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ABSTRACT

Recently, a series of papers proposed deep learning-based approaches to sample
from target distributions using controlled diffusion processes, being trained only on
the unnormalized target densities without access to samples. Building on previous
work, we identify these approaches as special cases of a generalized Schrödinger
bridge problem, seeking a stochastic evolution between a given prior distribution
and the specified target. We further generalize this framework by introducing a
variational formulation based on divergences between path space measures of time-
reversed diffusion processes. This abstract perspective leads to practical losses that
can be optimized by gradient-based algorithms and includes previous objectives as
special cases. At the same time, it allows us to consider divergences other than the
reverse Kullback-Leibler divergence that is known to suffer from mode collapse.
In particular, we propose the so-called log-variance loss, which exhibits favorable
numerical properties and leads to significantly improved performance across all
considered approaches.

1 INTRODUCTION

Given a function ρ : Rd → [0,∞), we consider the task of sampling from the density

ptarget :=
ρ

Z
with Z :=

∫
Rd

ρ(x) dx,

where the normalizing constant Z is typically intractable. This represents a crucial and challenging
problem in various scientific fields, such as Bayesian statistics, computational physics, chemistry,
or biology, see, e.g., Liu & Liu (2001); Stoltz et al. (2010). Fueled by the success of denoising
diffusion probabilistic modeling (Song & Ermon, 2020; Ho et al., 2020; Kingma et al., 2021; Vahdat
et al., 2021; Nichol & Dhariwal, 2021) and deep learning approaches to the Schrödinger bridge (SB)
problem (De Bortoli et al., 2021; Chen et al., 2021a; Koshizuka & Sato, 2022), there is a significant
interest in tackling the sampling problem by using stochastic differential equations (SDEs) which are
controlled with learned neural networks to transport a given prior density pprior to the target ptarget.

Recent works include the Path Integral Sampler (PIS) and variations thereof (Tzen & Raginsky, 2019;
Richter, 2021; Zhang & Chen, 2022; Vargas et al., 2023b), the Time-Reversed Diffusion Sampler
(DIS) (Berner et al., 2024), as well as the Denoising Diffusion Sampler (DDS) (Vargas et al., 2023a).
While the ideas for such sampling approaches based on controlled diffusion processes date back to
earlier work, see, e.g., Dai Pra (1991); Pavon (1989), the development of corresponding numerical
methods based on deep learning has become popular in the last few years.

However, up to now, more focus has been put on generative modeling, where samples from ptarget
are available. As a consequence, it seems that for the classical sampling problem, i.e., having only
an analytical expression for ρ ∝ ptarget, but no samples, diffusion-based methods cannot reach
state-of-the-art performance yet. Potential drawbacks might be stability issues during training, the
need to differentiate through SDE solvers, or mode collapse due to the usage of objectives based on
reverse Kullback-Leibler (KL) divergences, see, e.g., Zhang & Chen (2022); Vargas et al. (2023a).

In this work, we overcome these issues and advance the potential of sampling via learned diffusion
processes toward more challenging problems. Our contributions can be summarized as follows:

∗Equal contribution (the author order was determined by numpy.random.rand(1)).
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• We provide a unifying framework for sampling based on
learned diffusions from the perspective of measures on path
space and time-reversals of controlled diffusions, which for the
first time connects methods such as SB, DIS, DDS, and PIS.

• This path space perspective, in consequence, allows us to
consider arbitrary divergences for the optimization objective,
whereas existing methods solely rely on minimizing a reverse
KL divergence, which is prone to mode collapse.

• In particular, we propose the log-variance divergence that
avoids differentiation through the SDE solver and allows to
balance exploration and exploitation, resulting in significantly
improved numerical stability and performance, see Figure 1.

Figure 1: Improved convergence
of our proposed log-variance
loss for a double well problem,
see Section 4 for further details.

1.1 RELATED WORK

There exists a myriad of Monte Carlo-based methods for sampling from unnormalized densities,
e.g. Annealed Importance Sampling (AIS) (Neal, 2001), Sequential Monte Carlo (Del Moral et al.,
2006; Doucet et al., 2009) (SMC), or Markov chain Monte Carlo (MCMC) (Kass et al., 1998). Note,
however, that MCMC methods are usually only guaranteed to reach the target density asymptotically,
and the convergence speed might be too slow in many practical settings (Robert et al., 1999).
Variational methods such as mean-field approximations (Wainwright et al., 2008) and normalizing
flows (Papamakarios et al., 2021; Wu et al., 2020; Midgley et al., 2023; Vaitl et al., 2024) provide
an alternative. Similar to our setting, the problem of density estimation is cast into an optimization
problem by fitting a parametric family of tractable distributions to the target density.

We build our theoretical foundation on the variational formulation of bridge problems proposed
by Chen et al. (2021a). We recall that the underlying ideas were established decades ago (Nelson,
1967; Anderson, 1982; Haussmann & Pardoux, 1986; Föllmer, 1988), however, only recently applied
to diffusion models (Song et al., 2020) and SBs (Vargas, 2021; Liu et al., 2022). While the numerical
treatment of SB problems has classically been approached via iterative nested schemes, the approach
in Chen et al. (2021a) uses backward SDEs (BSDEs) to arrive at a single objective based on a KL
divergence. This objective includes the (continuous-time) ELBO of diffusion models (Huang et al.,
2021) as a special case, which can also be approached from the perspective of optimal control (Berner
et al., 2024). For additional previous work on optimal control in the context of generative modeling,
we refer to De Bortoli et al. (2021); Tzen & Raginsky (2019); Pavon (2022); Holdijk et al. (2022).

Crucially, we note that our path space perspective on the variational formulation of bridges has not
been known before. Our novel derivation only relies on time-reversals of diffusion processes and
shows that, in general, corresponding losses (in particular the one in Chen et al. (2021a)) do not
have a unique solution as they lack the entropy constraint of classical SB problems. However, in
special cases, we recover unique objectives corresponding to recently developed sampling methods,
e.g., DIS, DDS, and PIS. Moreover, the path space perspective allows us to extend the variational
formulation of bridges to different divergences, in particular to the log-variance divergence that has
originally been introduced in Nüsken & Richter (2021). Variants of this loss have previously only
been analyzed in the context of variational inference (Richter et al., 2020) and neural solvers for
partial differential equations (PDEs) (Richter & Berner, 2022). Extending these works, we prove that
the beneficial properties of the log-variance loss also hold for the general bridge objective, which
incorporates two instead of only one controlled stochastic process. Finally, we refer to Vargas et al.
(2024) for concurrent work on the path space perspective on diffusion-based sampling.

