
Masked Generative Nested Transformers with Decode Time Scaling

Sahil Goyal * 1 Debapriya Tula * † 2 Gagan Jain 1 Pradeep Shenoy 1 Prateek Jain 1 Sujoy Paul * 1

Abstract
Recent advances in visual generation have made
significant strides in producing content of excep-
tional quality. However, most methods suffer
from a fundamental problem - a bottleneck of
inference computational efficiency. Most of these
algorithms involve multiple passes over a trans-
former model to generate tokens or denoise inputs.
However, the model size is kept consistent for all
iterations, making it computationally expensive.
In this work, we aim to address this issue primar-
ily through two key ideas - (a) not all parts of the
generation process need equal compute, hence we
design a decode time model scaling schedule to
utilize compute effectively, and (b) we can cache
and reuse some of the intermediate computation.
Combining these two ideas leads to using smaller
models to process more tokens while large mod-
els process fewer tokens. These different-sized
models do not increase the parameter size, as they
share parameters. We rigorously experiment with
ImageNet256×256 , ImageNet128×128, UCF101,
and Kinetics600 to showcase the efficacy of the
proposed method for image/video generation and
frame prediction. Our experiments show that with
almost 3× less compute than baseline, our model
obtains competitive performance.

1. Introduction
The last decade has witnessed tremendous progress in image
and video generation, under diverse paradigms - generative
adversarial networks (Brock, 2018; Sauer et al., 2022), de-
noising processes such as diffusion models (Ho et al., 2020;
2022b; Dhariwal & Nichol, 2021; Rombach et al., 2022;
Gu et al., 2022), image generation via vector quantized tok-
enization (Razavi et al., 2019; Esser et al., 2021; Ge et al.,

*Equal contribution , †work done while at Google DeepMind
1Google DeepMind 2University of California, Los Angeles. Cor-
respondence to: Sahil Goyal <goyalsahil@google.com>, Sujoy
Paul <sujoyp@google.com>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

2022; Van Den Oord et al., 2017), and so on. In recent
years, diffusion models and modeling visual tokens as lan-
guage have been the de-facto processes used to generate
high-quality images. While initially proposed with a CNN
or U-Net based architectures (Rombach et al., 2022; Saharia
et al., 2022), transformer models have become the norm for
these methods (Peebles & Xie, 2023; Yu et al., 2023a).

The recent advancements in visual generation can be cat-
egorized along two axes – (a) different types of denoising
processes in the continuous latent space (Ho et al., 2020;
Nichol & Dhariwal, 2021b), discrete space (Gu et al., 2022;
Lou et al.) or masking in the discrete space (Yu et al., 2023a;
Chang et al., 2022), continuous space (Li et al., 2024a) (b)
modeling tokens either auto-regressively (Kondratyuk et al.,
2024; Esser et al., 2021; Yu et al., 2021) with causal atten-
tion or parallel decoding with bi-directional attention (Gu
et al., 2022; Yu et al., 2023a; Chang et al., 2022; Zheng et al.,
2022). To achieve a high synthesis fidelity, both, denoising
in diffusion models, and raster scan based auto-regressive
token modeling require several iterations.

Recently, parallel decoding of discrete tokens have shown
promise in generating high quality images with few itera-
tions - MaskGIT (Chang et al., 2022), MAGVIT (Yu et al.,
2023a), MUSE (Chang et al., 2023), MaskBIT (Weber et al.,
2024), TiTok (Yu et al., 2024b). These models are trained
with Masked Language Modeling (MLM) type losses, and
the generation process involves unmasking a few confident
tokens every decoding iteration, starting from all masked
tokens. They can even surpass diffusion models, given a
good visual tokenizer (Yu et al., 2023b; Weber et al., 2024).

Although MaskGIT reduces decode complexity signifi-
cantly, parallel decoding still includes several redundant
computations. First, the need for same capacity model for
all steps needs to be investigated. Second, unlike auto-
regressive models, which cache its computation in all steps,
parallel decoding performs re-computation for all tokens.
We empirically find that a smaller model can generate good-
quality images quite fast, but its performance saturates after
a point with more decoding iterations. A bigger model can
perform finer refinement and generate better-quality images.

Motivated by these observations, we present Masked
Generate Nested Transformers with Decode Time Scaling
(MaGNeTS). We design a model size curriculum over the

1

MaGNeTS

MaskGIT++ (FID=2.3) MaGNeTS (FID=2.9)~3x FLOPs Reduction

Figure 1: Class-conditional image generation on ImageNet256×256. Comparing MaskGIT++ and MaGNeTS (size: L).

decoding process, which efficiently utilize compute. MaG-
NeTS gradually scales the model size up to the full model
over the decoding iterations instead of using a single large
model throughout. Operating on discrete tokens, we cache
key-value pairs of unmasked tokens and reuse them in later
iterations. A combined effect of these two techniques leads
to processing more tokens with smaller and fewer tokens
with larger models. The heterogenous sized models share
parameters as in MatFormer (Kudugunta et al., 2023). We
build MaGNeTS on top of MaskGIT. We find that MaskGIT
can be drastically improved using classifier-free guidance,
specifically when trained with it. We call this MaskGIT++
and use this as the improved baseline, presenting all results
on top of it. We also conduct preliminary inference-time ex-
periments on diffusion models to demonstrate our method’s
generalization capabilities.

On ImageNet, with ∼ 3× less compute, MaGNeTS generates
images of similar quality as MaskGIT++ (see Figure 1). It
is also comparable to state-of-the-art methods, which need
orders of magnitude more compute. We also show MaG-
NeTS’s efficacy on video datasets like UCF101 (Soomro

et al., 2012) and Kinetics600 (Carreira et al., 2018). To
summarize, the main contributions of this work are:

• We introduce the concept of model size scheduling
during the generation process to significantly reduce
compute requirements.

• We show that like auto-regressive models, KV-caching
can also be used in parallel decoding, which can effec-
tively reuse computation when refreshed appropriately.

• We introduce nested modeling in image/video genera-
tion to exploit the above ideas effectively.

• Extensive experiments show that MaGNeTS offers 2.5
- 3.7× compute gains across tasks.

2. Related Work
Efficient Visual Generation. Image generation literature
has seen significant improvements in the past years - gener-
ative adversarial networks (Brock, 2018; Sauer et al., 2022),
discrete token based models (Chang et al., 2022; Yu et al.,
2023a), diffusion-based models (Kingma & Gao, 2023;

2

MaGNeTS

Hoogeboom et al., 2023), and more recently hybrid models
(Peebles & Xie, 2023; Yu et al., 2024c), but they often guz-
zle computing power. Researchers tackle this bottleneck of
computational costs with efficient model architectures and
smarter sampling strategies.

In diffusion model literature, there have been some work
to reduce the number of sampling steps, by treating the
sampling process like ordinary differential equations (Song
et al., 2022; Lu et al., 2022; Liu et al., 2022), incorporating
additional training process (Kong & Ping, 2021; Nichol
& Dhariwal, 2021a; Salimans & Ho, 2022; Song et al.,
2023), sampling step distillation (Salimans & Ho, 2022;
Song et al., 2023; Berthelot et al., 2023; Meng et al., 2023;
Feng et al., 2024), sampling and training formulation mod-
ifications (Esser et al., 2024; Song et al., 2023), and more.
Recently, there has been growing interest in understanding
how each step in the diffusion sampling process contributes
(Choi et al., 2022; Park et al., 2023; Lee et al., 2024). These
approaches analyze sampling steps leveraging distance met-
rics such as LPIPS, fourier and spectral density analysis.
Building on these explorations researchers have designed
methods based on optimal sampling steps (Watson et al.,
2022; Lee et al., 2024), weighted training loss (Choi et al.,
2022), and step-specific models (Li et al., 2023; Yang et al.,
2024; Lee et al., 2023). These step-specific models use
computationally expensive evolutionary search algorithms,
directly optimizing the quality metric, FID (Heusel et al.,
2017). Concurrently, researchers are actively addressing the
inherent architectural costs of diffusion models, particularly
those associated with transformer attention mechanisms
(Yuan et al., 2024; Yan et al., 2024).

On the other hand, certain works focus on building efficient
and improved tokenizers. LDM (Rombach et al., 2022) takes
diffusion models from pixel to compressed latent space for
efficient and scalable generation. FSQ (Mentzer et al., 2023),
LFQ (Yu et al., 2023b) and BSQ (Zhao et al., 2024) explore
certain vector quantization techniques in the discrete tok-
enization process without explicitly learning the codebooks.
VAR (Tian et al., 2024) explores multi-scale tokenizer to
improve the generation quality. Recently TiTok (Yu et al.,
2023b), FlowMo (Sargent et al., 2025) relax the topology
of latent space and reduce the grid dimensionality of latents
from 2D to 1D. Further FlexTok (Bachmann et al., 2025)
enables adaptive sequence length in 1D tokenization for
efficient generation. Instead of sampling or tokenization
process optimization, we tackle an orthogonal problem of
efficient compute allocation over the multi-step generation
process. This makes our approach usable with a variety of
tokenizers, model architectures and sampling schemes.

Nested Models. Rippel et al. (2014) introduced nested
dropout to learn ordered representations of data that improve
retrieval speed and adaptive data compression. Matryoshka

Learning (Kusupati et al., 2022) introduces the concept of
nested structures into embedding dimensions, making them
elastic. MatFormer (Kudugunta et al., 2023) applies the
same concept to the MLP hidden layer in each transformer
block, enabling extraction of multiple sized models. MoNE
(Jain et al., 2024) and Flextron (Cai et al., 2024) learn to
route tokens to variable sized nested models leading to com-
pute efficient processing. Stochastic Bottleneck (Koike-
Akino & Wang, 2020), MQT (Hu et al., 2024), One-D-Piece
(Miwa et al., 2025), FlexTok (Bachmann et al., 2025) and
Semanticist (Wen et al., 2025) explore nesting across the
latent sequence dimension. In this work, we demonstrate
how different stages of a multi-step task like image/video
generation, can be efficiently handled by nested models in-
stead of relying on the full model at every step, significantly
reducing computation without sacrificing quality.

