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Abstract
Previous research often utilizes symbolic dis-001
tillation to transfer the reasoning abilities of002
large teacher models to smaller student models.003
However, when it comes to multi-choice ma-004
chine reading comprehension (MMRC), solely005
learning from the rationales generated by the006
teacher model for correct options overlooks007
educational significance of understanding the008
reasons behind incorrect options. In educa-009
tion, metacognition requires individuals to ac-010
tively identify errors when reading to deepen011
their understanding. To this end, we propose a012
novel framework for achieving metacognitive013
symbolic distillation. Initially, we prompt the014
teacher large language model (LLM) to gener-015
ate rationales for each option in the MMRC016
dataset. Subsequently, the student model017
could be fine-tuned based on the MMRC data018
equipped with these rationales. Our experi-019
ments on two MMRC datasets demonstrate that020
our approach effectively enhances the perfor-021
mance of the small model compared with stan-022
dard fine-tuned models and symbolic distilled023
models. Moreover, when the student model is024
large enough, upgrading the teacher model can025
lead to further improvements. We will make026
our code and data publicly available.027

1 Introduction028

Large language models (LLMs) have demonstrated029

promising performance on various tasks by employ-030

ing chain-of-thought (CoT) prompting (Wang et al.,031

2023a). Generating justifications to elucidate their032

responses can enhance their accuracy. Neverthe-033

less, deploying LLMs in compute-starved scenar-034

ios is challenging due to their large-scale parame-035

ters and high inference latency (Xu and McAuley,036

2023). As a result, it is common to fine-tune a037

smaller model with human-labeled data to cater to038

specific requirements (Wang et al., 2023b).039

To enhance the performance and interpretability040

of small models, existing studies commonly em-041

ploy symbolic distillation to transfer the reasoning042

capabilities of large LLMs into smaller ones (West 043

et al., 2022). In particular, a large teacher model 044

is utilized to generate rationales for expected re- 045

sponses, which are employed to fine-tune a smaller 046

student model (Li et al., 2023). However, within 047

the realm of pedagogy, metacognition necessitates 048

individuals to actively identify errors while reading, 049

which is considered a crucial element in attaining 050

a profound comprehension of texts (Dori et al., 051

2018). Especially in the context of Multi-choice 052

Machine Reading Comprehension (MMRC) tasks, 053

current symbolic distillation approaches solely fo- 054

cus on having the teacher LLM generate rationales 055

for the correct answer options, while neglecting the 056

identification of causes for the incorrect options. 057

In this study, we present a novel framework 058

for achieving metacognitive symbolic distillation. 059

Our framework employs CoT prompts to guide the 060

teacher model to generate rationales for each op- 061

tion. To accomplish this, we adopt two strategies, 062

namely elimination strategy and sequential strat- 063

egy. In the first one, we instruct the teacher model 064

to first generate rationales for incorrect options and 065

conclude by generating a rationale for the correct 066

option. In the second one, we prompt the teacher 067

model to generate rationales in order of original op- 068

tions. Subsequently, our framework combines the 069

original dataset along with the generated rationales 070

to fine-tune the student model. This enables the stu- 071

dent model to analyze the reasons behind incorrect 072

options, considering the input context, question, 073

and options, and finally provide the correct answer 074

and its corresponding justifications. 075

We conduct extensive experiments on two 076

MMRC benchmarks: MCTest (Richardson et al., 077

2013) and RACE (Lai et al., 2017). Our findings in- 078

dicate that our framework can effectively enhance 079

the performance of the student model compared 080

with standard fine-tuned models and symbolic dis- 081

tillation models. Additionally, the performance of 082

the student model can be further improved by up- 083
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Please analyze the reasons why students mistakenly chose 
other answers first and give a rationale to explain the correct 
answer finally. Here are some examples. Please strictly follow 
the format of the examples to generate the rationles.  
       

Context: In a small village in England about 150 years ...
Question: The first postage stamp was made _.
Options: A...; B...; C...; D...
Answer:  A
Rationale: 
B. ….: That is incorrect. The passage states …
C. ….: This is the incorrect answer. The passage states …
D. ….:This is the incorrect answer. The passage states ...
A. ...: This is the correct answer. The passage states …

Context: Every day when I enter the classroom ...
Question: When has the poem been written?
Options: A...; B...; C...; D...
Answer: C
Rationale:
A. ….: That is incorrect. The passage states …
B. ….: This is the incorrect answer. The passage states …
D. ….:This is the incorrect answer. The passage states …
C. ...: This is the correct answer! The text explicitly ...

