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Abstract

We introduce RAGMT, a retrieval augmented
generation (RAG)-based multi-task framework
for Machine Translation (MT) using non-
parametric knowledge sources. To the best
of our knowledge, we are the first to adapt
the RAG framework for MT to support end-
to-end training and use knowledge graphs as
the non-parametric source. We also propose
the use of new auxiliary training objectives that
improve the performance of RAG for domain-
specific MT. Our experiments demonstrate that
retrieval-augmented fine-tuning of NMT mod-
els under the RAGMT framework results in
an average improvement of 2.03 BLEU scores
over simple fine-tuning approaches on English
to German domain-specific translation. We also
demonstrate the efficacy of RAGMT with using
in-domain versus domain-agnostic knowledge
graphs and careful ablations over the model
components. Qualitatively, RAGMT is eas-
ily interpretable and appears to demonstrate
“copy-over-translation" behaviour over named
entities.

1 Introduction

Neural Machine Translation (NMT) systems
often struggle to maintain accuracy and flu-
ency in specialized domains such as medicine,
law, and information technology (IT), where
domain-specific terminology and context play
a crucial role (Chu and Wang, 2018). Tradi-
tional MT models trained on generic datasets
lack the ability to capture the nuances and intri-
cacies of these specialized domains, leading to
suboptimal translations that may fail to convey
the intended meaning accurately.

To address these challenges, researchers
have explored various techniques to enhance
MT systems’ performance in specialized do-
mains. One promising approach involves inte-
grating retrieval mechanisms into the transla-

tion pipeline, enabling MT models to access
external knowledge sources such as domain-
specific documents or knowledge graphs (Zhao
et al., 2020; Cheng et al., 2023). By incorpo-
rating relevant information from these external
sources, MT systems can produce more accu-
rate and contextually appropriate translations
tailored to the specific domain.

The convergence between Natural Language
Processing (NLP) and Information Retrieval
(IR) convergence has given rise to a power-
ful paradigm called Retrieval Augmented Gen-
eration (RAG). Retrieval Augmented Gener-
ation (RAG) (Lewis et al., 2020; Guu et al.,
2020) represents a paradigm shift in how we
approach language understanding and gener-
ation tasks. At its core, RAG combines the
strengths of traditional IR methods, which ex-
cel at retrieving relevant information from vast
corpora, with the expressive power of modern
NLP models, capable of generating coherent
and contextually relevant text. Developing ef-
fective RAG systems requires robust methods
for seamlessly integrating retrieval and gen-
eration components, as these have tradition-
ally been treated as separate modules in NLP
pipelines. RAG’s potential extends beyond im-
proving output quality; it also offers enhanced
interpretability, robustness to input variations,
and adaptability to dynamic contexts, making
it particularly valuable for applications where
transparency is critical, such as legal or medi-
cal domains.

In this work, we propose a novel approach
RAGMT to enhance MT systems using an
end-to-end multi-task RAG framework for the
task of external memory-augmented machine
translation. Our approach builds upon the



RAG framework (Lewis et al., 2020), which
combines document retrieval with a generative
model to produce translations enriched with
domain-specific knowledge. We propose sev-
eral key enhancements to the RAG framework
to improve its effectiveness in translation for
specialized domains.
Our main contributions are as follows:

1. We introduce RAGMT, a new RAG-
based multi-task framework for machine
translation with a new end-to-end train-
ing objective. The framework allows
the integration of different types of non-
parametric knowledge sources.!

2. Our new training objective includes a spe-
cific document similarity term that boosts
documents that are very similar to the
source sentence while penalizing docu-
ments that are further off.

3. We propose the use of Entity masked lan-
guage modelling (MLM) as an auxiliary
task for RAGMT (Song et al., 2019). En-
tity MLM uses a source sentence with its
entities masked as its input. This entity-
masked source sentence, along with a set
of retrieved documents, are used to re-
construct the source sentence, thereby im-
proving the model’s ability on domain-
specific translation.

