
Disfluency Detection for Vietnamese

Mai Hoang Dao1, Thinh Hung Truong2, Dat Quoc Nguyen1

1VinAI Research, Vietnam; 2The University of Melbourne, Australia
{v.maidh3, v.datnq9}@vinai.io; hungthinht@student.unimelb.edu.au

Abstract

In this paper, we present the first empirical
study for Vietnamese disfluency detection. To
conduct this study, we first create a disflu-
ency detection dataset for Vietnamese, with
manual annotations over two disfluency types.
We then empirically perform experiments us-
ing strong baseline models, and find that: au-
tomatic Vietnamese word segmentation im-
proves the disfluency detection performances
of the baselines, and the highest performance
results are obtained by fine-tuning pre-trained
language models in which the monolingual
model PhoBERT for Vietnamese does better
than the multilingual model XLM-R.

1 Introduction

Humans do not always exactly predetermine what
they intend to say, hence leading to interruptions
in natural conversations. This phenomena is in-
formally referred to as disfluency (Godfrey and
Holliman, 1993; Shriberg, 1994). Disfluencies are
highly ubiquitous in human conversations. With
the increasing popularity of task-oriented dialogue
systems, it is essential to improve the capacity of
the systems in dealing with many kinds of distrac-
tor sources. Note that a vast majority of spoken
language understanding (SLU) models used in the
dialogue systems are trained on well-formed in-
put text without disfluencies. However, there is a
significant mismatch between the fluent training
corpora and the real-world inputs of disfluent utter-
ances/speech transcripts for those models, resulting
in serious performance degradation in practical ap-
plications. Hence, disfluency detection that iden-
tifies (and then removes) disfluencies to produce
fluent versions of the disfluent inputs is a crucial
component of real-world SLU/dialogue systems.

Almost all benchmark datasets for the disflu-
ency detection task, such as Switchboard (God-
frey and Holliman, 1993), CALLHOME (Canavan
et al., 1997) and Child (Tran et al., 2020), are ex-

clusively for English. Therefore, the development
of disfluency detection systems has been largely
limited to the English language. From a societal,
linguistic, machine learning, cultural and norma-
tive, and cognitive perspective (Ruder, 2020), it is
worth investigating the disfluency detection task
for languages other than English, e.g. Vietnamese.
In particular, it is interesting to study whether the
difference in linguistic characteristics might add
difficulties to developing disfluency detection sys-
tems to non-English languages, e.g. investigating
the influence of Vietnamese word segmentation
(Dien et al., 2001) on the Vietnamese disfluency
detection task. Despite being the 17th most spoken
language in the world (Eberhard et al., 2019) with
about 100M speakers, to our best knowledge, there
is no previous study as well as no public dataset
available for disfluency detection in Vietnamese.

We fill the gap in the literature by conducting
the first empirical study for Vietnamese disflu-
ency detection. To conduct this study, we first cre-
ate a dataset for Vietnamese disfluency detection
through two manual phases, including: (i) adding
contextual disfluencies into an existing fluent
dataset of 5871 utterances (Dao et al., 2021), and
(ii) annotating the added disfluencies with two dif-
ferent disfluency types. On our dataset, we then for-
mulate the Vietnamese disfluency detection task as
a sequence labeling problem and empirically inves-
tigate strong baselines, including BiLSTM-CNN-
CRF (Ma and Hovy, 2016) and pre-trained lan-
guage models XLM-R (Conneau et al., 2020) and
PhoBERT (Nguyen and Nguyen, 2020). We find
that: (i) automatic Vietnamese word segmentation
helps improve disfluency detection performances,
and (ii) the highest performance results are ob-
tained by fine-tuning the pre-trained language mod-
els, in which the monolingual model PhoBERT out-
performs the multilingual model XLM-R. We pub-
licly release our dataset at: https://github.
com/VinAIResearch/PhoDisfluency.