1.2 OUTLINE OF THE ARTICLE

The rest of the article is organized as follows. In Section 2, we provide an introduction to diffusion-
based sampling from the perspective of path space measures and time-reversed SDEs. This can be
understood as a unifying framework allowing for generalizations to divergences other than the KL
divergence. We propose the log-variance divergence and prove that it exhibits superior properties. In
Section 3, we will subsequently outline multiple novel connections to known methods, such as SBs
in Section 3.1, diffusion-based generative modeling (i.e., DIS) in Section 3.2, and approaches based
on reference processes (i.e., PIS and DDS) in Section 3.3. For all considered methods, we can find
compelling numerical evidence for the superiority of the log-variance divergence, see Section 4.
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2 DIFFUSION-BASED SAMPLING

In this section, we will reformulate our sampling problem as a time-reversal of diffusion processes
from the perspective of measures on path space. Let us first define our setting and notation.

2.1 NOTATION AND SETTING

We denote the density of a random variable X by pX . For a suitable Rd-valued stochastic process
X = (Xt)t∈[0,T ] we define its density pX w.r.t. to the Lebesgue measure by pX(·, t) := pXt for
t ∈ [0, T ]. For suitable functions f ∈ C(Rd × [0, T ],R) and w ∈ C(Rd × [0, T ],Rd), we further
define the deterministic and stochastic integrals

Rf (X) :=

∫ T

0

f(Xs, s) ds and Sw(X) :=

∫ T

0

w(Xs, s) · dWs, (1)

where W is a standard d-dimensional Brownian motion. We denote by P the set of all probability
measures on the space of continuous functions C([0, T ],Rd) and define the path space measure
PX ∈ P as the law of X . For a time-dependent function µ, we denote by ⃗µ the time-reversal given
by ⃗µ(t) := µ(T − t). We refer to Appendix A.1 for technical assumptions.

2.2 SAMPLING AS TIME-REVERSAL PROBLEM

The goal of diffusion-based sampling is to sample from the density ptarget = ρ
Z by transporting a

prior density pprior via controlled stochastic processes. We consider two processes given by the SDEs

dXu
s = (µ+ σu)(Xu

s , s) ds+ σ(s) dWs, Xu
0 ∼ pprior, (2)

dY v
s = (− ⃗µ+ ⃗σ ⃗v)(Y v

s , s) ds+ ⃗σ(s) dWs, Y v
0 ∼ ptarget, (3)

where we aim to identify control functions u, v ∈ U in a suitable space of admissible controls
U ⊂ C(Rd × [0, T ],Rd) in order to achieve Xu

T ∼ ptarget and Y v
T ∼ pprior. Specifically, we seek

controls satisfying

pprior
Xu

⇄
Y v

ptarget

in the sense that Y v is the time-reversed process of Xu and vice versa, i.e., ⃗pXu = pY v . In this
context, we recall the following well-known result on the time-reversal of stochastic processes (Nelson,
1967; Anderson, 1982; Haussmann & Pardoux, 1986; Föllmer, 1988).

Lemma 2.1 (Time-reversed SDEs). The time-reversed process ⃗Y
v
, given by the SDE

d ⃗Y
v

s =
(
µ− σv + σσ⊤∇ log ⃗pY v

)
( ⃗Y

v

s , s) ds+ σ(s) dWs, ⃗Y
v

0 ∼ Y v
T , (4)

satisfies that p ⃗Y
v = ⃗pY v .

Proof. The result can be derived by comparing the Fokker-Planck equations governing p ⃗Y
v and pY v ,

see, e.g., Chen et al. (2021a); Huang et al. (2021); Berner et al. (2024).

Let us now define the problem of identifying the desired control functions u and v from the perspective
of path space measures on the space of trajectories C([0, T ],Rd), as detailed in the sequel.

Problem 2.2 (Time-reversal). Let PXu be the path space measure of the process Xu defined in (2)
and let P ⃗Y

v be the path space measure of ⃗Y
v
, the time-reversal of Y v, given in (4). Further, let

D : P × P → R≥0 be a divergence, i.e., a non-negative function satisfying that D(P,Q) = 0 if and
only if P = Q. We aim to find optimal controls u∗, v∗ s.t.

u∗, v∗ ∈ argmin
u,v∈U×U

D
(
PXu |P ⃗Y

v

)
. (5)

We note that Problem 2.2 aims to reverse the processes Xu and Y v with respect to each other while
obeying the respective initial values Xu

0 ∼ pprior and Y v
0 ∼ ptarget. For the actual computation of

suitable divergences, we derive the following fundamental identity.
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Proposition 2.3 (Likelihood of path measures). Let Xw be a process as defined in (2) with u being
replaced by w ∈ U and let S and R be as in (1). We can compute the Radon-Nikodym derivative as

dPXu

dP ⃗Y
v
(Xw) = Z exp

(
RfBridge

u,v,w
+ Su+v +B

)
(Xw) (6)

with B(Xw) := log
pprior(X

w
0 )

ρ(Xw
T )

and fBridge
u,v,w := (u+v) ·

(
w+

v − u
2

)
+∇· (σv−µ).

Proof. The proof combines Girsanov’s theorem, Itô’s lemma, the HJB equation governing log p ⃗Y
v ,

and the fact that ρ = Zptarget, see Appendix A.2.

Note that we can remove the divergence ∇ · (σv − µ) in (6) by resorting to backward stochastic
integrals, see Remark A.1 in the appendix. Using the path space perspective and the representation
of the Radon-Nikodym derivative in Proposition 2.3, we may now, in principle, choose any suitable
divergence D in order to approach Problem 2.2. Using our path space formulation, we are, to the best
of our knowledge, the first to study this problem in such generality. In the following, we demonstrate
that this general framework unifies previous approaches and allows us to derive new methods easily.

2.3 COMPARISON OF THE KL AND LOG-VARIANCE DIVERGENCE

Most works in the context of diffusion-based sampling rely on the KL divergence. Choosing
D = DKL, which implies w = u in (6), we can readily compute

DKL(PXu |P ⃗Y
v ) = E

[(
RfBridge

u,v,u
+B

)
(Xu)

]
+ logZ

with fBridge
u,v,u = ∥u+v∥2

2 +∇ · (σv − µ) , where we used the fact that the stochastic integral Su+v has
vanishing expectation. Note that in practice we minimize the objective

LKL(u, v) := DKL(PXu |P ⃗Y
v )− logZ. (7)

This objective is analogous to the one derived in Chen et al. (2021a) for the bridge problem, see also
Section 3.1 and Appendix A.4. Unfortunately, however, the KL divergence is known to have some
evident drawbacks, such as mode collapse (Minka et al., 2005; Midgley et al., 2023) or a potentially
high variance of Monte Carlo estimators (Roeder et al., 2017). To address those issues, we propose
another divergence that has been originally suggested in Nüsken & Richter (2021) and extend it to
the setting of two controlled stochastic processes.

