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ABSTRACT

Diffusion-based methods represented as stochastic differential equations on a
continuous time domain have recently proven successful as a non-adversarial
generative model. Training such models relies on denoising score matching, which
can be seen as multi-scale denoising autoencoders. Here, we augment the denoising
score matching framework to enable representation learning without any supervised
signal. GANs and VAEs learn representations by directly transforming latent codes
to data samples. In contrast, the introduced diffusion-based representation learning
relies on a new formulation of the denoising score matching objective and thus
encodes information needed for denoising. We illustrate how this difference
allows for manual control of the level of details encoded in the representation.
Using the same approach, we propose to learn an infinite-dimensional latent code
which achieves improvements of state-of-the-art models on semi-supervised image
classification. As a side contribution, we show how adversarial training in diffusion-
based models can improve sample quality and improve sampling speed using a
new approximation of the prior at smaller noise scales.

1 INTRODUCTION

Diffusion-based models have recently proven successful for generating images (Sohl-Dickstein et al.
(2015); Song & Ermon (2020); Song et al. (2020)), graphs (Niu et al. (2020)), shapes (Cai et al.
(2020)), and audio (Chen et al. (2020b); Kong et al. (2021)). Two promising approaches apply
step-wise perturbations to samples of the data distribution until the perturbed distribution matches a
known prior (Song & Ermon (2019); Ho et al. (2020)). A model is trained to estimate the reverse
process, which transforms samples of the prior to samples of the data distribution (Saremi et al.
(2018)). Diffusion models were further refined (Nichol & Dhariwal (2021); Luhman & Luhman
(2021)) and even achieved better image sample quality than GANs (Dhariwal & Nichol (2021);
Ho et al. (2021); Mehrjou et al. (2017)). Further, Song et al. showed that these frameworks are
discrete versions of continuous-time perturbations by stochastic differential equations and proposed a
diffusion-based generative modeling framework on continuous time. Unlike generative models such
as GANs and various forms of autoencoders, the original form of diffusion models does not come
with a fixed architectural module that captures the representation.

Learning desirable representations has been an integral component of generative models such as
GANs and VAEs (Bengio et al. (2013); Radford et al. (2016); Chen et al. (2016); van den Oord et al.
(2017); Donahue & Simonyan (2019); Chen et al. (2020a); Schölkopf et al. (2021)). Considering
diffusion-based methods as promising and theoretically grounded generative models, here we propose
a method to augment the underlying Stochastic Differential Equation (SDE) for learning a latent
data-generating code. The key idea is to provide a representation of the clean data as additional
input to the model estimating the score function. Our approach is illustrated in Figure 1. Recent
works on visual representation learning achieve impressive performance on the downstream task
of classification by applying contrastive learning (Chen et al. (2020c); Grill et al. (2020); Chen &
He (2020); Caron et al. (2021)). However, training the encoder to output similar representation for
different views of the same image removes information about the applied augmentations, thus the
performance benefits are limited to downstream tasks that do not depend on the augmentation, which
has to be known beforehand. For this reason, we do not apply contrastive learning in order not to
restrict the learned representation to specific downstream tasks and solve a more general problem
instead. We provide a summary of contrastive learning approaches in A.1. Similar to our approach,
Denoising Autoencoders (DAE) (Vincent et al. (2008)) can be used to encode representations that
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Figure 1: Conditional score matching with a parametrized latent code is representation learning.
Denoising score matching estimates the score at each xt; we add a latent representation z of the clean
data x0 as additional input to the score estimator.

can be manually controlled by adjusting the noise scale (Geras & Sutton (2015); Chandra & Sharma
(2014); Zhang & Zhang (2018)). Note that unlike DAEs, the encoder in our approach does not receive
noisy data as input, but instead extracts features based on the clean images. For example, this key
difference allows DRL to be used to limit the encoding to fine-grained features when focusing on
low noise levels, which is not possible with DAEs. Even though diffusion models are considered
non-adversarial, in this work we show that it can actually be an adversarial process by means of the
weighting function λ which has positive effect in the sampling quality of the diffusion-based models.

We begin by briefly revisiting the foundations of diffusion-based generative models in Section 1.1.
In Section 2 we present our method for representation learning, propose how to apply adversarial
training in diffusion-based models in Section 3.1, and motivate the use of fewer sampling steps in
Section 3.2. We follow up with experimental results and evaluations of our proposed methods in
Section 4. For further clarity, the main contributions of this work are itemized in the following.

• We present an alternative formulation of the denoising score matching objective, showing
that the objective cannot be reduced to zero.

• We introduce and evaluate Diffusion-based Representation Learning (DRL), a new frame-
work for representation learning in diffusion-based generative models. We show how this
framework allows for manual control of the level of details encoded in the representation.
We extend our approach to an infinite-dimensional code and evaluate it on the downstream
task of semi-supervised image classification, improving state-of-the-art approaches.

• Unlike the widely admitted non-adversarial nature of these models, we show there exists
an inherent component in the formulation that acts adversarially and can be leveraged to
improve the sample quality.

• We evaluate the effect of the initial noise scale and achieve significant improvements in
sampling speed, which is a bottleneck in diffusion-based generative models compared with
GANs and VAEs, without sacrificing image quality.