https://github.com/VinAIResearch/PhoDisfluency
https://github.com/VinAIResearch/PhoDisfluency


2 Related work

Among disfluency detection datasets with manual
annotations for English (Godfrey and Holliman,
1993; Canavan et al., 1997; Tran et al., 2020; Os-
tendorf and Hahn, 2013; Zayats et al., 2014), the
Switchboard dataset (Godfrey and Holliman, 1993)
is the most commonly used benchmark for devel-
oping and evaluating disfluency detection mod-
els. The disfluency detection models generally
fall into three main categories of approaches based
on noisy channel, parsing and sequence tagging.
Noisy channel-based disfluency detection models
use tree adjoining grammar-based channel models
to assign high probabilities to exact copy reparan-
dum words (Johnson and Charniak, 2004; Johnson
et al., 2004), and also use language model scores as
features to a MaxEnt reranker (Zwarts and Johnson,
2011; Jamshid Lou and Johnson, 2017). Parsing-
based models detect disfluencies and the syntactic
structure of the sentence utterance simultaneously
(Rasooli and Tetreault, 2013; Honnibal and John-
son, 2014; Yoshikawa et al., 2016; Jamshid Lou
and Johnson, 2020); however, these models require
large annotated training datasets that contain both
disfluencies and syntactic structures. Sequence
tagging approaches formulate the disfluency detec-
tion task as a sequence labeling problem to label
individual words by disfluency types or simply
fluent/disfluent tags (Ostendorf and Hahn, 2013;
Zayats et al., 2014; Jamshid Lou et al., 2018; Bach
and Huang, 2019; Rocholl et al., 2021). Among
the disfluency detection approaches, the sequence
tagging ones that fine-tune pre-trained language
models (Devlin et al., 2019) produce the state-of-
the-art performances (Bach and Huang, 2019; Ro-
choll et al., 2021).

3 Our dataset

Our approach to creating a disfluency detection
dataset for Vietnamese is first to manually add con-
textual disfluencies as distractors into an existing
fluent dataset. This first phase is inspired by Gupta
et al. (2021) who present a disfluent derivative of
the question answering dataset SQUAD (Rajpurkar
et al., 2016). We choose PhoATIS consisting of
5871 utterance transcripts (Dao et al., 2021) as
our base fluent Vietnamese dataset. After adding
disfluencies to PhoATIS, we manually annotate
disfluent words using disfluency types.

3.1 Disfluency types

A standard annotation of disfluency structure
(Shriberg, 1994) includes three annotation types:
the Reparandum—to annotate word or words that
the speaker intends to be abandoned or corrected by
the following words; the (optional) Interregnum—
to annotate filled pauses, discourse cue words and
the like; and the (optional) Repair—to annotate
words that are used to correct the reparandum. For
example, in the utterance “cho tôi biết các chuyến
bay đến đà nẵng vào ngày 12 mà không ngày 14
tháng sáu” (let me know the flights to da nang
on 12th uh no 14th june): “ngày 12” (12th), “mà
không” (uh no) and “ngày 14” (14th) can be labeled
with types Reparandum, Interregnum and Repair,
respectively. Note that as pointed out in (Ostendorf
and Hahn, 2013; Zayats et al., 2016), most works on
automatic disfluency detection are aimed at clean-
ing speech transcripts to obtain fluent versions for
further processing by removing disfluent Reparan-
dum and Interregnum words. For Vietnamese, we
thus annotate data using only two disfluency types
Reparandum (denoted by RM and illustrated in red
text color) and Interregnum (denoted by IM, in
blue text color).

