GNN models for static and dynamic graphs. As a comprehensive overview of the different graph types
is missing, the first contribution of this survey consists of the definition and overview of these. It covers basic
structural graph types (e.g., directed, multi-, heterogeneous, or hypergraphs) for static and dynamic graphs
in discrete and continuous-time and the so-called semantic graph types (e.g., cyclic, regular, and bipartite
graphs). This categorization approach is advantageous because some GNN models are restricted to specific
graph properties. The second contribution is an analysis of which graph types can be handled by currently
available GNN models. As a third contribution, we group the investigated GNN models by their architecture
in the main part. The final contribution consists in analyzing what graph types cannot be handled by current
GNN models, including explanations for these gaps.

Due to the vast amount of publications in the field, this survey cannot cover all existing models. Therefore,
this survey aims to cover the most important models and list only one or two models for each graph type or
property to illustrate the existence of at least one model. The following criteria determine the importance of
the models for the choice: 1) Up-to-dateness of the model, 2) relevance of the model concerning the number
of citations and its use as a baseline in other publications, 3) the generality of the model (e.g., that it is
not only applicable to a particular domain), 4) explicitness in addressing the listed graph properties, and 5)
simplicity of the model (e.g., if two models fulfill the same task, priority is given to the simpler one). The
individual reason for the choice of each model can be found in the appendix in Tab.8.

This paper is structured as follows. Sec. 2 contains related work. In Sec. 3, the considered graphs and their
properties are defined in 3.1, while preliminary definitions concerning GNNs are given in 3.2. Sections 4 to 7
constitute the central part of the paper and deal with GNN models focusing on structural graph properties
(Sec. 4), dynamic graph properties (Sec. 5), semantic graph properties (Sec. 6) and combined or other GNN
models (Sec. 7). Here, each section contains a table showing which graph types and properties are addressed
by existing GNN models, a description of the applied GNN techniques, and an evaluation of why current
models might not cover specific properties. Note that many models have the same acronym in the respective
publication. Therefore we altered some of them to distinguish the models and improve readability. Finally,
Sec. 8 concludes the work and points out future challenges. The mathematical notation used throughout this
work can be found in Sec. 9, Tab. 7.
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2 Related Work

Several surveys that review GNNs concerning different aspects have been proposed over the last few years.
Multiple surveys provide a more detailed overview of specific types of methods, such as convolutional GNNs
(Gama et al., 2020; Zhang et al., 2018; 2019b), GNNs using attention mechanisms (Lee et al., 2019), or
Baysian GNNs (Shi et al., 2021). Furthermore, many existing surveys focus on specific application areas
(Jiang & Luo, 2022; Shlomi et al., 2020; Wu et al., 2022), such as natural language processing (Wu et al.,
2021), combinatorial optimization (Peng et al., 2021), or power systems (Liao et al., 2021). Other publications
reviewing GNN models concentrate on specific aspects such as explainability (Yuan et al., 2021), or the
expressive power of GNNs (Sato, 2020). Unlike these publications, we provide a more general survey, which
is neither limited to particular types of methods or aspects nor explicit application fields.

Cai et al. (2018) provide a broad survey of graph embedding techniques, including methods apart from
deep learning, such as matrix factorization or graph kernels, similar to (Cui et al., 2018; Goyal & Ferrara,
2018; Hamilton et al., 2017). In Bronstein et al. (2017), an overview of deep learning methods applicable
to non-Euclidian data is provided. The survey does not only focus on graphs but aims to cover methods of
geometric deep learning in general, including its applications, challenges, and future directions. Concerning
GNNs, it primarily surveys convolutional methods. However, the aforementioned surveys do not cover
methods for dynamic graphs. In contrast, (Wu et al., 2020) covers spatial-temporal GNNs, convolutional
methods, recurrent GNNs, and graph autoencoders. The investigated methods are grouped according to
these categories. Similarly, (Zhang et al., 2020b) review models by the type of GNN they apply. However,
these categories differ from thosse in Wu et al. (2020) such that instead of spatial-temporal GNNs, graph
reinforcement learning and adversarial methods are discussed. Both methods only partially cover dynamic
graph models.

Further publications such as Barros et al. (2021); Kazemi et al. (2020); Skarding et al. (2021) explicitly focus
on models for dynamic graphs. Skarding et al. (2021) further group the reviewed models concerning the
encoded type of dynamics (e.g., node dynamic, edge-growing) and the applied methods. While Barros et al.
(2021) and Skarding et al. (2021) survey models for dynamic graphs only, Kazemi et al. (2020) also reviews
several static methods. However, the corresponding chapter of this survey aims to understand better the
basic concepts for static graphs, which can be extended to dynamic graphs, rather than reviewing methods
for static graphs. None of the abovementioned surveys categorizes the reviewed methods for different graph
types and their semantic properties. The only survey that explicitly investigates GNN models concerning
the graph types is Zhou et al. (2020). However, it does not consider all graph types covered in this survey
since we provide a more fine-grained distinction of different graph properties. Moreover, in Zhou et al. (2020)
the authors focus on the pipeline of designing a GNN, including identifying the graph type and additional
network modules such as pooling or sampling. Accordingly, it takes a different point of view and reviews
GNN models amongst other modules, which can be integrated into a deep learning pipeline.

Our contribution is a detailed overview of existing GNNs and their categorization into certain types of methods,
but more importantly, the types of graphs they can process. Unlike many existing surveys, we consider
static and dynamic graphs. Moreover, we group the corresponding dynamic GNNs into discrete-time and
continuous-time dynamic models while considering the node and edge attributes and the graph’s structure.

3 Foundations

The application of graphs takes place in many different fields. This is because of the high degree of freedom
in designing a graph and, thus, in representing information. Therefore, many different graph types have
been developed and extended over time. This section defines graph types and properties in detail to give
the reader a comprehensive insight into all graph types and associated GNNs in detail and presents them in
order. Readers familiar with the different graph types and properties may omit this section and go on to the
following section, Sec. 4, for an overview of existing GNN models and architectures.

For the remainder of this section, the reader is assumed to have basic knowledge of analysis and linear algebra
(see, for example, Abbott (2001); Strang (1993)). A table containing the most frequently used notation can
be found in Sec. 9.
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3.1 Graphs And Their Properties

At first, the considered graph properties and graph types have to be defined to survey for which graph types
and properties GNN models exist. These definitions are given here, as well as some graph-related terms
which are needed throughout the paper.

We distinguish between structural and semantic graph properties. The graph structure is defined only by the
mathematical objects that make up the graph, i.e., node, edge, and attribute sets. The so-called structural
properties can be deduced from these sets, e.g., whether the graph is directed or attributed. Semantic
properties, in contrast, do not affect the mathematical representation. They result from interpreting the
graph, e.g., whether it is cyclic or a tree. Some GNNs specialize in such properties since they frequently
occur in real-world applications. All definitions concerning structural properties are taken from Thomas et al.
(2021) and given here for the reader’s comfort.

In the following, elementary graph types are defined. They form the basis for all graphs to which neural
networks have already been applied or might be applied in the future.
Definition 3.1 (Static Graphs: Elementary)

1. A directed (simple) graph is a tuple G = (V,E) containing a set of nodes V ⊂ N and a set of
directed edges given as tuples E ⊆ V × V.

2. A (generalized) directed hypergraph is a tuple G = (V,E) with nodes V ⊂ N and hyperedges

E ⊆ {(x, fi)i ∣ x ⊆ V, fi ∶ x → N0}

that include a numbering map fi for the i-th edge (x, f)i which indicates the order of the nodes in
the (generalized) directed hyperedge. W.l.o.g. it can be assumed that the numbering is gap-free, so
if there exists a node u ∈ x with f(u) = k > 1 then there will also exist a node v s.t. f(v) = k − 1.

These graphs are called elementary because every other graph is a composition of them. In this sense, a
directed hypergraph is a directed simple graph that simultaneously is a hypergraph. Since one can not
only combine elementary graphs but also extend them with additional properties, in what follows, different
types of graph properties are introduced. Namely the static structural, dynamic structural, and semantic
properties.
Definition 3.2 (Static Structural Graph Properties)
An elementary graph G = (V,E) is called

1. undirected if the edge directions are irrelevant, i.e.,
• for directed graphs: if (u, v) ∈ E whenever (v, u) ∈ E for u, v ∈ V . Then, the edges can be denoted

as a set of sets instead of a set of tuples, namely

E ⊆ {{u, v} ∣u, v ∈ V, u ≠ v} ∪ {{u} ∣ u ∈ V}2,

• for directed hypergraphs: if fi ∶ x → {0} for all (x, fi)i ∈ E3. Abbreviated by E ⊆ {x ∣ x ⊆ V}.
2. multigraph if it is a multi-edge graph, i.e., the edges E are defined as a multiset4, a multi-node

graph, i.e., the node set V is a multiset, or both.
3. heterogeneous if the nodes or edges can have different types (node or edge-heterogeneous).