1.1 DIFFUSION-BASED GENERATIVE MODELING

In the following, we give a brief overview of the technical background for the framework of the
diffusion-based generative model, for example, as described in (Song et al., 2021b). The forward
diffusion process of the data is modeled as a SDE on a continuous time domain t ∈ [0, T ]. Let
x0 ∈ Rd denote a sample of the data distribution x0 ∼ p0, where d is the data dimension. The
trajectory (xt)t∈[0,T ] of data samples is a function of time determined by the diffusion process. The
SDE is chosen such that the distribution p0T (xT |x0) for any sample x0 ∼ p0 can be approximated by
a known prior distribution. Notice that the subscript 0T of p0T refers to the conditional distribution
of the diffused data at time T given the data at time 0. For simplicity we limit the remainder of this
paper to the so-called Variance Exploding SDE (Song et al. (2021b)), that is,

dx = f(x, t) dt+ g(t) dw :=

√
d[σ2(t)]

dt
dw, (1)
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where w is the standard Wiener process. The perturbation kernel of this diffusion process has a
closed-form solution being p0t(xt|x0) = N (xt;x0, [σ

2(t)− σ2(0)]I). It was shown by Anderson
(1982) that the reverse diffusion process is the solution to the following SDE:

dx = [f(x, t)− g2(t)∇x log pt(x)] dt+ g(t) dw, (2)

where w is the standard Wiener process when the time moves backwards. Thus, given the score
function ∇x log pt(x) for all t ∈ [0, T ], we can generate samples from the data distribution p0(x). In
order to learn the score function, the simplest objective is Explicit Score Matching (ESM) (Hyvärinen
& Dayan (2005)), that is,

Ext
[
‖sθ(xt, t)−∇xt log pt(xt)‖22

]
. (3)

Since the ground-truth score function∇xt log pt(xt) is generally not known, one can apply denoising
score matching (DSM) (Vincent (2011)), which is defined as the following:

JDSMt (θ) = Ex0{Ext|x0
[‖sθ(xt, t)−∇xt log p0t(xt|x0)‖22 ]}. (4)

The training objective over all t is augmented by Song et al. (2021b) with a time-dependent positive
weighting function λ(t), that is, JDSM (θ) = Et

[
λ(t)JDSMt (θ)

]
.

2 DIFFUSION-BASED REPRESENTATION LEARNING

2.1 ALTERNATIVE FORMULATION OF DENOISING SCORE MATCHING

We begin this section by presenting an alternative formulation of the Denoising Score Matching
(DSM) objective, which shows that this objective cannot be made arbitrarily small. Formally, the
formula of the DSM objective can be rearranged as

JDSMt (θ) = Ex0
{Ext|x0

[
‖∇xt log p0t(xt|x0)−∇xt log pt(xt)‖22

+‖sθ(xt, t)−∇xt log pt(xt)‖22
]
}.

(5)

The above formulation holds, because the DSM objective in equation 4 is minimized when ∀xt :
sθ(xt, t) = ∇xt log pt(xt), and differs from ESM in equation 3 only by a constant (Vincent (2011)).
Hence, the constant is equal to the minimum achievable value of the DSM objective. A detailed proof
is included in the Appendix (A.2). It is noteworthy that the first term in the rhs of the equation 5 does
not depend on the learned score function of xt for every t ∈ [0, T ]. Rather, it is influenced by the
diffusion process that generates xt from x0. This observation has not been emphasized previously,
probably because it has no direct effect on the learning of the score function that is handeled by
the second term in the rhs of equation 5. However, the additional constant has major implications
for finding other hyperparameters such as the function λ(t) and the choice of σ(t) in the forward
SDE. To the best of our knowledge, there is no known theoretical justification for the values of σ(t).
While these hyperparameters could be optimized in ESM using gradient-based learning, this ability is
severely limited by the non-vanishing constant in equation 5. Similarly, it impacts the behaviour of
adversarial training in diffusion models, which we analyze in Section 4.2.

Even though the non-vanishing constant in the denoising score matching objective presents a burden
in multiple ways such as hyperparameter search and model evaluation, it provides an opportunity for
latent representation learning, which will be described in the following sections.

2.2 CONDITIONAL SCORE MATCHING

Class-conditional generation can be achieved in diffusion-based models by training an additional
time-dependent classifier pt(y|xt) (Song et al. (2021b)). In particular, the conditional score for a
fixed y can be expressed as the sum of the unconditional score and the score of the classifier, that is,
∇xt log pt(xt|y) = ∇xt log pt(xt) +∇xt log pt(y|xt). We propose conditional score matching as
an alternative way to allow for controllable generation. Given supervised samples (x, y(x)), the new
training objective for each time t becomes

JCSMt (θ) = Ex0
{Ext|x0

[‖sθ(xt, t, y(x0))−∇xt log p0t(xt|x0)‖22 ]}. (6)

The objective in equation 6 is minimized if and only if the model equals the conditional score function
∇xt log pt(xt|y(x0) = ŷ) for all labels ŷ.
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2.3 LEARNING LATENT REPRESENTATIONS

Since supervised data is limited and rarely available, we propose to learn a labeling function y(x0) at
the same time as optimizing the conditional score matching objective in equation 6. In particular,
we represent the labeling function as a trainable encoder Eφ : Rd → Rc, where Eφ(x0) maps the
data sample x0 to its corresponding code in the c-dimensional latent space. The code is then used
as additional input to the model. Formally, the proposed learning objective for Diffusion-based
Representation Learning (DRL) is the following:

JDRL(θ, φ) = Et,x0,xt [λ(t)‖sθ(xt, t, Eφ(x0))−∇xt log p0t(xt|x0)‖22 ]. (7)

To get a better idea of the above objective, we provide an intuition for the role of Eφ(x0) in the
input of the model. The model sθ(·, ·, ·) : Rd × R × Rc → Rd is a vector-valued function whose
output points to different directions based on the value of its third argument. In fact, Eφ(x0) selects
the direction that best recovers x0 from xt. Hence, when optimizing over φ, the encoder learns to
extract the information from x0 in a reduced-dimensional space that helps recover x0 by denoising
xt. Notice that finding the denoising direction requires information from both x0 and xt and Eφ can
only extract the partial information from the source x0.

We show in the following that equation 7 is a valid representation learning objective. The score of the
perturbation kernel ∇xt log p0t(xt|x0) is a function of only t, xt and x0. Thus the objective can be
reduced to zero if all information about x0 is contained in the latent representation Eφ(x0). When
Eφ(x0) has no mutual information with x0, the objective can only be reduced up to the constant
in equation 5. Hence, our proposed formulation takes advantage of the non-zero lower-bound of
equation 5, which can only vanish when data information is distilled in a code provided as input to
the model. These properties show that equation 7 is a valid objective for representation learning.

