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Abstract

We present a simple yet effective approach to
improve the performance of self-training rela-
tion extraction in a low-resource scenario. The
approach first classifies the auto-annotated in-
stances into two groups: confident instances
and uncertain instances, according to the prob-
abilities predicted by a teacher model. In con-
trast to most previous studies, which mainly
only use the confident instances for self-
training, we make use of the uncertain in-
stances. We propose a method to identify some
ambiguous but useful instances from the uncer-
tain instances. Then, we propose to utilize neg-
ative training for the ambiguous instances and
positive training for the confident instances. Fi-
nally, they are combined in a joint-training man-
ner to build a relation extraction system. Ex-
perimental results on two widely used datasets
with low-resource settings demonstrate that this
new approach indeed achieves significant and
consistent improvements when compared to
several competitive self-training systems. !

1 Introduction

Relation Extraction (RE) is a fundamental task in
Information Extraction, which aims to obtain a pre-
defined semantic relation between two entities in
a given sentence (Zhou et al., 2005). In recent
years, fine-tuning the downstream RE tasks with
pre-trained models (Soares et al., 2019; Wang et al.,
2019; Li and Tian, 2020) has achieved significant
progress with the rapid development of the “Pre-
train and Fine-tune” Paradigm (Devlin et al., 2018;
Liuetal., 2019; Lewis et al., 2020) which leverages
large-scale unlabeled data. However, RE still suf-
fers from the data scarcity problem. For most RE
tasks, due to the task-specific definition of relations,
the lack of customized annotation data poses great
challenge for the supervised RE (Hendrickx et al.,
2010; Zhang et al., 2017). Meanwhile, manual

!Code, data and models will be made publicly available.
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Figure 1: Two examples of auto-annotated instances.
For simplicity, we list two detailed relations and use
“others” to represent the other relations.

labeling a large-scale RE data is extremely time-
consuming, expensive, and labor-intensive. As an
alternative, automatically building annotated data
for RE attracts a lot of attention in the research
community (Mintz et al., 2010; Luo et al., 2019;
Yu et al., 2020).

Self-training is a simple and effective approach
to build auto-annotated data (Lee et al., 2013;
Zhang and Zong, 2016; Xie et al., 2020; Vu et al.,
2021). The idea is to use a teacher model trained
on human-annotated data to automatically anno-
tate the additional unlabeled data. Then we can
combine the human-annotated data with some in-
stances selected from the auto-annotated data to
train a student model. In this paper, we follow the
self-training framework to improve Low-Resource
RE, which is closer to practical situations where the
task starts with a small seed set of human-annotated
data.

In the previous studies, the researchers often se-
lect the auto-annotated instances with high con-
fidence, named as confident instance, and have
achieved a certain success (Qian et al., 2009; Oliver
et al., 2018). Figure 1(a) shows an example of con-



fident instance, where the teacher model can easily
classify it as relation “entity-origin(el,e2)” with
the clue offered by “hailed from”. Therefore, we
first follow this kind of solutions to conduct self-
training in our task. However, in the preliminary
experiments, we find that some relations might use
similar expressions in instances which makes the
teacher model confused. As a result, for the un-
certain instances, the teacher model gives similar
high probabilities to some relations or assigns low
probabilities to all the relations. An example of
uncertain instance is shown in Figure 1(b), where
the teacher model predicts the instance as relation
“entity-origin(el,e2)” with a probability 56%, as
“cause-effect(e2,e1)” (the ground truth label) with
42%, and as other relations with only 2%. It is hard
to distinguish between the first two relations as the
expression “... is from ...” is often used for both. In
most previous studies, such as (Sohn et al., 2020;
Du et al., 2021), the uncertain instances are often
discarded due to the confusion. However, we ar-
gue that ignoring all the uncertain instances might
not be appropriate since they might contain useful
information. For example, it is a good clue that
the answer is one of the first two relations with a
probability 98% for the instance in Figure 1(b).

