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Abstract

We present a simple yet effective approach to001
improve the performance of self-training rela-002
tion extraction in a low-resource scenario. The003
approach first classifies the auto-annotated in-004
stances into two groups: confident instances005
and uncertain instances, according to the prob-006
abilities predicted by a teacher model. In con-007
trast to most previous studies, which mainly008
only use the confident instances for self-009
training, we make use of the uncertain in-010
stances. We propose a method to identify some011
ambiguous but useful instances from the uncer-012
tain instances. Then, we propose to utilize neg-013
ative training for the ambiguous instances and014
positive training for the confident instances. Fi-015
nally, they are combined in a joint-training man-016
ner to build a relation extraction system. Ex-017
perimental results on two widely used datasets018
with low-resource settings demonstrate that this019
new approach indeed achieves significant and020
consistent improvements when compared to021
several competitive self-training systems. 1022

1 Introduction023

Relation Extraction (RE) is a fundamental task in024

Information Extraction, which aims to obtain a pre-025

defined semantic relation between two entities in026

a given sentence (Zhou et al., 2005). In recent027

years, fine-tuning the downstream RE tasks with028

pre-trained models (Soares et al., 2019; Wang et al.,029

2019; Li and Tian, 2020) has achieved significant030

progress with the rapid development of the “Pre-031

train and Fine-tune” Paradigm (Devlin et al., 2018;032

Liu et al., 2019; Lewis et al., 2020) which leverages033

large-scale unlabeled data. However, RE still suf-034

fers from the data scarcity problem. For most RE035

tasks, due to the task-specific definition of relations,036

the lack of customized annotation data poses great037

challenge for the supervised RE (Hendrickx et al.,038

2010; Zhang et al., 2017). Meanwhile, manual039

1Code, data and models will be made publicly available.
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(b) Uncertain instance

Figure 1: Two examples of auto-annotated instances.
For simplicity, we list two detailed relations and use
“others” to represent the other relations.

labeling a large-scale RE data is extremely time- 040

consuming, expensive, and labor-intensive. As an 041

alternative, automatically building annotated data 042

for RE attracts a lot of attention in the research 043

community (Mintz et al., 2010; Luo et al., 2019; 044

Yu et al., 2020). 045

Self-training is a simple and effective approach 046

to build auto-annotated data (Lee et al., 2013; 047

Zhang and Zong, 2016; Xie et al., 2020; Vu et al., 048

2021). The idea is to use a teacher model trained 049

on human-annotated data to automatically anno- 050

tate the additional unlabeled data. Then we can 051

combine the human-annotated data with some in- 052

stances selected from the auto-annotated data to 053

train a student model. In this paper, we follow the 054

self-training framework to improve Low-Resource 055

RE, which is closer to practical situations where the 056

task starts with a small seed set of human-annotated 057

data. 058

In the previous studies, the researchers often se- 059

lect the auto-annotated instances with high con- 060

fidence, named as confident instance, and have 061

achieved a certain success (Qian et al., 2009; Oliver 062

et al., 2018). Figure 1(a) shows an example of con- 063
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fident instance, where the teacher model can easily064