3. Preliminaries
Parallel Decoding for Image Generation. Masked Gener-
ative Image Transformer (MaskGIT) (Chang et al., 2022)
introduces a novel approach to image generation that sig-
nificantly differs from traditional autoregressive models. In
autoregressive decoding, images are generated sequentially,
one pixel/token at a time, following a raster scan order
(Esser et al., 2021; Kondratyuk et al., 2024; Wang et al.,
2024; Yu et al., 2024a; Li et al., 2024b). This sequential
approach is computationally inefficient, as each token is
conditioned only on the previously generated tokens, lead-
ing to a bottleneck in processing time. MaskGIT generates
all tokens of an image simultaneously, while iteratively re-
fining them. This method enables significant acceleration
in the decoding process. The tokens are discrete and ob-
tained using Vector Quantized (VQ) autoencoders, learned
with self-reconstruction and photo-realism losses (Yu et al.,
2023a). The iterative parallel decoding process is repre-
sented as:

Xk ←Mask ○ Sample(M(Xk−1, c), k) (1)

where X ∈ ZN
≥0, are the input tokens, N is the number of

tokens, k ∈ [1,K] denote the iteration number, with K be-
ing the total number of iterations, X0 is either completely
masked for full generation, and partially masked for condi-
tional generation tasks like frame prediction, c is the cate-
gory of image/video under generation. The Sample function
utilizes logits predicted by the model M(.), introduces cer-
tain randomness, and sorts them by confidence, unmasking
only top-k tokens while masking the rest. We follow this
process as in (Chang et al., 2022; Yu et al., 2023a).

Nested Models. The core of our algorithm for inference-
efficient decoding relies on variable-sized nested mod-
els for efficient parameter-sharing. We use MatFormer’s
(Kudugunta et al., 2023) modeling approach to extract mul-

3

MaGNeTS

Empty
Cache

KV
Cache

All Masked Tokens Masked
Tokens

UnMasked
Tokens

Generated Image

Figure 2: MaGNeTS Decoding. We start from the smallest nested model with an empty cache and gradually move to bigger models
over the decoding iterations. We iterate using a particular sized model for a few iterations, before moving onto the next model size. As we
cache the key-value pairs for the unmasked tokens, the KV cache size also increases over time. We also refresh the cache when we switch
models, hence its dimension also increases over decoding iterations.

0.01 0.01 0.02 0.03 0.04 0.05 0.05 0.07 0.06 0.09 0.08 0.11 0.09 0.12 0.10 0.12 0.11 0.12 0.10 0.13 0.08 0.15

Iter -->

0.10 0.15

Figure 3: Unmasked Token Density visualization in each decoding iteration averaged over 50k generated samples on ImageNet. Yellow
represents higher density. Each pixel represents a token from 16 × 16 latent token space. (See Appendix A for category-wise token
density).

tiple nested models, from a single model, without increasing
the total parameter count. Given a full transformer model
M , MatFormer defines nested models {m1, . . . ,mC}, such
thatm1 ⊂m2 ⋅ ⋅ ⋅ ⊂mC =M . Eachmi has fewer parameters
and reduced compute. The core idea of extracting nested
models is that in a transformer block, a reduced computation
using a parameter subspace is performed via a sliced matrix
multiplication. Assuming a parameter matrix W ∈ Rd′×d

and feature vector x ∈ Rd, then the computation y =Wx is
partially obtained by computing y

[∶ d
′

p]
=W

[∶ d
′

p ,∶]x, if y is
desired to be partial and y =W[∶,∶ dp]

x[∶ dp]
, if input x is par-

tial. With such partial computations throughout the network,
we can obtain nested models which share parameters.

While MatFormer (Kudugunta et al., 2023) obtained sub-
models with partial computation only in the MLP layer, we
also do it in the Self-Attention layer, specifically in obtaining
the Q,K,V features. These features are of dimension nh ×
dh

p
, where nh is the number of attention heads, dh is the

head feature dimension, and p is the model downscaling
factor. We choose four downscaled models C = 4, with
p ∈ {1,2,4,8} in this work. After attention computation,
this gives us features that are also p times downscaled. Then,
it is projected back to the full model dimension d using
partial computation, as the input features are partial. The

same strategy is applied to the MLP layer. This process
gives us models with close to linear reduction in parameter
count and inference compute with the downscaling factor p.

4. Method
Given the preliminaries, here we introduce the core algo-
rithm. We first discuss the idea of scheduling models of
different sizes over decode iters of MaskGIT. Then, we dis-
cuss the process of caching key-value in parallel decoding,
followed by how to refresh them to improve performance.
We finally discuss the nested model training method. A
pictorial overview of our method is presented in Figure 2.

Decode Time Model Schedule. In iterative parallel decod-
ing (Chang et al., 2022; Yu et al., 2023a), the same-sized
model is used for all steps, starting with all tokens being
masked. However, we hypothesize that certain stages of the
generation process might be easier than others. For example,
in the initial steps, the model only needs to capture coarse
global structures, which can be achieved efficiently using
smaller models. In the later steps, the model must refine
finer details, which requires larger models. This hypothesis
is bolstered with Figure 3, which shows that the generation
process starts unmasking tokens from the background and
shifts to the middle of the image in the later iterations (more

4

MaGNeTS

categorical examples in Appendix Figure 8).

102 103

GFLOPs

0

20

40

60

80

100

120

FI
D

Nested Models
p=8
p=4
p=2
p=1

Decoding Iterations
Iter 4
Iter 8
Iter 12
Iter 16

Figure 4: Nested Models at different decoding iterations. Dif-
ferent values of the downscaling factor p correspond to the nested
models. The diameter of the blobs indicates #iterations.

Our hypothesis is further motivated by Figure 4, which
presents the generation quality (FID) over iterations of paral-
lel decoding for different-sized models. The smallest model
reaches a reasonably good FID score with very low FLOPs
compared to the biggest model. However, it saturates after
a point, and the larger models surpasses the smaller ones
in performance, demonstrating their ability to capture finer
details and generate higher-quality images when provided
with sufficient compute. This trend suggests that dynami-
cally scaling the model size during decoding can exploit the
varying task difficulty and achieve compute efficiency.

We use nested models to extract multiple models rather
than using models with disjoint parameters. Nested models
do not increase the parameter count and it also helps in
better alignment of hypothesis when we shift model size
over decode steps. The decode time model schedules can be
generalized and represented as making the model choice in
Equation (1) dependent on the iteration index as follows:

Xk ←Mask ○ Sample(Mk(Xk−1, c), k)

M = {(mp1)
k1 , (mp2)

k2 , . . . , (mpn)kn}, s.t.
n

∑
i

ki =K (2)

where p1, p2, . . . , pn denote the downscaling factors of the
corresponding nested models, and (m)k denotes that model
m will be executed for k iterations. K represents the total
number of iterations. We can think of different model sched-
ules - (a) downscaling (starting with the full model and then
gradually moving to the smallest model), (b) upscaling, (c)
intermittently switching among a few models, and so on.
We can also modify the integers ki to choose the number
of times we stick to a model before switching. However,
as intuitively discussed before, we empirically validate that
gradually upscaling the model size gets the best trade-off
between the compute and generation quality.

Cached Parallel Decoding. Inspired by caching key-value
pairs in auto-regressive models, we explore caching in par-
allel decoding, which retains relevant computations and

enhances efficiency. In auto-regressive models, caching
progressively happens in one fixed direction. However, in
parallel decoding, caching must depend on which tokens
are unmasked over the iterations.

Concretely, starting from an empty cached set, we keep
adding keys and values to the set for the tokens that are
unmasked after the Mask○Sample steps (see Section 3). We
do not update the predicted token indices for these unmasked
tokens in the subsequent iterations. Hence, the cached key
and values for the unmasked tokens are the only features the
other masked tokens need. In every decoding iteration, we
can categorize tokens into three main categories: unmasked
tokens (for which we have cached KV), masked tokens that
will be unmasked during the current iteration, and the rest of
the masked tokens. Note that the KV cache for the second
category tokens cannot be used in the next iteration but only
in the iteration after that once we know their token indices
in the current forward pass. We cache them in the next
iteration for use in the immediately next iteration.

Caching is even more useful for decode time model sched-
ules. For a schedule that progressively scales up the model
size as decoding progresses, smaller models process more to-
kens, while the larger models process fewer tokens, leading
to an efficient yet good quality image generation process.

Algorithm 1 MaGNeTS Decoding Algorithm
Input: X0 (Initial Tokens), K (#steps), N (#tokens),M (Nested Model Schedule), c (class),
Initialize: k ← 0; cache← {};
Note: X0 is a list of token ids (Mask token id = −1)
while step k <K do

if k > 0 andMk ≠Mk−1 then
Clear cache

end
Get uncached tokens: Xuc

k ← {xi ∣ xi ∈Xk; i ∉ cache}
Compute prediction probabilities and key-values: pk, (kv)←Mk(Xuc

k ; cache)
Sample tokens using current predictions pk , without modifying previous predictions,

X
k+1 ← MaskGIT-Sample(pk)

New indices to cache: C ← {i ∣ i ∉ cache, Xk+1
i ≠ −1}

Update the kv cache: cache← cache ⋃ {i ∶ (kv)i ∣ i ∈ C}
k ← k + 1

end
return XK

Intermittent Cache Refresh. Caching the key-value pairs
for the unmasked tokens helps reduce computation, but it
can slightly degrade performance. This happens because -
(a) when we cache, the unmasked tokens are not updated
in the subsequent iterations. (b) when we shift model size
during generation, in the attention layer, the query size dif-
fers from the cached KV (see Section 3). While technically,
we can zero-pad the KV to be compatible with the current
model’s query dimension, the model remains unfamiliar of
such feature discrepancies between query and key-value.