Ideally, we would wish to fully use of all the
auto-annotated instances to improve the RE system.
But it is very hard due to the confusion problem.
We split the uncertain instances into two groups:
ambiguous set and hard set. The ambiguous set
includes the instances for which the teacher model
gives similar high probabilities to some relations
(not so many), while the hard set includes the ones
that the teacher model assigns low probabilities to
all the relations. In this paper, we focus on the
ambiguous set and propose an approach to use the
ambiguous instances and the confident instances to
improve Low-Resource RE.

In our approach, we tackle two main issues
when exploiting the ambiguous instances: 1) how
to identify the ambiguous instances from the
auto-annotated instances; 2) how to train a new
model with the ambiguous instances. As for the
first issue, we adopt a probability accumulation
method (Holtzman et al., 2019) to obtain a set of
relations containing the great majority of the prob-
ability, and then identify the ambiguous instances
based on this set. To deal with the second issue, we
make an assumption: For the ambiguous instances,
the teacher model does not know which relation is

the exact answer, but it does know that #1) the an-
swer is (with high probability) in a set of candidates
(likes the first two relations in Figure 1(b)) and #2)
the answer is not the relations which are with very
low probabilities (likes “others” in Figure 1(b)).
Under this assumption, we treat the ambiguous in-
stances as partially-labeled training instances (Cour
et al., 2011), where the answer is in a candidate set
of labels, but only one of which is correct. Based
on Assumption #1, it is naturally that we propose a
training method which applies positive training on
the partially-labeled training instances, POSPAR-
TIALLABEL. However, since only one relation is
correct among the candidates, POSPARTIALLABEL
might go the wrong way when it supposes all of
the candidates are correct. Therefore, based on As-
sumption #2, we propose another training method
based on negative training to learn from partially-
labeled training instances, NEGPARTIALLABEL.
Finally, we use joint training to combine the am-
biguous instances and the confident instances.

Our main contributions are as follows:

* We propose a method to classify the auto-
annotated instances into three groups: confi-
dent set, ambiguous set, and hard set. The am-
biguous instances are then treated as partially-
labeled, which can reduce the effect of con-
fused expressions. To our best knowledge, it
is the first time that partial labeling is used to
tag the auto-annotated instances in RE.

* We propose a simple yet effective approach
to train with ambiguous instances under the
self-training framework. In order to exploit
the auto-annotated instances properly, we pro-
pose to apply negative training with the am-
biguous instances and positive training with
the confident instances. Negative training can
utilize the information that the answer is not
the relations which have very low probabil-
ities predicted by the teacher model. Then,
they are combined in a joint-training manner
to obtain the final RE system.

To verify the effectiveness of our approach, we
conduct experiments on two widely used datasets
with low-resource settings. Results show that our
proposed system significantly outperforms the con-
ventional self-training system which only samples
confident instances and other compared systems.
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Figure 2: Framework of our approach.

2 Our Approach

We first briefly introduce the relation extraction
as well as the self-training framework frequently
used in the previous studies (Zhou et al., 2008; He
et al., 2019). Then, we propose an algorithm to
classify the auto-annotated instances into different
groups: confident data, ambiguous data and hard
data. Finally, we present a training method to use
the confident and ambiguous data. The framework
of the proposed approach is shown in Figure 2.

2.1 Self-Training for Relation Extraction
2.1.1 Relation Extraction

Fine-tuning on a pre-trained model, e.g., BERT,
with a task-specific classifier is a common practice
for downstream NLP tasks (Devlin et al., 2018).
Following Soares et al. (2019), the relation extrac-
tion model is composed of a BERT encoder and a
relation classification layer. Entity markers ([E1]
for the head entity and [E2] for the tail entity) are
inserted into input tokens to learn the entity repre-
sentations. Concretely, the output representation
of two entity markers are concatenated as input for
the relation classification layer.