Our proposed representation learning objective enjoys the continuous nature of SDEs, a property that
is not available in many previous representation learning methods (Radford et al. (2016); Chen et al.
(2016); Locatello et al. (2019)). In DRL, the encoder is trained to represent the information needed
to denoise x0 for different levels of noise σ(t). We hypothesize that by adjusting the weighting
function λ(t), we can manually control the granularity of the features encoded in the representation
and provide empirical evidence as support. When t→ T that is associated to high noise level, the
mutual information of xt and x0 starts to vanish, thus denoising requires all information about x0 to
be contained in the code. In contrast, when t→ 0 that corresponds to low noise levels, xt contains
coarse-grained features of x0 and only fine-grained properties may have been washed out due to the
small magnitude of noise. Hence, the representation learns to keep the information needed to recover
these fine-grained details. We provide empirical evidence to support this hypothesis in Section 4.

It is noteworthy that Eφ does not need to be a deterministic function. In principle, it can be viewed
as an information channel that controls the amount of information that the diffusion model receives
from the initial point of the diffusion process. With this perspective, any deterministic or stochastic
function that can manipulate I(xt, x0), the mutual information between x0 and xt, can be used. This
opens up the room for stochastic encoders similar to VAEs that we call Variational Diffusion-based
Representation Learning (VDLR) from this point onward. The formal objective of VDRL is

JV DRL(θ, φ) =Et,x0,xt [Ez∼Eφ(Z|x0)[λ(t)‖sθ(xt, t, z)−∇xt log p0t(xt|x0)‖22 ] (8)

+DKL(Eφ(Z|x0)||N (Z; 0, I)]. (9)

2.4 INFINITE-DIMENSIONAL REPRESENTATION OF FINITE-DIMENSIONAL DATA

We now present an alternative version of DRL where the representation is a function of time. Instead
of emphasizing on different noise levels by weighting the training objective, as done in the previous
section, we can provide the time t as input to the encoder. Formally, the new objective is the following:

Et,x0,xt [λ(t)‖sθ(xt, t, Eφ(x0, t))−∇xt log p0t(xt|x0)‖22 ], (10)

where Eφ(x0) in equation 7 is replaced by Eφ(x0, t). Intuitively, it allows the encoder to extract the
necessary information of x0 required to denoise xt for any noise level. This can be seen as a rich
representation learning in the following way. Normally in autoencoders or other static representation
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learning methods, the input data x0 ∈ Rd is mapped to a single point z ∈ Rc in the code space.
We propose a richer representation where the input x0 is mapped to a curve in Rc instead of a
single point. Hence, the learned code is produced by the map x0 → (Eφ(x0, t))t∈[0,T ] where the
infinite-dimensional object (Eφ(x0, t))t∈[0,T ] is the encoding for x0.

Proposition 1. For any downstream task, the infinite-dimensional code (Eφ(x0, t))t∈[0,T ] learned
using the objective in equation 10 is at least as good as finite-dimensional static codes learned by the
reconstruction of x0.

Proof sketch. The score matching objective can be seen as a reconstruction objective of x0 condi-
tioned on xt. The terminal time T is chosen large enough so that xT is independent of x0, hence
the objective for t = T is equal to a reconstruction objective without conditioning. Therefore, there
exists a t ∈ [0, T ] where the learned representation Eφ(x0, t) is the same representation learned by
the reconstruction objective of a vanilla autoencoder.

The full proof for Proposition 1 can be found in the Appendix (1). A downstream task can leverage
this rich encoding in various ways, including the use of either the static code for a fixed t, or the use
of the whole trajectory (Eφ(x0, t))t∈[0,T ] as input. We posit the conjecture that the proposed rich
representation is helpful for downstream tasks when used for pretraining, where the value of t is either
a model selection parameter or jointly optimized with other parameters during training, and evaluate
it on semi-supervised image classification in Section 4.1.1. The current state-of-the-art model
for many semi-supervised image classification benchmarks is LaplaceNet (Sellars et al. (2021)). It
alternates between assigning pseudo-labels to samples and supervised training of a classifier. The
key idea is to assign pseudo-labels by minimizing the graphical Laplacian of the prediction matrix,
where similarities of data samples are calculated on a hidden layer representation in the classifier.
Note that LaplaceNet applies mixup (Zhang et al. (2017)) that changes the input distribution of the
classifier. We evaluate our method both with and without mixup on CIFAR-10 (Krizhevsky et al. (a)),
CIFAR-100 (Krizhevsky et al. (b)) and MiniImageNet (Vinyals et al. (2016)).

3 REMARKS ON DIFFUSION-BASED GENERATIVE MODELS

The following sections contain side-contributions on training and sampling in diffusion-based models.
First we want to note that diffusion models are claimed to minimize KL-Divergence when using the
respective likelihood weighting (Song et al. (2021a)). However, the assumption of the model being
curl-free is usually not enforced and thus this statement might not hold in practice.

3.1 ADVERSARIAL TRAINING IN DIFFUSION-BASED GENERATIVE MODELS

In general, diffusion-based generative models enjoy the advantages of non-adversarial training. Hence,
they do not suffer from mode collapse, a common problem observed in GANs (Thanh-Tung et al.
(2018)), but instead can be trained to minimize KL-Divergence. However, it has been shown that
KL-Divergence is not a good indicator of perceptual image quality (Theis et al. (2016); Gatys et al.
(2017); Arjovsky et al. (2017)). Hence, GANs were extended to maximize the variation lower bound
of the family of f -divergences (Nowozin et al. (2016)). Similarly, Song et al. introduced the set of
λ-divergences between two probability distributions p and q, defined as

Dλ(p||q) =
1

2

∫ T

0

Ex∼pt(x)[λ(x, t)‖∇x log pt(x)−∇x log qt(x)‖22]dt. (11)

Note that λ-divergences can express any f -divergence and that we can train on the respective diver-
gence solely by adjusting λ(x, t) in the denoising score matching objective. However, minimizing a
specific f -divergence requires the knowledge of the ratio of densities pt(x)/qt(x) that is not at hand.