To remedy this, we strategically refresh the cache while
changing the model size. Refreshing involves discarding
the cached KV for that iteration and caching a newly com-

5

MaGNeTS

puted KV for the immediate next iteration. We empirically
find that it bridges the performance gap that arises due to
caching. The proposed decode time model scaling algo-
rithm is presented in Algorithm 1, which uses MaskGIT’s
sampling strategy (Chang et al., 2022; Yu et al., 2023a) to
sample tokens from logits predicted by the network.

Training Nested Models. MatFormer (Kudugunta et al.,
2023) opts for a joint optimization of losses w.r.t. ground-
truth from all models with equal weights. While this mode
of training works for a small range of model downscaling,
we found it to hurt performance with larger downscaling
factors p. We introduce a combination of ground truth and
distillation loss to address this issue. We perform online
distillation progressively, where the teacher for model mi

is model mi+1. The full model mN(= M) is trained with
only ground truth loss. This provides a simpler optimiza-
tion for the smaller nested models while maintaining the
overall objective. Progressive distillation also reduces the
teacher-student size gap, which can otherwise hurt distilla-
tion performance (Stanton et al., 2021; Beyer et al., 2022;
Mirzadeh et al., 2019). Given input X, ground truth label
Y and loss function L, our training loss is expressed as:

Ltrain = 1

N
(L(mN(X),Y) +

N−1

∑
i=1

αiL(mi(X),Y) + (1 − αi)L(mi(X),mi+1(X)))

(3)

where αi controls the weight between the distillation and
ground truth loss, which is linearly decayed from 1 to 0
as training progresses. Note that a stop gradient is applied
during distillation on mi+1 in the third term of the equation.

Classifier-Free Guidance. Following literature (Ho & Sal-
imans, 2022; Yu et al., 2023b), we also utilize classifier-free
guidance during the generation process. Following the same
motivation as decode time model scaling discussed above,
which shows that the initial decoding iterations focus on
the background region, and gradually moves to the main
object/region of interest in the final decoding iterations, we
apply guidance to only a few final decoding iterations. We
find that doing this offers similar quality images as applying
guidance to all iters (refer Figure 9b). See Appendix B for
detailed analysis.

5. Experiments and Results
We conduct extensive experiments to demonstrate the ef-
ficacy of our approach on three distinct tasks: class-
conditional image generation, class-conditional video gen-
eration, and frame prediction.

Datasets. We evaluate our model on ImageNet256×256 and
ImageNet128×128 (Deng et al., 2009) for image generation,
UCF101 (Soomro et al., 2012) for video generation and
Kinetics600 (Carreira et al., 2018) for frame prediction (5-
frame condition).

Implementation Details. We utilize the pretrained tokeniz-
ers from MaskGIT (Chang et al., 2022) (for images) and
MAGVIT (Yu et al., 2023a) (for videos) with the codebook
size of 1024 tokens. We train different models for image
sizes 256 × 256 and 128 × 128. Respective tokenizers com-
press them to 16 × 16 discrete tokens. For videos, we learn
models for 16 × 128 × 128, where the tokenizer outputs
4 × 16 × 16 tokens. Following MaskGIT, we utilize the Bert
model (Devlin et al., 2019) as a transformer backbone. We
perform experiments at several model scales to understand
the scaling behaviors of our algorithm. We utilize the same
training hyper-parameters to train our nested models as these
baselines. We train our model for 270 epochs for all the
experiments. Unless otherwise mentioned, throughout the
paper, we employ same number of steps per model before
switching to the next model, i.e., k1 = k2 = = kn. We fol-
low a cosine schedule of unmasking tokens during inference.
For image generation and frame prediction, we use classifier-
free guidance for both MaGNeTS and respective baselines.
We drop input class condition labels for 10% of the training
batches in image generation to better facilitate classifier-free
guidance during image generation. We mention the details
of sampling hyperparameters in Appendix B.

Evaluation Metrics. Following previous baselines, we use
Fréchet Inception Distance (FID) (Heusel et al., 2017; Dhari-
wal & Nichol, 2021) for image generation, Fréchet Video
Distance (FVD) (Unterthiner et al., 2019) for the video gen-
eration tasks, Inception Score (Salimans et al., 2016) for
both tasks, as well as precision and recall for image genera-
tion. We compare algorithms using inference-time GFLOPs.
Refer Appendix D for GFLOPs computation details.

5.1. Image Generation

Comparison with Baselines. In this section, we compare
MaGNeTS with state-of-the-art methods in the literature
for image generation. We list the results for 256 × 256 and
128 × 128 image generation on ImageNet-1k in Table 1 and
Table 2 respectively. Table 1 shows that MaGNeTS can
speed up the generation process by 2.65−3× (depending on
total step count) compard to MaskGIT++, with a negligible
drop in FID. Refer Appendix D for real-time gains. Figure 5
illustrates that MaGNeTS significantly accelerates parallel
decoding, which gets more pronounced as image resolu-
tion grows. Figure 1 and Figure 10 show generated images
from MaskGIT++ and MaGNeTS (ours). As shown in re-
cent literature, using a superior tokenizer (Yu et al., 2023b;
Weber et al., 2024) or optimized training/inference configu-

6

MaGNeTS

Model AR FID ↓ IS ↑ Prec ↑ Rec ↑ # params # steps # Gflops

BigGAN-deep◻ (Brock, 2018) 7.0 171.4 87 28 160M 1 -
StyleGAN-XL◻g (Sauer et al., 2022) 2.3 265.1 - - 166M 1 -

Improved DDPM◻ (Nichol & Dhariwal, 2021b) 12.3 - 70 62 280M 250 >150k
ADM + Upsample◻g (Dhariwal & Nichol, 2021) 3.9 215.8 83 53 554M 250 371k
LDM-4◻g∗ (Rombach et al., 2022) 3.6 247.7 - - 400M 250 51.5k
DiT-XL/2◻g∗ (Peebles & Xie, 2023) 2.3 278.2 83 57 675M 250 59.5k
MDT◻g∗ (Gao et al., 2023) 1.8 283.0 81 61 676M 250 >59k
MaskDiT◻g∗ (Zheng et al., 2023) 2.3 276.6 80 61 736M 250 >28k
CDM◻ (Ho et al., 2022a) 4.9 158.7 - - - 8100 -
RIN◻ (Jabri et al., 2022) 3.4 182.0 - - 410M 1000 334k
Simple Diffusion◻g (Hoogeboom et al., 2023) 2.4 256.3 - - 2B 512 -
VDM++◻g (Kingma & Gao, 2023) 2.1 267.7 - - 2B 512 -
EDiff◻g (Hang et al., 2024) 2.1 - - - 450M 50 119k
LPDM-ADM◻g (Wang et al., 2023) 2.7 - - - - 50 7.8k
MAR◻g (Li et al., 2024b) ✓ 1.8 296.0 81 60 479M 128 -

VQVAE-2◻ (Razavi et al., 2019) ✓ 31.1 ∼45 36 57 13.5B 5120 -
VQGAN◻ (Esser et al., 2021) ✓ 15.8 78.3 - - 1.4B 256 -
VQGAN (architecture) + MaskGIT (setup)◻ 18.7 80.4 78 26 227M 256 -
MaskGIT◻(Chang et al., 2022) 6.2 182.1 80 51 227M 8 647
Mo-VQGAN◻ (Zheng et al., 2022) 7.2 130.1 72 55 389M 12 ∼1k
MaskBit◻g (Weber et al., 2024) 1.7 341.8 - - 305M 64 10.3k
PAR-4×◻ (Wang et al., 2024) ✓ 3.8 218.9 84 50 343M 147 -
PAR-16×◻ (Wang et al., 2024) ✓ 2.9 262.5 82 56 3.1B 51 -

MaskGIT++g4 2.5 260.3 83 54 303M 12 1.3k
MaskGIT++g6 2.3 280.6 84 51 303M 16 1.8k
MaGNeTS (ours)g4 3.1 254.8 85 50 303M 12 490
MaGNeTS (ours)g6 2.9 253.1 84 51 303M 16 608

Table 1: Class-conditional Image Generation on ImageNet 256×256. “# steps”
refers to the number of neural network runs. ◻ denotes values taken from prior
publications. ∗ indicates usage of extra training data. g denotes use of classifier-
free guidance (Ho & Salimans, 2022) for all steps. gx represents use of guidance
only for final x steps.

1664 256 512 1024 2048Token Seq Length

0

2000

4000

6000

8000

10000

GF
LO

Ps
 (w

/o
 c

fg
)

Uniform Model Size
Scaling Up Schedule (MaGNeTS)

 128x128 256x256 512x512 Image Size HxW

Figure 5: Compute Comparison between uni-
form model schedule (MaskGIT) and MaG-
NeTS, for 12 decode iters.

0 200 400 600 800 1000 1200 1400 1600
GFLOPs

2

4

6

8

10

12

14

FI
D

~3x

Baseline
Scheduled

Figure 6: Compute Scaling Curve. Genera-
tion performance vs compute for different model
sizes. The blob size indicates parameter count.

rations (Ni et al., 2024a;b) can further boost MaGNeTS’s
performance.

Note that, a direct comparison with several recent diffu-
sion methods isn’t feasible, as they typically report results
on ImageNet64×64. We report some numbers in Table 1
for diffusion models at 256 × 256 resolution for compari-
son, though they may use different tokenizers or genera-
tion architectures. Exploring these variations is beyond the
scope of this work. In addition to our experiments with
non-autoregressive transformers, we conduct preliminary
experimentation on applying the core idea of decode-time
model scaling to diffusion transformers (see Appendix C.1).