Mathematically, the type is appended to the nodes and edges. I.e., the node set is determined by
V ⊆ N×S with a node type set S and thus, a node (v, s) ∈ V is given by the node v itself and its type s.
The edges can be extended by a set R that describes their types, to (e, r) ∀ e ∈ E of edge type r ∈R.

4. attributed if the nodes V or edges E are equipped with node or edge attributes. These attributes
are formally given by a node attribute function and an edge attribute function, respectively, i.e.
α ∶ V → A and ω ∶ E →W, where A and W are arbitrary attribute sets. In case there are only node
attributes the graph is called node-attributed (or node labeled/node features), in case of just edge
attributes it is called edge-attributed and if we have W ⊆ R it is called weighted.

2the second set contains the set of self-loops
3fi(x) = 0 encodes that x is an undirected hyperedge
4A multiset is a set that can have entries which occur multiple times.
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Fig. 1 shows examples for each graph type up to this point.

directed graph undirected graph

heterogeneous graphdirected hypergraph

1 2
1

21

2

3

1

1 1

1

2

2

multigraph

v1

v2

v5

v4 v3

v4

attributed graph

a1='Ozzy'
a2=(-2,4)

a3=7

a4=

a5=

Figure 1: Visualization of different elementary static graph types.

The term static in these structural properties stands for the absence of temporal dependence. This means,
in particular, that once the graph is given, it never changes with time. In contrast, the so-called (temporal)
dynamic structural graph properties are listed in the following.
Definition 3.3 (Dynamic Structural Graph Properties)
A graph is called

1. dynamic if the graph structure or the graph properties are time dependent. In the following, the
notation Gi = (Vi,Ei), ti ∈ T is used, where T is a set of (not necessarily equidistant) timestamps to
emphasize the time-dependence and therefore the dynamics.

2. growing if it is dynamic and the node or edge sets evolve w.r.t. addition of new nodes and edges
respectively. I.e., for all ti ∈ T it holds

Vi ⊆ Vi+1 or Ei ⊆ Ei+1.

3. shrinking if it is dynamic and we just allow node or edge set evolution w.r.t. deletions of nodes and
edges respectively. I.e., for all ti ∈ T , it is

Vi ⊇ Vi+1 or Ei ⊇ Ei+1.

4. strictly growing/shrinking if we consider only real inclusions in definition 2 and 3 above.
5. structure-dynamic if it is growing, shrinking or both simultaneously, i.e., in particular, the nodes
V or edges E evolve over time due to additions or deletions of nodes or edges5.

6. attribute-dynamic if the node or edge attribute function is time-dependent. Thus, we extend our
notions of the attribute functions to αi ∶ Vi → A and ωi ∶ Ei →W, for all ti ∈ T .

7. type-dynamic if the graph type evolves over time. E.g., an undirected graph becomes directed from
one to another time step.

Structurally, these dynamics describe different temporal behaviors of graphs. When processing dynamic
graphs, they are typically defined either as discrete-time or continuous-time representations.

5(Kazemi et al., 2020) also mentions splits and merges of nodes and edges. Obviously, these events are sequences of additions
and deletions.
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Definition 3.4 (Dynamic Graph Representation)
1. A dynamic graph in discrete-time representation is given by a set G = {g1, . . . , gk} of graph

snapshots gi at time steps i = 1, . . . , k. Here, gi ∶= (Vi,Ei) are static graphs with nodes V and edges
Ei ⊆ {(u, v) ∣ u, v ∈ Vi}.

2. A dynamic graph in continuous-time representation is defined by a set G = {gt0 ,E} containing
an initial static graph at time stamp t0 ∈ T and a set E = {et, t ∈ T } of events encoding a structural
or attribute change at time stamp t > t0 ∈ T .

Not all combined graphs are equally important in the literature and especially for GNNs. The following
introduces some combined graph types of specific interest with proper names.
Definition 3.5 (Combined Static Graphs)

1. Knowledge graphs are defined in several ways. In Wang et al. (2021), they are defined as
heterogeneous directed graphs, while in Yu et al. (2020) knowledge graphs are the same as edge-
heterogeneous graphs. But there are also definitions that do not see a knowledge graph as a graph
combined from the aforementioned types, see for example Ehrlinger & Wöß (2016) for an overview.

2. A multi-relational graph (Hamilton, 2020) is an edge-heterogeneous but node-homogeneous graph.
3. A content-associated heterogeneous graph is a heterogeneous graph with node attributes that

correspond to heterogeneous data like, e.g., attributes, text or images (Zhang et al., 2019a).
4. A multiplex graph/multi-channel graph corresponds to an edge-heterogeneous graph with

self-loops (Hamilton, 2020). Here, we have k layers, where each layer consists of the same node set V ,
but different edge sets E(k). Additionally, inter-layer edges Ẽ exist between the same nodes across
different layers.

5. A spatio-temporal graph is a multiplex graph where edges per each layer are interpreted as spatial
edges and the inter-layer edges indicate temporal steps between a layer at time step t and t+ 1. They
are called temporal edges (Kapoor et al., 2020).

Remark. All the combined properties mentioned in Def. 3.5 can occur in dynamic graphs as well.

Besides the structural properties, a graph can have semantic properties that do not explicitly change its
structure but result from applying or interpreting the graph information. Some GNNs are limited or specialized
to these properties defined in the following.
Definition 3.6 (Semantic Graph Properties)
An elementary graph G = (V,E) is called

1. complete if all pairwise different nodes are connected through an edge, i.e., E = {(u, v) ∈ V×V ∣u ≠ v}.
2. r-regular if each node v ∈ V has r ∈ N neighbors, i.e.,

∣N (v)∣ ∶= ∣{u ∈ V ∣ (u, v) ∈ E}∣ = r.
3. bipartite if there exists a disjoint node decomposition into two sets V = U ⊍W , such that the edges

are of the form E ⊆ U ×W.
4. connected if the graph is undirected and for all node pairs v,w ∈ V there is a path from v to w in G.

An elementary graph is called weakly connected if the underlying undirected graph is connected
and it is strongly connected if for all node pairs v,w ∈ V there is a directed path from v to w in G.
Otherwise it is unconnected.

5. cyclic if it contains a cycle of length k ∈ N, i.e., there exists a subgraph
H = ({v1, . . . , vk},{e1, . . . , ek}) ⊆ G, vi ∈ V, ei ∈ E ∀i, such that the series of nodes and edges
v1, e1, v2, . . . , vk, ek, v1 is a closed (directed) path called (directed) cycle of length k with vi ≠ vj ∀i, j.
Otherwise, it is called acyclic or a forest.

6. tree if it is a connected forest. In case each node in the tree has at most two neighbors, it is called
binary tree (Gessel & Stanley, 1995). A polytree is a directed graph whose underlying undirected
graph is a tree (Dasgupta, 1999).

7. level-(l+1) hierarchical w.r.t. a level-l base graph H = (Ṽ, Ẽ) if one can find a complete partitioning
of H into k ≥ 1 non-empty, connected sets of nodes Ṽ1, .., Ṽk. Such that each set of nodes Ṽi ⊆ Ṽ
induces a subgraph subi(H) = (Ṽi, Ẽi ⊆ Ẽ) with Ẽi = {(v1, v2) ∈ Ẽ ∣ v1, v2 ∈ Ṽi}. Each of these
subgraphs, in turn, corresponds to a node in the hierarchical graph G. Edges in G correspond to
edges in H between nodes vi, vj of two different subgraphs subi(H), subj(H) (Stoffel et al., 2008).
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8. scale-free, if its node degree distribution P (d) follows a power law P (d) d−γ , where γ typically lies
within the range 2 < γ < 3.

A (generalized) (directed) hypergraph G = (V,E) is called

9. recursive, if an edge can not only exist between nodes, but also between edges and in a recursive
way. E.g. two edges e1 and e2 make up edge e12, edges e3 and e4 make up edge e34 and edge e5
consists of edges e12 and e34. See definition 4 of an ubergraph in Joslyn & Nowak (2017) and figure
1a in Yadati (2020) for a visualization.

Fig. 2 shows examples for each semantic graph property by applying it to undirected graphs.

bipartite

unconnected

tree

binary tree

complete

2-regular acyclic

cyclic

Figure 2: Semantic graph properties illustrated for undirected graphs.

In the following chapter, we introduce the basic architectures for GNNs that make up all the GNNs in this
survey. In order to be able to describe these appropriately, we list some frequently occurring graph-related
terms beforehand.
Definition 3.7 (Graph related terms)
Let G ∶= (V,E) be a graph.

1. The degree of a node v ∈ V is given by δ(v) = ∣{e ∈ E ∣ v ∈ e}∣. For directed graphs, the out- or
in-degree of v is the number of edges starting in v or ending in v, respectively. The degree of an
edge e ∈ E is determined by ∣e∣, i.e., by the number of nodes in the edge.