Formally, the output representation of an in-
stance x after BERT is h = hygy) @© h{gy). Then,
the output probability distribution for M relations

p = [p1,p2,...,pr] is computed by the relation
classification layer:
p = f(z) = Softmaz(Wh + b), (D

where W and b are model parameters.
During training, each instance x from the human-
annotated data is labeled with a one-hot label vector

y: a single 1 value for the ground-truth label and 0
values for other labels. Then, the positive training
is performed to calculate the cross entropy loss:

Z yilogpi, ()

Lpr(f

where M is the number of relations, and y; and
p; are the label and prediction probability of ¢th
relation, respectively.

2.1.2 Self-Training

Generally, in the self-training framework, the un-
labeled instances are labeled by the teacher model
to form the auto-annotated data. As shown in Fig-
ure 2, the general flow of self-training is performed
in the following steps: (1) use the human-annotated
data to train a teacher model; (2) use the teacher
model to conduct label prediction for unlabeled
data; (3) select confident auto-annotated instances
via a pre-defined probability threshold (described
in Sec. 2.2); (4) combine confident auto-annotated
data and human-annotated data to train a student
model (the red dotted rectangle in Figure 2).

And in step (3) the remaining uncertain instances
are considered to be useless. However, as described
in Sec. 1, uncertain instances (e.g., the example in
Figure 1(b)) might contain useful information.

2.2 Instance Classification

To make full use of the auto-annotated instances
to improve the RE system, we use Algorithm 1 to
classify the auto-annotated data into the confident
data (line 14), ambiguous data (line 16) and hard
data (line 18).

Confident instance. A probability threshold 7°
is set to identify the confident instances. We set
the instance whose highest prediction probability
exceeds the probability threshold 7" to be confident
instance, as the teacher makes a certain prediction
about the instance.

Ambiguous instance. We adopt the probability
accumulation method to identify the ambiguous
instances, according to our observations that the
teacher model gives similar high probabilities to
some relation labels. Specifically, we sort the prob-
abilities in prediction probability distribution and
dynamically accumulate the probability of top rela-
tions (Line 4-10 in Algorithm 1) until the cumula-
tive probability is larger than 7'. A hyper-parameter
N is set to control the maximum size of candidate



Algorithm 1 Instance Classification

Input: auto-annotated data Dayto = {z, P, Y’}
containing sentence x, prediction distribution P
and its corresponding relations Y
Parameter: probability threshold 7T, partial label
size threshold NV
Output: confident data Doy, ambiguous data
D.mb, and hard data Dyara
1: for (z, P) € Dayto do
2:  Let score = 0.0.
3:  Let candidate label set C' = {}
4:  Arrange P from largest to smallest
5:  Arrange Y by the order in P
6: for (p,y) € P,Y do
7 score <— score + p.
8
9

Append y to C.
: if score > T then
10: break
11: end if

12:  end for
13:  if score > T and len(C) == 1 then

14: Append (z, C) to Deon

15:  elseif score > T and len(C') < N then
16: Append (z,C) to Damb

17:  else

18: Append (z,C') to Dpard

19:  end if

20: end for

21: return D¢on, Damb, Dhard

relations2, and the instance with no more than N
candidate labels is considered as an ambiguous in-
stance (line 15 in Algorithm 1).

2.3 Instance Label Tagging Mode

After identifying confident and ambiguous data
from the auto-annotated data, we now have three
training sets: a small seed set of human-annotated
data Dpum, a confident auto-annotated data D¢on,
and an ambiguous auto-annotated data D ,,yy,. For
the human-annotated data and confident data, we
take the original one-hot label vector format as
described in Sec. 2.1.1 to label the data.

For the ambiguous data, a variety of methods can
be used to tag the instance. As shown in Table 1,
given the probability distributions predicted by the
teacher model, hard label mode assigns an exact
label (the label with highest prediction probabil-

2We will discuss the effect of the hyper-parameter N in
Sec. 4.1.

Mode Ent-Ori Cau-Eff Others
_Probability 056 042 002
Hard Label 1 0 0
Soft Label 0.56 0.42 0.02
Partial Label 1 1 0

Table 1: An example of three tagging modes with given
predicted probability distribution.

ity) with a one-hot vector (Lee et al., 2013; Sohn
et al., 2020) while soft label mode (Mey and Loog,
2016; Najafi et al., 2019; Xie et al., 2020) adopts
probability distributions over the labels to cover all
possible label choices.