Definition 2.4 (Log-variance divergence). Let P̃ be a reference measure. The log-variance divergence
between the measures P andQ w.r.t. the reference P̃ is defined as

DP̃LV(P,Q) := V
P̃

[
log

dP

dQ

]
.

Note that the log-variance divergence is symmetric in P and Q and actually corresponds to a
family of divergences, parametrized by the reference measure P̃. Obvious choices in our setting are
P̃ := PXw ,P := PXu , andQ := P ⃗Y

v , resulting in the log-variance loss

Lw
LV(u, v) := DPXw

LV (PXu ,P ⃗Y
v ) = V

[(
RfBridge

u,v,w
+ Su+v +B

)
(Xw)

]
. (8)

Since the variance is shift-invariant, we can omit logZ in the above objective.

Compared to the KL-based loss (7), the log-variances loss (8) exhibits the following beneficial
properties. First, by the choice of the reference measure PXw , one can balance exploitation and
exploration. To exploit the current control u, one can set w = u, but one can also choose another
control or another initial condition Xw

0 . We can leverage this to counteract mode collapse by
optimizing the loss in (8) along (sub-)trajectories where PXu has low probability, see Appendix A.7.
Next, note that the log-variance loss in (8) does not require the derivative of the process Xw w.r.t.
the control w (which, for the case w = u, is implemented by detaching or stopping the gradient, see
Appendix A.6). While we still need to simulate the process Xw, we can rely on any (black-box)
SDE solver and do not need to track the computation of Xw for automatic differentiation. This
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implies that the log-variance loss does not require derivatives1 of the unnormalized target density
ρ, which is crucial for problems where the target is only available as a black box. In contrast, the
KL-based loss in (7) demands to differentiate Xu w.r.t. u, requiring to differentiate through the SDE
solver and resulting in higher computational costs. Particularly interesting is the following property,
sometimes referred to as sticking-the-landing (Roeder et al., 2017). It states that the gradients of the
log-variance loss have zero variance at the optimal solution. This property does, in general, not hold
for the KL-based loss, such that variants of gradient descent might oscillate around the optimum.

Proposition 2.5 (Robustness at the solution). Let L̂LV be the Monte Carlo estimator of the log-
variance loss in (8) and let the controls u = uθ and v = vγ be parametrized by θ and γ. The
variances of the respective derivatives vanish at the optimal solution (u∗, v∗) = (uθ∗ , vγ∗), i.e.

V
[
∇θL̂w

LV(uθ∗ , vγ∗)
]
= 0 and V

[
∇γL̂w

LV(uθ∗ , vγ∗)
]
= 0,

for all w ∈ U . For the estimator L̂KL of the KL-based loss (7) the variances do not vanish.

Proof. The proof is based on a technical calculation and Proposition 2.3, see Appendix A.2.

For the case w = u, we can further interpret the log-variance loss as a control variate version of the
KL-based loss, see Remark A.2 in the appendix. We can empirically observe the variance reduction
for the loss and its gradient in Figure 5 in the appendix.

3 CONNECTIONS AND EQUIVALENCES OF DIFFUSION-BASED SAMPLING
APPROACHES

In general, there are infinitely many solutions to Problem 2.2 and, in particular, to our objectives in (7)
and (8). In fact, Girsanov’s theorem shows that the objectives only enforce Nelson’s identity (Nelson,
1967), i.e.,

u∗ + v∗ = σ⊤∇ log pXu∗ = σ⊤∇ log ⃗pY v∗ , (9)
see also the proof of Proposition 2.3. In this section, we show how our setting generalizes existing
diffusion-based sampling approaches, which in turn ensure unique solutions to Problem 2.2. Moreover,
with our framework, we can readily derive the corresponding versions of the log-variance loss (8).
We refer to Appendix A.3 for a high-level overview of previous diffusion-based sampling methods.

3.1 SCHRÖDINGER BRIDGE PROBLEM (SB)

Out of all solutions u∗ fulfilling (9), the Schrödinger bridge problem considers the solution u∗ that
minimizes the KL divergence DKL(PXu∗ |PXr ) to a given reference process Xr, defined as in (2)
with u replaced by r ∈ U , see Appendix A.4 for further details. Traditionally, r = 0, i.e., the
uncontrolled process X0 is chosen. Defining

f refu,r,w := (u− r) ·
(
w − u+ r

2

)
, (10)

Girsanov’s theorem shows that dPXu

dPXr
(Xw) = exp

(
Rfref

u,r,w
+ Su−r

)
(Xw), which implies that

DKL(PXu |PXr ) = E
[
Rfref

u,r,u
(Xu)

]
, (11)

see, e.g., Nüsken & Richter (2021, Lemma A.1) and the proof of Proposition 2.3. The SB objective
can thus be written as

min
u∈U

E
[
Rfref

u,r,u
(Xu)

∣∣∣Xu
T ∼ ptarget

]
, (12)

see De Bortoli et al. (2021); Caluya & Halder (2021); Pavon & Wakolbinger (1991); Benamou
& Brenier (2000); Chen et al. (2021b); Bernton et al. (2019). We note that the above can also
be interpreted as an entropy-regularized optimal transport problem (Léonard, 2014). The entropy
constraint in (11) could now be combined with our objective in (5) by considering, for instance,

min
u,v∈U×U

{
E
[
Rfref

u,r,u
(Xu)

]
+ λD

(
PXu |P ⃗Y

v

)}
,

1While, by default, the samplers presented in the following use ∇ log ρ in their parametrization of the control
u, we present promising results for the derivative-free regime in Appendix A.7.
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where λ ∈ (0,∞) is a sufficiently large Lagrange multiplier. In Appendix A.4 we show how the SB
problem (12) can be reformulated as a system of coupled PDEs or BSDEs, which can alternatively be
used to regularize Problem 2.2, see also Liu et al. (2022); Koshizuka & Sato (2022). Interestingly, the
BSDE system recovers our KL-based objective in (7), as originally derived in Chen et al. (2021a).

