Metacognitive Symbolic Distillation Framework for Multi-choice Machine
Reading Comprehension

Anonymous ACL submission

Abstract

Previous research often utilizes symbolic dis-
tillation to transfer the reasoning abilities of
large teacher models to smaller student models.
However, when it comes to multi-choice ma-
chine reading comprehension (MMRC), solely
learning from the rationales generated by the
teacher model for correct options overlooks
educational significance of understanding the
reasons behind incorrect options. In educa-
tion, metacognition requires individuals to ac-
tively identify errors when reading to deepen
their understanding. To this end, we propose a
novel framework for achieving metacognitive
symbolic distillation. Initially, we prompt the
teacher large language model (LLM) to gener-
ate rationales for each option in the MMRC
dataset. Subsequently, the student model
could be fine-tuned based on the MMRC data
equipped with these rationales. Our experi-
ments on two MMRC datasets demonstrate that
our approach effectively enhances the perfor-
mance of the small model compared with stan-
dard fine-tuned models and symbolic distilled
models. Moreover, when the student model is
large enough, upgrading the teacher model can
lead to further improvements. We will make
our code and data publicly available.

1 Introduction

Large language models (LLMs) have demonstrated
promising performance on various tasks by employ-
ing chain-of-thought (CoT) prompting (Wang et al.,
2023a). Generating justifications to elucidate their
responses can enhance their accuracy. Neverthe-
less, deploying LLMs in compute-starved scenar-
ios is challenging due to their large-scale parame-
ters and high inference latency (Xu and McAuley,
2023). As a result, it is common to fine-tune a
smaller model with human-labeled data to cater to
specific requirements (Wang et al., 2023b).

To enhance the performance and interpretability
of small models, existing studies commonly em-
ploy symbolic distillation to transfer the reasoning

capabilities of large LLMs into smaller ones (West
et al., 2022). In particular, a large teacher model
is utilized to generate rationales for expected re-
sponses, which are employed to fine-tune a smaller
student model (Li et al., 2023). However, within
the realm of pedagogy, metacognition necessitates
individuals to actively identify errors while reading,
which is considered a crucial element in attaining
a profound comprehension of texts (Dori et al.,
2018). Especially in the context of Multi-choice
Machine Reading Comprehension (MMRC) tasks,
current symbolic distillation approaches solely fo-
cus on having the teacher LLM generate rationales
for the correct answer options, while neglecting the
identification of causes for the incorrect options.

In this study, we present a novel framework
for achieving metacognitive symbolic distillation.
Our framework employs CoT prompts to guide the
teacher model to generate rationales for each op-
tion. To accomplish this, we adopt two strategies,
namely elimination strategy and sequential strat-
egy. In the first one, we instruct the teacher model
to first generate rationales for incorrect options and
conclude by generating a rationale for the correct
option. In the second one, we prompt the teacher
model to generate rationales in order of original op-
tions. Subsequently, our framework combines the
original dataset along with the generated rationales
to fine-tune the student model. This enables the stu-
dent model to analyze the reasons behind incorrect
options, considering the input context, question,
and options, and finally provide the correct answer
and its corresponding justifications.

We conduct extensive experiments on two
MMRC benchmarks: MCTest (Richardson et al.,
2013) and RACE (Lai et al., 2017). Our findings in-
dicate that our framework can effectively enhance
the performance of the student model compared
with standard fine-tuned models and symbolic dis-
tillation models. Additionally, the performance of
the student model can be further improved by up-



Please analyze the reasons why students mistakenly chose
other answers first and give a rationale to explain the correct
answer finally. Here are some examples. Please strictly follow
the format of the examples to generate the rationles.

Context: In a small village in England about 150 years ...
Question: The first postage stamp was made _.

Options: A..;B..; C..; D...

Answer: A

Rationale:

B. ...: That is incorrect. The passage states ...

C. ...: This is the incorrect answer. The passage states ...

D. ...:This is the incorrect answer. The passage states ...

A. ...: This is the correct answer. The passage states ... \’

Context: Every day when | enter the classroom ...
Question: When has the poem been written?