Method FID # params # steps # GFLOPs

DPM-Solver◻g (Lu et al., 2022) 4.1 422M 12 >3k
MaskGIT++g4 3.2 303M 12 1.3k
MaGNeTS (ours)g4 3.9 303M 12 490

Table 2: Class-conditional Image Generation on
ImageNet128×128. “# steps” refers to the number of neu-
ral network runs. ◻ denotes values taken from prior publications.
g denotes use of classifier-free guidance (Ho & Salimans, 2022)
for all steps. gx represents use of guidance only for final x steps.

Scaling Analysis. To understand the scaling properties of
MaGNeTS we train models of different sizes - S (22M),
B (86M), L (303M) and XL (450M) for both the baseline
as well as nested models needed for our algorithm. We
use the same hyper-parameters for all, such as learning
rate, epochs, weight decay, etc. We present the results in

Figure 6. It shows the compute vs performance of different
models, with the blob size denoting the model size. For a
certain parameter count, the baseline uses the full model
for all 12 decoding steps, while the scheduled routines use
a sequence of nested models with downsampling factors
p = 8,4,2,1 for 3 steps each. Scaling up model size lead
to much cheaper compute scaling of MaGNeTS than the
baseline, with almost 3× compute reduction.

5.2. Video Generation

We use the MAGVIT (Yu et al., 2023a) framework to train
parallel decoding based video generation and frame predic-
tion models. Figure 11 shows generated videos of UCF101.
We summarize the results for class-conditional video gen-
eration on UCF101 in Table 3 and for frame prediction on
Kinetics600 in Table 4. Despite the challenging nature of
video generation relative to image generation, results indi-
cate that the decode time scaling of model size holds true
even for video generation. MaGNeTS remains competi-
tive to MAGVIT for frame prediction with ∼ 3.7× lower
compute.

5.3. Ablation Studies

Impact of Decode Time Model Schedule. We study the
effect of different model scheduling choices. As discussed
previously, we can think of different model schedules - scal-
ing up model size, scaling down, periodic scaling up and

7

MaGNeTS

0 200 400 600 800 1000 1200
GFLOPs

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

FI
D

3,3,3,3
1,6,5,0

6,6,0,0

5,4,3,0

0,0,8,4

6,0,0,6
4,0,0,8

Nested Distilled Models
Scheduled

(a) Scaling Up Schedules

100 200 300 400 500 600 700 800
GFLOPs

3

4

5

6

7

FI
D

Small Model Big Model
Big Model Small Model

(b) Scaling up vs down

Figure 7: Scheduling Options. (a) This shows the compute-performance trade-off for different schedule options while always scaling
up model size over generation iters. The four numbers for each point denote the number of iters each model size operates in the order of
downsampling factor p = (8,4,2,1). (b) This shows the benefit of scaling up model size compared to scaling it down during decoding.

Method Class FVD ↓ IS↑ # params # steps # GFlops

RaMViD◻∗ (Höppe et al., 2022) - 21.71 ± 0.21 308M 500 -
StyleGAN-V◻∗(Skorokhodov et al., 2022) - 23.94 ± 0.73 - 1 -
DIGAN◻ (Yu et al., 2022) 577±21 32.70± 0.35 - 1 ∼148
DVD-GAN◻ (Clark et al., 2019) ✓ - 32.97± 1.70 - 1 -
Video Diffusion◻∗ (Ho et al., 2022b) 57.00± 0.62 1.1B 256 -
TATS◻ (Ge et al., 2022) 420± 18 57.63± 0.24 321M 1024 -
CCVS+StyleGAN◻ (Le Moing et al., 2021) 386± 15 24.47± 0.13 - - -
Make-A-Video◻∗ (Singer et al., 2022) ✓ 367 33.00 - - -
TATS◻ (Ge et al., 2022) ✓ 332± 18 79.28± 0.38 321M 1024 -

CogVideo◻∗ (Hong et al., 2022) ✓ 626 50.46 9.4B - -
Make-A-Video◻∗ (Singer et al., 2022) ✓ 81 82.55 ≫3.5B ≫250 -
PAR-4×◻ (Wang et al., 2024) ✓ 99.5 - 792M 323 -
PAR-16×◻ (Wang et al., 2024) ✓ 103.4 - 792M 95 -

MAGVIT-B◻ (Yu et al., 2023a) ✓ 159± 2 83.55± 0.14 87M 12 ∼1.3k
MAGVIT-L (Yu et al., 2023a) ✓ 74.4± 2 89.54± 0.21 306M 12 ∼4.3k
MaGNeTS (ours) ✓ 96.4±2 88.53±0.20 306M 12 ∼1.7k

Table 3: Class-conditional Video Generation on UCF-101.
Methods in gray are pretrained on additional large video data.
Methods with ✓ in the Class column are class-conditional, while
the others are unconditional. Methods marked with ∗ use custom
resolutions, while the others are at 128×128. ◻ denotes values
taken from prior publications. No guidance is used for UCF101.

down, and so on. For this analysis, we consider the L-sized
model, with three nested models within it with parameter
reduction by roughly 1

2
, 1

4
, 1

8
. We can denote the number

of times these four models are called during decoding as
(k1, k2, k3, k4), s.t.,∑4

i=1 ki = 12. We drop the model no-
tation of mp in Equation (2) for simplicity and explicitly
mention the model names in the text, as discussed next.

First, we evaluate all combinations of ki for which we al-
ways scale up in Figure 7a in red and scale down in Figure 7b
in blue. The green curve shows the performance of the indi-
vidual nested models. We have the following observations -
(1) for a certain compute budget, the scheduling of models
over generation iterations (red dots) can offer better perfor-
mance than using a single nested model (green curve) for all
steps. (2) Models that have smoother transitions in nested
models, such as (3,3,3,3) or (0,0,8,4), offer much better
performance than the ones which has abrupt model transi-
tion such as (6,0,0,6) or (3,0,0,9), i.e., directly jumping
from the smallest to the biggest model. (3) Figure 7b shows
that scaling up nested model size offers much better per-

Method FVD ↓ IS ↑ # params # steps # GFlops

CogVideo◻ (Hong et al., 2022) 109.2 - 9.4B - -
CCVS◻ (Le Moing et al., 2021) 55.0±1.0 - - - -
Phenaki◻ (Villegas et al., 2022) 36.4 ± 0.2 - 1.8B 48 -
TrIVD-GAN-FP◻ (Luc et al., 2020) 25.7 ± 0.7 12.54 ± 0.06 - 1 -
Transframer◻ (Nash et al., 2022) 25.4 - 662M - -
RaMViD◻ (Höppe et al., 2022) 16.5 - 308M 500 -
Video Diffusion◻ (Ho et al., 2022b) 16.2 ± 0.3 15.64 1.1B 128 -

MAGVIT-B◻ 24.5± 0.9 - 87M 12 ∼1.3k
MAGVIT-L 7.2 ± 0.1 16.48 ± 0.01 306M 12 ∼ 4.3k
MAGVIT-Lg2 6.6 ± 0.1 16.29 ± 0.01 306M 12 ∼ 5.1k
MaGNeTS (ours) 10.8 ± 0.1 16.25 ± 0.02 306M 12 ∼1.2k
MaGNeTS (ours)g2 9.6 ± 0.1 16.25 ± 0.01 306M 12 ∼1.4k

Table 4: Frame prediction on K600. ◻ denotes values taken
from papers. gx denotes use of guidance only for final x steps.

formance than scaling down model size. This shows that
bigger models are better utilized in the later iters.

Impact of Caching and Refresh. We now discuss the im-
pact of caching and its refresh. For this analysis, we use a
uniform model schedule: k1 = k2 = k3 = k4 = 3. We also
perform caching and refresh on the baseline model, which
has not been trained with any nesting with the same model
applied for all iterations. For the baseline, we also refresh
the cache at exactly the same steps as the scheduled model.
We present the results in Table 5. The columns “Baseline”
and “Scheduled” do not involve any cache. While caching
degrades the performance a bit, refreshing it intermittently
can avoid the degradation. While refresh does have some
compute overhead, it does help significantly to bridge the
quality gap. Scheduling of models with caching and refresh
has the best compute-performance trade-off.

Algorithm Baseline + Cache + Refresh Scheduled + Cache + Refresh

FID 2.5 3.4 2.6 3.1 4.8 3.1
FLOP Gains (times) 1.0 1.3 1.2 2.1 3.5 3.0

Table 5: Caching Ablation. Only caching performs inferior,
which is bridged by refreshing it. A scaling up model schedule
with caching and its refresh offers the best compute-performance
trade-off. Results are on ImageNet256×256 with L-sized model.

8

MaGNeTS

The efficiency of using nested models. In MaGNeTS we
use nested models instead of separately trained smaller sized
models. This has two advantages - (a) parameter sharing,
which limits the number of parameters to just that of the full
model, compared to 1.875×(= 1+1/2+1/4+1/8) for disjoint
models. Increasing the parameter count will increase mem-
ory requirements. (b) Nested models are trained efficiently
in just a single training run. When trained with distillation,
they generate better models than training standalone mod-
els (refer Table 8) of the same size as the nested models.
For performance comparison, we trained standalone (L-
sized) models of the same size as the nested models for both
UCF101 and ImageNet. The results are presented in Table 6.
Nested models can efficiently share parameters without loss
in performance (ImageNet) and offer constraints that help in
better performance (UCF101) than using standalone models.

Dataset Nested Models Standalone Models

ImageNet (FID) 3.1 3.1
UCF101 (FVD) 96.4 115.0

Table 6: Nested vs Standalone Models. This table presents
the performance comparison between using nested models vs.
standalone, independent models without parameter sharing in the
decode-time scheduling algorithm of MaGNeTS.

Impact of number of nested models. We train different
settings p = {1,2} (two models), p = {1,2,4} (three mod-
els), p = {1,2,4,8} (four models), p = {1,2,4,8,16} (five
models), and p = {1,2,4,8,16,32} (six models). We ob-
serve that for all of these cases, the biggest model perfor-
mance remains almost same. However, the performance of
the smaller models degrades as shown in Table 7.