Note that via Nelson’s identity (9), an optimal solution u∗ to the SB problem uniquely defines
an optimal control v∗ and vice versa. For special cases of SBs, we can calculate such v∗ or an
approximation v̄ ≈ v∗. Fixing v = v̄ in (5) and only optimizing for u appearing in the generative
process (2) then allows us to attain unique solutions to (an approximation of) Problem 2.2. We note
that the approximation v̄ ≈ v∗ incurs an irreducible loss given by

dPXu∗

dP ⃗Y
v̄

(Xw) =
dP ⃗Y

v∗

dP ⃗Y
v̄

(Xw), (13)

thus requiring an informed choice of v̄ and pprior, such that Y v̄ ≈ Y v∗
. We will consider two such

settings in the following sections.

3.2 DIFFUSION-BASED GENERATIVE MODELING (DIS)

We may set v̄ := 0, which can be interpreted as a SB with u∗ = r = σ⊤∇ log ⃗pY 0 and pprior = pY 0
T

,
such that the entropy constraint (11) can be minimized to zero. Note, though, that this only leads to
feasible sampling approaches if the functions µ and σ in the SDEs are chosen such that the distribution
of pY 0

T
is (approximately) known and such that we can easily sample from it. In practice, one chooses

functions µ and σ such that pY 0
T
≈ pprior := N (0, ν2I), see Appendix A.6. Related approaches

are often called diffusion-based generative modeling or denoising diffusion probabilistic modeling
since the (optimally controlled) generative process Xu∗

can be understood as the time-reversal of the
process Y 0 that moves samples from the target density to Gaussian noise (Ho et al., 2020; Pavon,
1989; Huang et al., 2021; Song et al., 2020). Let us recall the notation from Proposition 2.3 and
define fDIS

u,w := fBridge
u,0,w = u · w − ∥u∥2

2 −∇ · µ. Setting v = 0 in (7), we readily get the loss

LKL(u) = E
[(
RfDIS

u,u
+B

)
(Xu)

]
,

which corresponds to the Time-Reversed Diffusion Sampler (DIS) derived in Berner et al. (2024).
Analogously, our path space perspective and (8) yield the corresponding log-variance loss

Lw
LV(u) = V

[(
RfDIS

u,w
+ Su +B

)
(Xw)

]
. (14)

3.3 TIME-REVERSAL OF REFERENCE PROCESSES (PIS & DDS)

In general, we may also set v̄ := σ⊤∇ log pXr − r. Via Lemma 2.1 this implies that PXr = P ⃗Y
v̄,ref ,

where Y v,ref is the process Y v as in (3), however, with ptarget replaced by pref := pXr
T

, i.e.,

dY v,ref = (− ⃗µ+ ⃗σ ⃗v)(Y v,ref , s) ds+ ⃗σ(s) dWs, Y v,ref ∼ pref .

In other words, Y v̄,ref is the time-reversal of the reference process Xr. Using (6) with pref instead of
ptarget =

ρ
Z , we thus obtain that

1 =
dPXr

dP ⃗Y
v̄,ref

(Xw) =
pprior(X

w
0 )

pref(Xw
T )

exp
(
RfBridge

r,v̄,w
+ Sr+v̄

)
(Xw). (15)

This identity leads to the following alternative representation of Proposition 2.3.
Lemma 3.1 (Likelihood w.r.t. reference process). Assuming PXr = P ⃗Y

v̄,ref , it holds that

dPXu

dP ⃗Y
v̄

(Xw) = Z exp
(
Rfref

u,r,w
+ Su−r +Bref

)
(Xw),

where f refu,r,w is defined as in (10) and Bref(Xw) := log pref

ρ (Xw
T ).

Proof. The result follows from dividing dPXu

dP ⃗Y v
(Xw) in (6) by dPXr

dP ⃗Y v̄,ref
(Xw) in (15). We also refer

to Remark A.3 for an alternative derivation that does not rely on the concept of time-reversals.
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Table 1: Comparison of the objectives with Rf , Su, B,B
ref , fBridge

u,v,w , f refu,r,w as defined in the text.

LKL Lw
LV (ours) pprior v r

Bridge E
[(
RfBridge

u,v,u
+B

)
(Xu)

]
V
[(
RfBridge

u,v,w
+ Su+v +B

)
(Xw)

]
arbitrary learned –

DIS E
[(
RfBridge

u,0,u
+B

)
(Xu)

]
V
[(
RfBridge

u,0,w
+ Su +B

)
(Xw)

]
≈ pY 0

T
0 –

PIS E
[(
Rfref

u,0,u
+Bref

)
(Xu)

]
V
[(
Rfref

u,0,w
+ Su +Bref

)
(Xw)

]
δx0

σ⊤∇ log pX0 0

DDS E
[(
Rfref

u,r,u
+Bref

)
(Xu)

]
V
[(
Rfref

u,r,w
+ Su−r +Bref

)
(Xw)

]
pY 0,ref

T
0 σ⊤∇ log ⃗pY 0,ref

Note that computing the Radon-Nikodym derivative in Lemma 3.1 requires to choose r, pprior, µ,
and σ such that pref = pXr

T
is tractable2. For suitable choices of r (see below), one can, for instance,

use the SDEs with tractable densities stated in Appendix A.5 with pprior = δx0
, pprior = N (0, ν2I),

or a mixture of such distributions. Recalling (13) and the choice v̄ := σ⊤∇ log pXr − r, we also
need to guarantee that Y v̄ ≈ Y v∗

. Let us outline two such cases in the following.

PIS: We first consider the case r := 0. Lemma 3.1 and taking D = DKL in Problem 2.2 then yields

LKL(u) = DKL(PXu |P ⃗Y
v̄ )− logZ = E

[(
Rfref

u,0,u
+Bref

)
(Xu)

]
.

This objective has previously been considered by Tzen & Raginsky (2019); Dai Pra (1991) and
corresponding numerical algorithms, referred to as Path Integral Sampler (PIS) in Zhang & Chen
(2022), have been independently presented in Richter (2021); Zhang & Chen (2022); Vargas et al.
(2023b). Choosing D = DLV, we get the corresponding log-variance loss

Lw
LV(u) = V

[(
Rfref

u,0,w
+ Su +Bref

)
(Xw)

]
,

which has already been stated by Richter (2021, Example 7.1). Typically, the objectives are used with
pprior := δx0

, since Doob’s h-transform guarantees that v̄ = v∗, i.e., we can solve the SB exactly, see
Rogers & Williams (2000) and also Appendix A.4.1. In this special case, the SB is often referred to
as a Schrödinger half-bridge.

