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Abstract

We introduce RAGMT, a retrieval augmented001
generation (RAG)-based multi-task framework002
for Machine Translation (MT) using non-003
parametric knowledge sources. To the best004
of our knowledge, we are the first to adapt005
the RAG framework for MT to support end-006
to-end training and use knowledge graphs as007
the non-parametric source. We also propose008
the use of new auxiliary training objectives that009
improve the performance of RAG for domain-010
specific MT. Our experiments demonstrate that011
retrieval-augmented fine-tuning of NMT mod-012
els under the RAGMT framework results in013
an average improvement of 2.03 BLEU scores014
over simple fine-tuning approaches on English015
to German domain-specific translation. We also016
demonstrate the efficacy of RAGMT with using017
in-domain versus domain-agnostic knowledge018
graphs and careful ablations over the model019
components. Qualitatively, RAGMT is eas-020
ily interpretable and appears to demonstrate021
“copy-over-translation" behaviour over named022
entities.023

1 Introduction024

Neural Machine Translation (NMT) systems025

often struggle to maintain accuracy and flu-026

ency in specialized domains such as medicine,027

law, and information technology (IT), where028

domain-specific terminology and context play029

a crucial role (Chu and Wang, 2018). Tradi-030

tional MT models trained on generic datasets031

lack the ability to capture the nuances and intri-032

cacies of these specialized domains, leading to033

suboptimal translations that may fail to convey034

the intended meaning accurately.035

To address these challenges, researchers036

have explored various techniques to enhance037

MT systems’ performance in specialized do-038

mains. One promising approach involves inte-039

grating retrieval mechanisms into the transla-040

tion pipeline, enabling MT models to access 041

external knowledge sources such as domain- 042

specific documents or knowledge graphs (Zhao 043

et al., 2020; Cheng et al., 2023). By incorpo- 044

rating relevant information from these external 045

sources, MT systems can produce more accu- 046

rate and contextually appropriate translations 047

tailored to the specific domain. 048

The convergence between Natural Language 049

Processing (NLP) and Information Retrieval 050

(IR) convergence has given rise to a power- 051

ful paradigm called Retrieval Augmented Gen- 052

eration (RAG). Retrieval Augmented Gener- 053

ation (RAG) (Lewis et al., 2020; Guu et al., 054

2020) represents a paradigm shift in how we 055

approach language understanding and gener- 056

ation tasks. At its core, RAG combines the 057

strengths of traditional IR methods, which ex- 058

cel at retrieving relevant information from vast 059

corpora, with the expressive power of modern 060

NLP models, capable of generating coherent 061

and contextually relevant text. Developing ef- 062

fective RAG systems requires robust methods 063

for seamlessly integrating retrieval and gen- 064

eration components, as these have tradition- 065

ally been treated as separate modules in NLP 066

pipelines. RAG’s potential extends beyond im- 067

proving output quality; it also offers enhanced 068

interpretability, robustness to input variations, 069

and adaptability to dynamic contexts, making 070

it particularly valuable for applications where 071

transparency is critical, such as legal or medi- 072

cal domains. 073

In this work, we propose a novel approach 074

RAGMT to enhance MT systems using an 075

end-to-end multi-task RAG framework for the 076

task of external memory-augmented machine 077

translation. Our approach builds upon the 078
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RAG framework (Lewis et al., 2020), which079

combines document retrieval with a generative080

model to produce translations enriched with081

domain-specific knowledge. We propose sev-082

eral key enhancements to the RAG framework083

to improve its effectiveness in translation for084

specialized domains.085

Our main contributions are as follows:086

1. We introduce RAGMT, a new RAG-087

based multi-task framework for machine088

translation with a new end-to-end train-089

ing objective. The framework allows090

the integration of different types of non-091

parametric knowledge sources.1092

2. Our new training objective includes a spe-093

cific document similarity term that boosts094

documents that are very similar to the095

source sentence while penalizing docu-096

ments that are further off.097

3. We propose the use of Entity masked lan-098

guage modelling (MLM) as an auxiliary099

task for RAGMT (Song et al., 2019). En-100

tity MLM uses a source sentence with its101

entities masked as its input. This entity-102

masked source sentence, along with a set103

of retrieved documents, are used to re-104

construct the source sentence, thereby im-105

proving the model’s ability on domain-106

specific translation.107

4. We conduct an in-depth analysis of108

our proposed framework on domain-109

specific machine translation using knowl-110

edge graphs (KG) as non-parametric111

sources. Compared with neural and112

retrieval-based baselines, we achieve an113

average improvement of +2.03 BLEU114

score across domains. Additionally, we115

demonstrate that domain-specific knowl-116

edge sources provide an average improve-117

ment of +0.625 BLEU score over domain-118

agnostic sources.119

5. We conduct a detailed ablation study on120

the proposed RAGMT training objective,121

1The codebase for RAGMT and the datasets to replicate
our results will be released upon publication.