4. We conduct an in-depth analysis of
our proposed framework on domain-
specific machine translation using knowl-
edge graphs (KG) as non-parametric
sources. Compared with neural and
retrieval-based baselines, we achieve an
average improvement of +2.03 BLEU
score across domains. Additionally, we
demonstrate that domain-specific knowl-
edge sources provide an average improve-
ment of +0.625 BLEU score over domain-
agnostic sources.

5. We conduct a detailed ablation study on
the proposed RAGMT training objective,

'The codebase for RAGMT and the datasets to replicate
our results will be released upon publication.

quantifying the contribution of each loss
term. Our analysis highlights the im-
pact of the document similarity term with
an average improvement of 1.125 BLEU
scores across domains.

2 Background and Related Work

Transformer-based approaches for NMT.
Transformer models, such as T5 (Raffel et al.,
2019), XLLM (Lample and Conneau, 2019),
MOoE (Shazeer et al., 2017), and NLLB (NLLB
Team et al., 2022), have become foundational
in Neural Machine Translation (NMT) due to
their ability to handle complex linguistic struc-
tures and long sequences. NLLB, designed for
multilingual translation across 200 languages,
combines a mixture of experts with dense lay-
ers, data filtering, and large-scale pretraining
to excel in low-resource scenarios.

Knowledge-intensive tasks in NMT.
Domain-specific machine translation, espe-
cially in specialized fields like medicine or
law, demands precise handling of terminology
and context, which general-purpose MT
systems often fail to achieve. To improve
accuracy, strategies such as integrating
domain-specific terminologies, fine-tuning
with domain-specific parallel corpora, and
using domain-specific knowledge graphs have
been developed. These approaches not only
enhance the translation of specialized terms
but also ensure semantic consistency within
the domain. Furthermore, they are particularly
effective in low-resource scenarios, leveraging
multilingual transfer learning and external
linguistic resources to improve translation
accuracy (Sennrich et al., 2015).

Knowledge structures play a critical role in
enhancing NMT by providing additional con-
text and semantic enrichment. For instance,
knowledge graphs (KGs) capture complex rela-
tionships and contextual information, offering
a nuanced understanding of data that improves
translation, particularly in domain-specific
contexts. Despite challenges related to scal-
ability and consistency, KGs significantly con-
tribute to the effectiveness of NMT systems.
Wordnets, as described by (Fellbaum, 2000),



serve as comprehensive lexical databases that
organize concepts hierarchically, facilitating
efficient storage and retrieval of linguistic in-
formation. The IndoWordnet, discussed by
(Bhattacharyya, 2010), extends this concept
to Indian languages, supporting cross-lingual
information retrieval and machine translation.

Knowledge infusion techniques represent
significant advancements in NMT by integrat-
ing external knowledge to improve both trans-
lation quality and contextual relevance. Re-
trieval Augmented Generation (RAG) (Guu
et al., 2020; Lewis et al., 2020) combines in-
formation retrieval with generation, allowing
NMT models to leverage retrieved documents
for better context. REALM (Guu et al., 2020)
enhances this by introducing a masked lan-
guage pre-training step, integrating external
knowledge during both pre-training and fine-
tuning. RETRO further improves translation
by using a KG-based approach to generate
relevant textual explanations, enhancing inter-
pretability and coherence. Additionally, syn-
thetic data generation, as explored by (Lewis
et al., 2019), augments training datasets with
diverse examples, improving model perfor-
mance, particularly in domain-specific tasks.
(Siriwardhana et al., 2022) also advances RAG
models in open-domain question answering
through domain adaptation, using Dense Pas-
sage Retrieval (DPR) (Karpukhin et al., 2020)
to retrieve relevant passages for accurate an-
swer generation.