Previous work on adversarial training in diffusion models added a discriminator loss training the
model to output visually appealing samples after each denoising step (Jolicoeur-Martineau et al.
(2020)). In contrast, we form a min-max game to minimize the worst-case λ-divergence defined by
an additional adversary, which is trained alternately with the model. Since we do not have access to
the score function ∇xt log pt(xt), we approximate the λ-divergence using the DSM objective, and
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hence solve the following optimization problem:

min
θ

max
λ

1

2

∫ T

0

Ex0
{Ext|x0

[λ(xt, t)(‖∇xt log p0t(xt|x0)−∇xt log pt(xt)‖22
+ ‖sθ(xt, t)−∇xt log pt(xt)‖22)]} dt.

(12)

As a result, λ is biased by the non-vanishing constant and might not explicitly focus on regions where
the model is distant from the true score function. We hypothesize that the denoising score matching
approximation can still yield the improvements of an adversarial divergence, and report the empirical
evidence to support it in Section 4.2. For simplicity, we limit λ to the set of linear functions on t, thus
removing the dependence on x. Details are described in the Appendix in A.8. In order to prevent
omission of any values of t in the training, we interpolate between training on the DKL and Dλ

objective with a hyperparameter pKL which determines the percentage of training on DKL.

3.2 THE CHOICE OF INITIAL NOISE SCALE

The initial noise scale controls the quality and diversity of the generated samples. It is proposed by
Song & Ermon (2020) that the initial noise scale has to be chosen so that the sampling trajectory can
traverse from every mode to the other one. Even though this looks good in terms of diversity, it can
be quite wasteful because the noise must be large enough so that the whole empirical data distribution
is covered. In fact, it is not necessary to traverse from every mode to every other mode directly. We
can traverse from a mode to a number of nearest modes and then from those modes to the farther
ones. This way, we can choose a significantly smaller initial noise scale that saves us many steps in
the sampling trajectory.

According to Song & Ermon (2020), σ(T ) should be set numerically equal to the maximum pairwise
distance of images, which is approximately 50 for CIFAR-10 training images. However, we noticed
that smaller values of σ(T ) are sufficient for generating diverse images. When using smaller initial
noise scales, we can further approximate the noise distribution using the sum of gaussian noise
z ∼ N (0, σ(T )) and an additional uniform random variable in the image domain u ∼ U([0, 1]d),
ensuring the generated images cover the whole image domain. We evaluate qualitative diversity and
FID of generated images for various initial noise scales in Section 4.3.

4 RESULTS

4.1 DIFFUSION-BASED REPRESENTATION LEARNING

For all experiments, we use the same function σ(t), t ∈ [0, 1] as in Song et al. (2021b), which is
σ(t) = σmin (σmax/σmin)

t, where σmin = 0.01 and σmax = 50. Further, we use a 2d latent space
and set λ(t) = σ2(t), which has been shown to yield the KL-Divergence objective (Song et al.
(2021a)). Our goal is not to produce state-of-the-art image quality, rather showcase the representation
learning method. Because of that and also limited computational resources, we did not carry out an
extensive hyperparameter sweep (cf. A.5 for details). Note that all experiments were conducted on a
single Tesla V100 GPU, taking up to 30 hours of wall-clock time, which only amounts to 15% of the
iterations proposed in Song et al. (2021b). We illustrate how the representation encodes information
for denoising in Appendix in Figure 9.

We first train a DRL model with L1-regularization on the latent code on MNIST (LeCun & Cortes
(2010)) and CIFAR-10. Figure 2 shows samples from a grid over the latent space and a point cloud
visualization of the latent values z = Eφ(x0). For MNIST, we can see that the value of z1 controls
the stroke width, while z2 weakly indicates the class. The latent code of CIFAR-10 samples mostly
encodes information about the background color, which is weakly correlated to the class. The use of a
probabilistic encoder (VDRL) leads to similar representations (cf. 5, 6). We further want to point out
that the generative process using the reverse SDE involves randomness and thus generates different
samples for a single latent representation. The diversity of samples however steadily decreases with
the dimensionality of the latent space, which is empirically shown in Figure 10 of the Appendix.

Next, we analyze the behavior of the representation when adjusting the weighting function λ(t) to
focus on higher noise levels, which can be done by changing the sampling distribution of t. To this end,
we sample t ∈ [0, 1] such that σ(t) is uniformly sampled from the interval [σmin, σmax] = [0.01, 50].
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(a) Generated samples (b) Latent codes (c) Generated samples (d) Latent codes

Figure 2: Results of a DRL model trained on MNIST (a-b) and CIFAR-10 (c-d) using uniform
sampling of t. Samples are generated from a grid of latent values ranging from −1 to 1. The point
clouds visualize the latent representation of test samples, colored according to the digit class.

(a) Generated samples (b) Latent codes (c) Generated samples (d) Latent codes

Figure 3: Results of a VDRL model trained with a focus on high noise levels on MNIST (a-b) and
CIFAR-10 (c-d). Samples are generated from a grid of latent values ranging from −2 to 2. The point
clouds visualize the latent representation of test samples, colored according to the digit class.

Figure 3 shows the resulting representation of VDRL (cf. Fig. 7, 8 for DRL results). As expected, the
latent representation for MNIST encodes information about classes rather than fine-grained features
such as stroke width. This validates our hypothesis of Section 2.3 that we can control the granularity
of features encoded in the latent space. For CIFAR-10, the model again only encodes information
about the background, which contains most information about the image. A detailed analysis of class
separation in the extreme case of training on single timescales is included in the Appendix (A.4).

Overall, the difference in the latent codes for varying λ(t) shows that we can control the granularity
encoded in the representation of DRL. While this ability does not exist in previously proposed
models for representation learning, it provides a significant advantage when there exists some prior
information about the level of detail that we intend to encode in the target representation.

4.1.1 APPLICATION TO SEMI-SUPERVISED IMAGE CLASSIFICATION

In the following, we evaluate the infinite-dimensional representation (Eφ(x0, t))t∈[0,T ] on semi-
supervised image classification, where we use DRL and VDRL as pretraining for the LaplaceNet
classifier. Table 1 depicts the classifier accuracy on test data for different pretraining settings. Details
for architecture and hyperparameters are described in A.7. Note that we do not apply any of the
methods proposed in Section 3.