2. The graph Laplacian or Laplacian matrix L is defined by L =D −A, where D is the degree
matrix and A the adjacency matrix. In Graph Convolutional Neural Networks, it is mostly used in a
normalized version, e.g., the symmetric and normalized graph Laplacian Lnorm = D̃−

1
2 ÃD̃−

1
2 , where

Ã is the adjacency matrix with self connections and D̃ the degree matrix with self-loops.
3. An entry yi,j of the incidence matrix Y ∈ {0,1}∣V ∣×∣E ∣ of a graph G = (V,E) is 1, if the node i is

incident to edge j, and 0 otherwise. For non-hypergraphs, the incidence matrix has exactly 2 entries
per row that are non-zero. Let Ṽ ⊆ V be a set of nodes. Then, the induced subgraph of Ṽ is
defined by a graph G(Ṽ) = (Ṽ, Ẽ) with edges Ẽ = {e ∈ E ∣ e ∈ Ṽ × Ṽ} between the nodes of Ṽ.

4. A path from u ∈ V to v ∈ V, denoted by p(u, v) ∶= e1, . . . , ek ∈ E is a sequence of edges, for which
there is a sequence of nodes (z1, ..., zk+1) such that ei = (zi, zi+1) for i = 2, ..., k and e1 = (u,x) and
ek+1 = (y, v) for some x, y ∈ V.

5. The path length of a path p(u, v) = e1, . . . ek denotes the sequence length, i.e., len(p(u, v)) = k.
6. A random walk of length k is a path of length k whose edges are selected iteratively and randomly.

3.2 GNN Preliminaries

GNNs define the adaptation of traditional NNs to graph data and aim to learn high-level representations
of graphs in an end-to-end fashion by applying several network layers. They can be applied to all classical
machine learning problems, such as classification, regression, or clustering, for entire graphs and subgraphs at
a node or edge level. Each layer computes a new representation of the graph or its components. A typical
procedure is to update the representation for the nodes in each layer by propagating information through
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the graph. A task-specific prediction can then be made using the learned representation and a suitable
decoder function. For node classification, e.g., a typical choice for the decoder is a standard MLP with a
softmax activation as the output function. It maps the learned representation to a vector indicating the class
probabilities for all nodes. At the edge level, a frequently considered task is link prediction which aims to
predict the probability of the existence of an edge. The corresponding decoder is often implemented as a
logistic regression classifier since the existence of an edge can be expressed as a two-class problem.

Different types of GNNs specify the computation of the node representation in the GNN layers. According to
Bronstein et al. (2021), the following relation of GNN approaches applies:

message-passing ⊇ attention ⊇ convolution

Therefore, these are introduced one after the other, from the most general case to special ones. A visualization
of the three GNN layer types is shown in figure 3. The Recurrent Neural Networks coexist with the message-
passing and will be introduced afterward. Combined with GNNs, it is particularly relevant for dynamic graph
learning problems due to its ability to model temporal data.

convolutional

x1

x2

x3

cuu

xu

cu1

cu2

cu3

attentional

x1

xu

attu1

attu2

x3attu3

attuu

x2
message-passing

x1

xu x3

x2

muu

mu3

mu2

mu1

Figure 3: Visualization of the information propagation process in the different types of GNN layers for node u
and its neighbors. The idea for the figure is taken from Bronstein et al. (2021, Fig. 17). Left: In convolutional
layers, the node features xv of the neighbors v ∈ {1, . . . ,3} of node u are multiplied with a constant cu,v

to form the message. Middle: In attention layers, this multiplier is computed via an attention mechanism
attuv = att(xu, xv) between the source and the target nodes u, v. Right: In message-passing layers, the
messages muv are computed explicitly from the source and target node representations, i.e., muv = ψ(xu, xv).

3.2.1 Message-Passing

Message-passing determines which and how much information is forwarded between two nodes, e.g., via their
connecting edges. The resulting representation hu of node u is computed from the node representations
xv ∀v ∈ V:

hu = ϕ
⎛
⎝

xu, ⊕
v∈N (u)

ψ(xu,xv)
⎞
⎠
, (1)

where ψ is a learnable message function that assigns an information vector to the pair u, v. Typically, ψ
is defined as multiplication with a learnable weight matrix, and its output is denoted as a message. The
aggregation ⊕ depicts the message-passing process on the graph, which in most cases is implemented as a
non-parametric operation such as sum, mean, or maximum. N (u) denotes a neighborhood of node u and ϕ
is an activation function (Bronstein et al., 2021).

3.2.2 (Multi-head) Graph Attention

Graph attention is a special case of message-passing (Bronstein et al., 2021). Here, the message is computed by
applying a learnable function ψ to each neighboring node weighted by a so-called attention factor. Typically,
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the function ψ is shared across all neighbors, whereas the attention is computed individually for each node
pair. The attention mechanism specifies the message-passing rule in the aggregation function as follows:

hu = ϕ
⎛
⎝

xu, ⊕
v∈N (u)

att(xu,xv)ψ(xv)
⎞
⎠
, (2)

where the attention function att is learnable and determines the effect of the message from neighbor v with
representation ψ(xv) to the hidden representation hu of node u. Additionally, the attention coefficients are
normalized across all neighbors of the target node. Note that attk, therefore, depends not only on xu and xv

but also on all other neighbors of node xu. Furthermore, if ⊕ is a sum, the aggregation is a linear combination
considering feature-specific weights for the neighbors.

Multi-head attention extends the attention mechanism to K different attention functions (Velickovic et al.,
2018) and is determined by

hu = ∣∣
k∈[K]

ϕ
⎛
⎝

xu, ⊕
v∈N (u)

attk(xu,xv)ψ(xv)
⎞
⎠
, (3)

where ∣∣ denotes the concatenation operation. The K different attention functions also called attention heads
are computed independently. In Velickovic et al. (2018), an implementation of an attention mechanism is
proposed. The according self-attention function att ∶ Rdim(h) ×Rdim(h) Ð→ R outputs an attention weight.

ωi,j ∶= att(W hi,W hj)

for an edge (i, j) given the incident node embeddings hi,hj to indicate the importance of the features of
node j to node i for all node pairs i, j ∈ V. Considering the neighborhoods given in the graph, the attention
mechanism can be defined by

ai,j ∶= softmaxj(ωi,j) =
expωi,j

∑k∈N (i) expωi,k
.

3.2.3 Spatial and Spectral Graph Convolutions

Compared to the attention approach, the graph convolution aggregates the neighbored nodes directly using
fixed weights (Bronstein et al., 2021) by

hu = ϕ
⎛
⎝

xu, ⊕
v∈N (u)

cu,vψ(xv)
⎞
⎠
, (4)

where cu,v is a factor indicating the impact of neighbor v on the hidden representation of node u. Note
that cu,v is a pre-defined constant instead of a node-specific function, as is the case for attention layers. For
spatial convolution, cu,v is usually given by the (weighted) adjacency matrix and thus includes structural
information. For spectral convolution, spectral filters dependent on the graph Laplacian (c.f. 3.7.2) determine
the weights of all nodes in the graph integrating structural information implicitly.

If the aggregation is a sum, the layer can be interpreted as linear diffusion or position-dependent linear
filtering. An example of a spatial convolution in layer l − 1 is given in, e.g., Morris et al. (2019):

h(l+1)
u = σ(W1hu +W2 ∑

v∈N (u)

h(l)v ). (5)

W1 and W2 are learnable weight matrices and σ is an activation function such as ReLU(⋅) =max(0, ⋅) .
An implementation of a standard spectral convolution is given in, e.g., Kipf & Welling (2017). The layer-wise
propagation rule in layer l is determined by

H(l+1) = σ(D̃−
1
2 ÃD̃−

1
2

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Lnorm

H(l)W (l)), (6)
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where Ã = A +E is the adjacency matrix with added self connections, E is the identity matrix, D̃ is the
degree matrix of the graph with self-loops, and Lnorm is the normalized graph Laplacian. σ is an activation
function, and W is a learnable weight matrix functioning as a filter. The idea of spectral graph convolutions
comes from signal processing. Vividly, one can imagine it as global message passing on a graph, weighted
with a filter.

3.2.4 Recurrent Neural Networks

For each time step t, the Recurrent Neural Network (RNN) calculates a hidden representation using historical
information together with the current input X(t) (Bronstein et al., 2021). First, the input is transformed
by an encoder function f to a representation vector z(t) = f(X(t)). Then, z(t) is aggregated together with
the previous information by an update function R ∶ Rk ×Rm → Rm that additionally considers the hidden
representation from the time step before. Altogether, a basic RNN is formalized by

h(t) = R(z(t), h(t−1)).

In the context of graph learning, the node feature matrix is commonly used as initial input X(0). Furthermore,
in various GNNs for dynamic graphs, GCN layers are combined with RNNs by, e.g., modeling the GCN
weight evolution with an RNN or propagating the learned structural information from one timestamp to the
next timestamp.