Knowledge infusion with machine trans-
lation has been further advanced with meth-
ods like k-nearest-neighbour machine trans-
lation (KNN-MT) (Khandelwal et al., 2020),
which enhances NMT by integrating nearest
neighbour retrieval without additional train-
ing. This method improves translation across
various domains. Similarly, (Cai et al., 2021)
introduces a monolingual translation mem-
ory (TM) approach, particularly effective in
low-resource or domain adaptation scenarios,
where the system retrieves relevant sentences
to enhance translation accuracy. (Zhang et al.,
2021) proposes the PDC framework, integrat-
ing bilingual dictionaries into NMT to improve

translation accuracy, especially for rare words,
by combining components like the pointer,
disambiguator, and copier. This framework
shows significant improvements over tradi-
tional NMT models, particularly in handling
rare vocabulary. Approaches such as those by
(Bulté and Tezcan, 2019), (He et al., 2021), and
(Hoang et al., 2022) further enhance transla-
tion by using fuzzy matching to retrieve similar
documents, with improvements in how source
and target information are encoded and inter-
acted with during the translation process.

3 Methodology

In this section, we describe the proposed frame-
work, highlighting the constituent components:
adaptive changes to the RAG architecture for
the task of MT, introduced auxiliary task, and
the training objective.

3.1 Problem Formulation

Given an input sentence S in the
source language, in tokenized form,
S = (s1,82,...,8,), the problem of

retrieval-augmented machine translation can
be formulated as finding the target sentence,
T in tokenized form, 7 = (t1,t2,...,ty), as
given by equation (1),

T = argmax Y _ P(d|S)P(T|d,S) (1)

deD

where D is the set of retrieved documents from
the knowledge base. Knowledge base is a
generic term denoting various structures, in-
cluding KG triples, textual documents, and
even precomputed embeddings.

Lg=—) logP(tiS,D)  (2)

=1
The machine translation output is obtained

using the Generator, with the loss function, L,
as given in Equation (2).

3.2 Overview of RAGMT

The RAGMT framework (illustrated in Fig-
ure 1) comprises four main components:
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Figure 1: RAGMT Architecture: The KB consists of documents to be retrieved, which are indexed using FAISS
over the embeddings computed using Encoderp. For a source sentence, S, The retriever first encodes S using
Encoders, then retrieves documents using the FAISS index. The retrieved documents, along with the source sentence,
are then inputs for the Integrator, which outputs the formatted input to be used by the Generator.

Knowledge Base, Retriever, Integrator, and
Generator. The Knowledge Base can consist
of structured information, such as KGs, Word-
nets, etc., or unstructured documents. The
Retriever consists of the document encoder,
Encoderp and the source encoder, Encoderg.
The encoding of the documents is generated
using the document encoder and is stored in
a vector index. We use FAISS (Johnson et al.,
2019) for this purpose. When a source sen-
tence is provided to the retriever, it encodes the
sentence and passes it to FAISS to retrieve the
most relevant documents from the knowledge
base. The documents, along with the source
sentence, are taken as input by the Integrator
component, which allows various operations to
be performed using the two, preparing inputs
for the generator, such as simple concatena-
tion over text, operations with the encodings,
etc. The Generator finally performs the down-
stream task of machine translation, along with
the auxiliary task of entity MLM.

3.3 Adapting RAG for NMT

We adopt the RAG framework for NMT by
configuring the RAG architecture to support
end-to-end training of all three parametric com-
ponents: the Document (Context) encoder,
the Source encoder, and the Generator. Inte-
grating these components into a unified archi-
tecture enables the model to seamlessly incor-
porate context retrieval and translation genera-
tion, enhancing its ability to leverage external
knowledge for translation tasks.

3.4 Auxiliary Task: Entity Masked
Masked Language Modelling

We introduce an auxiliary task derived from
entity Masked Masked Language Modelling
(MLM) (Song et al., 2019) training to en-
hance the model’s capacity to integrate ex-
ternal knowledge. This auxiliary task supple-
ments the primary training objective by provid-
ing additional context about named entities in
the input text. By training the model to predict
masked entities within the input text, we aim to
improve its understanding of domain-specific
terminology and entities, enhancing translation
accuracy and domain adaptation capabilities.

For a particular training pair, (S, T"), where
S is the source sentence and 7T is the target
sentence, let the retrieved results from the re-
triever be D = R(S) = topk(F,(.|r)) =
{di,...,dy} where n parameterizes the re-
triever model, R. Let .Sy; be the source sen-
tence with named entities masked. The task of
entity MLM is to predict the masked entities in
the source sentence, given the set D and Sy,
as stated in Equation (3).