We hypothesize that the drop in performance of smaller
models is due to their lower representational power. As we
add more nested models, the task complexity of the shared
representation increases, and burdens the mid-sized model.
However, this drop in performance does not significantly
impact the performance of model scheduling, as the larger
models dominate the final results. Note that all of these
results are on top of models trained with progressive distilla-
tion (see Section 4), which helps to retain the performance
to some extent as shown in Table 8.

Impact of Distillation. We use two types of losses to train
the nested models - loss w.r.t the ground-truth tokens and
distillation loss using the next bigger model as the teacher.
The weight between the two losses is also linearly interpo-
lated from the former to the latter. We compare this training
strategy with the two extremes – only ground truth loss and
only distillation loss and present the results in Table 8. As
we can see, using only distillation loss results in divergence.
Using ground-truth loss is also inferior to linearly annealing.

Nested Attention Heads We also investigate nesting along

Inference
Model Schedules

Trained Nested Models→
2 3 4 5 6

(0,0,0,0,0,12) 2.3 2.4 2.4 2.4 2.4
(0,0,0,0,12,0) 2.6 2.7 2.7 2.8 2.8
(0,0,0,12,0,0) - 3.4 3.5 3.7 3.8
(0,0,12,0,0,0) - - 5.2 5.7 6.3
(0,12,0,0,0,0) - - - 8.9 10.8

(0,0,0,0,6,6) 2.6 2.6 2.6 2.7 2.7
(0,0,0,4,4,4) - 2.7 2.8 2.8 2.8
(0,0,3,3,3,3) - - 3.1 3.2 3.2
(0,3,3,2,2,2) - - - 6.3 6.6

Table 7: Ablation of number of nested models. Experiments
are on ImageNet256 × 256 on L-sized model.

Dataset Training Algo. p = 1 p = 2 p = 4 p = 8 Scheduled

ImageNet
Only GT 2.4 2.9 3.9 5.7 3.1
Only Distill ←Ð Training DivergedÐ→
GT→ Distill 2.4 2.7 3.5 5.2 3.1

UCF101
Only GT 80.0 101.3 143.8 221.8 112.6
Only Distill ←Ð Training DivergedÐ→
GT→ Distill 78.3 91.2 115.4 164.4 96.4

Table 8: Distillation Ablation. This shows the impact of different
training losses used for the nested models on ImageNet256×256
(size: L) and UCF101 (size: L). Using only distillation diverges
while using only ground-truth losses performs worse than our ap-
proach (third row), where we combine ground-truth and distillation
losses with a linear decay from the former to the latter.

the number of attention heads (nh), applying the same par-
tial computation strategy as discussed in Section 3. However,
this performed worse than nesting along the head feature
dimension (which we use for attention parameter nesting).

6. Conclusion
In this paper, we propose MaGNeTS, to allocate variable
compute along image/video generations steps. We show
that instead of always using the same sized model for all
decoding steps, we can start from a model which is nested
and fraction of its full size, and then gradually increase
model size. This along with key-value caching in the par-
allel decoding paradigm obtains significant compute gains.
We believe that our exploration of dynamic compute opens
exciting new research directions in efficient generative mod-
els. In future works, we plan to explore token-dependent
model schedules for further compute gains.

Impact Statement
Our work mainly focuses on improving the inference time
compute efficiency of state-of-the-art visual generative mod-
els in literature. As the work have been conducted on pub-
licly available datasets, we do not see any potential ethical
or societal concerns.

9

MaGNeTS

References
Bachmann, R., Allardice, J., Mizrahi, D., Fini, E., Kar, O. F.,

Amirloo, E., El-Nouby, A., Zamir, A., and Dehghan, A.
Flextok: Resampling images into 1d token sequences of
flexible length, 2025. URL https://arxiv.org/
abs/2502.13967.

Bao, F., Nie, S., Xue, K., Cao, Y., Li, C., Su, H., and Zhu, J.
All are worth words: A vit backbone for diffusion mod-
els, 2023. URL https://arxiv.org/abs/2209.
12152.

Berthelot, D., Autef, A., Lin, J., Yap, D. A., Zhai, S., Hu, S.,
Zheng, D., Talbott, W., and Gu, E. Tract: Denoising diffu-
sion models with transitive closure time-distillation, 2023.
URL https://arxiv.org/abs/2303.04248.

Beyer, L., Zhai, X., Royer, A., Markeeva, L., Anil, R.,
and Kolesnikov, A. Knowledge distillation: A good
teacher is patient and consistent, 2022. URL https:
//arxiv.org/abs/2106.05237.

Brock, A. Large scale gan training for high fidelity natural
image synthesis. arXiv preprint arXiv:1809.11096, 2018.

Cai, R., Muralidharan, S., Heinrich, G., Yin, H., Wang,
Z., Kautz, J., and Molchanov, P. Flextron: Many-
in-one flexible large language model. arXiv preprint
arXiv:2406.10260, 2024.

Carreira, J., Noland, E., Banki-Horvath, A., Hillier, C., and
Zisserman, A. A short note about kinetics-600, 2018.
URL https://arxiv.org/abs/1808.01340.

Chang, H., Zhang, H., Jiang, L., Liu, C., and Freeman,
W. T. Maskgit: Masked generative image transformer. In
Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 11315–11325, 2022.

Chang, H., Zhang, H., Barber, J., Maschinot, A., Lezama, J.,
Jiang, L., Yang, M.-H., Murphy, K., Freeman, W. T.,
Rubinstein, M., et al. Muse: Text-to-image genera-
tion via masked generative transformers. arXiv preprint
arXiv:2301.00704, 2023.

Choi, J., Lee, J., Shin, C., Kim, S., Kim, H., and Yoon, S.
Perception prioritized training of diffusion models, 2022.
URL https://arxiv.org/abs/2204.00227.

Clark, A., Donahue, J., and Simonyan, K. Adversarial
video generation on complex datasets. arXiv preprint
arXiv:1907.06571, 2019.

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-Fei,
L. Imagenet: A large-scale hierarchical image database.
In 2009 IEEE conference on computer vision and pattern
recognition, pp. 248–255. Ieee, 2009.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. Bert:
Pre-training of deep bidirectional transformers for lan-
guage understanding, 2019. URL https://arxiv.
org/abs/1810.04805.

Dhariwal, P. and Nichol, A. Diffusion models beat gans
on image synthesis. Advances in neural information
processing systems, 34:8780–8794, 2021.

Esser, P., Rombach, R., and Ommer, B. Taming transformers
for high-resolution image synthesis. In CVPR, pp. 12873–
12883, 2021.

Esser, P., Kulal, S., Blattmann, A., Entezari, R., Müller,
J., Saini, H., Levi, Y., Lorenz, D., Sauer, A., Boesel,
F., Podell, D., Dockhorn, T., English, Z., Lacey, K.,
Goodwin, A., Marek, Y., and Rombach, R. Scaling recti-
fied flow transformers for high-resolution image synthe-
sis, 2024. URL https://arxiv.org/abs/2403.
03206.

Feng, W., Yang, C., An, Z., Huang, L., Diao, B., Wang, F.,
and Xu, Y. Relational diffusion distillation for efficient
image generation, 2024. URL https://arxiv.org/
abs/2410.07679.

Gao, S., Zhou, P., Cheng, M.-M., and Yan, S. Masked
diffusion transformer is a strong image synthesizer. In
Proceedings of the IEEE/CVF International Conference
on Computer Vision, pp. 23164–23173, 2023.

Ge, S., Hayes, T., Yang, H., Yin, X., Pang, G., Jacobs, D.,
Huang, J.-B., and Parikh, D. Long video generation with
time-agnostic vqgan and time-sensitive transformer, 2022.
URL https://arxiv.org/abs/2204.03638.

Gu, S., Chen, D., Bao, J., Wen, F., Zhang, B., Chen,
D., Yuan, L., and Guo, B. Vector quantized diffu-
sion model for text-to-image synthesis, 2022. URL
https://arxiv.org/abs/2111.14822.

Hang, T., Gu, S., Li, C., Bao, J., Chen, D., Hu, H., Geng,
X., and Guo, B. Efficient diffusion training via min-
snr weighting strategy, 2024. URL https://arxiv.
org/abs/2303.09556.

Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., and
Hochreiter, S. Gans trained by a two time-scale update
rule converge to a local nash equilibrium. Advances in
neural information processing systems, 30, 2017.

Ho, J. and Salimans, T. Classifier-free diffusion guid-
ance, 2022. URL https://arxiv.org/abs/
2207.12598.

Ho, J., Jain, A., and Abbeel, P. Denoising diffusion proba-
bilistic models. Advances in neural information process-
ing systems, 33:6840–6851, 2020.

10

https://arxiv.org/abs/2502.13967
https://arxiv.org/abs/2502.13967
https://arxiv.org/abs/2209.12152
https://arxiv.org/abs/2209.12152
https://arxiv.org/abs/2303.04248
https://arxiv.org/abs/2106.05237
https://arxiv.org/abs/2106.05237
https://arxiv.org/abs/1808.01340
https://arxiv.org/abs/2204.00227
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/2403.03206
https://arxiv.org/abs/2403.03206
https://arxiv.org/abs/2410.07679
https://arxiv.org/abs/2410.07679
https://arxiv.org/abs/2204.03638
https://arxiv.org/abs/2111.14822
https://arxiv.org/abs/2303.09556
https://arxiv.org/abs/2303.09556
https://arxiv.org/abs/2207.12598
https://arxiv.org/abs/2207.12598

MaGNeTS

Ho, J., Saharia, C., Chan, W., Fleet, D. J., Norouzi, M.,
and Salimans, T. Cascaded diffusion models for high
fidelity image generation. Journal of Machine Learning
Research, 23(47):1–33, 2022a.