quantifying the contribution of each loss 122

term. Our analysis highlights the im- 123

pact of the document similarity term with 124

an average improvement of 1.125 BLEU 125

scores across domains. 126

2 Background and Related Work 127

Transformer-based approaches for NMT. 128

Transformer models, such as T5 (Raffel et al., 129

2019), XLM (Lample and Conneau, 2019), 130

MoE (Shazeer et al., 2017), and NLLB (NLLB 131

Team et al., 2022), have become foundational 132

in Neural Machine Translation (NMT) due to 133

their ability to handle complex linguistic struc- 134

tures and long sequences. NLLB, designed for 135

multilingual translation across 200 languages, 136

combines a mixture of experts with dense lay- 137

ers, data filtering, and large-scale pretraining 138

to excel in low-resource scenarios. 139

Knowledge-intensive tasks in NMT. 140

Domain-specific machine translation, espe- 141

cially in specialized fields like medicine or 142

law, demands precise handling of terminology 143

and context, which general-purpose MT 144

systems often fail to achieve. To improve 145

accuracy, strategies such as integrating 146

domain-specific terminologies, fine-tuning 147

with domain-specific parallel corpora, and 148

using domain-specific knowledge graphs have 149

been developed. These approaches not only 150

enhance the translation of specialized terms 151

but also ensure semantic consistency within 152

the domain. Furthermore, they are particularly 153

effective in low-resource scenarios, leveraging 154

multilingual transfer learning and external 155

linguistic resources to improve translation 156

accuracy (Sennrich et al., 2015). 157

Knowledge structures play a critical role in 158

enhancing NMT by providing additional con- 159

text and semantic enrichment. For instance, 160

knowledge graphs (KGs) capture complex rela- 161

tionships and contextual information, offering 162

a nuanced understanding of data that improves 163

translation, particularly in domain-specific 164

contexts. Despite challenges related to scal- 165

ability and consistency, KGs significantly con- 166

tribute to the effectiveness of NMT systems. 167

Wordnets, as described by (Fellbaum, 2000), 168
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serve as comprehensive lexical databases that169