~

S = argmax P(S|Sy, D) 3)
S

This auxiliary task is a form of multi-task
learning, where multiple learning tasks are per-
formed simultaneously, and each task aids the
learning of the other task.

Equation (4) below shows the loss func-
tion for entity MLM loss, where M =
{my, ma, ..., my} is the set of positions in the
entity masked source sentence, corresponding
to named entities.



Lyim = — »_ log P($y = $|Sx, D) (4)

meM

where S,, denotes the source token predicted
by the generator.

The entity MLLM loss, with its entity recon-
struction objective, further aligns the model’s
outputs with the retrieved documents. This
auxiliary loss complements the primary loss
(L¢) by encouraging the model to produce flu-
ent, accurate translations closely aligned with
the content and context of the retrieved docu-
ments.

3.5 Final Training Objective

The final training objective of RAGMT can be
written as follows:

k
Lp= (— Zlog(sdi)>
i=1
L=Lg-Lp+ Lvim

where L is the generator model’s loss and
Ly 1s the entity MLM loss. Lp is a doc-
ument similarity-based loss computed using
the similarity between the source sentence (s)
and every document d; in the set of retrieved
documents D. These similarity denoted by s,
is simply computed as a dot product between
embeddings for s and d;, via Encoderg and
Encoderp respectively.

4 [Experiments

4.1 Dataset

We utilized the English and German parallel
corpus introduced by (Koehn and Knowles,
2017) at the First Workshop on Neural Ma-
chine Translation (WNMT) in 2017 and re-
split by (Aharoni and Goldberg, 2020). This
dataset provides a diverse range of text sam-
ples across different domains, allowing us to
evaluate the adaptability of our models across
various domains. The dataset consists of data
from Law, Medical, Koran, IT and Subtitles
domains. We leave out the Subtitles domains
from all our experiments since the data lacks
consistency in terms of the constituent topics.

Domain | # Training Samples | # KG Triples
Law 222927 454148
Medical 17982 37176
Koran 467310 753082

IT 248099 471002

Table 1: Dataset statistics: English-German Domain
Specific Parallel Corpus. The table shows the number of
training data points in the dataset, along with the number
of knowledge graph triples extracted as described in
section 4.3.

Hence, a cohesive KG could not be extracted
from the data. As specified by (Aharoni and
Goldberg, 2020), we use 2000 validation and
2000 test points for each domain. We perform
all the experiments with a randomly sampled
subset of 15000 data points from the training
set of each domain. This was done primar-
ily for two reasons: 1) We wanted to restrict
the amount of available fine-tuning data to re-
flect real-world settings where domain-specific
fine-tuning data is limited. 2) Our available
compute was not sufficient to run experiments
using the entire training datasets. In this con-
strained setting, we have carefully compared
against existing baseline systems as detailed
below.

4.2 Experimental Setup

We conduct a series of experiments to eval-
uate the performance of the different transla-
tion models for domain adaptation. Each ex-
periment involved fine-tuning and testing the
models on domain-specific datasets, intend-
ing to assess their ability to adapt to different
domains and leverage domain-specific knowl-
edge for translation. We conduct the following
experiments:

1. Domain-adaptation of NMT models, us-
ing in-domain KG. We build a KG for
each domain as described in section 4.3,
using the complete training subset of the
data. Table 1 shows the training data size
and corresponding KG size in terms of
number of triples. 2

“The subset of dataset used for training, and extracted
in-domain KGs will be released upon publication.



2. Domain-agnostic KG vs. In-domain KG.
We compare the impact of using an in-
domain KG (built from the data of the
same distribution as the training data)
over a domain-agnostic KG. We use Con-
ceptNet (Speer et al., 2016) as the domain-
agnostic KG.

3. Ablations on RAGMT. To analyze the
impact of the individual loss terms of
the RAGMT training objective, we per-
form an ablation study involving Lyym
(the entity MLLM loss) and Lp (the docu-
ment similarity-based loss) that are newly
added along with the generation loss.