In this work, we propose to use the partial label
to tag ambiguous instances. As the ambiguous ex-
ample discussed in Sec. 1, the teacher gives similar
high probabilities to several relations, partial label
mode assigns each ambiguous instance with a set
of candidate labels (the candidate label set C is
described in Algorithm 1 line 3) and treats each
candidate label equally to form the multi-hot label
vector, as the example shown in Table 1.

2.4 Training with Partial Labels

Training strategies of the hard label and soft label
have been explored in previous work (Lee et al.,
2013; Xie et al., 2020). In this work, we focus on
training on ambiguous data with partial labels.

2.4.1 Positive Training for Partial Labeling

We first propose to use positive training for par-
tially labeled ambiguous data. This solution can
deal with the instance with multiple positive labels
and is an extended version of traditional positive
training (Eqn. 2). Formally, an input instance z
from ambiguous data is labeled with a multi-hot
label vector y. Then, we calculate scores for re-
lations with label 1 in g, individually. Finally, an
averaged score for positive labels is used to update
the model. The loss function is:

M
Ei:l yi log p;
==
Zi:1 Yi

2.4.2 Negative Training for Partial Labeling

Lprpr(f(z),y) = — 3)

Inspired by negative training (Kim et al., 2019; Ma
et al., 2021) which trains noisy data by selecting
a random label as negative label, we propose to
train ambiguous data in a negative manner. With
the Assumption #2 described in Sec. 1, we are



confident that the answer is not in the labels with
low probabilities. Therefore, negative training is a
feasible method to train ambiguous data by treating
the relations out of candidate set C' as negative
labels.

In detail, we first randomly select a negative
label. Then, the multi-hot label for ambiguous data
is converted into a one-hot label which contains a 1
value for the selected negative label and others are
0 values. Finally, the loss function for ambiguous
instances under negative training is:

M
Lyrpr(f(x),y) == wilog(1—pi), 4
i=1

where the one-hot label y is dynamically changed
by randomly selecting a negative label during train-
ing.

2.4.3 Joint Training

During training, another challenge is how to com-
bine three data sets (Dpum, Decon, and Damp) un-
der both positive and negative training. For simplic-
ity, we split this challenge into two issues: (1) how
to keep the importance of human-annotated data
and (2) how to train instances by a mixed positive
and negative training method.

For the first issue, the quality of human-
annotated data Dyyy, is higher than the auto-
annotated data while the size of Dy, is usually
much smaller than D¢opn and Damp. Therefore, it
is likely that a small amount of human-annotated
data may be overwhelmed by the large amount of
auto-annotated data (Li et al., 2014). To relieve
the problem, we propose to use a two-stage fine-
tune based solution which trains human-annotated
data and auto-annotated data separately. In detail,
we first train a preliminary model M, by fine-
tuning on BERT with D¢on and Dyp,p. And then
we go on to train a final model My, by fine-
tuning on M g1 With Dpym.

As for the second issue, the positive training
method for partially labeled ambiguous data (de-
scribed in Eqn. 3) is an extended version of the
standard positive training method (Eqn. 2). There-
fore, we can directly use this solution to train the
mixed data which contains Dyym, Deon and par-
tially labeled data D .

In order to combine positive training (Eqn. 2)
and negative training (Eqn. 4), we first introduce a
flag variable z to represent whether current input

instance is partially labeled or not:

_ | 1 if partially labeled,
= { 0 others. ©)

Then, a unified loss function is:

M
L(f(z),y)=— wiloglz—pil, (6)
i=1

where | * | is the absolute value.

3 Experiments

In this section, we describe our experimental results
and present detailed analysis.