3.2 Dataset construction

Adding contextual disfluencies: We divide the
PhoATIS’s training set into 5 non-overlapping and
equal subsets and preserve its validation and test
sets, resulting in 7 subsets that are used for craft-
ing disfluencies. We employ 7 annotators who are
undergraduate students strong in linguistics. Here,
each annotator adds disfluent words to all fluent
utterances in a subset. The annotators are required
to generate a disfluent version of each original flu-
ent utterance, which: (i) is semantically equiva-
lent to the original one; (ii) is natural in terms of
human usage, grammatical errors and meaningful
distractors (i.e. the added disfluent words exist in
real-world circumstances); (iii) contains disfluent
words that are corrected by following intent or slot
value keywords in the original utterance; (iv) con-
tains both disfluent RM- and IM-type words where
possible to obtain a non-trivial dataset.

Annotators are shown example disfluencies as
illustrated in Table 1. The annotators are also asked
to make sure that when removing all the added
words in the disfluent version, we can obtain the
exact original utterance. Once the adding process
is completed, the first two authors manually verify



Example 1:

mã giá vé
RM
to

IM
à xin lỗi tôi nhầm ý tôi là qo nghĩa là gì

what does fare code
RM
to

IM
uh sorry I really mean qo stand for

Example 2:

có chuyến bay nào giữa thành phố hồ chí minh và
RM
hà hà nội với một điểm dừng

RM
ở sân bay

IM
ừm không

ở đà lạt không

is there a flight between ho chi minh city and
RM
ha ha noi with a stopover

RM
at airport

IM
uh no at da lat

Example 3:

có
RM
sân bay

IM
í lộn hãng hàng không nào có các chuyến bay từ điện biên phủ

RM
đến quảng ninh

IM
à chính xác là đến quy nhơn khởi hành trước 6 giờ 30 phút sáng không

is there any
RM
airport

IM
oops airline that flies from dien bien phu

RM
to quang ninh

IM
no actually to quy

nhon departing before 6:30 am
Example 4:

tôi muốn biết thông tin về
IM
ờm chuyến bay từ hạ long

RM
đến

IM
ờ

RM
cát bà

IM
ừm không tôi quên mất đến đâu nhỉ à đúng rồi đến huế bay vào buổi sáng

i’d like information on
IM
uh a flight from ha long

RM
to

IM
uh

RM
cat ba

IM
uh no I forget the destination ah actually to hue a morning flight

Table 1: Disfluent utterance examples with Reparandum (RM) annotations and Interregnum (IM) annotations in
our dataset. “hồ chí minh” (ho chi minh), “hà nội” (ha noi), “đà lạt” (da lat), “điện biên phủ” (dien bien phu),
“quảng ninh” (quang ninh), “quy nhơn” (quy nhon), “hạ long” (ha long), “cát bà” (cat ba) and “huế” (hue) are cities
in Vietnam.

Statistics Train Valid. Test All
(1) # Utterances 4478 500 893 5871
(2) # Utt. w/ RM & IM 4447 499 891 5837
(3) # RM 4889 811 1049 6749
(4) # IM 5237 843 1135 7215
(5) Avg. Utt. length 22.1 24.1 22.2 22.3
(6) Avg. RM length 2.4 2.3 2.8 2.4
(7) Avg. IM length 2.8 2.6 2.9 2.8

Table 2: Statistics of our dataset. (1): The number of
utterances. (2): The number of utterances that contain
both RM and IM annotations. (3) and (4) denote the
numbers of RM and IM annotations, respectively. (5),
(6) and (7) denote the average lengths (i.e. numbers of
syllable tokens) of an utterance, an RM annotation and
an IM annotation, respectively.

each utterance to ensure that all the requirements
are met, discuss ambiguous cases and make further
revisions if needed, resulting in a dataset of 5871
disfluent utterances.

Annotation process: Each disfluent utterance is
independently annotated by the first two authors
who manually annotate disfluent words using the
disfluency types RM and IM. We employ Cohen’s
kappa coefficient score (Cohen, 1960) to measure
the inter-annotator agreement between the two an-
notators, obtaining a substantial agreement score of
0.78. Then the third author hosts and participates
in a discussion session with the first two authors
to resolve annotation conflicts, resulting in a final
gold dataset of 5871 disfluency-annotated utter-
ances. Table 1 shows examples of gold annotated
disfluent utterances in our dataset.