For evaluating the performance of all the
setups in our experiments, we utilize a compre-
hensive set of metrics including BLEU (Post,
2018), chrF++ (Popovic, 2015), TER (Snover
et al., 2006), and BERTScore (Zhang et al.,
2019). BLEU (Bilingual Evaluation Under-
study) is widely used to measure n-gram pre-
cision and is often considered a standard for
machine translation evaluation. chrF++ pro-
vides an alternative by focusing on character n-
grams, offering better sensitivity to small trans-
lation differences, especially in morphologi-
cally rich languages. TER (Translation Edit
Rate) measures the number of edits needed
to change a hypothesis translation into one of
the references, emphasizing error correction.
Finally, BERTScore leverages the semantic
representations from BERT to evaluate trans-
lations based on contextual embeddings, cap-
turing nuanced meaning and context beyond
surface-level similarity. These metrics offer a
well-rounded evaluation framework to assess
translation quality from multiple perspectives.

The main systems we compare in our exper-
iments are:

1. Baseline MT. We consider NMT model,
without any external memory augmenta-
tion applied, as our baseline MT model.
For this purpose (NLLB Team et al.,
2022) is used.

2. RAT-SI. We set up RAT-SI as described
in (Hoang et al., 2022). The setup uses

fuzzy-matching to retrieve relevant doc-
uments and uses the training samples as
the knowledge base, as opposed to our
use of KGs. We always use (NLLB Team
et al., 2022) as the generator to maintain a
common starting point for each approach.

3. RAGMT. Our proposed framework that
uses a KG extracted from the training set
of each domain. The setup consists of
document and source encoders, for which
we use Dense Passage Retrieval detailed
in (Karpukhin et al., 2020), and a gen-
erator, for which we use NLLB (NLLB
Team et al., 2022).

4.3 KG Extraction

To facilitate domain-specific knowledge inte-
gration, we extracted datastores from the train-
ing data for each domain using REBEL (Re-
source Extraction from BERT Embeddings
for Linked data) (Cabot and Navigli, 2021).
REBEL enables the extraction of domain-
specific knowledge using pre-trained BERT
embeddings, allowing us to enrich our transla-
tion models with relevant domain information.

4.4 Implementation Details

All the systems described in section 4.2 use
the pre-trained 600M parameter checkpoint of
NLLB-200 (NLLB Team et al., 2022) as the
generator. For the RAGMT setup, Dense Pas-
sage Retrieval (DPR) (Karpukhin et al., 2020)
is used as the encoders in the Retrieval mod-
ule. All models have their maximum input and
output length set to 1024. We use the Adam
optimizer (Kingma and Ba, 2014), and train
each setup for a maximum of 50K steps. All
the models are trained with fp16 precision.
For the RAGMT setup, we use FAISS (John-
son et al., 2019) to index the knowledge base
encoding, for faster training and evaluation
time retrieval. For all our experiments, we
extract the top 5 documents from any of the
knowledge bases, for a consistent comparison.

5 Results and Analysis

Domain adaptation of MT. We first test if
fine-tuning the proposed framework using a



Model Name BLEU chrf++ TER BERTScore
Law Domain

(1) Baseline MT | 35.45 | 60.07 | 47.51 0.84

(2) RAT-SI 35.82 | 58.42 | 45.83 0.83

(3) RAGMT 37.42 | 62.12 | 43.79 0.82

Medical Domain

(1) Baseline MT | 36.6 57.26 | 42.33 0.78

(2) RAT-SI 37.61 | 60.28 | 43.14 0.84

(3) RAGMT 39.12 | 59.12 | 41.55 0.83
Koran Domain

(1) Baseline MT | 20.85 | 43.02 | 63.21 0.74

(2) RAT-SI 21.01 | 43.38 | 63.35 0.74

(3) RAGMT 22.34 | 44.37 | 61.78 0.76

IT Domain

(1) Baseline MT | 27.77 | 48.69 | 54.64 0.79

(2) RAT-SI 28.45 | 52.61 | 53.84 0.8

(3) RAGMT 2994 | 49.12 | 52.3 0.81

Table 2: Domain adaptation performance of different
experimental setups. Details about each setup are de-
scribed in section 4.2.