organize concepts hierarchically, facilitating170

efficient storage and retrieval of linguistic in-171

formation. The IndoWordnet, discussed by172

(Bhattacharyya, 2010), extends this concept173

to Indian languages, supporting cross-lingual174

information retrieval and machine translation.175

Knowledge infusion techniques represent176

significant advancements in NMT by integrat-177

ing external knowledge to improve both trans-178

lation quality and contextual relevance. Re-179

trieval Augmented Generation (RAG) (Guu180

et al., 2020; Lewis et al., 2020) combines in-181

formation retrieval with generation, allowing182

NMT models to leverage retrieved documents183

for better context. REALM (Guu et al., 2020)184

enhances this by introducing a masked lan-185

guage pre-training step, integrating external186

knowledge during both pre-training and fine-187

tuning. RETRO further improves translation188

by using a KG-based approach to generate189

relevant textual explanations, enhancing inter-190

pretability and coherence. Additionally, syn-191

thetic data generation, as explored by (Lewis192

et al., 2019), augments training datasets with193

diverse examples, improving model perfor-194

mance, particularly in domain-specific tasks.195

(Siriwardhana et al., 2022) also advances RAG196

models in open-domain question answering197

through domain adaptation, using Dense Pas-198

sage Retrieval (DPR) (Karpukhin et al., 2020)199

to retrieve relevant passages for accurate an-200

swer generation.201

Knowledge infusion with machine trans-202

lation has been further advanced with meth-203

ods like k-nearest-neighbour machine trans-204

lation (kNN-MT) (Khandelwal et al., 2020),205

which enhances NMT by integrating nearest206

neighbour retrieval without additional train-207

ing. This method improves translation across208

various domains. Similarly, (Cai et al., 2021)209

introduces a monolingual translation mem-210

ory (TM) approach, particularly effective in211

low-resource or domain adaptation scenarios,212

where the system retrieves relevant sentences213

to enhance translation accuracy. (Zhang et al.,214

2021) proposes the PDC framework, integrat-215

ing bilingual dictionaries into NMT to improve216

translation accuracy, especially for rare words, 217

by combining components like the pointer, 218

disambiguator, and copier. This framework 219

shows significant improvements over tradi- 220

tional NMT models, particularly in handling 221

rare vocabulary. Approaches such as those by 222

(Bulté and Tezcan, 2019), (He et al., 2021), and 223

(Hoang et al., 2022) further enhance transla- 224

tion by using fuzzy matching to retrieve similar 225

documents, with improvements in how source 226

and target information are encoded and inter- 227

acted with during the translation process. 228

3 Methodology 229

In this section, we describe the proposed frame- 230

work, highlighting the constituent components: 231

adaptive changes to the RAG architecture for 232

the task of MT, introduced auxiliary task, and 233

the training objective. 234

3.1 Problem Formulation 235

Given an input sentence S in the 236

source language, in tokenized form, 237

S = (s1, s2, . . . , sm), the problem of 238

retrieval-augmented machine translation can 239

be formulated as finding the target sentence, 240

T̂ in tokenized form, T̂ = (t1, t2, . . . , tn), as 241

given by equation (1), 242

T̂ = argmax
T

∑
d∈D

P (d|S)P (T |d, S) (1) 243

where D is the set of retrieved documents from 244

the knowledge base. Knowledge base is a 245

generic term denoting various structures, in- 246

cluding KG triples, textual documents, and 247

even precomputed embeddings. 248

LG = −
n∑

i=1

logP (ti|S,D) (2) 249

The machine translation output is obtained 250

using the Generator, with the loss function, LG, 251

as given in Equation (2). 252

3.2 Overview of RAGMT 253

The RAGMT framework (illustrated in Fig- 254

ure 1) comprises four main components: 255
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Retriever

Knowledge
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{ed1, ed2, ..., edk}

S

EncoderD

EncoderS

Entity
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Output

{sd1, sd2, ..., sdk}

Integrator

RAGMT-
loss

Generator 
(Translation Model) Translation

Output

Figure 1: RAGMT Architecture: The KB consists of documents to be retrieved, which are indexed using FAISS
over the embeddings computed using EncoderD. For a source sentence, S, The retriever first encodes S using
EncoderS, then retrieves documents using the FAISS index. The retrieved documents, along with the source sentence,
are then inputs for the Integrator, which outputs the formatted input to be used by the Generator.