Note that when written in Vietnamese texts, the
white space is used to mark word boundaries as
well as to separate syllables that constitute words.
Thus, the utterances in our dataset are presented
at the syllable level for convenience in annotat-
ing disfluencies (e.g. the examples in Table 1).
To obtain a word-level variant of the dataset, we



perform automatic Vietnamese word segmenta-
tion by using RDRSegmenter (Nguyen et al., 2018;
Vu et al., 2018). For example, a 7-syllable writ-
ten text “sân bay quốc tế Tân Sơn Nhất” (Tan
Son Nhat international airport) is word-segmented
into 3-word text “sân_bayairport quốc_tếinternational
Tân_Sơn_NhấtTan_Son_Nhat”. Here, automatic word
segmentation outputs do not affect the span bound-
aries of disfluency annotations.

3.3 Dataset statistics

Our disfluency detection dataset for Vietnamese
contains 5871 disfluency-annotated utterances,
thus having a larger number of disfluent regions
than Switchboard (2159), CALLHOME (1068),
and Child (525). Statistic details of our dataset are
reported in Table 2.

3.4 Discussion

Our approach that manually adds contextual dis-
fluencies as distractors into the fluent utterances
results in an artificially generated dataset. So our
dataset might not correctly or fully reflect real-
world scenarios where disfluencies in real-world
speech might be more complex than the added
contextual disfluencies in our dataset. Note that
there is only one public Vietnamese speech dataset
with manual transcripts used for automatic speech
recognition,1 however, the transcripts do not con-
tain disfluencies. Thus, we could not annotate dis-
fluencies on a real-world dataset. Our study is an
attempt to imitate real-world speech and we will
compare the artificially added disfluencies with the
real-world disfluencies in future work.

4 Experiments

4.1 Experimental setup

Recall that the sequence labeling approaches fine-
tuning pre-trained language models produce the
state-of-the-art disfluency detection performances
for English (Bach and Huang, 2019; Rocholl et al.,
2021). Thus we formulate the Vietnamese disflu-
ency detection task as a sequence labeling prob-
lem with the frequently used tagging scheme BIO.
On our dataset, we empirically evaluate baselines
that obtain competitive or state-of-the-art perfor-
mances for other Vietnamese sequence labeling
tasks (Nguyen and Nguyen, 2020; Dao et al., 2021;

1https://institute.
vinbigdata.org/en/events/
vinbigdata-shares-100-hour-data-for-the-community

Truong et al., 2021), to investigate: (i) the influence
of automatic word segmentation on Vietnamese
(here, input utterances can be represented in ei-
ther syllable or word level), and (ii) the effective-
ness of pre-trained language models. Our base-
lines include BiLSTM-CNN-CRF (Ma and Hovy,
2016) and the pre-trained multilingual language
model XLM-R (Conneau et al., 2020) and the pre-
trained monolingual language model PhoBERT for
Vietnamese (Nguyen and Nguyen, 2020). XLM-
R and PhoBERT are multilingual and Vietnamese
monolingual variants of the pre-trained language
model RoBERTa (Liu et al., 2019). XLM-R is
pre-trained on a 2.5TB multilingual dataset that
contains 137GB of syllable-level Vietnamese texts,
while PhoBERT is pre-trained on a 20GB word-
level Vietnamese corpus.

We compute the Micro-average F1 score on the
validation set after each epoch, and we apply early
stopping if there is no performance improvement
after 5 continuous epochs. We select the model
checkpoint that obtains the highest F1 score over
the validation set to report the final score on the
test set. All our reported scores are the average
over 5 runs with 5 different random seeds. See the
Appendix for implementation details.