Context: One thinks of princes and 
presidents ...
Question: The Sherman Antitrust Act  _  .
Options: A...; B...; C...; D...
Answer: B

Rationale: 
A. ….: That is incorrect. The passage 
states …
C. ….: This is the incorrect answer. The 
passage states …
D. ….:This is the incorrect answer. The 
passage states ...
B. ...: This is the correct answer. The 
passage states ...

Answer: A

Rationale:
B. ….: That is incorrect. The passage 
states …
C. ….: This is the incorrect answer. The 
passage states …
D. ….:This is the incorrect answer. The 
passage states ...
A. ...: This is the correct answer. The 
passage states ...

Context: It's said that one can know the 
nature of both man and ...
Question: What do we learn about the 
author?
Options: A...; B...; C...; D...

Teacher Student

You should give a 
rationale to the 
answer like this!

I got it!

CoT Prompt

Figure 1: The overall architecture of metacognitive symbolic distillation. Initially, the teacher model will generate
rationales for both the incorrect and correct options pertaining to the given input context, question, options, and
answer. This process relies on a manually tailored CoT prompt within the dataset. Subsequently, the context,
question, options, answer, and generated rationales will be employed to fine-tune the student model.

grading the teacher model. Notably, this improve-084

ment in performance is primarily observed when085

the student model itself is of a significant size.086

Our contributions are summarized as follows:087

(i) To the best of our knowledge, our work is the088

first to incorporate the metacognitive perspective089

into symbolic distillation.090

(ii) We propose a framework for metacognitive091

symbolic distillation on MMRC task. Our ap-092

proach involves formulating exemplars to prompt093

the teacher LLM to generate rationales for each094

option. Subsequently, we employ the dataset and095

the rationales to fine-tune the small student model.096

(iii) Experiments on two MMRC datasets demon-097

strate that the proposed framework significantly im-098

proves the performance of the student model com-099

pared with standard fine-tuned models and sym-100

bolic distillation models. When the student model101

reaches a significant size, upgrading to a larger102

teacher model can lead to further improvements in103

the performance of the student model.104

2 Metacognitive Symbolic Distillation105

Task Description Prior to introducing our frame-106

work, we shall expound upon the problem formu-107

lation and notations. The MMRC dataset consists108

of multiple samples denoted as {(c, q, O, a)}Ni=1,109

where c represents the context, q represents the110

question, O = {o1, · · · , on} represents the set of111

candidate answer options, and a represents the only112

one right answer. In the MMRC task, the objective113

is to answer the question q by selecting the most114

appropriate answer a in the set of candidate an-115

swer options O based on the given context c. Our 116

proposed approach leverages a teacher LLM T to 117

generate rationales for each option within every 118

sample of the dataset, thereby forming N new sam- 119

ples {(c, q, O,R, a)}Ni=1, where R = {r1, · · · , r4} 120

is the set of generated rationales. We utilize these 121

samples to fine-tune a smaller student model S. 122

Metacognitive Teacher The initial step is to curate 123

a set of labeled CoTs based on the dataset to serve 124

as prompts for T . For each sample in MMRC 125

dataset, we select K (e.g., K = 2) samples from 126

the dataset and manually customized CoTs denoted 127

as Z = {z1, · · · , z4} for the four options (as shown 128

in left part of Fig. 1) in every sample (c, q, O, a) to 129

compose the prompt set P = {(c, q, O, a, Z)}Kk=1. 130

This approach can provide LLM with exemplars, 131

prompting LLM to generate rationales for each 132

option in the MMRC dataset. 133

Moreover, we implement two answering strate- 134

gies to regulate the sequence of CoTs in Z: In the 135

case of the elimination strategy, the prioritization 136

of CoTs is focused on incorrect options, while the 137

CoT for the correct option is reserved until the final 138

stage. Conversely, in the sequential strategy, the 139

CoTs are arranged in the order of the options. Af- 140

terwards, we input each sample (c, q, O, a) in the 141

dataset together with P into teacher LLM to obtain 142

a training dataset D for the small student model. 143

D consists of N samples {c, q, O,R, a}Ni=1, where 144

R = {r1, · · · , r4} are the rationales for every op- 145

tion, arranged in the order of incorrect options first 146

and correct options last (elimination strategy) or 147

the order of options (sequential strategy). 148

Metacognitive Student Once we have acquired the 149
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dataset D, we employ the same answering strategy150