Options: A..; B..; C..; D...

Answer: C

Rationale:

A. ...: That is incorrect. The passage states ...

B. ...: This is the incorrect answer. The passage states ...
D. ...:This is the incorrect answer. The passage states ...
C. ...: This is the correct answer! The text explicitly ...

Context: One thinks of princes and
presidents ...

Question: The Sherman Antitrust Act _ .

Options: A..;B..; C..; D...
Answer: B

—_
o &7

Rationale:

A. ...: That is incorrect. The passage
states ...

C. ...: This is the incorrect answer. The
passage states ...

D. ....This is the incorrect answer. The
passage states ...

B. ...: This is the correct answer. The
passage states ...

You should give a
rationale to the
answer like this!

Context: It's said that one can know the
nature of both man and ...

Question: What do we learn about the
author?

Options: A..; B..; C..; D...

Answer: A

Rationale:

B. ...: That is incorrect. The passage
states ...

C. ...: This is the incorrect answer. The
passage states ...

D. ....This is the incorrect answer. The
passage states ...

A. ...: This is the correct answer. The
passage states ...

Figure 1: The overall architecture of metacognitive symbolic distillation. Initially, the teacher model will generate
rationales for both the incorrect and correct options pertaining to the given input context, question, options, and
answer. This process relies on a manually tailored CoT prompt within the dataset. Subsequently, the context,
question, options, answer, and generated rationales will be employed to fine-tune the student model.

grading the teacher model. Notably, this improve-
ment in performance is primarily observed when
the student model itself is of a significant size.

Our contributions are summarized as follows:

(1) To the best of our knowledge, our work is the
first to incorporate the metacognitive perspective
into symbolic distillation.

(i1) We propose a framework for metacognitive
symbolic distillation on MMRC task. Our ap-
proach involves formulating exemplars to prompt
the teacher LLM to generate rationales for each
option. Subsequently, we employ the dataset and
the rationales to fine-tune the small student model.

(iii) Experiments on two MMRC datasets demon-
strate that the proposed framework significantly im-
proves the performance of the student model com-
pared with standard fine-tuned models and sym-
bolic distillation models. When the student model
reaches a significant size, upgrading to a larger
teacher model can lead to further improvements in
the performance of the student model.

2 Metacognitive Symbolic Distillation

Task Description Prior to introducing our frame-
work, we shall expound upon the problem formu-
lation and notations. The MMRC dataset consists
of multiple samples denoted as {(c,q,0,a)}¥,,
where c represents the context, g represents the
question, O = {o1,- - , 0, } represents the set of
candidate answer options, and a represents the only
one right answer. In the MMRC task, the objective
is to answer the question ¢ by selecting the most
appropriate answer a in the set of candidate an-

swer options O based on the given context c. Our
proposed approach leverages a teacher LLM 7T to
generate rationales for each option within every
sample of the dataset, thereby forming /N new sam-
ples {(c,q,0, R,a)}Y |, where R = {ry,--- ,r4}
is the set of generated rationales. We utilize these
samples to fine-tune a smaller student model S.
Metacognitive Teacher The initial step is to curate
a set of labeled CoTs based on the dataset to serve
as prompts for 7. For each sample in MMRC
dataset, we select K (e.g., K = 2) samples from
the dataset and manually customized CoTs denoted
as Z = {z1,- -+, z4} for the four options (as shown
in left part of Fig. 1) in every sample (c, ¢, O, a) to
compose the prompt set P = {(c,¢,0,a, Z) }H ;.
This approach can provide LLM with exemplars,
prompting LLLM to generate rationales for each
option in the MMRC dataset.