4 Models Focusing on Structural Graph Properties

Learning on simple graphs is most prevalent in the research of GNNs. The elementary graph structure can
already model relations in the data, and the mathematical foundations go back to the 17th century. After
the most prominent introduction of Graph Neural Networks by Scarselli et al. (2009) for learning on static
node-attributed graphs, many different extensions have been proposed. An overview of GNN models for
simple static graphs is discussed in Sec. 4.1. Their approaches often build on the graph information processing
scheme of Scarselli et al. and adapt it to new applications and several structural graph properties.

One of the extensions includes the higher-order representation of relational data with the aid of elementary
hypergraphs. Hypergraph theory is still a young field and has been essentially developed by Claude Berge
Berge (1973) in the 1970s. Learning on hypergraphs has also emerged as part of research in recent years and
has much potential for applications on differently structured hypergraphs, as illustrated in Table 2.

4.1 GNNs for Simple Graphs

The number of GNNs for simple graphs has increased immensely in the past years, so Table 1 does not list
all of them but gives an overview of several GNNs for simple graphs with structural properties defined in
Def. 3.2. This demonstrates which graph types have already been considered in GNN research. The models
are selected according to their up-to-dateness, relevance, general applicability, explicit addressing of a specific
graph type, and simplicity, as discussed in the introduction. Note that in the case of processing attributed
graphs, the attributes have to be encoded in d-dimensional vectors. To apply the corresponding models to
arbitrary attributed graphs, preprocessing steps have to be utilized as in Zhang et al. (2019a).

The most common type of GNNs for simple graphs concerning structural properties are convolutional
models, which compute new node representations in each layer. A common graph convolution as, for example,
defined in GNN⋆ (Scarselli et al., 2009), or WL (Morris et al., 2019), typically assumes attributed nodes
and allows for directed and undirected edges without being explicitly designed for either property. Models
designed for other graph types typically extend a common spectral or spatial convolution to adapt to the
specific structural property they focus on.

To consider directed edges, for example, in GenRecN (Sperduti & Starita, 1997), a standard spectral
convolution is applied only on the out-neighbors of a target node, i.e., on those neighbors connected
via a directed edge originating from it. A more recent model, MagNet (Zhang et al., 2021), applies a spectral
convolution using a complex-valued Hermitian matrix, called magnetic Laplacian, instead of a symmetric and

10



Published in Transactions on Machine Learning Research (03/2023)

real-valued Laplacian which cannot be computed due to the asymmetric adjacency matrix of a directed graph.
The magnitude of the complex Laplacian indicates the presence of an edge but not its direction, while the
phase of the complex Laplacian indicates the direction of an edge. The lack of models designed for graphs
with edge attributes probably results from considering edge attributes only in addition to node attributes
since edge attributes are typically not relevant in isolation. In terms of heterogeneity, a similar observation
can be made. Corresponding graphs are either heterogeneous in their nodes and edges or node homogeneous,
i.e. the, node set remains of one type. Edge heterogeneity is more common than node heterogeneity since
it includes widely-used multi-relational graphs. These can be handled by, e.g., an extension of a standard
convolution applied separately for each relation (GRNN (Ioannidis et al., 2019)).

Another common procedure is extending a convolutional model using an attention mechanism, e.g., as
described in Sec. 3.2.2. Attention mechanisms are suitable for node-attributed graphs since they allow the
computation of node-specific attention scores that express the importance of one node to another. These
attention scores can serve as weights in computing node features to focus on specific nodes. Spectral
(CapsGNN (Xinyi & Chen, 2018)), as well as spatial convolutions (GAT (Velickovic et al., 2018)), can be
equipped with attention mechanisms. They can also be adapted to attributed edges to process entirely
attributed graphs (EGNN (Gong & Cheng, 2019)). Also, attention-based models are a suitable approach
for heterogeneous graphs since multi-head attention can be used to model different relation types, as in
AA-HGNN (Ren et al., 2020). A particular case of attention convolution is HAN (Wang et al., 2019), which
utilizes a selected set of meta paths for neighborhood aggregation.

Table 1: GNN’s developed for learning on simple graphs
of different structures. Such models are most prevalent in the
research of GNNs.

Graph Type Models Problem Data Category

gr
ap

h

directed

GenRecN
Sperduti & Starita (1997) graph classification logic terms

MagNet
Zhang et al. (2021)

link prediction, node
classification

linking of websites,
synthetic

undirected GNN⋆
Scarselli et al. (2009)

subgraph matching,
graph classification,
web page ranking

synthetic, mutagenesis
(molecules)

node-attributed

GAT
Velickovic et al. (2018) node and graph

classification

citation networks,
protein interaction

CapsGNN
Xinyi & Chen (2018)

biological-, social
networks

WL
Morris et al. (2019)

graph classification,
attribute prediction

biological-, social
networks, molecules

edge-attributed —

attributed

EGNN
Gong & Cheng (2019),
PG-GNN
Xia & Ku (2021)

graph classification,
node and edge

attribute prediction

citation networks,
protein structure

node-heterogeneous —

edge-heterogeneous GRNN
Ioannidis et al. (2019)

node classification

citation networks

heterogeneous

AA-HGNN
Ren et al. (2020),
HAN
Wang et al. (2019)

news articles &
citation networks

multi —
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4.2 GNNs for Hypergraphs

Learning on hypergraphs as in Def. 3.1 has been rarely explored. Most approaches involve convolutions
adapted to hypergraphs, i.e., the property that an edge can be incident to an arbitrary number of nodes.
Table 2 lists GNNs that mainly address node classification on citation networks represented as hypergraphs,
which shows that the application of hypergraphs is not yet widespread; hence, the available datasets are
currently limited. During the research for hypergraph GNNs, it turned out that, so far, only a few GNNs
have been applied to hypergraphs. When it comes to additional structural properties as defined in Def. 3.2,
sometimes only one or two models for the specific hypergraphs have been developed. Table 2 indicates that
the data is still very homogeneous and that the heterogeneity in graphs is only addressed to a limited extent.

One option to handle hypergraphs is to transform them into simple graphs and apply standard GNNs
afterward. This preprocessing can be done by selecting two representative nodes for each hyperedge, as
in HyperGCN (Yadati et al., 2019). Based on the assumption that nodes in a hyperedge are similar, the
representative nodes typically have the most significant difference between their attributes. Another approach
presented in LHCN (Bandyopadhyay et al., 2020) represents a hypergraph as a line graph6. In this process,
each hyperedge of the original graph serves as a simple node in the line graph. The corresponding node
attributes are computed by the average across the attributes of all hypernodes in that hyperedge. Both
variants allow for processing attributed and undirected hypergraphs using GNN models for simple graphs.

Table 2: GNNs learning on hypergraphs with different
additional properties. The selection of GNNs is still limited,
which illustrates gaps and the potential of the young research field.

Graph Type Models Problem Data Category

hy
pe

rg
ra

ph

directed NDHGNN
Tran & Tran (2020) node classification citation networks

undirected
HyperGCN
Yadati et al. (2019)

densest
k-subhypergraph
problem, node
classification

combinatorial
optimization,

citation networks

HyperConvAtt
Bai et al. (2021) node classification citation networks

node-attributed LHCN
Bandyopadhyay et al. (2020) node classification citation networks

edge-attributed HGNN
Feng et al. (2019)

node classification,
object classification citation networks

attributed AHGAE
Hu et al. (2021) graph clustering citation networks,

3D models
node-heterogeneous —
edge-heterogeneous —

heterogeneous HWNN
Sun et al. (2021b) node classification citation networks

multi G-MPNN (multiple edges)
Yadati (2020) link prediction knowledge (hyper-)

graphs

There are also models which are specifically designed for hypergraphs, most of them based on spectral
convolutions. The graph’s incidence matrix can be used to adapt spectral convolutions to attributed

6The nodes of a line graph w.r.t. an original graph are determined as the edges of the original graph, while the edges are
inserted between two edges of the original graph that share an incident node.
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hypergraphs and the node and edge degree matrix in the neighborhood aggregation (HGNN (Feng et al.,
2019), AHGAE (Hu et al., 2021)). Such a convolution can be additionally equipped with an attention
mechanism (HyperConvAtt (Bai et al., 2021)). NDHGNN (Tran & Tran, 2020) uses separate incidence
matrices for the source and target nodes to model the graph’s Laplacian in the spectral hypergraph convolution
to process directed hypergraphs. Such convolutions can also be used for heterogeneous graphs by using edge
homogenization, e.g., by working on subgraphs that include hyperedges of only one specific type. In HWNN
(Sun et al., 2021b), the spectral convolution is applied on subgraphs, which include hyperedges of only one
specific type. Finally, to enable learning on multi-hypergraphs, a message-passing GNN is extended to include
multiple relations and node or edge duplicates (Yadati, 2020).

Both approaches, i.e., transforming hypergraphs into simple graphs or directly working on them, have
advantages and disadvantages. The first case enables the application of well-established GNN architectures,
which have typically been investigated more thoroughly. However, the transformation is often related to
information loss, affecting performance. In HyperGCN (Yadati et al., 2019), the information from nodes in
hyperedges that do not serve as representative nodes disappear. Models that directly operate on hypergraphs,
such as HGNN (Feng et al., 2019), can use the complete information to learn.