Knowledge Base, Retriever, Integrator, and256

Generator. The Knowledge Base can consist257

of structured information, such as KGs, Word-258

nets, etc., or unstructured documents. The259

Retriever consists of the document encoder,260

EncoderD and the source encoder, EncoderS .261

The encoding of the documents is generated262

using the document encoder and is stored in263

a vector index. We use FAISS (Johnson et al.,264

2019) for this purpose. When a source sen-265

tence is provided to the retriever, it encodes the266

sentence and passes it to FAISS to retrieve the267

most relevant documents from the knowledge268

base. The documents, along with the source269

sentence, are taken as input by the Integrator270

component, which allows various operations to271

be performed using the two, preparing inputs272

for the generator, such as simple concatena-273

tion over text, operations with the encodings,274

etc. The Generator finally performs the down-275

stream task of machine translation, along with276

the auxiliary task of entity MLM.277

3.3 Adapting RAG for NMT278

We adopt the RAG framework for NMT by279

configuring the RAG architecture to support280

end-to-end training of all three parametric com-281

ponents: the Document (Context) encoder,282

the Source encoder, and the Generator. Inte-283

grating these components into a unified archi-284

tecture enables the model to seamlessly incor-285

porate context retrieval and translation genera-286

tion, enhancing its ability to leverage external287

knowledge for translation tasks.288

3.4 Auxiliary Task: Entity Masked 289

Masked Language Modelling 290

We introduce an auxiliary task derived from 291

entity Masked Masked Language Modelling 292

(MLM) (Song et al., 2019) training to en- 293

hance the model’s capacity to integrate ex- 294

ternal knowledge. This auxiliary task supple- 295

ments the primary training objective by provid- 296

ing additional context about named entities in 297

the input text. By training the model to predict 298

masked entities within the input text, we aim to 299

improve its understanding of domain-specific 300

terminology and entities, enhancing translation 301

accuracy and domain adaptation capabilities. 302

For a particular training pair, (S, T ), where 303

S is the source sentence and T is the target 304

sentence, let the retrieved results from the re- 305

triever be D = R(S) = topk(Pη(.|x)) = 306

{d1, . . . , dk} where η parameterizes the re- 307

triever model, R. Let SM be the source sen- 308

tence with named entities masked. The task of 309

entity MLM is to predict the masked entities in 310

the source sentence, given the set D and SM , 311

as stated in Equation (3). 312

Ŝ = argmax
S

P (S|SM , D) (3) 313

This auxiliary task is a form of multi-task 314

learning, where multiple learning tasks are per- 315

formed simultaneously, and each task aids the 316

learning of the other task. 317

Equation (4) below shows the loss func- 318

tion for entity MLM loss, where M = 319

{m1,m2, . . . ,mk} is the set of positions in the 320

entity masked source sentence, corresponding 321

to named entities. 322
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LMLM = −
∑
m∈M

logP (ŝm = sm|SM , D) (4)323

where ŝm denotes the source token predicted324

by the generator.325

The entity MLM loss, with its entity recon-326

struction objective, further aligns the model’s327

outputs with the retrieved documents. This328

auxiliary loss complements the primary loss329

(LG) by encouraging the model to produce flu-330

ent, accurate translations closely aligned with331

the content and context of the retrieved docu-332

ments.333

3.5 Final Training Objective334

The final training objective of RAGMT can be335

written as follows:336

LD =

(
−

k∑
i=1

log(sdi)

)
337

L = LG · LD + LMLM338

where LG is the generator model’s loss and339

LMLM is the entity MLM loss. LD is a doc-340

ument similarity-based loss computed using341

the similarity between the source sentence (s)342

and every document di in the set of retrieved343

documents D. These similarity denoted by sdi344

is simply computed as a dot product between345

embeddings for s and di, via EncoderS and346

EncoderD respectively.347

4 Experiments348

4.1 Dataset349

We utilized the English and German parallel350

corpus introduced by (Koehn and Knowles,351

2017) at the First Workshop on Neural Ma-352

chine Translation (WNMT) in 2017 and re-353

split by (Aharoni and Goldberg, 2020). This354

dataset provides a diverse range of text sam-355

ples across different domains, allowing us to356

evaluate the adaptability of our models across357

various domains. The dataset consists of data358

from Law, Medical, Koran, IT and Subtitles359

domains. We leave out the Subtitles domains360

from all our experiments since the data lacks361

consistency in terms of the constituent topics.362

Domain # Training Samples # KG Triples
Law 222927 454148
Medical 17982 37176
Koran 467310 753082
IT 248099 471002

Table 1: Dataset statistics: English-German Domain
Specific Parallel Corpus. The table shows the number of
training data points in the dataset, along with the number
of knowledge graph triples extracted as described in
section 4.3.

Hence, a cohesive KG could not be extracted 363

from the data. As specified by (Aharoni and 364

Goldberg, 2020), we use 2000 validation and 365

2000 test points for each domain. We perform 366

all the experiments with a randomly sampled 367

subset of 15000 data points from the training 368

set of each domain. This was done primar- 369

ily for two reasons: 1) We wanted to restrict 370

the amount of available fine-tuning data to re- 371

flect real-world settings where domain-specific 372

fine-tuning data is limited. 2) Our available 373

compute was not sufficient to run experiments 374

using the entire training datasets. In this con- 375

strained setting, we have carefully compared 376

against existing baseline systems as detailed 377

below. 378

4.2 Experimental Setup 379

We conduct a series of experiments to eval- 380

uate the performance of the different transla- 381

tion models for domain adaptation. Each ex- 382

periment involved fine-tuning and testing the 383

models on domain-specific datasets, intend- 384

ing to assess their ability to adapt to different 385

domains and leverage domain-specific knowl- 386

edge for translation. We conduct the following 387

experiments: 388

1. Domain-adaptation of NMT models, us- 389

ing in-domain KG. We build a KG for 390

each domain as described in section 4.3, 391

using the complete training subset of the 392

data. Table 1 shows the training data size 393

and corresponding KG size in terms of 394

number of triples. 2 395

2The subset of dataset used for training, and extracted
in-domain KGs will be released upon publication.
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2. Domain-agnostic KG vs. In-domain KG.396