Moreover, we implement two answering strate-
gies to regulate the sequence of CoTs in Z: In the
case of the elimination strategy, the prioritization
of CoTs is focused on incorrect options, while the
CoT for the correct option is reserved until the final
stage. Conversely, in the sequential strategy, the
CoTs are arranged in the order of the options. Af-
terwards, we input each sample (¢, ¢, O, a) in the
dataset together with P into teacher LLM to obtain
a training dataset D for the small student model.
D consists of N samples {c, q, O, R, a}Y ,, where
R = {ry,--- ,r4} are the rationales for every op-
tion, arranged in the order of incorrect options first
and correct options last (elimination strategy) or
the order of options (sequential strategy).
Metacognitive Student Once we have acquired the



dataset D, we employ the same answering strategy
to fine-tune the student model S. Given a context
¢, a question ¢, and options O, the student model &
is supervised to generate a sequence of answer to-
kens concatenated with the rationale tokens. Upon
adopting the elimination strategy, the rationales
section of the student model’s output will prioritize
generating explanations for the incorrect answer
options before providing the reasoning behind the
correct answer option. When implementing the
sequential strategy, the rationales section of the
student model’s output will generate explanations
in order of options. To accomplish this, we fine-
tune the student model using the standard language
model loss function (Raffel et al., 2020).

3 Experiments

3.1 Settings

Datasets We evaluate our framework on two En-
glish MMRC benchmarks: MCTest (Richardson
et al., 2013) and RACE (Lai et al., 2017). MCTest
consists of 660 fictional stories, where each story
is accompanied by four questions and four candi-
date answers. RACE is collected from middle and
high school English exams in China. Compared
with other MMRC datasets, RACE requires more
reasoning to answer questions.

Baselines We conduct performance comparison
with the following baselines. Standard Fine-
tuning: We directly fine-tune a student model us-
ing MCTest and RACE, bypassing the need for
the teacher model. Given a context, question, and
options, the small model is trained to produce the
accurate option as its output. The output of the
small model does not include rationales. Standard
Symbolic Distillation: By utilizing CoT prompt-
ing, the teacher model is employed to generate
rationales for the correct options. Afterwards, the
student model is tasked with generating a sequence
of tokens that concatenates rationale and the cor-
responding correct option when provided with a
context, question, and available options. In contrast
to metacongnitive symbolic distillation, standard
symbolic distillation solely generates justifications
for the correct options.

Implementation Details For the teacher model,
we select Llama-2-13b and GPT-3.5 turbo. For
the student model, we opt for different sizes of T5.
Apart from GPT-3.5 turbo, which is accessed via
an API, the remaining models are locally deployed
using Pytorch and Huggingface. The inference

Teacher Student RACE MCTest
- T5-ft  0.5921 0.8383
T5-rt  0.6735 0.8733
Llama-13b T5-orf  0.6881 0.8617
T5-ett  0.6941 0.8633

T5-rt  0.7093  0.8683

GPT-3.5 T5-orf 07316 0.8783
T5-ett  0.7210 0.8800

Table 1: The performance of the student model (T5-3b)
using different settings. T5-ft and T5-rt signify the T5-
3b subsequent to the standard fine-tuning and symbolic
distillation, respectively. T5-or and T5-et represent the
implementation of sequential and elimination strategies
of the proposed metacognitive symbolic distillation, re-
spectively. The best results obtained using GPT-3.5 and
Llama-13b as teacher models are represented by bold-
face and underline, respectively.

of the teacher models and the training and infer-
ence of the student models are conducted on an
NVIDIA A800 80GB GPU, respectively. Exactly
matching metric is employed for evaluation. Fur-
thermore, for the experiments conducted on the
RACE, we specifically utilize 3,000 articles from
the high school training set of the RACE to form
a distinct training set. Regarding the MCTest, we
select 500 articles and divide them into training,
validation, and testing sets.

3.2 Results and Analysis

We first evaluate the performance of metacogni-
tive symbolic distillation and all baselines. The
comparison results are illustrated in Table 1.

Symbolic distillation outperforms standard fine-
tuned models in all cases. By employing symbolic
distillation, the student model demonstrates supe-
rior performance compared with the traditional
fine-tuning approach, as evidenced by the exact
matching metric scores of 0.5921 and 0.8383 on
both datasets. This finding suggests that symbolic
distillation not only enhances the interpretability
of the student model in the MMRC task but also
effectively enhances its inference capabilities.