domain-specific dataset, with a retrieval mech-
anism applied over an in-domain KG, would
improve performance over the baseline ap-
proaches. Table 2 shows the performance
of all the compared approaches on the do-
main adaptation experiment. Compared to
the Baseline MT, RAGMT improves perfor-
mance by an average of 2.03 BLEU scores,
with the largest improvement on the Medical
domain data with 2.52 BLEU score improve-
ment. This signifies that fine-tuning a gen-
erator model using the RAGMT framework
for MT on a domain-specific dataset with ac-
cess to an in-domain knowledge base, such as
KGs, helps improve the performance of the
MT model. Comparing the proposed RAGMT
framework with the RAT-SI approach, we ob-
serve an average improvement of 1.48 BLEU
scores, with the largest improvement of 1.6
BLEU scores on the Law domain dataset. This
improvement can be attributed to the adaptive
retrieval mechanism employed by the RAGMT
framework along with the document similar-
ity term incorporated in the RAGMT train-
ing objective, compared to the fuzzy-matching
based retrieval used by RAT-SI.

Domain-specific KG vs Domain-agnostic
KG. The domain-specific KG has been ex-
tracted from the training subset of the domain-
specific data. At the same time, we use Con-

Model Name BLEU chrf++

Law Domain

TER BERTScore

(1) Baseline MT 3545 | 60.07 | 47.51 0.84
(2) ConceptNet 36.23 | 61.73 | 45.18 0.81
(3) Domain-specific KG | 37.42 | 62.12 | 43.79 0.82
Medical Domain
(1) Baseline MT 36.6 | 57.26 | 42.33 0.78
(2) ConceptNet 38.82 | 58.61 | 42.15 0.79
(3) Domain-specific KG | 39.12 | 59.12 | 41.55 0.83
Koran Domain
(1) Baseline MT 20.85 | 43.02 | 63.21 0.74
(2) ConceptNet 22.56 | 45.94 | 62.22 0.79
(3) Domain-specific KG | 22.34 | 44.37 | 61.78 0.76
IT Domain
(1) Baseline MT 27.77 | 48.69 | 54.64 0.79
(2) ConceptNet 28.71 | 48.92 | 53.37 0.78
(3) Domain-specific KG | 29.94 | 49.12 | 52.3 0.81

Table 3: Comparison of domain-agnostic vs domain-
specific knowledge graph with RAGMT across various
domains.

ceptNet (Speer et al., 2016) as our domain-
agnostic KG. Table 3 shows the difference in
performance of the RAGMT framework using
a domain-agnostic KG. Using domain-specific
KG, we observe an average improvement of
0.62 BLEU scores over the use of Concept-
Net, with improvements in three of the four
domains. We analyze the performance degra-
dation in the Koran domain later in this section.

Ablations on the RAGMT training objective.
We analyze the contribution of each of the con-
stituent components of the training objective
as described in section 3.5. We compare the
performance of RAGMT framework under the
following settings: (1) RAGMT - Lgag-seq>
1.e., using the RAG-Sequence loss proposed
by (Lewis et al., 2020); (2) RAGMT - w/o
Ly, the RAGMT training objective with-
out the loss from the Entity MLLM component;
(3) RAGMT - w/o Lp, the RAGMT objec-
tive without the explicit Document Similarity
component; and (4) RAGMT, the training ob-
jective as described in section 3.5.

Table 4 presents the BLEU score compari-
son across domains for each ablation. Across
all domains, the variations of the RAGMT
training objective result in higher BLEU scores
than RAG Sequence Loss. The obtained re-
sults signify that the Document Similarity com-
ponent substantially contributes to the train-
ing objective with an average difference of



Domain | RAGMT - Lgag.seq | RAGMT - w/0 Ly | RAGMT - w/o Lp | RAGMT
Law 34.67 37.17 36.52 37.42
Medical 34.96 39.02 38.94 39.12
Koran 21.54 21.98 20.64 22.34
IT 26.11 29.68 28.21 29.94

Table 4: Ablation on the RAGMT training objective. The BLEU scores obtained across all the domains, using

different settings described in section 5.