5 Models Respecting Dynamic Graph Properties

Many applications include data that changes with time. In the application of graphs, it often appears, e.g.,
that graphs are growing or structurally changing or that node and edge attributes are evolving, as defined
in Def. 3.3. Therefore, the research on GNNs for dynamic graphs has expanded immensely. There are two
common approaches in graph learning for representing a graph’s dynamical behavior: discrete-time and
continuous-time representation (cf. Def. 3.4). The first approach has been widely used since the snapshots
simplify the processing of structures in the graph. Corresponding proposed GNNs in the literature for
processing discrete-time graphs are listed in the next section. The continuous-time approach is much more
compact in its representation since it stores only events instead of the entire graph for each time step.
However, a local evaluation of the graph is required, i.e., the area in the graph affected by an event has to
be identified and retrieved to process the event using a GNN. Hence, the application of this representation
is more complex, which is also reflected in the less frequent use of it in GNN models, which can be seen in
Sec. 5.2.

5.1 GNNs for Discrete-Time Graphs

Although dynamic graphs are much more challenging to handle than static graphs due to the additional
temporal dependencies, existing dynamic GNN models already cover many structural graph properties. GNN
models operating on discrete-time graphs are typically extensions of static GNNs since the discrete-time
representation corresponds to a series of static graphs. Therefore, similar gaps appear, i.e., only node-
heterogeneous graphs and multi-graphs are not yet covered. The structural component of dynamic graphs
can be learned by applying standard GNN models to the graph snapshots.

Those models are often combined with RNN-based models to encode the dynamics, which capture the
temporal features. Such an approach is pursued in, e.g., GCRN (Seo et al., 2018). The model processes
attribute dynamic graphs using a spectral GCN combined with an LSTM. First, the node attributes are
preprocessed by a spectral convolution, and the resulting representation is passed to the LSTM, which
captures the data distribution. A similar approach is taken in WD/CD-GCN (Manessi et al., 2020), which
applies a GCN to transform the input graph sequence into a sequence of node representations, which are
then processed by a modified LSTM. EpiGNN (La Gatta et al., 2020) also combines GCNs and LSTMs to
predict the parameters of a generic epidemiological model based on historical movement data. The model
embeds the graph nodes for each time step, representing locations using a standard GCN. It learns the desired
parameters by embedding the current graph and information from previous time steps stored in the LSTM.
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Table 3: GNN’s learning on discrete-time dynamic graphs.
Many of these models are extensions of the static case since the
discrete-time representation corresponds to a series of static graphs.
Therefore also the gaps appear similar to the static case. The ◻ sign
means, that the graph handled by the model can have attributes, but
the attributes are static. Thus, they appear or disappear together
with their respective nodes or edges but do not change over time.

Graph Type Models Nodes Edges Attr. Problem Data
Category

ad
d

de
l

ad
d

de
l

no
de

ed
ge

D
T

R
gr

ap
h

directed
EpiGNN
La Gatta
et al. (2020)

× × × × ✓ ◻7 node label
prediction covid-19

undirected

DySAT
Sankar et al.
(2020)

× × ✓ ✓ × ◻ link prediction communication,
rating networks

(WD/CD)-
GCN
Manessi
et al. (2020)

× × ✓ ✓ ✓ × node classification research
community

node-
attributed

GCRN
Seo et al.
(2018)

× × × × ✓ ◻
video prediction,8
graph sequence

prediction
videos, text

edge-
attributed

DynGEM9

Goyal et al.
(2018)

✓ ✓ ✓ ✓ × ◻
graph

reconstruction,
link prediction,

anomaly detection

synthetic,
collaboration,

communication
networks

attributed
EvolveGCN
Pareja et al.
(2020)

✓ ✓ ✓ ✓ ✓ ◻10 link prediction,
edge and node
classification

synthetic,
social networks,

bitcoin,
community

network
node-

heterogeneous —

edge-
heterogeneous

RE-Net
Jin et al.
(2019)

× × ✓ ✓ × × extrapolation link
prediction

knowledge
graphs

heterogeneous
DyHAN
Yang et al.
(2020)

✓ ✓ ✓ ✓ × × link prediction
e-commerce,

online-
community

multi —

7Only static edge attributes are considered.
8The model uses the moving written digits datasat (moving-MNIST dataset) generated by Shi et al.

Shi et al. (2015)
9Only considers the previous time step, patterns of short duration (length 2) for link prediction and is restricted to weights.

10Edges are weighted not generally attributed.
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hy
pe

rg
ra

ph
directed

DHAT
Luo et al.
(2021)

× × × × ✓ × feature prediction traffic data

undirected —

node-
attributed

STHAN-SR
Sawhney
et al. (2021)

× × × × ✓ ◻ node ranking stock prediction

HGC-RNN
Yi & Park
(2020)

× × × × ✓ × feature prediction traffic flows

attributed
Hyper-GNN
Hao et al.
(2021)

× × ✓ ✓ ✓ ◻10
action

recognition/graph
classification

human motion

node-, edge
heterogeneous —

heterogeneous
MGH
Yan et al.
(2020)

✓ ✓ ✓ ✓ ✓ ✓ graph
classification videos

multi —

Further approaches combining RNNs and GCNs are, e.g., RE-Net (Jin et al., 2019) and EvolveGCN (Pareja
et al., 2020). RE-Net computes local representations for all nodes by applying an RNN to its temporal
neighborhood, i.e., the neighbors at different time steps. The model is designed for edge-heterogeneous graphs
and aggregates the edges of different types using a GCN before the neighborhood aggregation. To obtain
a global node representation, the local node representations over time are processed by another RNN. In
contrast to the models mentioned above, EvolveGCN uses the RNN to model the GCN weights, which embeds
the graph nodes. More specifically, the weights of each GCN layer are generated by an RNN, which takes the
weights of the preceding GCN layer and, optionally, the node embeddings as input. This way, the model
adapts the GCN weights along the temporal dimension to tackle the problem of changing node attributes.

Another way to handle temporal features in GNNs is temporal attention. DySat (Sankar et al., 2020), e.g.,
generalizes the GAT approach (Velickovic et al., 2018) described in Sec. 1 to dynamic graphs. On the one
hand, the model extends the structural attention mechanism. On the other hand, it incorporates an additional
temporal attention mechanism that enforces an auto-regressive behavior. Similarly, DyHAN (Yang et al.,
2020) generates node embeddings using node-level attention and updates them via neighborhood aggregation
and edge-level attention. Finally, the node embeddings are aggregated over time using a temporal attention
mechanism. Heterogeneity is accounted for by applying node-level attention at each time step to subgraphs
of only one edge type. During edge-level attention, the importance of each edge type is learned through
a one-layer MLP. DynGEM (Goyal et al., 2018) takes an entirely different approach and is a dynamically
extendable autoencoder for growing graphs. The input and output dimensions are extended respectively for
each new incoming node.

Since handling hypergraphs is challenging, especially in the dynamic case, few models have been proposed yet.
One model that combines RNNs and GCNs is the HGC-RNN (Yi & Park, 2020). It integrates the temporal
evolution of higher-ordered structures with two different hypergraph convolutions to encode structural and
temporal information, global states, and a subsequent recurrent unit. All other hypergraph models in Tab. 4
involve attention mechanisms. Typically, they combine a hypergraph convolution with a temporal attention
mechanism, as in DHAT (Luo et al., 2021), and MGH (Yan et al., 2020). For graph learning on video data,
MGH extracts features from classical CNNs of different granularity to define hypergraphs of different types
beforehand. The heterogeneity of the edges is then integrated into the model using corresponding attention.

A very similar model is Hyper-GNN (Hao et al., 2021). It applies a hypergraph convolution similar to
HGNN (Feng et al., 2019) from Sec. 4.2 and a corresponding attention mechanism adapted to neighborhoods
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on hypergraphs. The overall architecture consists of three parallel networks of the same structure, each
processing different input features. STHAN-SR (Sawhney et al., 2021) also applies an attention convolution,
which has been designed for static graphs. It applies a HyperGCN model (Yadati et al., 2019) from Sec. 4.2
to process node features that have been generated utilizing an LSTM and a temporal attention mechanism.

When considering the types of dynamics the different models can handle, it becomes apparent that most of
them focus on specific dynamics, such as dynamic node attributes only (EpiGNN (La Gatta et al., 2020),
GCRN (Seo et al., 2018), STHAN-SR (Sawhney et al., 2021), HGC-RNN (Yi & Park, 2020), DHAT (Luo
et al., 2021)) or evolving edges (RE-Net (Jin et al., 2019), Hyper-GNN (Hao et al., 2021), WD/CD-GCN
(Manessi et al., 2020)). In particular, to the best of our knowledge, MGH (Yan et al., 2020) is the only
model capable of processing graphs with changing node and edge sets and node and edge attributes over time.
Among all the dynamics, deleting nodes and changing edge attributes have emerged as the least considered
and probably most challenging ones. In the case of decreasing node sets, difficulties arise from the changing
data structures leading to data gaps, the handling of obsolete data, and in particular, the lack of data and
applications in this area. At the same time, the lack of models for changing edge attributes is a consequence
of the fact that there are hardly any data and applications for this case.