4.2 Main results

Table 3 presents the final F1 scores (in %) obtained
by the baseline models on the test set. We report the
standard F1 score for each different disfluency type
and the Micro-average F1 score for overall measure-
ment. As the filled pauses and discourse markers
belong to a closed set of words and phrases and are
easier to detect (Johnson and Charniak, 2004), it is
not surprising that baseline models produce about
2+% absolute higher scores for the IM type than
for the RM type.

The obtained scores are categorized into two
comparable settings of using the syllable-level
dataset and its automatically-segmented word-level
variant for training and evaluation. We find that
word-level models outperform their syllable-level
counterparts, thus showing the effectiveness of
automatic Vietnamese word segmentation in de-
tecting disfluent terms, e.g. BiLSTM-CNN-CRF
improves from 91.54 to 92.13. We also find
that fine-tuning XLM-R and PhoBERT helps pro-
duce substantially better performance scores than
BiLSTM-CNN-CRF, thus confirming the effective-
ness of pre-trained language models. In addition,

https://institute.vinbigdata.org/en/events/vinbigdata-shares-100-hour-data-for-the-community
https://institute.vinbigdata.org/en/events/vinbigdata-shares-100-hour-data-for-the-community
https://institute.vinbigdata.org/en/events/vinbigdata-shares-100-hour-data-for-the-community


Model RM IM Mic-F1
Sy

lla
bl

e BiL-CRF 88.17 94.67 91.54
XLM-Rbase 94.61 97.70 96.21
XLM-Rlarge 95.29 97.75 96.57

W
or

d BiL-CRF 89.44 94.61 92.13
PhoBERTbase 95.61 97.28 96.48
PhoBERTlarge 95.34 98.13 96.79

Table 3: F1 score (in %) for each disluency type and
Micro-average F1 scores (denoted by Mic-F1) on the
test set. BiL-CRF denotes BiLSTM-CNN-CRF, while
Syllable and Word denote scores obtained when using
syllable- and word-level dataset settings, respectively.

Utterance length < 20 [20, 30) >30
44% 44% 12%

Sy
lla

bl
e BiL-CRF 92.80 91.44 88.94

XLM-Rbase 96.52 96.50 94.74
XLM-Rlarge 96.47 97.23 95.03

W
or

d BiL-CRF 93.44 92.10 89.20
PhoBERTbase 96.35 97.23 94.75
PhoBERTlarge 96.92 97.09 95.67

Table 4: Mic-F1 scores (in %) w.r.t. utterance lengths
(i.e. the numbers of syllable tokens). The numbers
(44%, 44% and 12%) right below length buckets denote
the percentages of utterances belonging to the buckets.

PhoBERT does better than XLM-R (“base” ver-
sions: 96.48 vs. 96.21; “large” versions: 96.79
vs. 96.57), however, the score differences be-
tween PhoBERT and XLM-R are not substantial.
It is probably because our utterances are domain-
specific and contain disfluencies, while PhoBERT
is pre-trained on domain-general and fluent data.

We also present the Micro-average F1 scores (in
%) w.r.t. utterance length buckets on the test set
in Table 4. Those obtained scores generally show
that the baseline models perform better when the
input utterances are shorter than 30 tokens. The
longer the input utterances are (i.e. longer than 30
tokens), the more ambiguous their meanings are
and the more confused the baselines get.

4.3 Error analysis

To understand the source of error, we conduct an
error analysis using the best performing model
PhoBERTlarge that returns a total of 45 incorrect
predictions on the validation set (average over the
5 different runs).