DDS: Next, we consider the choices r := σ⊤∇ log ⃗pY 0,ref , v̄ := 0, and pprior := pY 0,ref
T

, which in
turn yields a special case of the setting from Section 3.2. Using Lemma 3.1, we obtain the objective

LKL(u) = E
[(
Rfref

u,r,u
+Bref

)
(Xu)

]
.

This corresponds to the Denoising Diffusion Sampler (DDS) objective stated by Vargas et al. (2023a)
when choosing µ and σ such that Y 0 is a VP SDE, see Appendix A.5. Choosing the invariant
distribution pref := N (0, ν2I) of the VP SDE, see (26) in the appendix, we have that pXr (·, t) =
⃗pY 0,ref (·, t) = pref = pprior for t ∈ [0, T ], and, in particular, r(x, t) = −σ⊤x

ν2 . Finally, with our
general framework, the corresponding log-variance loss can now readily be computed as

Lw
LV(u) = V

[(
Rfref

u,r,w
+ Su−r +Bref

)
(Xw)

]
.

We refer to Table 1 for a comparison of all our different objectives.

4 NUMERICAL EXPERIMENTS

In this section, we compare the KL-based loss with the log-variance loss on the three different
approaches, i.e., the general bridge, PIS, and DIS, introduced in Sections 2.3, 3.2, and 3.3. As DDS
can be seen as a special case of DIS (both with v̄ = 0, see also Berner et al., 2024, Appendix A.10.1),
we do not consider it separately. We can demonstrate that the appealing properties of the log-variance

2In general, it suffices to be able to compute pXr
T

up to its normalizing constant.
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Figure 2: KDE plots of (1) samples from the groundtruth distribution, (2 & 3) PIS with KL divergence
and log-variance loss, and (4 & 5) DIS with KL divergence and log-variance loss for the GMM
problem (from left to right). One can see that the log-variance loss does not suffer from mode collapse
such as the reverse KL divergence, which only recovers the mode of pprior = N (0, I).
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Figure 3: Marginals of the first coordinate of samples from PIS and DIS (left and right) for the DW
problem with d = 5, m = 5, δ = 4. Again, one observes the mode coverage of the log-variance
loss as compared to the reverse KL divergence. Similar behavior can also be observed for the other
marginals (see Figure 6) and higher-dimensional settings (see Figure 7 for an example in d = 1000).

loss can indeed lead to remarkable performance improvements for all considered approaches. Note
that we always compare the same settings, in particular, the same number of target evaluations,
for both the log-variance and KL-based losses and use sufficiently many gradient steps to reach
convergence. See Appendix A.6 and Algorithm 1 for computational details3. Still, we observe that
qualitative differences between the two losses are consistent across various hyperparameter settings.
We refer to Appendix A.8 for additional experiments.

4.1 BENCHMARK PROBLEMS

We evaluate the different methods on the following three numerical benchmark examples.

Gaussian mixture model (GMM): We consider ρ(x) = 1
m

∑m
i=1N (x;µi,Σi) and choose m = 9,

Σi = 0.3 I, (µi)
9
i=1 = {−5, 0, 5} × {−5, 0, 5} ⊂ R2 to obtain well-separated modes, see Figure 2.

Funnel: The 10-dimensional Funnel distribution (Neal, 2003) is a challenging example of-
ten used to test MCMC methods. It is given by the density ρ(x) = ptarget(x) =

N (x1; 0, η
2)
∏d

i=2N (xi; 0, e
x1) for x = (xi)

10
i=1 ∈ R10 with η = 3.

Double well (DW): A typical problem in molecular dynamics considers sampling from the stationary
distribution of a Langevin dynamics. In our example we consider a d-dimensional double well poten-
tial, corresponding to the (unnormalized) density ρ(x) = exp

(
−
∑m

i=1(x
2
i − δ)2 − 1

2

∑d
i=m+1 x

2
i

)
with m ∈ N combined double wells (i.e., 2m modes) and a separation parameter δ ∈ (0,∞), see
also Wu et al. (2020) and Figure 3. We choose a large value of δ to make sampling particularly
challenging due to high energy barriers. Since ρ factorizes in the dimensions, we obtain reference
solutions by numerical integration and ground truth samples using rejection sampling with a Gaussian
mixture proposal distribution, see also Midgley et al. (2023).

4.2 RESULTS

Let us start with the bridge approach and the general losses in (7) and (8). Table 5 (in the appendix)
shows that the log-variance loss can improve our considered metrics significantly. However, the
general bridge framework still suffers from reduced efficiency and numerical instabilities. For
high-dimensional problems, it can be prohibitive to compute the divergence of v using automatic

3The repository can be found at https://github.com/juliusberner/sde_sampler.
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Table 2: PIS and DIS metrics for the benchmark problems of various dimensions d. We report the
median over five independent runs, see Figure 9 for a corresponding boxplot. Specifically, we report
errors for estimating the log-normalizing constant ∆ logZ as well the standard deviations ∆std of
the marginals. Furthermore, we report the normalized effective sample size ESS and the Sinkhorn
distanceW2

γ (Cuturi, 2013), see Appendix A.6 for detailsMax-Joseph-Schule. The arrows ↑ and ↓
indicate whether we want to maximize or minimize a given metric.

Problem Method Loss ∆ logZ ↓ W2
γ ↓ ESS ↑ ∆std ↓

GMM (d = 2) PIS KL (Zhang & Chen, 2022) 1.094 0.467 0.0051 1.937
LV (ours) 0.046 0.020 0.9093 0.023

DIS KL (Berner et al., 2024) 1.551 0.064 0.0226 2.522
LV (ours) 0.056 0.020 0.8660 0.004

Funnel (d = 10) PIS KL (Zhang & Chen, 2022) 0.288 5.639 0.1333 6.921
LV (ours) 0.277 5.593 0.0746 6.850

DIS KL (Berner et al., 2024) 0.433 5.120 0.1383 5.254
LV (ours) 0.430 5.062 0.2261 5.220

DW (d = 5,m = 5, δ = 4) PIS KL (Zhang & Chen, 2022) 3.567 1.699 0.0004 1.409
LV (ours) 0.214 0.121 0.6744 0.001

DIS KL (Berner et al., 2024) 1.462 1.175 0.0012 0.431
LV (ours) 0.375 0.120 0.4519 0.001

DW (d = 50,m = 5, δ = 2) PIS KL (Zhang & Chen, 2022) 0.101 6.821 0.8172 0.001
LV (ours) 0.087 6.823 0.8453 0.000

DIS KL (Berner et al., 2024) 1.785 6.854 0.0225 0.009
LV (ours) 1.783 6.855 0.0227 0.009

differentiation, and relying on Hutchinson’s trace estimator introduces additional variance. We refer
to Remark A.1 for further discussion. The instabilities might be rooted in the non-uniqueness of the
optimal control (which follows from our analysis, cf. Section 3). Furthermore, such issues are also
commonly observed in the context of SBs (De Bortoli et al., 2021; Chen et al., 2021a; Fernandes
et al., 2021), where two controls need to be optimized. Therefore, for the more challenging problems,
we focus on DIS and PIS, which do not incur the described pathologies.