Ho, J., Salimans, T., Gritsenko, A., Chan, W., Norouzi, M.,
and Fleet, D. J. Video diffusion models. Advances in
Neural Information Processing Systems, 35:8633–8646,
2022b.

Hong, W., Ding, M., Zheng, W., Liu, X., and Tang, J.
Cogvideo: Large-scale pretraining for text-to-video gener-
ation via transformers. arXiv preprint arXiv:2205.15868,
2022.

Hoogeboom, E., Heek, J., and Salimans, T. simple diffu-
sion: End-to-end diffusion for high resolution images.
In International Conference on Machine Learning, pp.
13213–13232. PMLR, 2023.

Höppe, T., Mehrjou, A., Bauer, S., Nielsen, D., and Dittadi,
A. Diffusion models for video prediction and infilling.
arXiv preprint arXiv:2206.07696, 2022.

Hu, W., Dou, Z.-Y., Li, L. H., Kamath, A., Peng, N., and
Chang, K.-W. Matryoshka query transformer for large
vision-language models, 2024. URL https://arxiv.
org/abs/2405.19315.

Jabri, A., Fleet, D., and Chen, T. Scalable adaptive
computation for iterative generation. arXiv preprint
arXiv:2212.11972, 2022.

Jain, G., Hegde, N., Kusupati, A., Nagrani, A., Buch, S.,
Jain, P., Arnab, A., and Paul, S. Mixture of nested ex-
perts: Adaptive processing of visual tokens, 2024. URL
https://arxiv.org/abs/2407.19985.

Kingma, D. P. and Gao, R. Understanding the diffusion
objective as a weighted integral of elbos. arXiv preprint
arXiv:2303.00848, 2, 2023.

Koike-Akino, T. and Wang, Y. Stochastic bottleneck:
Rateless auto-encoder for flexible dimensionality reduc-
tion, 2020. URL https://arxiv.org/abs/2005.
02870.

Kondratyuk, D., Yu, L., Gu, X., Lezama, J., Huang, J.,
Hornung, R., Adam, H., Akbari, H., Alon, Y., Birodkar,
V., et al. Videopoet: A large language model for zero-shot
video generation. ICML, 2024.

Kong, Z. and Ping, W. On fast sampling of diffusion prob-
abilistic models, 2021. URL https://arxiv.org/
abs/2106.00132.

Kudugunta, S., Kusupati, A., Dettmers, T., Chen, K.,
Dhillon, I., Tsvetkov, Y., Hajishirzi, H., Kakade, S.,

Farhadi, A., Jain, P., et al. Matformer: Nested transformer
for elastic inference. arXiv preprint arXiv:2310.07707,
2023.

Kusupati, A., Bhatt, G., Rege, A., Wallingford, M., Sinha,
A., Ramanujan, V., Howard-Snyder, W., Chen, K.,
Kakade, S., Jain, P., et al. Matryoshka representation
learning. Advances in Neural Information Processing
Systems, 35:30233–30249, 2022.

Le Moing, G., Ponce, J., and Schmid, C. Ccvs: Context-
aware controllable video synthesis. Advances in Neural
Information Processing Systems, 34:14042–14055, 2021.

Lee, H., Lee, H., Gye, S., and Kim, J. Beta sampling
is all you need: Efficient image generation strategy for
diffusion models using stepwise spectral analysis, 2024.
URL https://arxiv.org/abs/2407.12173.

Lee, Y., Kim, J.-Y., Go, H., Jeong, M., Oh, S., and Choi, S.
Multi-architecture multi-expert diffusion models, 2023.
URL https://arxiv.org/abs/2306.04990.

Li, L., Li, H., Zheng, X., Wu, J., Xiao, X., Wang, R.,
Zheng, M., Pan, X., Chao, F., and Ji, R. Autodiffusion:
Training-free optimization of time steps and architectures
for automated diffusion model acceleration, 2023. URL
https://arxiv.org/abs/2309.10438.

Li, T., Tian, Y., Li, H., Deng, M., and He, K. Autoregres-
sive image generation without vector quantization. arXiv
preprint arXiv:2406.11838, 2024a.

Li, T., Tian, Y., Li, H., Deng, M., and He, K. Autoregres-
sive image generation without vector quantization, 2024b.
URL https://arxiv.org/abs/2406.11838.

Liu, L., Ren, Y., Lin, Z., and Zhao, Z. Pseudo numerical
methods for diffusion models on manifolds, 2022. URL
https://arxiv.org/abs/2202.09778.

Lou, A., Meng, C., and Ermon, S. Discrete diffusion mod-
eling by estimating the ratios of the data distribution. In
Forty-first International Conference on Machine Learn-
ing.

Lu, C., Zhou, Y., Bao, F., Chen, J., Li, C., and Zhu, J.
Dpm-solver: A fast ode solver for diffusion probabilistic
model sampling in around 10 steps, 2022. URL https:
//arxiv.org/abs/2206.00927.

Luc, P., Clark, A., Dieleman, S., Casas, D. d. L., Doron, Y.,
Cassirer, A., and Simonyan, K. Transformation-based
adversarial video prediction on large-scale data. arXiv
preprint arXiv:2003.04035, 2020.

Meng, C., Rombach, R., Gao, R., Kingma, D. P., Ermon,
S., Ho, J., and Salimans, T. On distillation of guided

11

https://arxiv.org/abs/2405.19315
https://arxiv.org/abs/2405.19315
https://arxiv.org/abs/2407.19985
https://arxiv.org/abs/2005.02870
https://arxiv.org/abs/2005.02870
https://arxiv.org/abs/2106.00132
https://arxiv.org/abs/2106.00132
https://arxiv.org/abs/2407.12173
https://arxiv.org/abs/2306.04990
https://arxiv.org/abs/2309.10438
https://arxiv.org/abs/2406.11838
https://arxiv.org/abs/2202.09778
https://arxiv.org/abs/2206.00927
https://arxiv.org/abs/2206.00927

MaGNeTS

diffusion models, 2023. URL https://arxiv.org/
abs/2210.03142.

Mentzer, F., Minnen, D., Agustsson, E., and Tschannen, M.
Finite scalar quantization: Vq-vae made simple, 2023.
URL https://arxiv.org/abs/2309.15505.

Mirzadeh, S.-I., Farajtabar, M., Li, A., Levine, N., Mat-
sukawa, A., and Ghasemzadeh, H. Improved knowledge
distillation via teacher assistant, 2019. URL https:
//arxiv.org/abs/1902.03393.

Miwa, K., Sasaki, K., Arai, H., Takahashi, T., and Ya-
maguchi, Y. One-d-piece: Image tokenizer meets
quality-controllable compression, 2025. URL https:
//arxiv.org/abs/2501.10064.

Nash, C., Carreira, J., Walker, J., Barr, I., Jaegle, A., Ma-
linowski, M., and Battaglia, P. Transframer: Arbitrary
frame prediction with generative models. arXiv preprint
arXiv:2203.09494, 2022.

Ni, Z., Wang, Y., Zhou, R., Guo, J., Hu, J., Liu, Z., Song,
S., Yao, Y., and Huang, G. Revisiting non-autoregressive
transformers for efficient image synthesis, 2024a. URL
https://arxiv.org/abs/2406.05478.

Ni, Z., Wang, Y., Zhou, R., Han, Y., Guo, J., Liu, Z., Yao,
Y., and Huang, G. Enat: Rethinking spatial-temporal
interactions in token-based image synthesis, 2024b. URL
https://arxiv.org/abs/2411.06959.

Nichol, A. and Dhariwal, P. Improved denoising diffusion
probabilistic models, 2021a. URL https://arxiv.
org/abs/2102.09672.

Nichol, A. Q. and Dhariwal, P. Improved denoising diffu-
sion probabilistic models. In International conference on
machine learning, pp. 8162–8171. PMLR, 2021b.

Park, Y.-H., Kwon, M., Choi, J., Jo, J., and Uh, Y. Un-
derstanding the latent space of diffusion models through
the lens of riemannian geometry, 2023. URL https:
//arxiv.org/abs/2307.12868.

Peebles, W. and Xie, S. Scalable diffusion models with trans-
formers, 2023. URL https://arxiv.org/abs/
2212.09748.

Razavi, A., Van den Oord, A., and Vinyals, O. Generating
diverse high-fidelity images with vq-vae-2. Advances in
neural information processing systems, 32, 2019.

Rippel, O., Gelbart, M., and Adams, R. Learning ordered
representations with nested dropout. In International Con-
ference on Machine Learning, pp. 1746–1754. PMLR,
2014.

Rombach, R., Blattmann, A., Lorenz, D., Esser, P., and
Ommer, B. High-resolution image synthesis with latent
diffusion models, 2022. URL https://arxiv.org/
abs/2112.10752.

Saharia, C., Chan, W., Saxena, S., Li, L., Whang, J., Denton,
E. L., Ghasemipour, K., Gontijo Lopes, R., Karagol Ayan,
B., Salimans, T., et al. Photorealistic text-to-image dif-
fusion models with deep language understanding. Ad-
vances in neural information processing systems, 35:
36479–36494, 2022.

Salimans, T. and Ho, J. Progressive distillation for fast
sampling of diffusion models, 2022. URL https://
arxiv.org/abs/2202.00512.

Salimans, T., Goodfellow, I., Zaremba, W., Cheung, V.,
Radford, A., and Chen, X. Improved techniques for train-
ing gans, 2016. URL https://arxiv.org/abs/
1606.03498.

Sargent, K., Hsu, K., Johnson, J., Fei-Fei, L., and Wu,
J. Flow to the mode: Mode-seeking diffusion autoen-
coders for state-of-the-art image tokenization, 2025. URL
https://arxiv.org/abs/2503.11056.

Sauer, A., Schwarz, K., and Geiger, A. Stylegan-xl: Scaling
stylegan to large diverse datasets, 2022. URL https:
//arxiv.org/abs/2202.00273.