5.2 GNNs for Graphs in Continuous Time

Regarding dynamic graphs in continuous-time representation, fewer models use the advantages of this
compressed representation, although the amount is growing quickly. Especially dynamic hypergraphs in this
form are currently rarely investigated. Using the continuous-time representation allows the usage of explicit
timestamps and an explicit specification of the change in the graph instead of processing a graph snapshot
in every time step. Therefore, it drastically reduces the storage requirements. Nevertheless, utilizing this
representation is challenging due to the absence of a direct encoding of the graph structure at a particular
time and the model’s requirement to be updateable in case of occurring events.

Stochastic processes are frequently used to model dynamic graphs represented as a sequence of events.
Typically, such processes model the probability of an event occurring at a specific time. These events encode
the graph’s dynamics, such as a node’s appearance or an attribute’s change, and an intensity function
describes the distribution of the events over time. The occurrence of an event is modeled based on the most
recent events involving the nodes or edges of interest.

Examples of approaches utilizing stochastic processes are Know-Evolve (Trivedi et al., 2017) and its
extension, DyREP (Trivedi et al., 2019). Know-Evolve considers events of appearing edges of different
types. Here, separate embeddings for source and target nodes are computed to take directed edges into
account. Furthermore, a learnable function is applied to the difference between a specific node’s current and
the last event to capture the temporal evolution. Moreover, previous embeddings of the nodes and edges
involved in the current event are processed by an RNN-based model to encode the effect of the recurrent
participation of each entity in events. The node embedding is further processed by a learnable function, which
captures the compatibility of nodes in previous edges. Based on the learned node embeddings, a temporal
point process is used to model the probability of an edge occurring between two existing nodes at the next
timestamp. Know-Evolve’s extension DyREP additionally uses structural information of the graph for two
different edge types that represent different ways of communication between nodes.

A different approach is proposed in DyGNN (Ma et al., 2020). It utilizes LSTMs in two kinds of units,
one for the source and the other for target nodes connected through an edge. In the case of link prediction,
node pairs are ranked respecting the cosine similarity of their node representations, and in the case of node
classification, the softmax function is utilized. Similarly, TGN (Rossi et al., 2020) enables the usage of
a memory module, which can be updated using an RNN such as an LSTM or GRU. The obtained node
embedding can be used together with a learnable function to perform, e.g., temporal attention, summation,
or projection. Afterward, an MLP processes the node embeddings of node pairs to generate a probability for
the edge at the next timestamp to perform future link prediction.

(Souza et al., 2022) proved a deficit in the expressivity of TGN and proposed the Positional-Encoding Injective
Temporal Graph Net (PINT) to overcome this deficit. A node embedding at a certain timestamp is determined
by an injective temporal aggregation of the neighborhood, where the attributes of the neighbors are calculated
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with an MLP over the neighboring node attribute concatenated with the corresponding edge attribute.
Further, the performance is improved by concatenating the relative positional features that incorporate
information from the temporal walk structures with the node features.

Jin et al. (2022) propose a model that uses a recurrent unit combined with temporal walks. Such walks are
defined as node sequences in which subsequent nodes have previously been involved in an event together.
While sampling temporal walks for a target node, nodes that have been involved in an event with the target
node more recently are sampled with a higher probability. By anonymizing these walks into relative and
node-unspecific encodings, so-called motifs are created. An autoregressive gated recurrent unit processes
these to compute the node embeddings. Since the nodes are sampled irregularly for the temporal walks, the
motifs are integrated over multiple interaction time intervals.

Table 4: GNN’s learning on continuous-time dynamic
graphs. Due to the difficulties arising from the lack of a direct
encoding of the graph structure at each time point, there are only
certain graph types covered by models models utilizing graphs in
this representation.

Graph Type Models Nodes Edges Attr. Problem Data
Category

ad
d

de
l

ad
d

de
l

no
de

ed
ge

C
T

R
gr

ap
h

directed

Know-Evolve
Trivedi et al.
(2017)

× × ✓ × × × link/time
prediction

socio-political
interactions

DyGNN
Ma et al.
(2020)11

✓ × ✓ × × ×
link prediction,

node
classification

communication/
trust networks

undirected DyRep
Trivedi et al.
(2019)

✓ × ✓ × × × link/event time
prediction

social networks,
githubnode-

attributed
edge-

attributed —

attributed NeurTWs Jin
et al. (2022) × × ✓ × × × dynamic link

prediction

social networks,
interaction
networks

node-
heterogeneous —

edge-
heterogeneous

Know-Evolve
Trivedi et al.
(2017)

× × ✓ × × × link/time
prediction

socio-political
interactions

DyRep
Trivedi et al.
(2019)

✓ × ✓ × × × link/event time
prediction

social networks,
github

heterogeneous —

multi

PINT Souza
et al. (2022),
TGN
Rossi et al.
(2020)

✓ ✓ ✓ ✓ ✓ ✓
node

classification,
edge prediction

social networks

11The baseline models used in the experiments are made for continuous-time dynamic GNNs. All the models used are either
made for static graphs (e.g., GCN, GraphSAGE) or discrete-time dynamics (e.g., DynGEM, DANE, Dynamic Triad).
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hy
pe

rg
ra

ph
directed —

undirected
HIT
Liu et al.
(2021)

◻12 × ✓ × × × edge-, pattern-,
time prediction

Q&A platform,
political

interactions,
patient

medication
(node, edge)
attributed,

(node, edge)
heterogeneous,

multi

—

To the best of our knowledge, the only GNN developed for hypergraphs in continuous-time representation
is HIT (Liu et al., 2021). To encode structural and temporal information, it uses temporal random walks
defined as a randomly selected set of hyperedges backward in time. Afterward, an aggregation mechanism
pools the obtained representation into the final node embedding.

6 Models Utilizing Semantic Graph Properties

Besides the structural graph properties, it is also possible to consider semantic properties in designing a GNN.
Although semantic graph properties typically do not explicitly affect the graph’s structure (R-5), it can be
advantageous to leverage them in GNNs since the graph topology could change or specialized architectures
might better preserve the original properties in the learned representation. The necessity for this comes
from the data’s nature and theoretical considerations to learn structures more efficiently or to explicitly
model certain constraints or properties of the data structure. The semantic properties listed in Def. 3.2 are a
selection from data-motivated characteristics (e.g., bipartite nodes for user-item modeling, complete graphs
for relation prediction) and graph theory (e.g., regular or disconnected graphs, trees). Accordingly, GNNs
that integrate some of these properties are presented in Tab. 5.

Some characteristics are considered more often in graph learning than others. These include, e.g., complete,
acyclic, and bipartite graphs since they reflect frequently occurring characteristics of graph applications.
In contrast, recursive graphs or (poly-)trees are considered explicitly only occasionally. To the best of our
knowledge, regular graphs do not play a significant role in graph learning.

Complete graphs represent the existence of a connection between each node pair. Standard Message-Passing
GNNs or Convolutional GNNs are theoretically capable of handling complete graphs. However, especially in
the case of GCNs, the neighborhood of all nodes is considered equally, and thus, the information flow in the
graph is inexpressive. Some GNNs have been developed for complete graphs to overcome this problem.

MGCN (Lu et al., 2019), e.g., is specifically designed to predict properties of molecules represented as a
complete graph. The network is a standard Message-Passing Neural Network (MPNN), utilizing node and
edge attributes. The crucial innovation is how nodes and edges are embedded. The idea is to model quantum
interactions between atoms since these influence the overall properties of the molecule. Initially, the atoms of
a molecule define nodes of a complete graph, respecting the number of protons in their nuclei. Then, the edge
attributes are constructed using a radial basis function (RBF) layer and processed in a hierarchical GCN to
weight nodes in the message-passing. A final node embedding is obtained by executing several convolutions
and hierarchically aggregating the neighborhood of increasing depth. The learned node and edge embeddings
are summed across the graph to infer the prediction of molecule properties. Since molecule datasets typically
comprise labels only for a small fraction of the data and only for smaller molecules, the authors mainly
focused on generalizability and transferability between different molecule sizes.

As can be observed from the table, there are models focusing on bipartite graphs, i.e., graphs that can be
divided into two disjoint node sets such that every edge connects a node of one set to a node from the other

12Nodes only appear together with new hyperedges.
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set. One example is BGNN (He et al., 2019), which focuses on generating a suitable representation for such
graphs. For this purpose, information across and within the graph’s two partitions (domains) is aggregated
to enable inter-domain message passing. The model is trained in a so-called cascade way, i.e., the training of
a layer begins after the preceding layer has been fully trained. Thereby, the loss function for the domains is
defined layer-wise. Together with a global loss, the quality of the resulting node representation is measured.