Our proposed pretraining using DRL significantly improves the baseline and often surpasses the
state-of-the-art performance of LaplaceNet. Most notable are the results of DRL and VDRL without
mixup, which achieve high accuracies without being specifically tailored to the downstream task
of classification. Note that pretraining the classifier as part of an autoencoder did not yield any
improvements (cf. 6). Combining DRL with mixup yields inconsistent improvements, results are
reported in Table 7. In addition, DRL pretraining achieves much better performances when only
limited computational resources are available (cf. 4, 5).

We further evaluate the infinite-dimensional representation on few-shot image classification using the
representation at different timescales as input. The detailed results are shown in the Appendix (A.6).
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LaplaceNet LaplaceNet Ours Ours Ours
Pretraining None None DRL DRL VDRL
Mixup No Yes No Yes No

Dataset #labels

CIFAR-10 100 73.68 75.29 74.31 64.67 81.63
500 91.31 92.53 92.70 92.31 92.79

1000 92.59 93.13 93.24 93.42 93.60
2000 94.00 93.96 94.18 93.91 93.96
4000 94.73 94.97 94.75 95.22 95.00

CIFAR-100 1000 55.58 55.24 55.85 55.74 56.47
4000 67.07 67.25 67.22 67.47 67.54

10000 73.19 72.84 73.31 73.66 73.50
20000 75.80 76.07 76.46 76.88 76.64

MiniImageNet 4000 58.40 58.84 58.95 59.29 59.14
10000 66.65 66.80 67.31 66.63 67.46

Table 1: Comparison of classifier accuracy in % for different pretraining settings. Scores better
than the SOTA model (LaplaceNet) are in bold. ”DRL” pretraining is our proposed representation
learning, and ”VDRL” the respective version which uses a probabilistic encoder.

pKL 0 0.05 0.5 0.95 1

FID ↓ 3.40 3.36 3.33 3.37 3.62
IS ↑ 9.73 9.77 9.79 9.50 9.44

Table 2: FID and Inception Score for different interpolations between maximum likelihood training
and training based on the adversarial λ′. pKL = 1.0 corresponds to original training.

In summary, the representations of DRL and VDRL achieve significant improvements compared to
that of an autoencoder or VAE for several values of t and are similar for t close to 1.

Overall the results align with the theoretical foundation in Proposition 1 that the rich representation
of DRL is at least as good as the static code learned using a reconstruction objective. It further
shows that in practice, the infinite-dimensional code is superior to the static representation for the
application to downstream tasks by a significant margin.

4.2 ADVERSARIAL TRAINING IN DIFFUSION-BASED GENERATIVE MODELS

We evaluate our approach of optimizing the adversarial λ-Divergence on the task of synthetic image
generation of CIFAR-10 images. We evaluate our approach for different values for pKL, which
is used to interpolate between the original and adversarial training objective. The resulting FID
and Inception Scores are displayed in Table 2. The results show that for any value of pKL ≤ 0.95,
the sample quality is improved significantly. However in contrast to our intentions, the adversary
converges to the extreme value of α ≈ −1 in the first 10k iterations and does not change afterwards
(cf. 14). While our adversary learns to put focus on values of t where the model is bad, the model
apparently cannot improve in this region (cf. 13).

Overall, the higher image quality after training with the adversary indicates that diffusion models can
be improved using adversarial training. Since the loss is not significantly reduced, more complex
adversaries as in Hardy et al. (2018) will only have the same effect as a predefined λ. As shown in our
experiments, there is much room for improvement by searching for a good λ. Furthermore, additional
improvements might be achieved in the future by introducing inductive biases allowing the model to
capture more high-frequency information, thus being able to reduce the loss for small values of t.

4.3 THE CHOICE OF INITIAL NOISE SCALE

In the following, we evaluate image quality and diversity for different initial noise scales. Note that
we do not change σ(T ), but instead evaluate generated images for different initial times tinit, which
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tinit σ(tinit)
Gaussian

FID ↓
Uniform + Gaussian

FID ↓
0.5 0.71 218.95 25.02
0.6 1.66 75.11 5.15
0.7 3.88 12.57 2.98
0.8 9.10 3.05 2.99
0.9 21.33 2.97 2.94
1.0 50.00 3.01 2.99

Table 3: FID for different initial noise scales evaluated on 20k generated samples.

(a) tinit = 0.5 (b) tinit = 0.6 (c) tinit = 0.7 (d) tinit = 0.8 (e) tinit = 0.9 (f) tinit = 1.0

(g) tinit = 0.5 (h) tinit = 0.6 (i) tinit = 0.7 (j) tinit = 0.8 (k) tinit = 0.9 (l) tinit = 1.0

Figure 4: Generated image samples for different values of tinit. Top row ((a)-(f)) uses the gaussian
prior, bottom row ((g)-(l)) uses the version with an additional uniform random variable in the prior.

implicitly define the initial noise scale σ(tinit). This reduces the number of sampling steps per image,
which is 1000 · tinit and thus directly proportional to tinit. Table 3 shows the FID of generated
images for various values of tinit. As we can see, the first 200 sampling steps can safely be replaced
by approximating the prior directly either with the gaussian or the additional uniform distribution.
Interestingly, using the sum of the uniform and gaussian random variables as a prior seed leads to
improved image quality. This approximation for p0.7(x) allows us to reduce the number of sampling
steps by 30% without sacrificing image quality, which is further supported by the visual quality of
generated samples shown in Figure 4. Further, note that FID is occasionally lower for values of
tinit < 1.0 than for tinit = 1. This suggests that up to these timescales, our prior approximates the
distribution better than the diffusion model when starting at tinit = 1.0.

5 CONCLUSION

We presented Diffusion-based Representation Learning (DRL), a new objective for representation
learning based on conditional denoising score matching. In doing so, we turned the original non-
vanishing objective function into one that can be reduced arbitrarily close to zero by the learned
representation. We showed that the proposed method learns interpretable features in the latent space.
In contrast to previous approaches, denoising score matching as a foundation comes with the ability
to manually control the granularity of features encoded in the representation. We demonstrated that
the encoder can learn to separate classes when focusing on high noise levels and encodes fine-grained
features such as stroke-width when mainly trained on low level noise. In addition, we proposed an
infinite-dimensional representation and demonstrated its effectiveness for downstream tasks such as
few-shot classification. Using the representation learning as pretraining for a classifier, we were able
to improve the results of LaplaceNet, a state-of-the-art model on semi-supervised image classification.
As side-contributions, we further showed how adversarial training in diffusion-based models can
improve sample quality and were able to increase sampling speed using an approximation of the
density at smaller noise scales.