We observe that the log-variance loss significantly improves both DIS and PIS across our considered
benchmark problems and metrics, see Table 2. The improvements are especially remarkable consider-
ing that we only replaced the KL-based loss LKL by the log-variance loss LLV without tuning the
hyperparameter for the latter loss. In the few cases where the KL divergence performs better, the
difference seems rather insignificant. In particular, Figures 2 and 3 show that the log-variance loss
successfully counteracts mode collapse, leading to quite substantial improvements. The benefit of the
log-variance loss can also be observed for the benchmark posed in Wu et al. (2020), which aims to
sample a target distribution resembling a picture of a Labrador, see Figure 8 in the appendix. In Ap-
pendix A.8, we present results for further (high-dimensional) targets, showing that diffusion-based
samplers with log-variance loss are competitive with other state-of-the-art sampling methods.

5 CONCLUSION

In this work, we provide a unifying perspective on diffusion-based generative modeling that is based
on path space measures of time-reversed diffusion processes and that, for the first time, connects
methods such as SB, DIS, PIS, and DDS. Our novel framework also allows us to consider arbitrary
divergences between path measures as objectives for the corresponding task of interest. While the KL
divergence yields known methods, we find that choosing the log-variance divergence leads to novel
algorithms that are particularly useful for the task of sampling from (unnormalized) densities. Specif-
ically, this divergence exhibits beneficial properties, such as lower variance, computational efficiency,
and exploration-exploitation trade-offs. We can demonstrate in multiple numerical examples that
the log-variance loss greatly improves sampling quality across a range of metrics. We believe that
problem and approach-specific finetuning might further enhance the performance of the log-variance
loss, thereby paving the way for competitive diffusion-based sampling approaches.
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A APPENDIX

A.1 ASSUMPTIONS

In our proofs, we assume that the coefficient functions of all appearing SDEs are sufficiently regular
such that Novikov’s condition is satisfied and such that the SDEs admit unique strong solutions with
smooth and strictly positive densities pXt

for t ∈ (0, T ), see, for instance, Arnold (1974); Øksendal
& Øksendal (2003); Baldi (2017).

A.2 PROOFS

Proof of Proposition 2.3. Let us define the path space measures PXu,x and P ⃗Y
v,x as the measures

of Xu and ⃗Y
v

conditioned on Xu
0 = x and ⃗Y

v

0 = x with x ∈ Rd, respectively. We can then compute

log
dPXu

dP ⃗Y
v
(Xw) = log

dPXu,x

dP ⃗Y
v,x

(Xw) + log
dPXu

0

dP ⃗Y
v

0

(Xw
0 )

= log
dPXu,x

dP ⃗Y
v,x

(Xw) + log
pprior(X

w
0 )

p ⃗Y
v (Xw

0 , 0)
.

(16)

We follow Liu et al. (2022) and first note that the time-reversal of the process Y v defined in (3) is
given by

d ⃗Y
v

s = (µ+ σσ⊤∇g − σv)( ⃗Y
v

s , s) ds+ σ(s) dWs,

where we abbreviate g := log ⃗pY v , see Lemma 2.1. Let us further define the short-hand notations
h := u+ v − σ⊤∇g and b := µ+ σ(u− h). Then, we can write the SDEs in (2) and (3) as{

dXu
s = (b+ σh)(Xu

s , s) ds+ σ(s) dWs,

d ⃗Y
v

s = b( ⃗Y
v

s , s) ds+ σ(s) dWs.

We can now apply Girsanov’s theorem (see, e.g., Nüsken & Richter, 2021, Lemma A.1) to rewrite
the logarithm of the Radon-Nikodym derivativeR := log dPXu,x

dP ⃗Y v,x
(Xw) in (16) as

R =

∫ T

0

(
σ−⊤h

)
(Xw

s , s) · dXw
s −

∫ T

0

(
σ−1b · h

)
(Xw

s , s) ds−
1

2

∫ T

0

∥h(Xw
s , s)∥2 ds

=

∫ T

0

(
(w − u) · h+

1

2
∥h∥2

)
(Xw

s , s) ds+ Sh(X
w)

=

∫ T

0

(
(w − u) ·

(
u+ v − σ⊤∇g

)
+

1

2
∥u+ v − σ⊤∇g∥2

)
(Xw

s , s) ds+ Sh(X
w)

= RfBridge
u,v,w

−
∫ T

0

(
∇ · (σv − µ) + (v + w) · σ⊤∇g − 1

2
∥σ⊤∇g∥2

)
(Xw

s , s) ds+ Sh(X
w).

(17)

Further, we may apply Itô’s lemma to the function g to get

g(Xw
T , T )−g(Xw

0 , 0) =

∫ T

0

(
∂sg+∇g ·(µ+σw)+

1

2
Tr
(
σσ⊤∇2g

) )
(Xw

s , s) ds+Sσ⊤∇g(X
w).

Noting that g = log p ⃗Y
v fulfills the Hamilton-Jacobi-Bellman equation (see, e.g., Berner et al., 2024)

∂sg = −1

2
Tr
(
σσ⊤∇2g

)
+ (σv − µ) · ∇g +∇ · (σv − µ)− 1

2
∥σ⊤g∥2,

we get

g(Xw
T , T )−g(Xw

0 , 0) =

∫ T

0

(
∇·(σv−µ)+(v+w) ·σ⊤∇g− 1

2
∥σ⊤g∥2

)
(Xw

s , s)+Sσ⊤∇g(X
w).