to fine-tune the student model S. Given a context151

c, a question q, and options O, the student model S152

is supervised to generate a sequence of answer to-153

kens concatenated with the rationale tokens. Upon154

adopting the elimination strategy, the rationales155

section of the student model’s output will prioritize156

generating explanations for the incorrect answer157

options before providing the reasoning behind the158

correct answer option. When implementing the159

sequential strategy, the rationales section of the160

student model’s output will generate explanations161

in order of options. To accomplish this, we fine-162

tune the student model using the standard language163

model loss function (Raffel et al., 2020).164

3 Experiments165

3.1 Settings166

Datasets We evaluate our framework on two En-167

glish MMRC benchmarks: MCTest (Richardson168

et al., 2013) and RACE (Lai et al., 2017). MCTest169

consists of 660 fictional stories, where each story170

is accompanied by four questions and four candi-171

date answers. RACE is collected from middle and172

high school English exams in China. Compared173

with other MMRC datasets, RACE requires more174

reasoning to answer questions.175

Baselines We conduct performance comparison176

with the following baselines. Standard Fine-177

tuning: We directly fine-tune a student model us-178

ing MCTest and RACE, bypassing the need for179

the teacher model. Given a context, question, and180

options, the small model is trained to produce the181

accurate option as its output. The output of the182

small model does not include rationales. Standard183

Symbolic Distillation: By utilizing CoT prompt-184

ing, the teacher model is employed to generate185

rationales for the correct options. Afterwards, the186

student model is tasked with generating a sequence187

of tokens that concatenates rationale and the cor-188

responding correct option when provided with a189

context, question, and available options. In contrast190

to metacongnitive symbolic distillation, standard191

symbolic distillation solely generates justifications192

for the correct options.193

Implementation Details For the teacher model,194

we select Llama-2-13b and GPT-3.5 turbo. For195

the student model, we opt for different sizes of T5.196

Apart from GPT-3.5 turbo, which is accessed via197

an API, the remaining models are locally deployed198

using Pytorch and Huggingface. The inference199

Teacher Student RACE MCTest
- T5-ft 0.5921 0.8383

Llama-13b
T5-rt 0.6735 0.8733
T5-or† 0.6881 0.8617
T5-et† 0.6941 0.8633

GPT-3.5
T5-rt 0.7093 0.8683
T5-or† 0.7316 0.8783
T5-et† 0.7210 0.8800

Table 1: The performance of the student model (T5-3b)
using different settings. T5-ft and T5-rt signify the T5-
3b subsequent to the standard fine-tuning and symbolic
distillation, respectively. T5-or and T5-et represent the
implementation of sequential and elimination strategies
of the proposed metacognitive symbolic distillation, re-
spectively. The best results obtained using GPT-3.5 and
Llama-13b as teacher models are represented by bold-
face and underline, respectively.

of the teacher models and the training and infer- 200

ence of the student models are conducted on an 201

NVIDIA A800 80GB GPU, respectively. Exactly 202

matching metric is employed for evaluation. Fur- 203

thermore, for the experiments conducted on the 204

RACE, we specifically utilize 3,000 articles from 205

the high school training set of the RACE to form 206

a distinct training set. Regarding the MCTest, we 207

select 500 articles and divide them into training, 208

validation, and testing sets. 209

3.2 Results and Analysis 210

We first evaluate the performance of metacogni- 211

tive symbolic distillation and all baselines. The 212

comparison results are illustrated in Table 1. 213

Symbolic distillation outperforms standard fine- 214

tuned models in all cases. By employing symbolic 215

distillation, the student model demonstrates supe- 216

rior performance compared with the traditional 217

fine-tuning approach, as evidenced by the exact 218

matching metric scores of 0.5921 and 0.8383 on 219

both datasets. This finding suggests that symbolic 220

distillation not only enhances the interpretability 221

of the student model in the MMRC task but also 222

effectively enhances its inference capabilities. 223

In the majority of cases, metacognitive symbolic 224

distillation demonstrates the ability to enhance the 225

performance of student models compared with stan- 226

dard symbolic distillation. For RACE, regardless 227

of whether the teacher model is Llama-13b or GPT- 228

3.5, and whether the policy adopts the elimination 229

(T5-et) or sequential strategy (T5-or), our frame- 230

work consistently outperforms standard symbolic 231
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distillation (T5-rt). Similarly, for MCTest, our232