classify it as relation “entity-origin(e1,e2)” with065

the clue offered by “hailed from”. Therefore, we066

first follow this kind of solutions to conduct self-067

training in our task. However, in the preliminary068

experiments, we find that some relations might use069

similar expressions in instances which makes the070

teacher model confused. As a result, for the un-071

certain instances, the teacher model gives similar072

high probabilities to some relations or assigns low073

probabilities to all the relations. An example of074

uncertain instance is shown in Figure 1(b), where075

the teacher model predicts the instance as relation076

“entity-origin(e1,e2)” with a probability 56%, as077

“cause-effect(e2,e1)” (the ground truth label) with078

42%, and as other relations with only 2%. It is hard079

to distinguish between the first two relations as the080

expression “... is from ...” is often used for both. In081

most previous studies, such as (Sohn et al., 2020;082

Du et al., 2021), the uncertain instances are often083

discarded due to the confusion. However, we ar-084

gue that ignoring all the uncertain instances might085

not be appropriate since they might contain useful086

information. For example, it is a good clue that087

the answer is one of the first two relations with a088

probability 98% for the instance in Figure 1(b).089

Ideally, we would wish to fully use of all the090

auto-annotated instances to improve the RE system.091

But it is very hard due to the confusion problem.092

We split the uncertain instances into two groups:093

ambiguous set and hard set. The ambiguous set094

includes the instances for which the teacher model095

gives similar high probabilities to some relations096

(not so many), while the hard set includes the ones097

that the teacher model assigns low probabilities to098

all the relations. In this paper, we focus on the099

ambiguous set and propose an approach to use the100

ambiguous instances and the confident instances to101

improve Low-Resource RE.102

In our approach, we tackle two main issues103

when exploiting the ambiguous instances: 1) how104

to identify the ambiguous instances from the105

auto-annotated instances; 2) how to train a new106

model with the ambiguous instances. As for the107

first issue, we adopt a probability accumulation108

method (Holtzman et al., 2019) to obtain a set of109

relations containing the great majority of the prob-110

ability, and then identify the ambiguous instances111

based on this set. To deal with the second issue, we112

make an assumption: For the ambiguous instances,113

the teacher model does not know which relation is114

the exact answer, but it does know that #1) the an- 115

swer is (with high probability) in a set of candidates 116

(likes the first two relations in Figure 1(b)) and #2) 117

the answer is not the relations which are with very 118

low probabilities (likes “others” in Figure 1(b)). 119

Under this assumption, we treat the ambiguous in- 120

stances as partially-labeled training instances (Cour 121

et al., 2011), where the answer is in a candidate set 122

of labels, but only one of which is correct. Based 123

on Assumption #1, it is naturally that we propose a 124

training method which applies positive training on 125

the partially-labeled training instances, POSPAR- 126

TIALLABEL. However, since only one relation is 127

correct among the candidates, POSPARTIALLABEL 128

might go the wrong way when it supposes all of 129

the candidates are correct. Therefore, based on As- 130

sumption #2, we propose another training method 131

based on negative training to learn from partially- 132

labeled training instances, NEGPARTIALLABEL. 133

Finally, we use joint training to combine the am- 134

biguous instances and the confident instances. 135

Our main contributions are as follows: 136

• We propose a method to classify the auto- 137

annotated instances into three groups: confi- 138

dent set, ambiguous set, and hard set. The am- 139

biguous instances are then treated as partially- 140

labeled, which can reduce the effect of con- 141

fused expressions. To our best knowledge, it 142

is the first time that partial labeling is used to 143

tag the auto-annotated instances in RE. 144

• We propose a simple yet effective approach 145

to train with ambiguous instances under the 146

self-training framework. In order to exploit 147

the auto-annotated instances properly, we pro- 148

pose to apply negative training with the am- 149

biguous instances and positive training with 150

the confident instances. Negative training can 151

utilize the information that the answer is not 152

the relations which have very low probabil- 153

ities predicted by the teacher model. Then, 154

they are combined in a joint-training manner 155

to obtain the final RE system. 156

To verify the effectiveness of our approach, we 157

conduct experiments on two widely used datasets 158

with low-resource settings. Results show that our 159

proposed system significantly outperforms the con- 160

ventional self-training system which only samples 161

confident instances and other compared systems. 162
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Figure 2: Framework of our approach.