1.12 BLEU score due to its removal. The loss
from the Entity MLM component results in
an average difference of 0.24 BLEU scores
across domains. Overall, we observe consis-
tent improvement in performance across do-
mains with the addition of each of the two com-
ponents, showing the efficacy of the proposed
RAGMT training objective and justifying the
inclusion of each component.

Quantitative and Qualitative Analysis. We
quantitatively analyze the benefits of using a
non-parametric knowledge base for MT using
the RAGMT framework by looking at the en-
tity overlap in the translation outputs. More
precisely, for each entity present in the trans-
lation output, we categorize the entity into
four categories: (1) Present only in the source
sentence; (2) Present only in the knowledge
base; (3) Present in both; (4) Present in neither.
While using an in-domain datastore, on aver-
age, the entities are present in both the source
sentence and knowledge base 38.5% times, as
opposed to the domain-agnostic knowledge
base, where entities are present 35.25% times.
Compared with the domain-agnostic KG, we
see a lower proportion of entities being ex-
clusively present only in the KG for all do-
mains except Koran. Unlike the other three
domains, Koran has 19% translated entities ex-
clusively present in the domain-agnostic KG
setup and only 11% translated entities exclu-
sively present in the domain-specific KG. This
potentially explains why the domain-agnostic
KG yields higher BLEU scores for the Koran
domain compared to the domain-specific KG.

Table 5 shows a few examples of transla-
tions performed using the RAGMT framework.
For the second example (taken from the IT
domain), we can observe that the reference
translation does not consist of the phrase inline

Example Retrieved Documents Translation Outputs
(Source)
Your doctor will prescribe (1)
Truvada with other Truvada .
. . . . Ihr Arzt wird
antiretroviral medicines. instance of
. . - Truvada zusammen
antiretroviral combination .
. mit anderen
(Reference Transalation) therapy R X
. antiretroviralen
Thr Arzt wird Thnen 2) L.
. - Arzneimitteln
Truvada in Kombination Truvada .
. . verschreiben.
mit anderen instance of
antiretroviralen antiretroviral therapies
Arzneimitteln verschreiben.
(Source) (1)
Convert current frame to convert files
an inline frame facet of Aktuellen Rahmen
file format in einen
(Reference Translation) 2) Inline-Rahmen
Aktuellen Rahmen in inline frames umwandeln
einen im Text mitflieBenden | type of
Rahmen umwandeln frames

Table 5: Example translation using RAGMT. The
retrieved documents are contextually relevant to the
source as well as target sentence, with the retrieved enti-
ties being used in both the source as well as the target
sentence.

frame but it is present in the translation output.

6 Conclusion

We present a Retrieval Augmented Genera-
tion (RAG) based multi-task MT framework
to enhance machine translation using non-
parametric knowledge bases. We show the
efficacy of our new framework, compared to
existing baselines, on the problem of domain-
specific MT using knowledge graphs as the
non-parametric knowledge base. Our approach
improves the performance of the baseline MT
model using both domain-agnostic as well as
domain-specific knowledge graphs across all
domains. For future work, we aim to focus
on using the proposed framework for other
nuanced MT tasks, such as low-resource lan-
guage adaptation, accurate entity translation
and usage of other non-parametric knowledge
sources, such as WordNet, tabular data, etc.



7 Limitations

* Due to resource limitations, we conduct
experiments with a limited subset of the
training data. Although the experiments
demonstrate the efficacy of the proposed
framework, fine-tuning using the com-
plete training dataset would potentially
offer more improvements over the base-
line.

* There is an inherent trade-off with increas-
ing the number of retrieved documents us-
ing RAG versus improving BLEU scores.
The former can improve the quality of
the generated translations but leads to in-
creased computational overhead. This is
a balance that needs to be considered de-
pending on the downstream task.
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