framework surpasses standard symbolic distillation233

when the teacher is GPT-3.5. While our frame-234

work may exhibit slightly lower performance than235

standard symbolic distillation on MCTest when the236

teacher model is Llama-13b, it is important to con-237

sider that this discrepancy could be attributed to238

the influence of the training size.239

Metacognitive symbolic distillation exhibits im-240

proved performance with increasing teacher model241

size. When applying our proposed framework,242

whether utilizing the rationale strategy, it is ob-243

served that the performance of the student model244

improves as the size of the teacher model increases.245

Referring to Table 1, as for the RACE dataset, we246

can observe an enhancement in the performance247

of elimination strategy when transitioning from248

the Llama teacher (0.6941) to the GPT 3.5 teacher249

(0.7210). The similar phenomenon is observed250

in the MCTest as well. Contrarily, when employ-251

ing standard symbolic distillation, a larger teacher252

model does not always result in improved perfor-253

mance of the student model. In the MCTest dataset,254

the utilization of the GPT 3.5 teacher results in a255

performance drop from 0.8733 to 0.8683 compared256

with using the Llama teacher.257

We assess the performance of our proposed258

framework across various sizes of student mod-259

els. We select three T5 models with different sizes260

and conduct metacognitive symbolic distillation us-261

ing two teacher models: Llama-13b and GPT-3.5.262

These experiments are conducted on the RACE263

dataset. The results are presented in Figure 2. Our264

findings indicate that there is a performance im-265

provement after distillation when the student model266

is larger. Furthermore, we observe that a larger267

teacher model can enhance the performance of the268

student model, especially when the student model269

itself is larger. When comparing the performance270

of student models distilled by two teachers of dif-271

ferent sizes, the performance remains relatively272

similar regardless of whether the student is small273

(60m) or large (770m). However, when utilizing274

the 3b model, the student distilled by GPT-3.5 out-275

performs the student model distilled by Llama-13b.276

We further divide the RACE training set into277

two smaller subsets, comprising 20% and 50% of278

the original data, respectively. Subsequently, we279

reevaluate the proposed framework on these sub-280

sets. As depicted in Figure 3, it is observed that281

the performance of the student model exhibited282

enhancement with the augmentation of training set.283

0.24

0.62
0.69

small large 3b
Student Model Size

0.2

0.4

0.6

0.8
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cu
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T5 (Llama-13b)

small large 3b
Student Model Size

0.2

0.4

0.6

0.8
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0.61

0.72T5 (GPT-3.5)

Figure 2: Accuracy of the T5-et with different sizes of
student model (T5) on RACE. The subfigures on the left
and right correspond to the teacher models Llama-13b
and GPT-3.5, respectively.

20 50 100
Amount of Training Instances(%)
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Figure 3: Accuracy of symbolic distillation strategies
with different amount of training instances on RACE.

4 Conclusion 284

This paper presents a novel framework for metacog- 285

nitive symbolic distillation within the domain of 286

MMRC. While previous research focused on trans- 287

ferring the reasoning abilities of LLMs to smaller 288

student models, our framework goes a step fur- 289

ther by emphasizing the educational significance 290

of comprehending the reasons behind both correct 291

and incorrect options. Experimental results on two 292

MMRC datasets demonstrate the effectiveness of 293

our proposed framework, outperforming standard 294

fine-tuned models and symbolic distillation mod- 295

els. Additionally, it is observed that upgrading the 296

teacher model can lead to further improvements 297

when the student model is large enough. 298

Limitations 299

Firstly, we focus lies solely on conducting experi- 300

ments with T5 as the student. Secondly, our study 301

primarily investigates the performance of T5 on the 302

MMRC task, and we have not thoroughly explored 303

its effectiveness in multiple-choice tasks involving 304

open-ended questions. Lastly, while we use the 305

rationales generated by the LLMs to improve the 306

performance of the student model, not all rationales 307

are accurate due to the hallucination of LLMs. 308
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A Appendix 402