We compare the impact of using an in-397

domain KG (built from the data of the398

same distribution as the training data)399

over a domain-agnostic KG. We use Con-400

ceptNet (Speer et al., 2016) as the domain-401

agnostic KG.402

3. Ablations on RAGMT. To analyze the403

impact of the individual loss terms of404

the RAGMT training objective, we per-405

form an ablation study involving LMLM406

(the entity MLM loss) and LD (the docu-407

ment similarity-based loss) that are newly408

added along with the generation loss.409

For evaluating the performance of all the410

setups in our experiments, we utilize a compre-411

hensive set of metrics including BLEU (Post,412

2018), chrF++ (Popović, 2015), TER (Snover413

et al., 2006), and BERTScore (Zhang et al.,414

2019). BLEU (Bilingual Evaluation Under-415

study) is widely used to measure n-gram pre-416

cision and is often considered a standard for417

machine translation evaluation. chrF++ pro-418

vides an alternative by focusing on character n-419

grams, offering better sensitivity to small trans-420

lation differences, especially in morphologi-421

cally rich languages. TER (Translation Edit422

Rate) measures the number of edits needed423

to change a hypothesis translation into one of424

the references, emphasizing error correction.425

Finally, BERTScore leverages the semantic426

representations from BERT to evaluate trans-427

lations based on contextual embeddings, cap-428

turing nuanced meaning and context beyond429

surface-level similarity. These metrics offer a430

well-rounded evaluation framework to assess431

translation quality from multiple perspectives.432

The main systems we compare in our exper-433

iments are:434

1. Baseline MT. We consider NMT model,435

without any external memory augmenta-436

tion applied, as our baseline MT model.437

For this purpose (NLLB Team et al.,438

2022) is used.439

2. RAT-SI. We set up RAT-SI as described440

in (Hoang et al., 2022). The setup uses441

fuzzy-matching to retrieve relevant doc- 442

uments and uses the training samples as 443

the knowledge base, as opposed to our 444

use of KGs. We always use (NLLB Team 445

et al., 2022) as the generator to maintain a 446

common starting point for each approach. 447

3. RAGMT. Our proposed framework that 448

uses a KG extracted from the training set 449

of each domain. The setup consists of 450

document and source encoders, for which 451

we use Dense Passage Retrieval detailed 452

in (Karpukhin et al., 2020), and a gen- 453

erator, for which we use NLLB (NLLB 454

Team et al., 2022). 455

4.3 KG Extraction 456

To facilitate domain-specific knowledge inte- 457

gration, we extracted datastores from the train- 458

ing data for each domain using REBEL (Re- 459

source Extraction from BERT Embeddings 460

for Linked data) (Cabot and Navigli, 2021). 461

REBEL enables the extraction of domain- 462

specific knowledge using pre-trained BERT 463

embeddings, allowing us to enrich our transla- 464

tion models with relevant domain information. 465

4.4 Implementation Details 466

All the systems described in section 4.2 use 467

the pre-trained 600M parameter checkpoint of 468

NLLB-200 (NLLB Team et al., 2022) as the 469

generator. For the RAGMT setup, Dense Pas- 470

sage Retrieval (DPR) (Karpukhin et al., 2020) 471

is used as the encoders in the Retrieval mod- 472

ule. All models have their maximum input and 473

output length set to 1024. We use the Adam 474

optimizer (Kingma and Ba, 2014), and train 475

each setup for a maximum of 50K steps. All 476

the models are trained with fp16 precision. 477

For the RAGMT setup, we use FAISS (John- 478

son et al., 2019) to index the knowledge base 479

encoding, for faster training and evaluation 480

time retrieval. For all our experiments, we 481

extract the top 5 documents from any of the 482

knowledge bases, for a consistent comparison. 483

5 Results and Analysis 484

Domain adaptation of MT. We first test if 485

fine-tuning the proposed framework using a 486
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Model Name BLEU chrf++ TER BERTScore
Law Domain

(1) Baseline MT 35.45 60.07 47.51 0.84
(2) RAT-SI 35.82 58.42 45.83 0.83
(3) RAGMT 37.42 62.12 43.79 0.82

Medical Domain
(1) Baseline MT 36.6 57.26 42.33 0.78
(2) RAT-SI 37.61 60.28 43.14 0.84
(3) RAGMT 39.12 59.12 41.55 0.83