2 Our Approach163

We first briefly introduce the relation extraction164

as well as the self-training framework frequently165

used in the previous studies (Zhou et al., 2008; He166

et al., 2019). Then, we propose an algorithm to167

classify the auto-annotated instances into different168

groups: confident data, ambiguous data and hard169

data. Finally, we present a training method to use170

the confident and ambiguous data. The framework171

of the proposed approach is shown in Figure 2.172

2.1 Self-Training for Relation Extraction173

2.1.1 Relation Extraction174

Fine-tuning on a pre-trained model, e.g., BERT,175

with a task-specific classifier is a common practice176

for downstream NLP tasks (Devlin et al., 2018).177

Following Soares et al. (2019), the relation extrac-178

tion model is composed of a BERT encoder and a179

relation classification layer. Entity markers ([E1]180

for the head entity and [E2] for the tail entity) are181

inserted into input tokens to learn the entity repre-182

sentations. Concretely, the output representation183

of two entity markers are concatenated as input for184

the relation classification layer.185

Formally, the output representation of an in-186

stance x after BERT is h = h[E1] ⊕ h[E2]. Then,187

the output probability distribution for M relations188

p = [p1, p2, ..., pM ] is computed by the relation189

classification layer:190

p = f(x) = Softmax(Wh+ b), (1)191

where W and b are model parameters.192

During training, each instance x from the human-193

annotated data is labeled with a one-hot label vector194

y: a single 1 value for the ground-truth label and 0 195

values for other labels. Then, the positive training 196

is performed to calculate the cross entropy loss: 197

LPT (f(x), y) = −
M∑
i=1

yi log pi, (2) 198

where M is the number of relations, and yi and 199

pi are the label and prediction probability of ith 200

relation, respectively. 201

2.1.2 Self-Training 202

Generally, in the self-training framework, the un- 203

labeled instances are labeled by the teacher model 204

to form the auto-annotated data. As shown in Fig- 205

ure 2, the general flow of self-training is performed 206

in the following steps: (1) use the human-annotated 207

data to train a teacher model; (2) use the teacher 208

model to conduct label prediction for unlabeled 209

data; (3) select confident auto-annotated instances 210

via a pre-defined probability threshold (described 211

in Sec. 2.2); (4) combine confident auto-annotated 212

data and human-annotated data to train a student 213

model (the red dotted rectangle in Figure 2). 214

And in step (3) the remaining uncertain instances 215

are considered to be useless. However, as described 216

in Sec. 1, uncertain instances (e.g., the example in 217

Figure 1(b)) might contain useful information. 218

2.2 Instance Classification 219

To make full use of the auto-annotated instances 220

to improve the RE system, we use Algorithm 1 to 221

classify the auto-annotated data into the confident 222

data (line 14), ambiguous data (line 16) and hard 223

data (line 18). 224

Confident instance. A probability threshold T 225

is set to identify the confident instances. We set 226

the instance whose highest prediction probability 227

exceeds the probability threshold T to be confident 228

instance, as the teacher makes a certain prediction 229

about the instance. 230

Ambiguous instance. We adopt the probability 231

accumulation method to identify the ambiguous 232

instances, according to our observations that the 233

teacher model gives similar high probabilities to 234

some relation labels. Specifically, we sort the prob- 235

abilities in prediction probability distribution and 236

dynamically accumulate the probability of top rela- 237

tions (Line 4-10 in Algorithm 1) until the cumula- 238

tive probability is larger than T . A hyper-parameter 239

N is set to control the maximum size of candidate 240
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Algorithm 1 Instance Classification
Input: auto-annotated data Dauto = {x, P, Y }
containing sentence x, prediction distribution P
and its corresponding relations Y
Parameter: probability threshold T , partial label
size threshold N
Output: confident data Dcon, ambiguous data
Damb, and hard data Dhard

1: for (x, P ) ∈ Dauto do
2: Let score = 0.0.
3: Let candidate label set C = {}
4: Arrange P from largest to smallest
5: Arrange Y by the order in P
6: for (p, y) ∈ P, Y do
7: score← score+ p.
8: Append y to C.
9: if score > T then

10: break
11: end if
12: end for
13: if score > T and len(C) == 1 then
14: Append (x,C) to Dcon

15: else if score > T and len(C) ⩽ N then
16: Append (x,C) to Damb

17: else
18: Append (x,C) to Dhard

19: end if
20: end for
21: return Dcon, Damb, Dhard

relations2, and the instance with no more than N241

candidate labels is considered as an ambiguous in-242

stance (line 15 in Algorithm 1).243

2.3 Instance Label Tagging Mode244

After identifying confident and ambiguous data245

from the auto-annotated data, we now have three246

training sets: a small seed set of human-annotated247

data Dhum, a confident auto-annotated data Dcon,248

and an ambiguous auto-annotated data Damb. For249

the human-annotated data and confident data, we250

take the original one-hot label vector format as251

described in Sec. 2.1.1 to label the data.252

For the ambiguous data, a variety of methods can253

be used to tag the instance. As shown in Table 1,254

given the probability distributions predicted by the255

teacher model, hard label mode assigns an exact256

label (the label with highest prediction probabil-257

2We will discuss the effect of the hyper-parameter N in
Sec. 4.1.