Finally, combining this with (16) and (17) and noting that

g(Xw
T , T ) = log p ⃗Y

v (Xw
T , T ) = log pY v (Xw

T , 0) = ptarget(X
w
T ),

yields the desired expression.
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Remark A.1 (Divergence-free objectives). One can remove the divergence from the Radon-Nikodym
derivative (6) and thus from corresponding losses by noting the identity∫ T

0

∇ · (σv − µ)(Xw
s , s) ds =

∫ T

0

(
v − σ−1µ

)
(Xw

s , s) ·
(

⃗dWs − dWs

)
,

where for a suitable function φ ∈ C(Rd × [0, T ],Rd) the backward integration w.r.t. Brownian
motion is defined as∫ T

0

φ(Xw
s , s) · ⃗dWs := lim

∆t→0

N∑
n=1

φ(Xw
tn+1

, tn+1) ·
(
Wtn+1 −Wtn

)
,

which, in contrast to the definition of the usual Itô integral,∫ T

0

φ(Xw
s , s) · dWs := lim

∆t→0

N∑
n=1

φ(Xw
tn , tn) ·

(
Wtn+1

−Wtn

)
,

considers the right endpoint when discretizing the integral on a time grid 0 = t0 < t1 < · · · <
tN = T with step size ∆t := tn+1 − tn. The above definitions via refined partitions readily bring
implementation schemes for both integrals when choosing a fixed step size ∆t > 0. Divergence-free
objectives might be particularly beneficial in higher dimensions, where it is typically expensive to
compute the divergence using automatic differentiation. For further details, we refer to Vargas et al.
(2024) and Kunita (2019).

Proof of Proposition 2.5. Let us first recall the notion of Gâteaux derivatives, see Siddiqi & Nanda
(1986, Section 5.2). We say that L : U × U → R≥0 is Gâteaux differentiable at u ∈ U if for all
v, ϕ ∈ U the mapping

ε 7→ L(u+ εϕ, v)

is differentiable at ε = 0. The Gâteaux derivative of L w.r.t. u in direction ϕ is then defined as

δ

δu
L(u, v;ϕ) := d

dε

∣∣∣
ε=0
L(u+ εϕ, v).

The derivative of L w.r.t. v is defined analogously. Let now u = uθ and v = vγ be parametrized4

by θ ∈ Rp and γ ∈ Rp. Relating the Gâteaux derivatives to partial derivatives w.r.t. θ and γ,
respectively, let us note that we are particularly interested in the directions ϕ = ∂θiuθ and ϕ = ∂γi

vγ
for i ∈ {1, . . . , p}. This choice is motivated by the chain rule of the Gâteaux derivative, which, under
suitable assumptions, states that

∂θiL(uθ, vγ) =
δ

δu

∣∣∣
u=uθ

L (u, vγ ; ∂θiuθ) and ∂γiL(uθ, vγ) =
δ

δv

∣∣∣
v=vγ
L (uθ, v; ∂γivγ) .

Analogous to the computations in Nüsken & Richter (2021), the Gâteaux derivatives of the Monte
Carlo estimator L̂w

LV of the log-variance loss Lw
LV in (8) with K ∈ N samples is given by

δ

δu
L̂w
LV(u, v;ϕ) =

2

K

K∑
k=1

A(k)
u,v,w

(
B(k)u,w,ϕ −

1

K

K∑
i=1

B(i)u,w,ϕ

)
, (18)

where the superscript (k) denotes the index of the k-th i.i.d. sample in the Monte Carlo estimator
L̂w
LV and we define the short-hand notations

A(k)
u,v,w :=

(
RfBridge

u,v,w
+ S

(k)
u+v +B

)
(Xw,(k)) + logZ

and
B(k)u,w,ϕ :=

(
Rfgen

u,w,ϕ
+ S

(k)
ϕ

)
(Xw,(k)) with fgenu,w,ϕ = (w − u) · ϕ.

Now, note that the definition of the log-variance loss and Proposition 2.3 imply that for the optimal
choices u = u∗, v = v∗ it holds that

A(k)
u∗,v∗,w = 0

4We only assume that θ and γ are in the same space Rp for notational simplicity.
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almost surely for every k ∈ {1, . . . ,K} and w ∈ U . This readily implies the statement for the
derivative w.r.t. the control uγ . The analogous statement holds true for the derivative w.r.t. vγ , as we
can compute

δ

δv
L̂w
LV(u, v;ϕ) =

2

K

K∑
k=1

A(k)
u,v,w

(
C(k)v,w,ϕ −

1

K

K∑
i=1

C(i)v,w,ϕ

)
,

where

C(k)v,w,ϕ =
(
Rf inf

v,w,ϕ
+ S

(k)
ϕ

)
(Xw,(k)) with f infv,w,ϕ = (v + w) · ϕ+∇ · (σϕ).

For the derivative of the Monte Carlo version of the loss LKL as defined in (7) w.r.t. to v we may
compute

δ

δv
L̂KL(u, v;ϕ) =

1

K

K∑
k=1

∫ T

0

((u+ v) · ϕ+∇ · (σϕ)) (Xu,(k)
s , s) ds.

We note that even for u = u∗ and v = v∗ we can usually not expect the variance of the corresponding
Monte Carlo estimator to be zero. For the computation of the derivative w.r.t. u we refer to Nüsken &
Richter (2021, Proposition 5.3).

Remark A.2 (Control variate interpretation). For the gradient of the loss LKL w.r.t. to u we may
compute

δ

δu
LKL(u, v;ϕ) = E

[∫ T

0

((u+ v) · ϕ) (Xu
s , s) ds+

(
RfBridge

u,v,u
(Xu) +B(Xu)

)
Sϕ(X

u)

]

= E

[
Au,v,u Sϕ(X

u)

]
,

where we used Girsanov’s theorem and the Itô isometry. Comparing with (18), we realize that the
derivative of LLV w.r.t. u for the choice w = u can be interpreted as a control variate version of the
derivative of LKL, thereby promising reduced variance of the corresponding Monte Carlo estimators,
cf. Nüsken & Richter (2021); Richter et al. (2020).

In the context of reinforcement learning, such a control variate is also known as local baseline.
As an alternative, global baselines have been proposed, where the batch-dependent scaling of the
local baseline is replaced by an exponentially moving average. This corresponds to replacing the
variance in the loss with the second moment and additionally optimizing an approximation of the
log-normalizing constant (with a specific learning rate), see Malkin et al. (2022b). The resulting loss
is then known as (second) moment loss (Nüsken & Richter, 2021; Richter et al., 2020) or trajectory
balance objective (Malkin et al., 2022a).