9
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6 REPRODUCIBILITY STATEMENT

In order to ensure reproducibility, the code used to run all experiments is attached as supplementary
material and will be published based upon acceptance.
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A APPENDIX

A.1 RELATED WORK ON CONTRASTIVE LEARNING

The core idea of contrastive learning is to learn representations that are similar for different views of
the same image and distant for different images. In order to prevent the collapse of representations
to a constant, various approaches have been introduced. SimCLRv2 directly includes a loss term
repulsing negative image pairs in addition to the attraction of different views of positive pairs (Chen
et al. (2020c)). In contrast, BYOL relies solely on positive pairs, preventing collapse by enforcing
similarity between the encoded representation of an image and the output of a momentum encoder
applied to a different view of the same image (Grill et al. (2020)). An additional approach relies on
online clustering and was proposed in SwAV (Caron et al. (2021)). Training in SwAV is based on
enforcing consistency between cluster assignments produced for different views of an image. Each
of these methods rely on the foundation of Siamese networks (Bromley et al. (1993)), which were
shown to be competitive for unsupervised pretraining for classification networks on its own when
including a stop-gradient operation on one of the branches (Chen & He (2020)).

A.2 DENOISING SCORE MATCHING

The following is the proof for the new formulation of the denoising score matching objective in
equation 5.

Proof. It was shown by Vincent (2011) that equation 4 is equal to explicit score matching up to a
constant which is independent of θ, that is,

Ex0{Ext|x0
[‖sθ(xt, t)−∇xt log p0t(xt|x0)‖22 ]} (13)

=Ext
[
‖sθ(xt, t)−∇xt log pt(xt)‖22

]
+ c. (14)

As a consequence, the objective is minimized when the model equals the ground-truth score function
sθ(xt, t) = ∇x log pt(x). Hence we have:

Ex0{Ext|x0
[‖∇xt log pt(xt)−∇xt log p0t(xt|x0)‖22 ]} (15)

=Ext
[
‖∇xt log pt(xt)−∇xt log pt(xt)‖22

]
+ c (16)

= c. (17)

Combining these results leads to the claimed exact formulation of the Denoising Score Matching
objective:

JDSMt (θ) =Ex0{Ext|x0
[‖sθ(xt, t)−∇xt log p0t(xt|x0)‖22 ]} (18)

=Ext
[
‖sθ(xt, t)−∇xt log pt(xt)‖22

]
+ c (19)

=Ext
[
‖sθ(xt, t)−∇xt log pt(xt)‖22

]
+ Ex0{Ext|x0

[‖∇xt log pt(xt)−∇xt log p0t(xt|x0)‖22 ]}
(20)

=Ex0{Ext|x0
[‖∇xt log p0t(xt|x0)−∇xt log pt(xt)‖22
+ ‖sθ(xt, t)−∇xt log pt(xt)‖22]}.

(21)

A.3 REPRESENTATION LEARNING

Here we present the proof for Proposition 1, stating that the infinite-dimensional code learned using
DRL is at least as good as a static code learned using a reconstruction objective.

Proof. We assume that the distribution of the diffused samples at time t = T matches a known
prior pT (xT ). That is,

∫
p(x0)p0T (xT |x0) dx0 = pT (xT ). In practice T is chosen such that this

assumption approximately holds.
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Now consider the training objective in equation 10 at time T , which can be transformed to a
reconstruction objective in the following way:

λ(T )Ex0,xT

[
‖sθ(xT , T, Eφ(x0, T ))−∇xT log p0T (xT |x0)‖22

]
(22)

=λ(T )Ex0ExT∼pT (xT )

[∥∥∥∥sθ(xT , T, Eφ(x0, T ))− x0 − xT
σ2(T )

∥∥∥∥2
2

]
(23)

=λ(T )σ−4(T )Ex0
ExT∼pT (xT )

[
‖Dθ(Eφ(x0, T ))− x0‖22

]
(24)

=λ(T )σ−4(T )Ex0

[
‖Dθ(Eφ(x0, T ))− x0‖22

]
, (25)

where we replaced the score model with a Decoder model sθ(xT , T, Eφ(x0, T )) =
Dθ(Eφ(x0,T ))−xT

σ2(T )

and replaced the score function of the perturbation kernel∇xT log p0T (xT |x0) with its known closed-
form solution x0−xT

σ2(T ) determined by the Forward SDE in equation 1. Hence the learned code at time
t = T is equal to a code learned using a reconstruction objective.

We model a downstream task as a minimization problem of a distance d : Ω× Ω→ R in the feature
space Ω between the true feature extractor g : Rd → Ω which maps data samples x0 to a features
space Ω and a model feature extractor hψ : Rc → Ω doing the same given the code as input. The
following shows that the infinite-dimensional representation is at least as good as the static code:

inf
t

min
ψ

Ex0
[d(hψ(Eφ(x0, t)), g(x0))] ≤ min

ψ
Ex0

[d(hψ(Eφ(x0, T )), g(x0))] (26)

(a) Samples generated from a grid of latent values
on a range from −2 to 2

(b) Latent representation of test samples, colored
according to the digit class

Figure 5: Samples and latent distribution of a model trained on MNIST using KL-divergence and
uniform sampling of t

A.4 TRAINING ON SINGLE TIMESCALES

To understand the effect of training DRL on different timescales more clearly, we limit the support
of the weighting function λ(t) to a single value of t. We analyze the resulting quality of the latent
representation for different values of t using the silhouette score with euclidean distance based on
the dataset classes Rousseeuw (1987). It compares the average distance between a point to all other
points in its cluster with the average distance to points in the nearest different cluster. Thus we
measure how well the latent representation encodes classes, ignoring any other features. Note that
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(a) Samples generated from a grid of latent values
on a range from −1 to 1

(b) Latent representation of test samples, colored
according to the class label

Figure 6: Samples and latent distribution of a VDRL model trained on CIFAR-10 using uniform
sampling of t.