Koran Domain
(1) Baseline MT 20.85 43.02 63.21 0.74
(2) RAT-SI 21.01 43.38 63.35 0.74
(3) RAGMT 22.34 44.37 61.78 0.76

IT Domain
(1) Baseline MT 27.77 48.69 54.64 0.79
(2) RAT-SI 28.45 52.61 53.84 0.8
(3) RAGMT 29.94 49.12 52.3 0.81

Table 2: Domain adaptation performance of different
experimental setups. Details about each setup are de-
scribed in section 4.2.

domain-specific dataset, with a retrieval mech-487

anism applied over an in-domain KG, would488

improve performance over the baseline ap-489

proaches. Table 2 shows the performance490

of all the compared approaches on the do-491

main adaptation experiment. Compared to492

the Baseline MT, RAGMT improves perfor-493

mance by an average of 2.03 BLEU scores,494

with the largest improvement on the Medical495

domain data with 2.52 BLEU score improve-496

ment. This signifies that fine-tuning a gen-497

erator model using the RAGMT framework498

for MT on a domain-specific dataset with ac-499

cess to an in-domain knowledge base, such as500

KGs, helps improve the performance of the501

MT model. Comparing the proposed RAGMT502

framework with the RAT-SI approach, we ob-503

serve an average improvement of 1.48 BLEU504

scores, with the largest improvement of 1.6505

BLEU scores on the Law domain dataset. This506

improvement can be attributed to the adaptive507

retrieval mechanism employed by the RAGMT508

framework along with the document similar-509

ity term incorporated in the RAGMT train-510

ing objective, compared to the fuzzy-matching511

based retrieval used by RAT-SI.512

Domain-specific KG vs Domain-agnostic513

KG. The domain-specific KG has been ex-514

tracted from the training subset of the domain-515

specific data. At the same time, we use Con-516

Model Name BLEU chrf++ TER BERTScore
Law Domain

(1) Baseline MT 35.45 60.07 47.51 0.84
(2) ConceptNet 36.23 61.73 45.18 0.81
(3) Domain-specific KG 37.42 62.12 43.79 0.82

Medical Domain
(1) Baseline MT 36.6 57.26 42.33 0.78
(2) ConceptNet 38.82 58.61 42.15 0.79
(3) Domain-specific KG 39.12 59.12 41.55 0.83

Koran Domain
(1) Baseline MT 20.85 43.02 63.21 0.74
(2) ConceptNet 22.56 45.94 62.22 0.79
(3) Domain-specific KG 22.34 44.37 61.78 0.76

IT Domain
(1) Baseline MT 27.77 48.69 54.64 0.79
(2) ConceptNet 28.71 48.92 53.37 0.78
(3) Domain-specific KG 29.94 49.12 52.3 0.81

Table 3: Comparison of domain-agnostic vs domain-
specific knowledge graph with RAGMT across various
domains.

ceptNet (Speer et al., 2016) as our domain- 517

agnostic KG. Table 3 shows the difference in 518

performance of the RAGMT framework using 519

a domain-agnostic KG. Using domain-specific 520

KG, we observe an average improvement of 521

0.62 BLEU scores over the use of Concept- 522

Net, with improvements in three of the four 523

domains. We analyze the performance degra- 524

dation in the Koran domain later in this section. 525

Ablations on the RAGMT training objective. 526

We analyze the contribution of each of the con- 527

stituent components of the training objective 528

as described in section 3.5. We compare the 529

performance of RAGMT framework under the 530

following settings: (1) RAGMT - LRAG-Seq, 531

i.e., using the RAG-Sequence loss proposed 532

by (Lewis et al., 2020); (2) RAGMT - w/o 533

LMLM, the RAGMT training objective with- 534

out the loss from the Entity MLM component; 535

(3) RAGMT - w/o LD, the RAGMT objec- 536

tive without the explicit Document Similarity 537

component; and (4) RAGMT, the training ob- 538

jective as described in section 3.5. 539

Table 4 presents the BLEU score compari- 540

son across domains for each ablation. Across 541

all domains, the variations of the RAGMT 542

training objective result in higher BLEU scores 543

than RAG Sequence Loss. The obtained re- 544

sults signify that the Document Similarity com- 545

ponent substantially contributes to the train- 546

ing objective with an average difference of 547
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Domain RAGMT - LRAG-Seq RAGMT - w/o LMLM RAGMT - w/o LD RAGMT
Law 34.67 37.17 36.52 37.42

Medical 34.96 39.02 38.94 39.12
Koran 21.54 21.98 20.64 22.34

IT 26.11 29.68 28.21 29.94

Table 4: Ablation on the RAGMT training objective. The BLEU scores obtained across all the domains, using
different settings described in section 5.