Singer, U., Polyak, A., Hayes, T., Yin, X., An, J., Zhang, S.,
Hu, Q., Yang, H., Ashual, O., Gafni, O., et al. Make-a-
video: Text-to-video generation without text-video data.
arXiv preprint arXiv:2209.14792, 2022.

Skorokhodov, I., Tulyakov, S., and Elhoseiny, M. Stylegan-
v: A continuous video generator with the price, image
quality and perks of stylegan2. In Proceedings of the
IEEE/CVF conference on computer vision and pattern
recognition, pp. 3626–3636, 2022.

Song, J., Meng, C., and Ermon, S. Denoising diffusion
implicit models, 2022. URL https://arxiv.org/
abs/2010.02502.

Song, Y., Dhariwal, P., Chen, M., and Sutskever, I. Con-
sistency models, 2023. URL https://arxiv.org/
abs/2303.01469.

Soomro, K., Zamir, A. R., and Shah, M. Ucf101: A
dataset of 101 human actions classes from videos in
the wild, 2012. URL https://arxiv.org/abs/
1212.0402.

Stanton, S., Izmailov, P., Kirichenko, P., Alemi, A. A.,
and Wilson, A. G. Does knowledge distillation re-
ally work?, 2021. URL https://arxiv.org/abs/
2106.05945.

12

https://arxiv.org/abs/2210.03142
https://arxiv.org/abs/2210.03142
https://arxiv.org/abs/2309.15505
https://arxiv.org/abs/1902.03393
https://arxiv.org/abs/1902.03393
https://arxiv.org/abs/2501.10064
https://arxiv.org/abs/2501.10064
https://arxiv.org/abs/2406.05478
https://arxiv.org/abs/2411.06959
https://arxiv.org/abs/2102.09672
https://arxiv.org/abs/2102.09672
https://arxiv.org/abs/2307.12868
https://arxiv.org/abs/2307.12868
https://arxiv.org/abs/2212.09748
https://arxiv.org/abs/2212.09748
https://arxiv.org/abs/2112.10752
https://arxiv.org/abs/2112.10752
https://arxiv.org/abs/2202.00512
https://arxiv.org/abs/2202.00512
https://arxiv.org/abs/1606.03498
https://arxiv.org/abs/1606.03498
https://arxiv.org/abs/2503.11056
https://arxiv.org/abs/2202.00273
https://arxiv.org/abs/2202.00273
https://arxiv.org/abs/2010.02502
https://arxiv.org/abs/2010.02502
https://arxiv.org/abs/2303.01469
https://arxiv.org/abs/2303.01469
https://arxiv.org/abs/1212.0402
https://arxiv.org/abs/1212.0402
https://arxiv.org/abs/2106.05945
https://arxiv.org/abs/2106.05945

MaGNeTS

Tian, K., Jiang, Y., Yuan, Z., Peng, B., and Wang, L. Visual
autoregressive modeling: Scalable image generation via
next-scale prediction, 2024. URL https://arxiv.
org/abs/2404.02905.

Unterthiner, T., van Steenkiste, S., Kurach, K., Marinier, R.,
Michalski, M., and Gelly, S. Fvd: A new metric for video
generation. 2019.

Van Den Oord, A., Vinyals, O., et al. Neural discrete rep-
resentation learning. Advances in neural information
processing systems, 30, 2017.

Villegas, R., Babaeizadeh, M., Kindermans, P.-J., Moraldo,
H., Zhang, H., Saffar, M. T., Castro, S., Kunze, J., and
Erhan, D. Phenaki: Variable length video generation
from open domain textual descriptions. In International
Conference on Learning Representations, 2022.

Wang, Y., Ren, S., Lin, Z., Han, Y., Guo, H., Yang, Z.,
Zou, D., Feng, J., and Liu, X. Parallelized autoregressive
visual generation, 2024. URL https://arxiv.org/
abs/2412.15119.

Wang, Z., Jiang, Y., Zheng, H., Wang, P., He, P., Wang, Z.,
Chen, W., and Zhou, M. Patch diffusion: Faster and more
data-efficient training of diffusion models, 2023. URL
https://arxiv.org/abs/2304.12526.

Watson, D., Chan, W., Ho, J., and Norouzi, M. Learning fast
samplers for diffusion models by differentiating through
sample quality, 2022. URL https://arxiv.org/
abs/2202.05830.

Weber, M., Yu, L., Yu, Q., Deng, X., Shen, X., Cre-
mers, D., and Chen, L.-C. Maskbit: Embedding-free
image generation via bit tokens, 2024. URL https:
//arxiv.org/abs/2409.16211.

Wen, X., Zhao, B., Elezi, I., Deng, J., and Qi, X. ”principal
components” enable a new language of images, 2025.
URL https://arxiv.org/abs/2503.08685.

Yan, J. N., Gu, J., and Rush, A. M. Diffusion models without
attention. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 8239–
8249, 2024.

Yang, S., Chen, Y., Wang, L., Liu, S., and Chen, Y.
Denoising diffusion step-aware models, 2024. URL
https://arxiv.org/abs/2310.03337.

Yu, J., Li, X., Koh, J. Y., Zhang, H., Pang, R., Qin, J., Ku,
A., Xu, Y., Baldridge, J., and Wu, Y. Vector-quantized
image modeling with improved vqgan. arXiv preprint
arXiv:2110.04627, 2021.

Yu, L., Cheng, Y., Sohn, K., Lezama, J., Zhang, H., Chang,
H., Hauptmann, A. G., Yang, M.-H., Hao, Y., Essa, I.,
et al. Magvit: Masked generative video transformer. In
Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 10459–10469, 2023a.

Yu, L., Lezama, J., Gundavarapu, N. B., Versari, L., Sohn,
K., Minnen, D., Cheng, Y., Gupta, A., Gu, X., Haupt-
mann, A. G., et al. Language model beats diffusion–
tokenizer is key to visual generation. arXiv preprint
arXiv:2310.05737, 2023b.

Yu, Q., He, J., Deng, X., Shen, X., and Chen, L.-C. Ran-
domized autoregressive visual generation, 2024a. URL
https://arxiv.org/abs/2411.00776.

Yu, Q., Weber, M., Deng, X., Shen, X., Cremers, D.,
and Chen, L.-C. An image is worth 32 tokens for
reconstruction and generation, 2024b. URL https:
//arxiv.org/abs/2406.07550.

Yu, S., Tack, J., Mo, S., Kim, H., Kim, J., Ha, J.-W., and
Shin, J. Generating videos with dynamics-aware im-
plicit generative adversarial networks. arXiv preprint
arXiv:2202.10571, 2022.

Yu, S., Kwak, S., Jang, H., Jeong, J., Huang, J., Shin, J., and
Xie, S. Representation alignment for generation: Training
diffusion transformers is easier than you think, 2024c.
URL https://arxiv.org/abs/2410.06940.

Yuan, Z., Zhang, H., Lu, P., Ning, X., Zhang, L., Zhao, T.,
Yan, S., Dai, G., and Wang, Y. Ditfastattn: Attention
compression for diffusion transformer models. arXiv
preprint arXiv:2406.08552, 2024.

Zhao, Y., Xiong, Y., and Krähenbühl, P. Image and video
tokenization with binary spherical quantization, 2024.
URL https://arxiv.org/abs/2406.07548.

Zheng, C., Vuong, L. T., Cai, J., and Phung, D. Movq: Mod-
ulating quantized vectors for high-fidelity image genera-
tion, 2022. URL https://arxiv.org/abs/2209.
09002.

Zheng, H., Nie, W., Vahdat, A., and Anandkumar, A. Fast
training of diffusion models with masked transformers.
arXiv preprint arXiv:2306.09305, 2023.

13

https://arxiv.org/abs/2404.02905
https://arxiv.org/abs/2404.02905
https://arxiv.org/abs/2412.15119
https://arxiv.org/abs/2412.15119
https://arxiv.org/abs/2304.12526
https://arxiv.org/abs/2202.05830
https://arxiv.org/abs/2202.05830
https://arxiv.org/abs/2409.16211
https://arxiv.org/abs/2409.16211
https://arxiv.org/abs/2503.08685
https://arxiv.org/abs/2310.03337
https://arxiv.org/abs/2411.00776
https://arxiv.org/abs/2406.07550
https://arxiv.org/abs/2406.07550
https://arxiv.org/abs/2410.06940
https://arxiv.org/abs/2406.07548
https://arxiv.org/abs/2209.09002
https://arxiv.org/abs/2209.09002

MaGNeTS

A. Motivation for Decode Time Model Scaling
Our visualization of token density averaged across 50k Ima-
geNet samples reveals a dynamic pattern - initial decoding
iterations prioritize background regions. In contrast, later
iterations focus on the center where foreground objects or
region of interest typically reside. This highlights the need
to allocate resources efficiently during generation. To fur-
ther investigate this behavior, we examine token density
across various ImageNet categories (refer Figure 8). This
category-wise analysis further motivates our focus on de-
code time scaling. Figure 10 shows more qualitative results
on ImageNet256 × 256 and Figure 11 shows samples on
UCF101.

B. Hyper-parameter Details
The MaskGIT algorithm has the following hyper-parameters
which we discuss next.

Guidance Scale (gs). It is used in classifier-free guidance
(Ho & Salimans, 2022) and governs the calculation of final
logits during inference as shown in Equation (4).

logitsfinal = logitscond + λ ⋅ gs ⋅ (logitscond − logitsuncond)
(4)

where logitscond are from class-conditional input,
logitsuncond are from unconditional input, and λ depends
on the mask-ratio of the current decoding iteration.