Mode Ent-Ori Cau-Eff Others

Probability 0.56 0.42 0.02
Hard Label 1 0 0
Soft Label 0.56 0.42 0.02
Partial Label 1 1 0

Table 1: An example of three tagging modes with given
predicted probability distribution.

ity) with a one-hot vector (Lee et al., 2013; Sohn 258

et al., 2020) while soft label mode (Mey and Loog, 259

2016; Najafi et al., 2019; Xie et al., 2020) adopts 260

probability distributions over the labels to cover all 261

possible label choices. 262

In this work, we propose to use the partial label 263

to tag ambiguous instances. As the ambiguous ex- 264

ample discussed in Sec. 1, the teacher gives similar 265

high probabilities to several relations, partial label 266

mode assigns each ambiguous instance with a set 267

of candidate labels (the candidate label set C is 268

described in Algorithm 1 line 3) and treats each 269

candidate label equally to form the multi-hot label 270

vector, as the example shown in Table 1. 271

2.4 Training with Partial Labels 272

Training strategies of the hard label and soft label 273

have been explored in previous work (Lee et al., 274

2013; Xie et al., 2020). In this work, we focus on 275

training on ambiguous data with partial labels. 276

2.4.1 Positive Training for Partial Labeling 277

We first propose to use positive training for par- 278

tially labeled ambiguous data. This solution can 279

deal with the instance with multiple positive labels 280

and is an extended version of traditional positive 281

training (Eqn. 2). Formally, an input instance x 282

from ambiguous data is labeled with a multi-hot 283

label vector y. Then, we calculate scores for re- 284

lations with label 1 in y, individually. Finally, an 285

averaged score for positive labels is used to update 286

the model. The loss function is: 287

LPTPL(f(x), y) = −
∑M

i=1 yi log pi∑M
i=1 yi

. (3) 288

2.4.2 Negative Training for Partial Labeling 289

Inspired by negative training (Kim et al., 2019; Ma 290

et al., 2021) which trains noisy data by selecting 291

a random label as negative label, we propose to 292

train ambiguous data in a negative manner. With 293

the Assumption #2 described in Sec. 1, we are 294
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confident that the answer is not in the labels with295

low probabilities. Therefore, negative training is a296

feasible method to train ambiguous data by treating297

the relations out of candidate set C as negative298

labels.299

In detail, we first randomly select a negative300

label. Then, the multi-hot label for ambiguous data301

is converted into a one-hot label which contains a 1302

value for the selected negative label and others are303

0 values. Finally, the loss function for ambiguous304

instances under negative training is:305

LNTPL(f(x), y) = −
M∑
i=1

yi log (1− pi), (4)306

where the one-hot label y is dynamically changed307

by randomly selecting a negative label during train-308

ing.309

2.4.3 Joint Training310

During training, another challenge is how to com-311

bine three data sets (Dhum, Dcon, and Damb) un-312

der both positive and negative training. For simplic-313

ity, we split this challenge into two issues: (1) how314

to keep the importance of human-annotated data315

and (2) how to train instances by a mixed positive316

and negative training method.317

For the first issue, the quality of human-318

annotated data Dhum is higher than the auto-319

annotated data while the size of Dhum is usually320

much smaller than Dcon and Damb. Therefore, it321

is likely that a small amount of human-annotated322

data may be overwhelmed by the large amount of323

auto-annotated data (Li et al., 2014). To relieve324

the problem, we propose to use a two-stage fine-325

tune based solution which trains human-annotated326

data and auto-annotated data separately. In detail,327

we first train a preliminary modelMauto by fine-328

tuning on BERT with Dcon and Damb. And then329

we go on to train a final model Mhum by fine-330

tuning onMauto with Dhum.331

As for the second issue, the positive training332

method for partially labeled ambiguous data (de-333

scribed in Eqn. 3) is an extended version of the334

standard positive training method (Eqn. 2). There-335

fore, we can directly use this solution to train the336

mixed data which contains Dhum, Dcon and par-337

tially labeled data Damb.338

In order to combine positive training (Eqn. 2)339

and negative training (Eqn. 4), we first introduce a340

flag variable z to represent whether current input341

instance is partially labeled or not: 342

z =

{
1 if partially labeled,
0 others.