In the majority of cases, metacognitive symbolic
distillation demonstrates the ability to enhance the
performance of student models compared with stan-
dard symbolic distillation. For RACE, regardless
of whether the teacher model is Llama-13b or GPT-
3.5, and whether the policy adopts the elimination
(T5-et) or sequential strategy (T5-or), our frame-
work consistently outperforms standard symbolic



distillation (T5-rt). Similarly, for MCTest, our
framework surpasses standard symbolic distillation
when the teacher is GPT-3.5. While our frame-
work may exhibit slightly lower performance than
standard symbolic distillation on MCTest when the
teacher model is Llama-13b, it is important to con-
sider that this discrepancy could be attributed to
the influence of the training size.

Metacognitive symbolic distillation exhibits im-
proved performance with increasing teacher model
size. When applying our proposed framework,
whether utilizing the rationale strategy, it is ob-
served that the performance of the student model
improves as the size of the teacher model increases.
Referring to Table 1, as for the RACE dataset, we
can observe an enhancement in the performance
of elimination strategy when transitioning from
the Llama teacher (0.6941) to the GPT 3.5 teacher
(0.7210). The similar phenomenon is observed
in the MCTest as well. Contrarily, when employ-
ing standard symbolic distillation, a larger teacher
model does not always result in improved perfor-
mance of the student model. In the MCTest dataset,
the utilization of the GPT 3.5 teacher results in a
performance drop from 0.8733 to 0.8683 compared
with using the Llama teacher.

We assess the performance of our proposed
framework across various sizes of student mod-
els. We select three T5 models with different sizes
and conduct metacognitive symbolic distillation us-
ing two teacher models: Llama-13b and GPT-3.5.
These experiments are conducted on the RACE
dataset. The results are presented in Figure 2. Our
findings indicate that there is a performance im-
provement after distillation when the student model
is larger. Furthermore, we observe that a larger
teacher model can enhance the performance of the
student model, especially when the student model
itself is larger. When comparing the performance
of student models distilled by two teachers of dif-
ferent sizes, the performance remains relatively
similar regardless of whether the student is small
(60m) or large (770m). However, when utilizing
the 3b model, the student distilled by GPT-3.5 out-
performs the student model distilled by Llama-13b.

We further divide the RACE training set into
two smaller subsets, comprising 20% and 50% of
the original data, respectively. Subsequently, we
reevaluate the proposed framework on these sub-
sets. As depicted in Figure 3, it is observed that
the performance of the student model exhibited
enhancement with the augmentation of training set.
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Figure 2: Accuracy of the T5-et with different sizes of
student model (T5) on RACE. The subfigures on the
and correspond to the teacher models Llama-13b
and GPT-3.5, respectively.
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Figure 3: Accuracy of symbolic distillation strategies
with different amount of training instances on RACE.

4 Conclusion

This paper presents a novel framework for metacog-
nitive symbolic distillation within the domain of
MMRC. While previous research focused on trans-
ferring the reasoning abilities of LLMs to smaller
student models, our framework goes a step fur-
ther by emphasizing the educational significance
of comprehending the reasons behind both correct
and incorrect options. Experimental results on two
MMRC datasets demonstrate the effectiveness of
our proposed framework, outperforming standard
fine-tuned models and symbolic distillation mod-
els. Additionally, it is observed that upgrading the
teacher model can lead to further improvements
when the student model is large enough.