(a) Samples generated from a grid of latent values
on a range from −1 to 1

(b) Latent representation of test samples, colored
according to the digit class

Figure 7: Samples and latent distribution of a DRL model trained on MNIST using uniform sampling
of σ (focus on high noise levels).

after learning the representation with a different distribution of t it is necessary to perform additional
training with uniform sampling of t and a frozen encoder to achieve good sample quality.

Figure 11 shows the silhouette scores of latent codes of MNIST and CIFAR-10 samples for different
values of t. In alignment with our hypothesis of Section 2.3, training DRL on a small t and thus
low noise levels leads to almost no encoded class information in the latent representation, while
the opposite is the case for a range of t which differs between the two datasets. The decline in
encoded class information for high values of t can be explained by the vanishing difference between
distributions of perturbed samples when t gets large. This shows that the distinction among the code
classes represented by the silhouette score is controlled by λ(t).
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(a) Samples generated from a grid of latent values
on a range from −1 to 1

(b) Latent representation of test samples, colored
according to the class label

Figure 8: Samples and latent distribution of a DRL model trained on CIFAR-10 using uniform
sampling of σ (focus on high noise levels).

Figure 9: Samples generated starting from xt (left column) using the diffusion model with the latent
code of another x0 (top row) as input. It shows that samples are denoised correctly only when
conditioning on the latent code of the corresponding original image x0.

A.5 ARCHITECTURE AND HYPERPARAMETERS

The model architecture we use for all experiments is based on “DDPM++ cont. (deep)” used for
CIFAR-10 in Song et al. (2021b). It is composed of a downsampling and an upsampling block
with residual blocks at multiple resolutions. We did not change any of the hyperparameters of the
optimizer. Depending on the dataset, we adjusted the number of resolutions, number of channels per
resolution, and the number of residual blocks per resolution in order to reduce training time.

For representation learning, we use an encoder with the same architecture as the downsampling block
of the model, followed by another three dense layers mapping to a low dimensional latent space.
Another four dense layers map the latent code back to a higher-dimensional representation. It is then
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(a) 2-dimensional (b) 4-dimensional

(c) 8-dimensional (d) 16-dimensional

Figure 10: Samples generated using the same latent code for each generation, showing that the
randomness of the code-conditional generation of DRL reduces in higher dimensional latent spaces.
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(b) CIFAR-10

Figure 11: Mean and standard deviation of silhouette scores when training a DRL model on MNIST
(left) and CIFAR-10 (right) using a single t over three runs.

given as input to the model in the same way as the time embedding. That is, each channel is provided
with a conditional bias determined by the representation and time embedding at multiple stages of
the downsampling and upsampling block.

18



Under review as a conference paper at ICLR 2022

0.0 0.2 0.4 0.6 0.8 1.0
t

22

24

26

28

30

Ac
cu

ra
cy

 in
 %

SM
VSM
AE
VAE

(a) 100 labels

0.0 0.2 0.4 0.6 0.8 1.0
t

32

33

34

35

36

37

38

Ac
cu

ra
cy

 in
 %

SM
VSM
AE
VAE

(b) 1000 labels

Figure 12: Classifier accuracies for few shot learning on given 8-dimensional representations learned
using DRL (SM), VDRL (VSM), Autoencoder (AE) and Variational Autoencoder (VAE).

Regularization of the latent space For both datasets, we use a regularization weight of 10−5 when
applying L1-regularization, and a weight of 10−7 when using a probabilistic encoder regularized
with KL-Divergence.

MNIST hyperparameters Due to the simplicity of MNIST, we only use two resolutions of size
28× 28× 32 and 14× 14× 64, respectively. The number of residual blocks at each resolution is set
to two. In each experiment, the model is trained for 80k iterations. For uniform sampling of σ we
trained the models for an additional 80k iterations with a frozen encoder and uniform sampling of t.

CIFAR-10 hyperparameters For the silhouette score analysis, we use three resolutions of size
32× 32× 32, 16× 16× 32, and 8× 8× 32, again with only two residual blocks at each resolution.
Each model is trained for 90k iterations.

CIFAR-10 (deep) hyperparameters While representation learning works for small models already,
sample quality on CIFAR-10 is poor for models of the size described above. Thus for models used
to generate samples, we use eight residual blocks per resolution and the following resolutions:
32× 32× 32, 16× 16× 64, 8× 8× 64, and 4× 4× 64. Each model is trained for 300k iterations.
Note that this number of iterations is not sufficient for convergence, however capable of illustrating
the representation learning with limited computational resources.

A.6 EVALUATION OF THE INFINITE-DIMENSIONAL REPRESENTATION

In order to evaluate our infinite-dimensional representation, we conduct an ablation study where we
compare our proposed method with Autoencoders (AE) and Variational Autoencoders (VAE) on
CIFAR-10 images. We measure the accuracy of an SVM provided by sklearn (Pedregosa et al. (2011))
with default hyperparameters trained on the representation of 100 (resp. 1000) training samples and
their class labels. For our time-dependent representation, this is done for fixed values of t between
0.0 and 1.0 in steps of 0.1. This is done for both DRL and VDRL, where we use a probabilistic
encoder regularized by including an additional KL-Divergence term in the training objective. DRL
and AE were regularized using L1-norm, and the regularization weight was optimized for each model
independently.