BipGNN (Wang et al., 2020), in contrast, restricts the convolution to the propagation between the disjoint
node sets. The network encoder produces pairwise embeddings for nodes from the two disjoint sets, and the
decoder maps these embeddings to an association matrix to perform link prediction between disjoint sets.

In the case of unconnected graphs, the underlying concept of information flow in GNNs may reach its
limits. In standard GNNs, subgraphs without a connection to the rest of the graph are processed isolatedly.
Thus, small isolated subgraphs may not provide enough structural information to prevent over-smoothing
(Li et al. (2018) of the GNN. To tackle this problem, the generative graph transformer network (GTN)
(Yun et al., 2019), e.g., aims to identify valuable connections between unconnected nodes to the rest of the
graph. It enables learning on multiple subgraph structures in a heterogeneous graph by concatenating graph
convolutions on different meta-paths.

Table 5: GNNs using semantic graph properties. The specific
semantic properties have been selected due to their rather common
appearance in graph data. Since some graph characteristics are
considered in more applications or in more popular applications,
there exist more GNN models, e.g. bipartite graphs are considered
often.

Graph Type Models Problem Data Category

complete MGCN
Lu et al. (2019) graph attribute prediction quantum chemistry

r-regular —

bipartite
BipGNN
Wang et al. (2020) link-rank prediction drug repurposing

BGNN
He et al. (2019) node representation learning social-/citation networks

unconnected13 GTN
Yun et al. (2019)

graph generation, meta-path
generation, node classification citation networks, movie genres

acyclic14
DAGNN
Thost & Chen
(2021)

node prediction, longest path
prediction

source code, neural architectures,
Bayesian networks

trees
GenRecN
Sperduti & Starita
(1997)

graph classification logic terms

polytrees CTNN
He et al. (2021) node classification 3d surfaces in context of

hydrological applications

recursive MPNN-R
Yadati (2020) node classification documents in academic networks

hierarchical Hier-GNN
Chen et al. (2022) image classification images

Acyclic graphs occur across various domains, such as source code, neural architectures, or logic terms.
DAGNN (Thost & Chen, 2021) learns a representation for directed acyclic graphs driven by the partial order

13Since, to the best of our knowledge, most of the models do not specify the connectedness, it is assumed here that they can
handle both connected and unconnected graphs.

14The majority of GNN models in this survey can handle cycles because they are very common in graphs.

19



Published in Transactions on Machine Learning Research (03/2023)

over the graph nodes. It is an RNN-based message-passing network utilizing an attention module to obtain the
messages, which are then forwarded through a GRU. A graph representation is obtained by first concatenating
the source and target node representations separately, then max-pooling them and concatenating the results.

Particular cases of acyclic graphs are trees, i.a., examined in GenRecN (Sperduti & Starita, 1997). This
early work, as mentioned in Sec. 4.1, applies a spatial neighborhood convolution on the out-neighbors of a
node. Polytrees also serve as suitable representations for some types of data, such as surface contours of
3D data. As shown in CTNN (He et al., 2021), polytrees can be used to model the evolution of the surface
contours at different elevation levels. The model uses a U-Net (Ronneberger et al., 2015) architecture with
ChebyNet (Defferrard et al., 2016) and diffusion Graph Convolution (Li et al., 2017) Layers, using graph
pooling and unpooling methods for the characteristic unit architecture.

Another model using a U-Net (Ronneberger et al., 2015) architecture is Hier-GNN (Chen et al., 2022), which
explores hierarchical correlations between nodes. For this purpose, specialized pooling and unpooling methods
are explicitly defined to encode hierarchical information. Graph convolutions are then applied among a layer
in the hierarchy.

Finally, MPNN-R (Yadati, 2020) has been developed to encode recursive graphs. It is based on G-MPNN
(Yadati, 2020) mentioned in Sec. 4.2 and adapts the message-passing function for recursive multi-relational
ordered multi-hypergraphs.

7 Models for Combined Graphs

Arbitrary combinations of graph types can be used to model real-world problems and thus be considered for
graph learning purposes. To conclude this work, we give a selected list of graph-type combinations used in
several research fields where GNNs are already established. Therefore, this list is not necessarily complete
but gives an insight into further research on GNNs considering combined graph types.

The architectures listed in Tab. 6 are GNN models specialized for a particular combination of graph properties.
Some of them use a selected non-Euclidean space that is assumed to provide a better fit for the specific
data. GCN (Kipf & Welling, 2017), e.g., defines a standard spectral graph convolution for simple graphs
allowing for one-dimensional edge weights, whereas Hyperbolic GNN (Liu et al., 2019) defines its extension to
hyperbolic space. Hyperbolic GNN operates on Riemannian manifolds15 and is independent of the underlying
space. Since every point of a differentiable Riemannian manifold can be approximated by Euclidean space,
all functions with trainable parameters are executed in Euclidean Space. HVGNN (Sun et al., 2021a) uses a
hyperbolic model as well. More precisely, it consists of a temporal graph neural network based on convolution
and attention modules and a variational graph auto-encoder in hyperbolic space. A map from time to
a hyperbolic space encodes time information to handle time in the convolution process. This way, the
aggregation of the features is done in a time-aware neighborhood.

The combined graph structures that make up knowledge graphs represent a common application for GNNs.
They can represent all types of attributes, together with heterogeneity and dynamics. Therefore, many
different models have been developed. KGIN (Wang et al., 2021), e.g., uses an attention mechanism that
combines different relations into so-called intents to model the user-item relations. These are subsequently
used for user and item embeddings modeled via another attention layer to predict the probability of a user
adopting an item. A similar use case is approached in SBGNN (Huang et al., 2021), where the two node
types of users and items are represented as a bipartite graph connected through signed relations. The model
uses a message-passing scheme, including an attention mechanism to encode positive and negative links in
recommender, voting, and review systems. HetG (Zhang et al., 2019a) processes a similar graph type. The
model is designed to embed heterogeneous graphs with node and edge attributes of any kind. It generates a
heterogeneous neighborhood using Random Walk with Restart and applies a Bi-LSTM for heterogeneous
content embedding. Different types of nodes are then combined via an attention mechanism.

15A Riemannian manifold is a real and smooth manifold equipped with an inner product at each point of the manifold (Liu
et al., 2019).
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A particular type of graph that can be useful for several applications is the multiplex graph. It consists of
different layers, each with the same set of nodes but different sets of edges within these layers. Inter-layer
edges connect the same nodes across different layers. In MXMNet (Zhang et al., 2020a), a two-layer multiplex
graph is utilized such that the so-called local layer is generated with the aid of molecular expert knowledge,
and the global layer depends on the neighborhood of the local layer. MXMNet applies a message-passing
procedure to each layer separately and enables communication between these layers by defining an additional
cross-layer mapping function.

Multiplex graphs can also be used to model temporal features without explicitly using a dynamic graph
representation as in STGNN (Kapoor et al., 2020). This model is specifically designed to predict the daily
new cases of COVID-19 in a particular region based on mobility data. Each layer of the multiplex graph
corresponds to a specific period, i.e., a day. Nodes represent regions, and relations within these layers describe
human mobility between different regions. Edges between the layers are temporal and define a node’s attribute
through time. STGNN processes such graphs using spectral graph convolutions.

Table 6: GNN’s for combined graph types. The graph type
combinations were selected to cover combinations in fields where
the usage of GNNs is already established.

Graph Type Models Problem Data Category

undirected
node-attributed

GCN
Kipf & Welling
(2017)

node classification citation networks, knowledge
graphs

Hyperbolic GNN
Liu et al. (2019)

graph classification, node
regression

synthetic, molecular,
blockchain

knowledge graph KGIN
Wang et al. (2021) link prediction recommender systems

content-associated
heterogeneous

HetG
Zhang et al. (2019a)

link prediction,
recommendation,
(inductive) node

classification, node
clustering

review networks

multiplex MXMNet
Zhang et al. (2020a) graph feature prediction molecules

spatio-temporal STGNN
Kapoor et al. (2020) node attribute prediction disease spreading

multi-relational
bipartite

SBGNN
Huang et al. (2021) link sign prediction recommender, voting, review

systems
bipartite

edge-growing in
continuous-time

JODIE
Kumar et al. (2019)

future user-item
interaction prediction, user
state change prediction16

social media, wiki, music,
student actions

undirected
node-attributed
edge-dynamic

HVGNN
Sun et al. (2021a)

link prediction, node
classification social, citation, knowledge

JODIE (Kumar et al., 2019) also processes temporal information, but it directly encodes the dynamics using
an RNN. It can be considered a particular case of the TGN-Model (Rossi et al., 2020). For node embeddings,
it also uses a memory module that can be updated using an RNN. The message-passing function is set to the
identity and applied together with a learnable time projection function. The model is evaluated, e.g., on link
prediction between users and items inferred from the distance between the embeddings of a pair of nodes.