3.1 Datasets and Metrics

Datasets. We conduct our experiments on two
widely used relation extraction datasets: SemEval
2010 Task 8 (SemEval) and Re-TACRED, which
are built for supervised training. The brief informa-
tion of two datasets are as follows:

* SemEval: A classical dataset in relation ex-
traction which contains 10,717 annotated sen-
tences covering 9 relations with two directions
and one special relation “no_relation” (Hen-
drickx et al., 2010).

Re-TACRED: A repaired version of TA-
CRED (Zhang et al., 2017) proposed by (Sto-
ica et al., 2021) who re-annotated part of ex-
amples in training set and refined relation
definition. In total, it contains 91,467 sen-
tences covering 40 relations (also including a
“no_relation” class).

Data Rel Train Dev Test Unlabel
SemEval 10 100 976 1,829 47212
Re-TACRED 10 100 5,863 4,153 15,635

Table 2: Statistics of SemEval and Re-TACRED under
low-resource settings.

Low-Resource Setting. In this work, we focus
on addressing the relation extraction task under a
low-resource scenario. In order to avoid the inter-
ference of data imbalance problem (Li et al., 2011),
we select top 10 relations (excluding “no_relation”)
by sorting the relations on the number of instances
they have in the original training set. To simulate



Method Micro-F1 Macro-F1
Dhum 73.5 72.3
Dhum+Dcon 81.5 80.9
Dhum+Dcon+Damb 78.9 78.5

Table 3: Results of different data combinations on the
development set of SemEval.

the low-resource scenario, we randomly sample 10
instances for each relation as a seed set of human-
annotated training data and the rest instances are
used as unlabeled data. As for the development and
test sets, we keep all the instances for the top 10
relations. The statistics of two datasets are shown
in Table 2.

Metrics. In order to give an overall evaluation,
we follow previous studies (Hendrickx et al., 2010;
Zhang et al., 2017; Stoica et al., 2021) to report
both averaged micro F1 scores (Micro-F1) and av-
eraged macro F1 scores (Macro-F1).

3.2 Hyper-Parameters

In this paper, we use BERTpase (Devlin et al., 2018)
as pre-trained model for all the systems. We choose
the settings of hyper-parameters according to the
performance on the development set of SemEval.
As aresult, we use a batch size of 32 and a learning
rate of Se-5 with Adam (Kingma and Ba, 2014) and
train the model in 20 epochs on one GPU. We set
probability threshold 71" as 0.95, and partial label
size N as 5. The partial label size N controls the
sampling of ambiguous instances where a larger
number collects more instances as it looses the
condition. We run 5 seeds to get an averaged value
as the final result for each system.

3.3 Preliminary Experiments

In order to verify the effective of confident data
and ambiguous data in the hard label mode (as
shown in Table 1), we conduct the preliminary ex-
periments by using different data combinations in
a conventional self-training system.

Table 3 shows the results of three data combina-
tions on the development set of SemEval. From the
table, we find that self-training with confident data
(Dhum+Decon) gets a significant performance im-
provement (+8.0 on Micro-F1 and +8.6 on Macro-
F1), compared with the supervised model (Dpym)
which only uses human-annotated data. How-
ever, if we continually add the ambiguous data

(Dhum+DcontDamb), the performance declines.
These facts indicate that the confident data is pretty
useful for self-training, while the ambiguous data
can not be used directly with self-training.

3.4 Comparison Systems

We use the RE model proposed by Soares et al.
(2019) as base model to build all the systems com-
pared in our experiments. We implement the sys-
tems by ourselves based on the previous studies.
The comparison systems are listed as follows:

SUPERVISED. We follow Soares et al. (2019) to
fine-tune the pre-trained BERT on the downstream
relation extraction task with human-annotated data
in a supervised manner.

SELF-TRAINING. Our implementation of the
representative self-training method (Lee et al.,
2013), which only uses confident data from the
auto-annotated data.

HARD PSEUDO-LABEL. Our implementation of
self-training method with the confident and ambigu-
ous data in hard label mode. The training strategy
is the same as SELF-TRAINING (Lee et al., 2013),
while the difference is the input data.