The first error group consists of 27/45 instances
with inexact disfluency boundaries (i.e. inexact
spans) overlapped with gold spans but having cor-
rect disfluency labels, while the second error group

consists of 4/45 instances with the overlapped in-
exact spans and incorrect labels. These 27 + 4 =
31 errors are largely caused by the dropping of a
reparandum-related term inside the fluent correc-
tion part, without affecting the utterance’s semantic
meaning, however, resulting in contextual ambi-
guity to the model. For example, in the utterance
“tôi muốn biết giá vé hạng thương gia à nhầm phổ
thông” (I would like to know the ticket price for the
business class oops economy),2 the whole phrase
“hạng thương gia” (business class) is wrongly pre-
dicted as a RM while it must only be “thương gia”
(business). Here, it is worth noting that the con-
textual ambiguity is resulted by a dropping of a
possibly additional secondary term “hạng” (class)
to be coupled “phổ thông” (economy), i.e. “hạng
phổ thông” (economy class).

The third group of 2/45 errors with exact spans
and incorrect disfluency labels does not provide us
with any useful insight. The model also produces
the fourth group of 9 errors where gold-annotated
disfluent words/phrases are predicted with the la-
bel O. The majority of these 9/45 errors are caused
by the fact that disfluencies can exist anywhere in
a Vietnamese utterance, e.g. IM disfluent words
can appear at the end of the utterance. For ex-
ample, with the utterance “chuyến bay buổi sáng à
không tôi đang vội chuyến bay đầu tiên nhé” (morn-
ing flight uh no I’m in hurry first flight please),
the model could not predict the word “nhé” as an
IM. The last error group consists of 3/45 instances
where predicted disfluencies are associated with
the gold label O. They are general terms such as
“sân bay” (airport), “thành phố” (city) and the like,
that frequently used in disfluent phrases. Thus,
when occurred in the fluent parts of an utterance,
these terms are likely predicted as disfluencies,
leading to incorrect predictions.

5 Conclusion

In this paper, we have presented the first study
for Vietnamese disfluency detection. We create a
Vietnamese disfluency detection and empirically
conduct experiments on this dataset to compare
strong baseline models as well as perform detailed
error analysis. Experimental results show that the
input representations and the pre-trained language
models have positive influences on this Vietnamese
disfluency detection task.

2Word segmentation is not shown for simplification. Here,
we also color the gold annotations.
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A Appendix

Experimental models
• BiLSTM-CNN-CRF (Ma and Hovy, 2016)

represents each input token by concatenat-
ing its corresponding pre-trained token em-
bedding and CNN-based character-level token
embedding; then concatenated representations
of input tokens are fed into a BiLSTM en-
coder to extract latent feature vectors for the
input tokens; each latent feature vector is then
linearly transformed before being fed into a
linear-chain CRF layer (Lafferty et al., 2001)
for disfluency label prediction.

• Fine-tuning XLM-R (Conneau et al., 2020)
or PhoBERT (Nguyen and Nguyen, 2020) for
disfluency detection is done in a common ap-
proach that uses a linear prediction layer on
top of its architecture. In other words, we feed

Hyper-parameter Value
Optimizer Adam
Learning rate 0.001
Mini-batch size 36
LSTM hidden state size 200
Number of BiLSTM layers 2
Dropout [0.25, 0.25]
Character embedding size 50
Filter length, i.e. window size 3
Number of filters 30
W2V embedding dimension 300

Table 5: Hyper-parameters for BiLSTM-CNN-CRF.

the XLM-R- or PhoBERT-based contextual-
ized token embeddings as input for the linear
prediction layer, to predict the disfluency label
for each token.

For training the baseline BiLSTM-CNN-CRF,
we employ the pre-trained 300-dimensional
Word2Vec syllable and word embeddings for Viet-
namese from (Nguyen et al., 2020). We fix
these embeddings during training. Optimal hyper-
parameters that we select via performing a grid
search for BiLSTM-CNN-CRF are presented in
Table 5. We fine-tune XLM-R and PhoBERT for
the syllable- and word-level settings, respectively,
using the optimizer Adam (Kingma and Ba, 2014)
with a fixed learning rate of 5e-5 and a batch size
of 32 (Liu et al., 2019). Note that BiLSTM-CNN-
CRF is trained for 50 epochs while XLM-R and
PhoBERT are fine-tuned for 30 training epochs.
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