(5) 343

Then, a unified loss function is: 344

L(f(x), y) = −
M∑
i=1

yi log |z − pi|, (6) 345

where | ∗ | is the absolute value. 346

3 Experiments 347

In this section, we describe our experimental results 348

and present detailed analysis. 349

3.1 Datasets and Metrics 350

Datasets. We conduct our experiments on two 351

widely used relation extraction datasets: SemEval 352

2010 Task 8 (SemEval) and Re-TACRED, which 353

are built for supervised training. The brief informa- 354

tion of two datasets are as follows: 355

• SemEval: A classical dataset in relation ex- 356

traction which contains 10,717 annotated sen- 357

tences covering 9 relations with two directions 358

and one special relation “no_relation” (Hen- 359

drickx et al., 2010). 360

• Re-TACRED: A repaired version of TA- 361

CRED (Zhang et al., 2017) proposed by (Sto- 362

ica et al., 2021) who re-annotated part of ex- 363

amples in training set and refined relation 364

definition. In total, it contains 91,467 sen- 365

tences covering 40 relations (also including a 366

“no_relation” class). 367

Data Rel Train Dev Test Unlabel

SemEval 10 100 976 1,829 4,212
Re-TACRED 10 100 5,863 4,153 15,635

Table 2: Statistics of SemEval and Re-TACRED under
low-resource settings.

Low-Resource Setting. In this work, we focus 368

on addressing the relation extraction task under a 369

low-resource scenario. In order to avoid the inter- 370

ference of data imbalance problem (Li et al., 2011), 371

we select top 10 relations (excluding “no_relation”) 372

by sorting the relations on the number of instances 373

they have in the original training set. To simulate 374
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Method Micro-F1 Macro-F1

Dhum 73.5 72.3
Dhum+Dcon 81.5 80.9
Dhum+Dcon+Damb 78.9 78.5

Table 3: Results of different data combinations on the
development set of SemEval.