1.12 BLEU score due to its removal. The loss548

from the Entity MLM component results in549

an average difference of 0.24 BLEU scores550

across domains. Overall, we observe consis-551

tent improvement in performance across do-552

mains with the addition of each of the two com-553

ponents, showing the efficacy of the proposed554

RAGMT training objective and justifying the555

inclusion of each component.556

Quantitative and Qualitative Analysis. We557

quantitatively analyze the benefits of using a558

non-parametric knowledge base for MT using559

the RAGMT framework by looking at the en-560

tity overlap in the translation outputs. More561

precisely, for each entity present in the trans-562

lation output, we categorize the entity into563

four categories: (1) Present only in the source564

sentence; (2) Present only in the knowledge565

base; (3) Present in both; (4) Present in neither.566

While using an in-domain datastore, on aver-567

age, the entities are present in both the source568

sentence and knowledge base 38.5% times, as569

opposed to the domain-agnostic knowledge570

base, where entities are present 35.25% times.571

Compared with the domain-agnostic KG, we572

see a lower proportion of entities being ex-573

clusively present only in the KG for all do-574

mains except Koran. Unlike the other three575

domains, Koran has 19% translated entities ex-576

clusively present in the domain-agnostic KG577

setup and only 11% translated entities exclu-578

sively present in the domain-specific KG. This579

potentially explains why the domain-agnostic580

KG yields higher BLEU scores for the Koran581

domain compared to the domain-specific KG.582

Table 5 shows a few examples of transla-583

tions performed using the RAGMT framework.584

For the second example (taken from the IT585

domain), we can observe that the reference586

translation does not consist of the phrase inline587

Example Retrieved Documents Translation Outputs
(Source)
Your doctor will prescribe
Truvada with other
antiretroviral medicines.

(Reference Transalation)
Ihr Arzt wird Ihnen
Truvada in Kombination
mit anderen
antiretroviralen
Arzneimitteln verschreiben.

(1)
Truvada
instance of
antiretroviral combination
therapy
(2)
Truvada
instance of
antiretroviral therapies

Ihr Arzt wird
Truvada zusammen
mit anderen
antiretroviralen
Arzneimitteln
verschreiben.

(Source)
Convert current frame to
an inline frame

(Reference Translation)
Aktuellen Rahmen in
einen im Text mitfließenden
Rahmen umwandeln

(1)
convert files
facet of
file format
(2)
inline frames
type of
frames

Aktuellen Rahmen
in einen
Inline-Rahmen
umwandeln

Table 5: Example translation using RAGMT. The
retrieved documents are contextually relevant to the
source as well as target sentence, with the retrieved enti-
ties being used in both the source as well as the target
sentence.

frame but it is present in the translation output. 588

6 Conclusion 589

We present a Retrieval Augmented Genera- 590

tion (RAG) based multi-task MT framework 591

to enhance machine translation using non- 592

parametric knowledge bases. We show the 593

efficacy of our new framework, compared to 594

existing baselines, on the problem of domain- 595

specific MT using knowledge graphs as the 596

non-parametric knowledge base. Our approach 597

improves the performance of the baseline MT 598

model using both domain-agnostic as well as 599

domain-specific knowledge graphs across all 600

domains. For future work, we aim to focus 601

on using the proposed framework for other 602

nuanced MT tasks, such as low-resource lan- 603

guage adaptation, accurate entity translation 604

and usage of other non-parametric knowledge 605

sources, such as WordNet, tabular data, etc. 606
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7 Limitations607

• Due to resource limitations, we conduct608

experiments with a limited subset of the609

training data. Although the experiments610

demonstrate the efficacy of the proposed611

framework, fine-tuning using the com-612

plete training dataset would potentially613

offer more improvements over the base-614

line.615

• There is an inherent trade-off with increas-616

ing the number of retrieved documents us-617

ing RAG versus improving BLEU scores.618

The former can improve the quality of619

the generated translations but leads to in-620

creased computational overhead. This is621

a balance that needs to be considered de-622

pending on the downstream task.623
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