SOFT PSEUDO-LABEL. Our implementation of
self-training method with the confident and am-
biguous data in soft labels mode (Xie et al., 2020).

NEGHARDLABEL. Our implementation of the
negative training method from Kim et al. (2019)
which is originally used for tackling noisy label
problems in image classification. We use negative
training for ambiguous data with hard labels.

3.5 Main Results

In this section, we show the model performances
of our proposed systems (POSPARTIALLABEL and
NEGPARTIALLABEL), and meanwhile compare
them with the other systems mentioned above.
POSPARTIALLABEL refers to the system with pos-
itive training for ambiguous data in partial-labeled
mode (described in Sec. 2.4.1), while NEGPAR-
TIALLABEL refers to the one with negative train-
ing for ambiguous data in partial-labeled mode
(described in Sec. 2.4.2).

Table 4 shows the main results on SemEval and
Re-TACRED. For simplicity, we report the aver-
age performance (average Micro-F1 and average
Macro-F1) on two set sets to evaluate the model.
Our observations are:



SemEval Re-TACRED Avg.
# Method Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1
Dev Test Dev Test Dev Test Dev Test Test Test
1 SUPERVISED 73.5 76.0 72.3 75.5 80.7 84.7 73.9 74.3 80.4 74.9
2 SELF-TRAINING 81.5 81.7 809 81.4 854 89.0 77.2 76.8 85.5 79.1
3 HARD PSEUDO-LABEL 78.9 80.0 78.5 79.6 87.3 90.5 79.6 77.8 85.3 78.7
4 SOFT PSEUDO-LABEL 80.0 80.8 79.0 80.8 86.5 89.2 78.7 77.3 85.0 79.1
5 NEGHARDLABEL 80.2 80.7 799 80.9 87.1 89.6 783 77.3 85.2 79.1
6 POSPARTIALLABEL 79.0 80.2 78.0 79.8 72.7 73.2 71.5 68.3 76.7 74.1
7 NEGPARTIALLABEL 83.7 84.1 83.4 83.9 90.6 92.8 80.9 79.7 88.5 81.8

Table 4: Main results on SemEval and Re-TACRED.

System SELF-TRAINING significantly and
consistently outperforms SUPERVISED with
+5.1 on Micro-F1 (85.5 vs. 80.4) and +4.2 on
Macro-F1 (79.1 vs. 74.9) in average. The re-
sults indicate that self-training with sampling
confident data is effective for relation extrac-
tion in low-resource scenarios.

Systems HARD PSEUDO-LABEL, SOFT
PSEUDO-LABEL and NEGHARDLABEL
which employ the ambiguous data can
not achieve consistent improvement over
the SELF-TRAINING, demonstrating that
it is challenging to achieve the consistent
improvement with the ambiguous data.

Our final system NEGPARTIALLABEL signif-
icantly outperforms the SELF-TRAINING on
both datasets with +3.0 on Micro-F1 (88.5 vs.
85.5) and +2.7 on Macro-F1 (81.8 vs. 79.1) in
average, demonstrating the the effectiveness
and the versatility of the proposed approach.

Unfortunately, the proposed POSPARTIALLA-
BEL suffers from the performance degrada-
tion. Ideally, the effect of the positive train-
ing should be equivalent to negative training
for fully annotated instances. With our par-
tial label setting, each ambiguous instance in
the positive training contains only one ground
truth label and other candidates are false posi-
tive labels. Noises induced by the false posi-
tive labels makes the positive training difficult
to coverage during model training.

4 Discussion

In this section, we further analyze the results of our
final system NEGPARTIALLABEL.

4.1 Effect of Different Partial Label Size NV
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Figure 3: Effect of different partial label sizes.

To analyse the effect of partial label size N in
sampling ambiguous instances, we conduct experi-
ments on the development set of SemEval with N
from 2 to 9.