the low-resource scenario, we randomly sample 10375

instances for each relation as a seed set of human-376

annotated training data and the rest instances are377

used as unlabeled data. As for the development and378

test sets, we keep all the instances for the top 10379

relations. The statistics of two datasets are shown380

in Table 2.381

Metrics. In order to give an overall evaluation,382

we follow previous studies (Hendrickx et al., 2010;383

Zhang et al., 2017; Stoica et al., 2021) to report384

both averaged micro F1 scores (Micro-F1) and av-385

eraged macro F1 scores (Macro-F1).386

3.2 Hyper-Parameters387

In this paper, we use BERTbase (Devlin et al., 2018)388

as pre-trained model for all the systems. We choose389

the settings of hyper-parameters according to the390

performance on the development set of SemEval.391

As a result, we use a batch size of 32 and a learning392

rate of 5e-5 with Adam (Kingma and Ba, 2014) and393

train the model in 20 epochs on one GPU. We set394

probability threshold T as 0.95, and partial label395

size N as 5. The partial label size N controls the396

sampling of ambiguous instances where a larger397

number collects more instances as it looses the398

condition. We run 5 seeds to get an averaged value399

as the final result for each system.400

3.3 Preliminary Experiments401

In order to verify the effective of confident data402

and ambiguous data in the hard label mode (as403

shown in Table 1), we conduct the preliminary ex-404

periments by using different data combinations in405

a conventional self-training system.406

Table 3 shows the results of three data combina-407

tions on the development set of SemEval. From the408

table, we find that self-training with confident data409

(Dhum+Dcon) gets a significant performance im-410

provement (+8.0 on Micro-F1 and +8.6 on Macro-411

F1), compared with the supervised model (Dhum)412

which only uses human-annotated data. How-413

ever, if we continually add the ambiguous data414

(Dhum+Dcon+Damb), the performance declines. 415

These facts indicate that the confident data is pretty 416

useful for self-training, while the ambiguous data 417

can not be used directly with self-training. 418

3.4 Comparison Systems 419

We use the RE model proposed by Soares et al. 420

(2019) as base model to build all the systems com- 421

pared in our experiments. We implement the sys- 422

tems by ourselves based on the previous studies. 423

The comparison systems are listed as follows: 424

SUPERVISED. We follow Soares et al. (2019) to 425

fine-tune the pre-trained BERT on the downstream 426

relation extraction task with human-annotated data 427

in a supervised manner. 428

SELF-TRAINING. Our implementation of the 429

representative self-training method (Lee et al., 430

2013), which only uses confident data from the 431

auto-annotated data. 432

HARD PSEUDO-LABEL. Our implementation of 433

self-training method with the confident and ambigu- 434

ous data in hard label mode. The training strategy 435

is the same as SELF-TRAINING (Lee et al., 2013), 436

while the difference is the input data. 437

SOFT PSEUDO-LABEL. Our implementation of 438

self-training method with the confident and am- 439

biguous data in soft labels mode (Xie et al., 2020). 440

NEGHARDLABEL. Our implementation of the 441

negative training method from Kim et al. (2019) 442

which is originally used for tackling noisy label 443

problems in image classification. We use negative 444

training for ambiguous data with hard labels. 445

3.5 Main Results 446

In this section, we show the model performances 447

of our proposed systems (POSPARTIALLABEL and 448

NEGPARTIALLABEL), and meanwhile compare 449

them with the other systems mentioned above. 450

POSPARTIALLABEL refers to the system with pos- 451

itive training for ambiguous data in partial-labeled 452

mode (described in Sec. 2.4.1), while NEGPAR- 453

TIALLABEL refers to the one with negative train- 454

ing for ambiguous data in partial-labeled mode 455

(described in Sec. 2.4.2). 456

Table 4 shows the main results on SemEval and 457

Re-TACRED. For simplicity, we report the aver- 458

age performance (average Micro-F1 and average 459

Macro-F1) on two set sets to evaluate the model. 460

Our observations are: 461
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# Method
SemEval Re-TACRED Avg.

Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1
Dev Test Dev Test Dev Test Dev Test Test Test

1 SUPERVISED 73.5 76.0 72.3 75.5 80.7 84.7 73.9 74.3 80.4 74.9
2 SELF-TRAINING 81.5 81.7 80.9 81.4 85.4 89.0 77.2 76.8 85.5 79.1

3 HARD PSEUDO-LABEL 78.9 80.0 78.5 79.6 87.3 90.5 79.6 77.8 85.3 78.7
4 SOFT PSEUDO-LABEL 80.0 80.8 79.0 80.8 86.5 89.2 78.7 77.3 85.0 79.1
5 NEGHARDLABEL 80.2 80.7 79.9 80.9 87.1 89.6 78.3 77.3 85.2 79.1

6 POSPARTIALLABEL 79.0 80.2 78.0 79.8 72.7 73.2 71.5 68.3 76.7 74.1
7 NEGPARTIALLABEL 83.7 84.1 83.4 83.9 90.6 92.8 80.9 79.7 88.5 81.8

Table 4: Main results on SemEval and Re-TACRED.

• System SELF-TRAINING significantly and462

consistently outperforms SUPERVISED with463

+5.1 on Micro-F1 (85.5 vs. 80.4) and +4.2 on464

Macro-F1 (79.1 vs. 74.9) in average. The re-465

sults indicate that self-training with sampling466

confident data is effective for relation extrac-467

tion in low-resource scenarios.468

• Systems HARD PSEUDO-LABEL, SOFT469

PSEUDO-LABEL and NEGHARDLABEL470

which employ the ambiguous data can471

not achieve consistent improvement over472

the SELF-TRAINING, demonstrating that473

it is challenging to achieve the consistent474

improvement with the ambiguous data.475

• Our final system NEGPARTIALLABEL signif-476

icantly outperforms the SELF-TRAINING on477

both datasets with +3.0 on Micro-F1 (88.5 vs.478

85.5) and +2.7 on Macro-F1 (81.8 vs. 79.1) in479

average, demonstrating the the effectiveness480

and the versatility of the proposed approach.481

• Unfortunately, the proposed POSPARTIALLA-482

BEL suffers from the performance degrada-483

tion. Ideally, the effect of the positive train-484

ing should be equivalent to negative training485

for fully annotated instances. With our par-486

tial label setting, each ambiguous instance in487

the positive training contains only one ground488

truth label and other candidates are false posi-489

tive labels. Noises induced by the false posi-490

tive labels makes the positive training difficult491

to coverage during model training.492

4 Discussion493

In this section, we further analyze the results of our494

final system NEGPARTIALLABEL.495

4.1 Effect of Different Partial Label Size N 496

Figure 3: Effect of different partial label sizes.