A.1 Related Work 403

A.1.1 Chain-of-thought Prompting 404

Chain-of-thought (CoT) is a form of prompting that 405

enhances the performance of LLMs by incorporat- 406

ing statements such as "let’s think step by step" 407

within the prompts (Wei et al., 2022). Current stud- 408

ies on CoTs primarily centers around improving 409

the efficiency of CoT prompting and assessing the 410

quality of CoTs. For instance, Wang et al. (2022) 411

introduced a voting mechanism to determine the 412

ultimate output from numerous CoTs generated by 413

LLMs, giving preference to the one with the high- 414

est frequency of occurrences. Huang et al. (2022) 415
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proposed a bootstrapping training approach that416

involves iteratively training on self-generated CoTs417

to enhance the performance of CoTs. Additionally,418

Golovneva et al. (2022) presented automatic met-419

rics for assessing CoTs automatically. In this study,420

we aim to leverage CoTs containing incorrect op-421

tions to enhance the performance and interpretabil-422

ity of small models.423

A.1.2 Symbolic Distillation424

Symbolic distillation (West et al., 2022), catego-425

rized as a form of knowledge distillation (Hinton426

et al., 2015), deviates from conventional techniques427

of distilling knowledge from soft representations428

such as logits. In symbolic distillation, LLMs are429

regarded as data generators for training smaller430

models. Particularly, Li et al. (2023) furnished an431

LLM with an unlabeled corpus, thereby prompt-432

ing the LLM to discern labels and corresponding433

rationales for the unannotated data. The data that434

has been labeled by the LLM will subsequently435

be utilized as training data for the smaller models.436

Wang et al. (2023b) introduced the explain-then-437

generate strategy, leveraging an LLM to generate438

rationales for labels in the dataset. Subsequently,439

the LLM is utilized to generate training data for the440

small model based on the labels and the generated441

rationales. However, existing symbolic distillation442

methods fail to take into account the reasoning443

behind incorrect answers. In contrast, our work ef-444

fectively incorporates both the rationales of correct445

and incorrect options through symbolic distillation,446

thereby enabling better supervision of the small447

model.448

A.1.3 Multi-choice Machine Reading449

Comprehension450

Multi-choice Machine Reading Comprehension451

(MMRC) aims to ascertain the accurate answer452

from a given context and question by selecting453

from a set of options. Initially, pre-trained lan-454

guage models like BERT (Devlin et al., 2018) were455

used to encode the context, questions, and options.456

Matching networks were then employed to score457

the options. Ran et al. (2019) introduced an op-458

tion comparison network, which facilitated better459

reasoning by identifying word-level correlations460

among options. Zhang et al. (2020) proposed a461

dual co-matching network that effectively captured462

the bidirectional relationship among the document,463

question and options, enhancing their interactions464

modeling. Jiang et al. (2020) treated MMRC as465

multiple binary classification tasks, determining 466

the final answer selection by independently calcu- 467

lating the confidence scores between each option 468

and the context as well as the questions. However, 469

although these methods improved the accuracy of 470

answer selection based on the interaction between 471

context, questions, and options, they lacked the 472

ability to provide justifications for the chosen re- 473

sponses. Our work employs an LLM to generate 474

justifications for the correct options (explaining 475

why they are right) and corresponding rationales 476

for the incorrect options (explaining why they are 477

wrong) in the MMRC datasets. Subsequently, the 478

datasets with generated rationales are employed to 479

train a small student model, thereby bolstering the 480

interpretability of the answers. 481

A.2 Implementation Details 482

We utilize Llama-2-13b1 and GPT-3.5 turbo2 as 483

our teacher models, while T53 serves as the student 484

model. The original datasets we work with are 485

RACE4 and MCTest5. Generating corresponding 486

rationales by the teacher model typically requires 487

approximately 24 hours. The training process of 488

each student model takes around 16 hours. Due to 489

time constraints, we were only able to conduct a 490

single run for all experiments. 491

1https://huggingface.co/meta-llama/Llama-2-13b-chat-hf
2https://platform.openai.com/docs/models/gpt-3-5-turbo
3https://huggingface.co/google-t5
4https://www.cs.cmu.edu/ glai1/data/race/
5https://huggingface.co/datasets/sagnikrayc/mctest
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