The results of averaged micro F1 scores are
shown in Figure 3. As a comparison, the exper-
iments of SELF-TRAINING and HARD PSEUDO-
LABEL are also conducted. It is clear that the perfor-
mance of HARD PSEUDO-LABEL decreases as [NV
becomes larger because it introduces more uncon-
fident instances. As for NEGPARTIALLABEL, we
can find that the performance is not sensitive to V.
A slight advantage is achieved when N = 5 which
is exactly half of the total number of relations. This
indicates that our partial labeling method for sam-
pling ambiguous instances can mostly ensure the
assumption that the correct label is in the candidate
set.

4.2 The Amount of Ambiguous Data

In order to figure out the relevance between the
number of ambiguous instances and performance
changes of each relation, we analyse the results
on the test set of SemEval. The number of am-
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Figure 4: Correlation between amount of ambiguous
data and percentage improvement for each relation.

biguous instances for each relation is calculated
by a weighted sum. For example, an ambiguous
instance with a candidate set of 3 relations gives a
contribution of 1/3 for each relation in candidates.
Figure 4 shows the results where the histogram
means the number of ambiguous instances for re-
lations and the line chart represents the percentage
performance improvement. We can find that the
amount of ambiguous data and the improvements
have a positive correlation. This indicates that sam-
pling ambiguous data in self-training is useful.

5 Related Work

Self-Training. Self-training is one of the most
commonly used approaches for exploiting unla-
beled data and has a long history (Scudder, 1965;
Yarowsky, 1995; McClosky et al., 2006; Lee et al.,
2013). With the development of neural network
models and the growth of demand for labeled data,
self-training becomes more popular. In neural ma-
chine translation, self-training is used to obtain
synthetic parallel data (Zhang and Zong, 2016; Wu
et al., 2019; Jiao et al., 2021). In computer vi-
sion, Xie et al. (2020) proposes noise student train-
ing in a teacher-student self-training framework.
Zoph et al. (2020) studies self-training in object de-
tection and segmentation and the results show that
self-training can often help training a better model.
Moreover, self-training works well with other data
augmentation methods (Sohn et al., 2020; Du et al.,
2021; Vu et al., 2021). In this work, we apply self-
training to exploit unlabeled data for low-resource
relation extraction. The main difference is that we
propose to take a partially labeling strategy for low-
confident instances, while they are often discarded
in the previous studies.

Partial Label Learning. The definition of par-
tial label in this work is a candidate set of labels

is provided for an instance in a multi-class classi-
fication task (Cour et al., 2011). This is different
from that in sequence labeling tasks (Li et al., 2014;
Yang et al., 2018) and multi-label multi-class clas-
sification tasks (Xie and Huang, 2018; Huynh and
Elhamifar, 2020). In order to learn from partially
labeled instances, many researchers have proposed
various methods to deal with this problem (Hiiller-
meier and Beringer, 2006; Nguyen and Caruana,
2008; Cour et al., 2011). Recently, with the help of
self-training, Feng and An (2019) proposes a self-
guided retraining method to learn from partially
labeled data. Besides, Yan and Guo (2020) also
proposes to recalculate the confidence of labels in
a candidate set by taking the current model as a
teacher. However, the partial label problem in this
work comes from the assumption of ambiguous
instances in self-training. Inspired by the idea of
negative training proposed by Kim et al. (2019) to
learn from noisy labels in image classification, this
paper proposes to use a partial labeling strategy for
the ambiguous data, and then apply negative train-
ing with them for self-training relation extraction
in a low-resource scenario.

6 Conclusion

In this paper, we propose a novel self-training
approach for Low-Resource Relation Extraction
which makes full use of the auto-annotated data.
According to the probabilities predicted by the
teacher model, we classify the auto-annotated data
into three sets: confident set, ambiguous set, and
hard set. During training, we consider the am-
biguous set which is often discarded by the pre-
vious studies. Since the annotation of ambiguous
instances contains noise, we propose a new nega-
tive training method to fit the situation well. With
proper joint training, the confident set and the am-
biguous set are combined to improve the system.
Finally, the experimental results show that our pro-
posed system consistently outperforms the baseline
systems.
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