Limitations

Firstly, we focus lies solely on conducting experi-
ments with TS as the student. Secondly, our study
primarily investigates the performance of T5 on the
MMRC task, and we have not thoroughly explored
its effectiveness in multiple-choice tasks involving
open-ended questions. Lastly, while we use the
rationales generated by the LLMs to improve the
performance of the student model, not all rationales
are accurate due to the hallucination of LLMs.
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A Appendix

A.1 Related Work
A.1.1 Chain-of-thought Prompting

Chain-of-thought (CoT) is a form of prompting that
enhances the performance of LLMs by incorporat-
ing statements such as "let’s think step by step"
within the prompts (Wei et al., 2022). Current stud-
ies on CoTs primarily centers around improving
the efficiency of CoT prompting and assessing the
quality of CoTs. For instance, Wang et al. (2022)
introduced a voting mechanism to determine the
ultimate output from numerous CoTs generated by
LLMs, giving preference to the one with the high-
est frequency of occurrences. Huang et al. (2022)
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proposed a bootstrapping training approach that
involves iteratively training on self-generated CoTs
to enhance the performance of CoTs. Additionally,
Golovneva et al. (2022) presented automatic met-
rics for assessing CoTs automatically. In this study,
we aim to leverage CoTs containing incorrect op-
tions to enhance the performance and interpretabil-
ity of small models.

A.1.2 Symbolic Distillation

Symbolic distillation (West et al., 2022), catego-
rized as a form of knowledge distillation (Hinton
etal., 2015), deviates from conventional techniques
of distilling knowledge from soft representations
such as logits. In symbolic distillation, LL.Ms are
regarded as data generators for training smaller
models. Particularly, Li et al. (2023) furnished an
LLM with an unlabeled corpus, thereby prompt-
ing the LLM to discern labels and corresponding
rationales for the unannotated data. The data that
has been labeled by the LLM will subsequently
be utilized as training data for the smaller models.
Wang et al. (2023b) introduced the explain-then-
generate strategy, leveraging an LLLM to generate
rationales for labels in the dataset. Subsequently,
the LLM is utilized to generate training data for the
small model based on the labels and the generated
rationales. However, existing symbolic distillation
methods fail to take into account the reasoning
behind incorrect answers. In contrast, our work ef-
fectively incorporates both the rationales of correct
and incorrect options through symbolic distillation,
thereby enabling better supervision of the small
model.

A.1.3 Multi-choice Machine Reading
Comprehension

Multi-choice Machine Reading Comprehension
(MMRC) aims to ascertain the accurate answer
from a given context and question by selecting
from a set of options. Initially, pre-trained lan-
guage models like BERT (Devlin et al., 2018) were
used to encode the context, questions, and options.
Matching networks were then employed to score
the options. Ran et al. (2019) introduced an op-
tion comparison network, which facilitated better
reasoning by identifying word-level correlations
among options. Zhang et al. (2020) proposed a
dual co-matching network that effectively captured
the bidirectional relationship among the document,
question and options, enhancing their interactions
modeling. Jiang et al. (2020) treated MMRC as

multiple binary classification tasks, determining
the final answer selection by independently calcu-
lating the confidence scores between each option
and the context as well as the questions. However,
although these methods improved the accuracy of
answer selection based on the interaction between
context, questions, and options, they lacked the
ability to provide justifications for the chosen re-
sponses. Our work employs an LLM to generate
justifications for the correct options (explaining
why they are right) and corresponding rationales
for the incorrect options (explaining why they are
wrong) in the MMRC datasets. Subsequently, the
datasets with generated rationales are employed to
train a small student model, thereby bolstering the
interpretability of the answers.

A.2 TImplementation Details

We utilize Llama-2-13b! and GPT-3.5 turbo” as
our teacher models, while TS serves as the student
model. The original datasets we work with are
RACE* and MCTest’. Generating corresponding
rationales by the teacher model typically requires
approximately 24 hours. The training process of
each student model takes around 16 hours. Due to
time constraints, we were only able to conduct a
single run for all experiments.

"https://huggingface.co/meta-1lama/Llama-2- 13b-chat-hf
Zhttps://platform.openai.com/docs/models/gpt-3-5-turbo
3https://huggingface.co/google-t5
*https://www.cs.cmu.edu/ glail/data/race/
>https://huggingface.co/datasets/sagnikrayc/mctest
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