Figure 8 shows that the initial decoding iterations of par-
allel decoding focus on the background region, and focus
gradually shifts to the main object/region in the final de-
coding iterations. Motivated by this, we experimented with
applying guidance to only few final decoding iterations and
present our findings in Figure 9b. As we can see, most of
the decoding iterations do not require guidance. We use
guidance only for final few decoding iterations for class-
conditional generation in ImageNet256×256 and frame pre-
diction in Kinetics600. Following MAGVIT (Yu et al.,
2023a), for class-conditional generation in UCF101 we do
not use classifier-free guidance.

Mask Temperature (MTemp). It controls the random-
ness introduced on top of the token predictions to mask
tokens.

Sampling Temperature (STemp). It controls the ran-
domness of the sampling from the categorical distribution
of logits. Tokens are sampled from logits/STemp. STemp
is calculated by Equation (5).

STemp = bias + scale ⋅ (1 − (k + 1)/K) (5)

where bias and scale are hyperparameters (see Table 9), k

is the current decoding iteration and K is the total number
of decoding iterations. We report the hyperparameters we
use in in Table 9. We use bias=0.5 and scale=0.8 for all
experiments.

Dataset Method gs MTemp

ImageNet MaskGIT++ 65 6
MaGNeTS 65 5

UCF101 MAGVIT/ MaGNeTS 0 5

Kinetics600 MAGVIT 10 12.5
MaGNeTS 5 10

Table 9: Best Sampling Hyperparameters.

C. Additional Experiments
C.1. Preliminary Diffusion experiments

We conduct initial experiments using model scheduling on
diffusion models. Instead of training a new diffusion model
with nesting and distillation, we focus solely on inference-
time experiments. We use publicly available pretrained
checkpoints of UViT (Bao et al., 2023) on ImageNet64×64.
Specifically, we employ two models - U-ViT-L/4 (large)
and U-ViT-M/4 (mid) - to investigate the impact of model
scheduling during inference.

Implementation Details We use the default number of
sampling steps of 50 and batch size of 500 in all experiments.
We do not use classifier-free guidance. We do not use any
caching for these experiments due to the continuous nature
of the input. All experiments are run on a single A100 GPU.

Optimal Model Schedule Since the initial denoising
steps play a crucial role in shaping the final output of the
reverse diffusion process, we utilize the L model for these
early stages and transition to the M model for the later de-
noising steps. Given that the L model has greater denoising
capacity than the M model, we customize the noise schedule
with larger denoising step sizes for L and smaller step sizes
for M, balancing efficiency and performance.

Quantitative Results Refer Table 10 for results. With
only model scheduling, we are able to achieve ∼1.53x in-
ference compute gains with almost similar performance as
baseline. Exploring more refined schedules, training the
models with nesting and distillation will offer better com-
pute gains. Additionally, nesting would enable parameter
sharing, unlike the current setup, which relies on separate
models. This shows that the proposed method of model
scheduling over multi-step decode process in image/video

14

MaGNeTS

Figure 8: Visualization of token density unmasked in each iteration averaged over 10k generated samples on different
categories of ImageNet. The top example shows category volcano. Middle and bottom examples show ”dishrag,dishcloth”
and ”goldfish,Carassius auratus”, respectively. Yellow color represents higher density, and each pixel represents a token
from the 16 × 16 token space.

generation is generic enough to be applied to different mod-
eling approaches.

Method FID (50k) # params # steps Time (sec/iter)

U-ViT-M/4 5.92 131M 50 17.12
U-ViT-L/4 4.21 287M 50 32.34
Ours (model sched) 4.58 (131 + 287) M 50 21.10

Table 10: Class-conditional Image Generation on
ImageNet64×64. ”# steps” refers to the number of neural
network runs.

D. Compute Gains
Per-step FLOPs. Figure 9a illustrates the inference-time
computational cost, measured in GFLOPs, per iteration
for the baseline model and MaGNeTS. As we can see the
amount of FLOPs are drastically reduced using MaGNeTS.
This is for a schedule with k1 = k2 = k3 = k4 = 3. The
spikes after every 3 iterations are due to the cache refresh
step. Mechanisms to get rid of the cache refresh can further
reduce the total compute needed.

Calculation of GFLOPs. We illustrate the calculation of
inference GFLOPs via Python pseudo-code in Table 12. We
double the GFLOPs in decoding iterations where classifier-
free guidance (Ho & Salimans, 2022) is used. Note that we
always use a cosine schedule to determine the number of
tokens to be unmasked in every step.

Real-Time Inference Benefits. In addition to the theoret-
ical FLOP gains offered by MaGNeTS , here we want to
analyze the real-time gains that it offers. We implement
MaGNeTS on a single TPUv5 chip and present the results
in Table 11.

Algorithm→ Baseline (MaskGIT++) MaGNeTS

Images/Sec 22.5 56.3
Latency (ms) 712 285

Table 11: Real-Time Inference Efficiency. These show the
number of generated images per sec and latency. These results are
on ImageNet256×256 with model size XL.

15

MaGNeTS

0 1 2 3 4 5 6 7 8 9 10 11
Iterations

0

10

20

30

40

50

60

70

80

GF
LO

Ps

Baseline
Nested Models

(a) GFLOPs per sampling step.

0 5 10 15
2

3

4

5

6

7

8

9

Model Scale: L
MaGNeTS
MaskGIT++

0 5 10 15
2

3

4

5

6

7

8

Model Scale: XL
MaGNeTS
MaskGIT++

No. of Iterations w/ Guidance

FI
D

(b) Guidance Analysis.

Figure 9: (a) Inference GFLOPs per step for baseline and MaGNeTS. (b) generation performance (FID) on ImageNet vs Number of
decoding iterations w/ guidance for different model scales. Note that we start from last decoding iteration. For example, ”No. of iterations
w/ Guidance = 6” means we use guidance only for final six iterations (out of total 16 iterations). This shows that using guidance only for
few final iterations is enough in the parallel decoding setup.

E. Limitations.
While our approach demonstrates strong performance in
image and video generation, we acknowledge certain lim-
itations. Some artifacts inherent to MaskGIT++ may also
appear in our generated outputs (see Figure 12 for examples
on ImageNet256× 256). Such artifacts are common in mod-
els trained on controlled datasets like ImageNet. Moreover,
the quality of the pretrained tokenizers (Yu et al., 2023b; We-
ber et al., 2024) directly impacts our method’s effectiveness;
however, improving these tokenizers is beyond the scope of
this work. Although, use of nesting and decode time scaling
does not have any specific requirement for model architec-
ture and sampling scheme, to unlock the further benefits of
KV caching, the process needs to generate discrete tokens.

16

MaGNeTS

MaskGIT++ (FID=2.3) MaGNeTS (FID=2.9)~3x FLOPs Reduction

Figure 10: Class-conditional Image Generation. More qualitative results on ImageNet. Comparing MaskGIT++ and
MaGNeTS (size: L, epochs: 270).

17

MaGNeTS

Figure 11: Class-conditional Video Generation on UCF101. 16-frame videos are generated at 128×128 resolution 25 fps.
Every third frame is shown for each video. The classes from top to bottom are Lunges, Bench Press, Handstand Pushups,
Cutting In Kitchen.

 MaskGIT++ MaGNeTS

Figure 12: Failure cases. Similar to existing methods, our system can produce results with noticeable artifacts.

18

MaGNeTS

1 # Function to get the GFlops for current decoding iteration
2 def get_flops(num_tokens_cached, num_tokens_processed, model_id, params, version):
3 num_layers, hidden_size, mlp_dim, num_heads = params[version]
4 qkv = 4 * num_tokens_processed * hidden_size * (hidden_size // model_id)
5 attn = 2 * num_tokens_processed * (num_tokens_processed + num_tokens_cached) *

hidden_size
6 mlp = 2 * num_tokens_processed * (mlp_dim // model_id) * hidden_size
7 return (qkv + attn + mlp) * num_layers // 1e9
8

9 # Function to get the total inference GFlops
10 def get_total_flops(version, num_iters, use_cache, refresh_cache_at, total_tokens,

model_id_schedule, params, num_cond_tokens=0):
11 assert num_cond_tokens < total_tokens
12 refresh_cache_at = [int(x) for x in refresh_cache_at.split(’,’) if x]
13 assert len(model_id_schedule) == num_iters
14 num_cached = 0
15 total_flops = 0
16

17 # MaGNeTS (ours) doesn’t need to process the conditioned tokens in the frame
prediction task

18 total_tokens -= num_cond_tokens
19

20 for i in range(num_iters):
21 ratio = i / num_iters
22

23 # Cosine masking schedule
24 num_processed = np.cos(np.pi/2. * ratio) * total_tokens
25

26 # Even if we are performing caching, all tokens are processed in first iteration
and iterations where cache is refreshed

27 if i == 0 or i in refresh_cache_at and use_cache:
28 total_flops += get_flops(0, total_tokens+num_cond_tokens, model_id_schedule[i

], params, version)
29

30 # we always cache the conditioned tokens
31 else:
32 total_flops += get_flops(num_cached+num_cond_tokens, total_tokens-num_cached,

model_id_schedule[i], params, version)
33

34 if use_cache:
35 num_cached = total_tokens - num_processed
36 return total_flops

1 # Sample function call for class-conditional image generation
2 # params is a dictionary of the form {version: (num_layers, hidden_size, mlp_dim,

num_heads)}
3 common = {’version’: ’L’, ’num_iters’: 12, ’total_tokens’: 257, ’params’: params}
4 baseline = {’use_cache’: False, ’refresh_at’: ’’, ’model_id_schedule’: (1,)*12, **common}
5 ours = {’use_cache’: True, ’refresh_at’: ’3,6,9’, ’model_id_schedule’: (8,)*3+(4,)*3+(2,)

*3+(1,)*3, **common}
6

7 print(get_total_flops(**baseline), get_total_flops(**ours))
8

9 # total_tokens = 1025 for class-conditional video generation and frame prediction
10 # num_cond_tokens = 512 for frame prediction

Table 12: Python pseudo-code illustrating the calculation of inference GFLOPs.

19