16The task is to predict if an interaction will lead to a state change in user, particularly in two use cases: predicting if a user
will be banned and predicting if a student will drop-out of a course.
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8 Conclusion and Future Work

This survey provides a fine-grained overview of Graph Neural Networks for graph types of different structural
constitutions. To the best of our knowledge, this is the first work to survey which graph types are addressed
by published GNNs. We overviewed and defined the most common graph types and properties and the
respective GNN models. Moreover, we identified GNN models specialized for specific graph properties and
investigated how they handle these. This way, we could relate formal graph properties to the corresponding
practical GNN models. Furthermore, we analyzed the architecture of the considered models and grouped
them according to the modules they apply, i.e., the type of layer, such as convolutional or recurrent layers.
Additionally, we analyzed GNN models concerning dynamics and grouped the models according to the types
of dynamics they can process.

Our work allows several conclusions to be drawn and identifies gaps concerning the graph types, properties,
and dynamics that GNN models can handle. First, existing GNN models can, in principle, handle the most
common structural graph properties (e.g., attributed, directed, node-heterogeneity) for static graphs and
hypergraphs. The lack of models for a few properties results from the existence of more general models, e.g.,
there is no GNN model for node-heterogeneous graphs in discrete time, but there is one for fully heterogeneous
graphs. Another reason could be a lack of standard graph data sets for such types. Furthermore, there are
many GNN models which consider graphs in discrete-time representation. These models cover the most
common graph types and properties except for the multiplicity of nodes or edges. A difficulty in handling
multiplicity results from the inability of a standard graph’s adjacency matrix to encode duplicate nodes.

When it comes to the models for graphs in continuous time, it is evident that there are substantial gaps in
research on GNNs for most of the graph types compared to the discrete case. In particular, only one model
for hypergraphs has been found. Generally, developing GNNs for continuous-time graphs is still a young field
of GNN research. Another reason for the small number of graph types covered by models for continuous-time
graphs could be that such models typically use stochastic point processes to model the dynamic behavior of
the graphs. The number of different events increases with the number of dynamic graph properties considered.
Since a point process models each event, the model becomes more complex. From the results from Tab. 4, it
can be observed that most events model discrete outputs in continuous time, such as whether there is a new
edge. When including attribute dynamics for real-valued attributes, the model must deal with continuous
values in continuous time, making the model more computationally intensive.

Most dynamic graphs addressed by GNN models exhibit only specific dynamics, such as strictly growing
graphs or dynamic node attributes. GNN models for graphs with dynamics in the edge attributes and the
deletion of nodes are scarce. To the best of our knowledge, only one model, MGH(Yan et al., 2020), has been
developed to process graphs with all dynamics considered in this work, i.e., changing node and edge sets
as well as changing node and edge attributes. Reasons for this may be the popularity of problems where
graphs are growing over time and node deletions are believed not to play a crucial role (as, e.g., in citation
networks, recommender systems, or data networks) and the difficulties that arise when combining known
GNN techniques for dynamic graphs. Considering the discrete-time representation of graphs, e.g., GNN
techniques for static graphs are usually applied to every graph snapshot and combined with an RNN to
capture the dynamics, leading to computationally expensive models.

Finally, existing GNN models have been developed to cover many semantic graph properties or for particular
combined graph types dependent on the given data structure, which shows that multiple graph properties
can be learned simultaneously by GNN models.

To sum up, the research on GNNs for particular graph types has become a hot area in recent years. However,
this extensive survey could reveal gaps in graph types, properties, and dynamics that are not yet considered
sufficiently in the GNN community.
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9 Notation

Table 7: Notation used throughout this work.

N natural numbers
N0 natural numbers starting at 0
R real numbers
Rk R vector space of dimension k

∣a∣ absolute value of a real a
∥ ⋅ ∥ norm on R
∣M ∣ number of elements of a set M
∅ empty set
{⋅} set
{∣ ⋅ ∣} multiset, i.e., set allowing multiple appearances of entries
∪ union of two (multi)sets
⊍ disjoint union of two (multi)sets
⊆ sub(multi)set
× factor set of two sets
ψ learnable message function
ϕ activation function
σ sigmoid activation function
⊕ aggregation
∣∣ concatenation
A adjacency matrix
Ã adjacency matrix with self-loops
B edge degree matrix
D node degree matrix
D̃ node degree matrix with self-loops
E identity matrix
I incidence matrix
L Laplacian matrix
W edge weight matrix
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10 Appendix

10.1 Reasons for Selection of the Models per Graph Type

To clarify why each model was chosen for a certain graph type, the reasons are listed in Tab.8. Additionally,
the criterion of generality, i.e. the applicability of the model not only for a certain domain, is fulfilled by
most of the models.

Table 8: Reasons for Selection of the Models per Graph
Type. The number of citations is taken from google scholar in the
beginning of March 2023.

Model Reason(s) for Selection
Models from Tab. 1

GenRecN (Sperduti & Starita, 1997) cited often (783 times), historical importance
MagNet Zhang et al. (2021) explicit addressing of graph property
GNN* Scarselli et al. (2009) cited very often (5433 times)
GAT Velickovic et al. (2018) cited very often (5705 times), commonly used as basline
CapGNN Xinyi & Chen (2018) cited often (172 times)
WL Morris et al. (2019) cited often (914 times)
EGNN Gong & Cheng (2019) cited often (195 times)
GRNN Ioannidis et al. (2019) explicit addressing of graph property
AA-HGNN Ren et al. (2020) explicit addressing of graph property
HAN Wang et al. (2019) explicit addressing of graph property
Models from Tab. 2

NDHGNN Tran & Tran (2020) only model found for graph property
HyperGCN Yadati et al. (2019) cited often (202 times)
HyperConvAtt Bai et al. (2021) cited often (239 times)
LHCN Bandyopadhyay et al. (2020) more straight forward than other models (simplicity)
HGNN Feng et al. (2019) cited often (566 times), commonly used as baseline
AHGAE Hu et al. (2021) only model found for graph property
HWNN Sun et al. (2021b) explicit addressing of graph property
G-MPNN Yadati (2020) explicit addressing of graph property
Models from Tab. 3

EpiGNN La Gatta et al. (2020) more straight forward than other models (simplicity)
DySAT Sankar et al. (2020) cited often (254 times), commonly used as baseline
(WD/CD)-GCN Manessi et al. (2020) cited often (229 times), can handle node attributes unlike DySat
GCRN Seo et al. (2018) cited often (537 times)
DynGEM Goyal et al. (2018) cited often (322 times)
EvolveGCN Pareja et al. (2020) cited often (532 times)
RE-Net Jin et al. (2019) only model found for graph property
DyHAN Yang et al. (2020) only model found for graph property
DHAT Luo et al. (2021) only model found for graph property
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STHAN-SR Sawhney et al. (2021) can handle edge attributes unlike HGC-RNN
HGC-RNN Yi & Park (2020) more straight forward than other models (simplicity)

Hyper-GNN Hao et al. (2021) cited often (33 times since 2021), more straight forward than
other models (simplicity)

MGH Yan et al. (2020) only model found for graph property that can handle all
dynamics in DTR

Models from Tab. 4
Know-Evolve (Trivedi et al., 2017) cited often (337 times), commonly used as baseline

DyGNN Ma et al. (2020) cited often (121 times), more recent and better performing than
predessesor Know-Evolve

DyRep Trivedi et al. (2019) cited often (301 times), commonly used as baseline
NeurTWs Jin et al. (2022) recent model
PINT Souza et al. (2022) recent model, better performace than TGN
TGN Rossi et al. (2020) cited often (246 times), commonly used as baseline
HIT Liu et al. (2021) only model found for graph property
Models from Tab. 5

MGCN Lu et al. (2019) explicit addressing of graph property
BipGNN Wang et al. (2020) explicit addressing of graph property
BGNN He et al. (2019) explicit addressing of graph property
GTN Yun et al. (2019) explicit addressing of graph property, cited often(492 times)

DAGNN Thost & Chen (2021) explicit addressing of graph property, cited often (51 times
since 2021)

CTNN He et al. (2021) explicit addressing of graph property
MPNN-R Yadati (2020) explicit addressing of graph property
Hier-GNN Chen et al. (2022) explicit addressing of graph property
Models from Tab. 6

GCN Kipf & Welling (2017) cited very often (21945 times)
Hyperbolic GNN Liu et al. (2019) cited often (220 times), explicit addressing of graph property

KGIN Wang et al. (2021) cited most (120 times) among models for this graph type,
explicit addressing of graph property

HetG Zhang et al. (2019a) cited often (775 times)

MXMNet Zhang et al. (2020a) cited most (29 times) among among models for this graph type,
explicit addressing of graph property

STGNN Kapoor et al. (2020) often cited (148 times), explicit addressing of graph property
SBGNN Huang et al. (2021) explicit addressing of graph property
JODIE Kumar et al. (2019) often cited (342 times), explicit addressing of graph property
HVGNN Sun et al. (2021a) explicit addressing of graph property
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