To analyse the effect of partial label size N in 497

sampling ambiguous instances, we conduct experi- 498

ments on the development set of SemEval with N 499

from 2 to 9. 500

The results of averaged micro F1 scores are 501

shown in Figure 3. As a comparison, the exper- 502

iments of SELF-TRAINING and HARD PSEUDO- 503

LABEL are also conducted. It is clear that the perfor- 504

mance of HARD PSEUDO-LABEL decreases as N 505

becomes larger because it introduces more uncon- 506

fident instances. As for NEGPARTIALLABEL, we 507

can find that the performance is not sensitive to N . 508

A slight advantage is achieved when N = 5 which 509

is exactly half of the total number of relations. This 510

indicates that our partial labeling method for sam- 511

pling ambiguous instances can mostly ensure the 512

assumption that the correct label is in the candidate 513

set. 514

4.2 The Amount of Ambiguous Data 515

In order to figure out the relevance between the 516

number of ambiguous instances and performance 517

changes of each relation, we analyse the results 518

on the test set of SemEval. The number of am- 519

7



Figure 4: Correlation between amount of ambiguous
data and percentage improvement for each relation.

biguous instances for each relation is calculated520

by a weighted sum. For example, an ambiguous521

instance with a candidate set of 3 relations gives a522

contribution of 1/3 for each relation in candidates.523

Figure 4 shows the results where the histogram524

means the number of ambiguous instances for re-525

lations and the line chart represents the percentage526

performance improvement. We can find that the527

amount of ambiguous data and the improvements528

have a positive correlation. This indicates that sam-529

pling ambiguous data in self-training is useful.530

5 Related Work531

Self-Training. Self-training is one of the most532

commonly used approaches for exploiting unla-533

beled data and has a long history (Scudder, 1965;534

Yarowsky, 1995; McClosky et al., 2006; Lee et al.,535

2013). With the development of neural network536

models and the growth of demand for labeled data,537

self-training becomes more popular. In neural ma-538

chine translation, self-training is used to obtain539

synthetic parallel data (Zhang and Zong, 2016; Wu540

et al., 2019; Jiao et al., 2021). In computer vi-541

sion, Xie et al. (2020) proposes noise student train-542

ing in a teacher-student self-training framework.543

Zoph et al. (2020) studies self-training in object de-544

tection and segmentation and the results show that545

self-training can often help training a better model.546

Moreover, self-training works well with other data547

augmentation methods (Sohn et al., 2020; Du et al.,548

2021; Vu et al., 2021). In this work, we apply self-549

training to exploit unlabeled data for low-resource550

relation extraction. The main difference is that we551

propose to take a partially labeling strategy for low-552

confident instances, while they are often discarded553

in the previous studies.554

Partial Label Learning. The definition of par-555

tial label in this work is a candidate set of labels556

is provided for an instance in a multi-class classi- 557

fication task (Cour et al., 2011). This is different 558

from that in sequence labeling tasks (Li et al., 2014; 559

Yang et al., 2018) and multi-label multi-class clas- 560

sification tasks (Xie and Huang, 2018; Huynh and 561

Elhamifar, 2020). In order to learn from partially 562

labeled instances, many researchers have proposed 563

various methods to deal with this problem (Hüller- 564

meier and Beringer, 2006; Nguyen and Caruana, 565

2008; Cour et al., 2011). Recently, with the help of 566

self-training, Feng and An (2019) proposes a self- 567

guided retraining method to learn from partially 568

labeled data. Besides, Yan and Guo (2020) also 569

proposes to recalculate the confidence of labels in 570

a candidate set by taking the current model as a 571

teacher. However, the partial label problem in this 572

work comes from the assumption of ambiguous 573

instances in self-training. Inspired by the idea of 574

negative training proposed by Kim et al. (2019) to 575

learn from noisy labels in image classification, this 576

paper proposes to use a partial labeling strategy for 577

the ambiguous data, and then apply negative train- 578

ing with them for self-training relation extraction 579

in a low-resource scenario. 580

6 Conclusion 581

In this paper, we propose a novel self-training 582

approach for Low-Resource Relation Extraction 583

which makes full use of the auto-annotated data. 584

According to the probabilities predicted by the 585

teacher model, we classify the auto-annotated data 586

into three sets: confident set, ambiguous set, and 587

hard set. During training, we consider the am- 588

biguous set which is often discarded by the pre- 589

vious studies. Since the annotation of ambiguous 590

instances contains noise, we propose a new nega- 591

tive training method to fit the situation well. With 592

proper joint training, the confident set and the am- 593

biguous set are combined to improve the system. 594

Finally, the experimental results show that our pro- 595

posed system consistently outperforms the baseline 596

systems. 597
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