Results for few-shot learning with fixed representations are shown in Figure 12. As expected, the ac-
curacies when training on the score matching representations highly depend on the value of t. Overall
our representation achieves much better scores when using the best t, and performs comparable to AE
and VAE for t = 1.0. This aligns with Proposition 1 claiming that our representation learning method
for t = 1.0 is similar to a static code learned using reconstruction objective. Note that the shape of
the time-dependent classifier accuracies resemble the one of the silhouette score of CIFAR-10 in
11. This is not surprising, since both training on single values of t and learning a time-dependent
representation are both trained to find the optimal representation for a given value of t. We further
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Dataset #labels No pretraining Pretraining using
DRL Improvement

CIFAR-10 100 64.12 69.79 +5.67
500 86.24 88.28 +2.04

1000 87.48 88.56 +1.08
2000 89.99 89.52 -0.47
4000 90.15 91.13 +0.98

CIFAR-100 1000 45.14 48.04 +2.90
4000 59.86 60.34 +0.48

10000 64.83 65.80 +0.97
20000 65.77 66.39 +0.62

MiniImageNet 4000 47.18 50.75 +3.57
10000 58.66 58.62 -0.04

Table 4: Classifier accuracy in % with and without DRL as pretraining of the classifier when training
for 100 epochs only.

want to point out that representation learning through score matching enjoys the training stability of
diffusion-based generative models, which is often not the case in GANs and VAEs.

A.7 SEMI-SUPERVISED IMAGE CLASSIFICATION

Architecture and Hyperparameters In all experiments, our encoder has the same architecture
as the classifier, where the hidden layer used to measure similarities for assigning pseudo-labels in
LaplaceNet is used as the latent code in representation learning. For all experiments, the input t
to the encoder is included as a trainable parameter of the model and initialized with t = 0.5. As
done in the original paper, we train the model for 260 iterations, where each iteration consists of
assigning pseudo-labels and one epoch of supervised training on the assigned pseudo-labels. The
training is preceded by 100 supervised epochs on the labeled data. We use the small WideResNet
model WRN-28-2 of Sellars et al. (2021) and the same hyperparameters as the authors.

Evaluation with limited computation time In the following we include a more detailed analysis
on the scenario of few supervised labels and limited computational resources. Besides LaplaceNet
and its version without mixup, we include an ablation study of encoder pretraining as part of an
autoencoder using binary cross entropy as reconstruction objective. In addition, we propose to
improve the search for the optimal value of t by model selection, since the gradient for t is usually
noisy and small. Thus we include additional experiments where we chose the initial t based on
the minimum training loss after 100 epochs of supervised training. The optimal t is approximated
by calculating the training loss for 11 equally spaced values of t in the interval [0.001, 1]. The
results are shown in Table 5. While mixup achieves no significant improvement in the few-label case
trained using 100 epochs, we can see that a simple autoencoder pretraining consistently improves
classifier accuracy. More notably however, our proposed pretraining based on score matching achieves
significantly better results than both random initialization and autoencoder pretraining. In the t-search,
we observed that for all datasets, our proposed method selects t = 0.9, however it moves towards
the interval [0.4, 0.6] during training. While this shows that our the approach of selecting t based on
supervised training loss is not working, it demonstrates that the parameter t can very well be learned
in the training process, making the downstream task performance robust to the initial value of t. In
our experiments the final value of t was always in the range [0.4, 0.6], independent of the initial value
of t.
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Pretraining Options CIFAR-10
100 labels

CIFAR-100
1000 labels

MiniImageNet
4000 labels

None 64.12 45.14 47.18
None mixup 54.06 46.28 47.64
DRL 69.79 48.04 50.75
DRL t-search 67.07 47.08 50.31
Autoencoder 64.99 46.88 48.52

Table 5: Comparison of classifier accuracy in % for different pretraining methods in the case of few
supervised labels when training for 100 epochs only.

Pretraining CIFAR-10
100 labels

CIFAR-100
1000 labels

MiniImageNet
4000 labels

None 73.68 55.58 58.40
DRL 74.31 55.85 58.95
Autoencoder 58.84 55.41 57.93

Table 6: Classifier accuracy in % for autoencoder pretraining compared with the baseline and score
matching as pretraining. No mixup is applied for this ablation study.

Ours Ours Ours Ours Ours
Pretraining Basic Basic Mixup-DRL VDRL VDRL
Mixup in sup. training No Yes Yes No Yes

Dataset #labels

CIFAR-10 100 74.31 64.67 70.40 81.63 77.51
500 92.70 92.31 92.55 92.79 91.46

1000 93.24 93.42 93.14 93.60 93.33
2000 94.18 93.91 93.80 93.96 94.27
4000 94.75 95.22 94.75 95.00 94.87

CIFAR-100 1000 55.85 55.74 55.15 56.47 55.65
4000 67.22 67.47 67.09 67.54 67.52

10000 73.31 73.66 74.36 73.50 73.20
20000 76.46 76.88 77.04 76.64 76.68

MiniImageNet 4000 58.95 59.29 59.46 59.14 59.36
10000 67.31 66.63 67.31 67.46 66.79

Table 7: Evaluation of classifier accuracy in %, including the setting of using mixup during pretraining
(right column). DRL pretraining is our proposed representation learning, and ”Mixup-DRL” the
respective version which additionally applies mixup during pretraining. ”VDRL” instead uses a
probabilistic encoder.
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Figure 13: Comparison of the distribution of t and the respective loss with and without including the
adversary λ′α.
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Figure 14: Value of parameter α over training, where 2α is the slope of the adversary λ′α.

A.8 ADVERSARIAL TRAINING

For evaluating adversarial training, we initialize our model using a pretrained checkpoint which has
been trained for 600k iterations. We then alternate training iterations between the model and the
adversary, which is done for an overall number of 50k iterations.

In order to prevent λ from increasing indefinitely, we propose to fix it to a certain function class. For
simplicity, one can remove λ’s dependence on x, thus setting λ(t) = λ(x, t). It was shown by Song
et al. (2021b) that setting λ(t) = σ2(t) yields the KL-Divergence objective DKL. Hence we chose
λ(t) = λ′(t)σ2(t) to have KL-Divergence as the initial divergence when λ′(t) = 1∀t ∈ [0, T ]. We
further propose to limit λ′ to the set of linear functions with slopes ranging from −1 to 1. Formally,
we set λ′α(t) = 2αt+ (1− α), α ∈ [−1, 1]. Note that using this formulation, λ′α(t) can be seen as a
probability distribution over t ∈ [0, T ]. In addition, we noticed that in practice sampling t according
to λ′(t) instead of weighting the loss consistently achieves better results and thus used this approach
in our evaluation in Section 4.2.
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