Remark A.3 (Alternative derivations of Lemma 3.1). The expression in Lemma 3.1 can also be
derived via

dPXu

dP ⃗Y
v̄

(Xw) =
dPXu

dPXr

(Xw)
dP ⃗Y

v̄,ref

dP ⃗Y
v̄

(Xw) =
dPXu

dPXr

(Xw)
pXr

T

ptarget
(Xw

T ),

where the first factor can be computed via recalling

dPXu

dPXr

(Xw) = exp
(
Rfref

u,r,w
+ Su−r

)
(Xw). (19)

Yet another viewpoint is based on importance sampling in path space, see, e.g., Hartmann et al. (2017).
Since our goal is to find an optimal control u∗ such that we get samples Xu∗

T ∼ ptarget, we may
define our target path space measure PXu∗ via dP

Xu∗

dPXr
(Xw) =

ptarget

pXr
T

(Xw
T ). We can then compute

dPXu

dPXu∗
(Xw) =

dPXu

dPXr

(Xw)
dPXr

dPXu∗
(Xw),

which, together with (19), is equivalent to the expression in Lemma 3.1. Note that in the importance
sampling perspective we do not need the concept of time-reversals.
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A.3 SAMPLING VIA LEARNED DIFFUSIONS

In the following, we provide a high-level overview of sampling methods based on controlled diffusion
processes. We base our explanation on the general KL-based loss stated in (7) since most previous
methods are special cases of this formulation, see Table 1.

Let us recall that we want to learn a control u such that Xu
T ∼ ptarget. We first observe that the

terminal costsB(Xu) orBref(Xu) contain the term− log ρ = − log ptarget+logZ, which penalizes
Xu

T for ending up at regions with low probability w.r.t. the target density. The other terms of the
terminal cost, together with the running costs RfBridge

u,v,u
, are enforcing additional constraints on the

trajectories of our process Xu. In our formulation, they generally enforce Xu to be the time-reversal
of Y v . For special choices of v, this yields the following settings:

• For the PIS method, we minimize the reverse KL divergence of the controlled process
Xu to the uncontrolled process X0, promoting u to be as close to zero as possible. This
corresponds to a classical Schrödinger bridge problem, see Appendix A.4, which, for the
simple initial condition X0

0 ∼ δx0
, can be solved without sequential optimization routines,

see also Section 1.1 and Appendix A.4.1.
• The DIS and DDS methods are motivated by diffusion-based generative modeling (Ho et al.,

2020; Kingma et al., 2021; Nichol & Dhariwal, 2021; Vahdat et al., 2021; Song & Ermon,
2020). In particular, they minimize the reverse KL divergence to the time-reversed “noising”
process Y 0. In other words, Xu is enforced to denoise the samples Y 0

T in order to yield
samples from Y 0

0 ∼ ptarget.

While we base our unifying framework in Section 2 on the perspective of path measures, the respective
methods for the KL divergence can also be derived from the underlying PDEs or BSDE systems,
see Appendix A.4 and Berner et al. (2024).

A.4 THE SCHRÖDINGER BRIDGE PROBLEM

In this section, we provide some background information on the classical Schrödinger bridge problem.
Recall from Section 3.1 that out of all solutions u∗ fulfilling the general bridge problem stated in
Problem 2.2, which can be characterized by Nelson’s identity in (9), the Schrödinger bridge problem
considers the solution u∗ that minimizes the KL divergence DKL(PXu∗ |PXr ) to a given reference
process Xr, defined as in (2) with u replaced by r ∈ U , i.e.

dXr
s = (µ+ σr)(Xr

s , s) ds+ σ(s) dWs, Xr
0 ∼ pprior.

Traditionally, the uncontrolled process X0 with r = 0 is chosen, i.e.,
dX0

s = µ(X0
s , s) ds+ σ(s) dWs, X0

0 ∼ pprior.
In the following, we will formulate optimality conditions for the Schrödinger bridge problem defined
in (12) for this standard case r = 0. Moreover, we outline how the associated BSDE system leads
to the same losses as given in (7) and (8), respectively. The ideas are based on Chen et al. (2021a);
Vargas (2021); Liu et al. (2022); Caluya & Halder (2021).

First, we can define the

ϕ(x, t) := min
u∈U

E

[
1

2

∫ T

t

∥u(Xu
s , s)∥2 ds

∣∣∣∣∣Xu
t = x, Xu

T ∼ ptarget

]
.

By the dynamic programming principle it holds that ϕ solves the Hamilton-Jacobi-Bellman (HJB)
equation

∂tϕ = −µ · ∇ϕ− 1

2
Tr
(
σσ⊤∇2ϕ

)
+

1

2

∥∥σ⊤∇ϕ
∥∥2 (20)

(with unknown boundary conditions) and that the optimal control satisfies

u∗ = −σ⊤∇ϕ.
Together with the corresponding Fokker-Planck equation for Xu∗

, this yields necessary and sufficient
conditions for the solution to (11). Now, we can transform the Fokker-Planck equation and the HJB
equation (20) into a system of linear equations, using the exponential transform

ψ := exp(−ϕ) and ψ̂ := pXu∗ exp(ϕ) =
pXu∗

ψ
, (21)
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often referred to as the Hopf-Cole transform. This yields the following well-known optimality
conditions of the Schrödinger bridge problem defined in (12).
Theorem A.4 (Optimality PDEs). The solution u∗ to the Schrödinger bridge problem (12) is
equivalently given by

1. u∗ := −σ⊤∇ϕ, where pXu∗ and ϕ are the unique solutions to the coupled PDEs{
∂tpXu∗ = −∇ ·

(
pXu∗ (µ− σσ⊤∇ϕ)

)
+ 1

2 Tr
(
σσ⊤∇2pXu∗

)
∂tϕ = −µ · ∇ϕ− 1

2 Tr
(
σσ⊤∇2ϕ

)
+ 1

2

∥∥σ⊤∇ϕ
∥∥2,

with boundary conditions {
pXu∗ (·, 0) = pprior,

pXu∗ (·, T ) = ptarget.

2. u∗ := σ⊤∇ logψ, where ψ and ψ̂ are the unique solutions to the PDEs{
∂tψ = −∇ψ · µ− 1

2 Tr
(
σσ⊤∇2ψ

)
,

∂tψ̂ = −∇ ·
(
ψ̂µ
)
+ 1

2 Tr
(
σσ⊤∇2ψ̂

)
,

(22)

with coupled boundary conditions{
ψ(·, 0)ψ̂(·, 0) = pprior,

ψ(·, T )ψ̂(·, T ) = ptarget.
(23)

The optimal control v∗ is given by Nelson’s identity (9), i.e.,

v∗ = σ⊤∇ log pXu∗ − u∗ = σ⊤∇ log ψ̂. (24)

Using Itô’s lemma, we now derive a BSDE system corresponding to the PDE system in (22).

Proposition A.5 (BSDEs for the SB problem). Let us assume ψ and ψ̂ fulfill the PDEs (22) with
boundary conditions (23) and let us define the processes

Yw
s = logψ(Xw

s , s),

Ŷw
s = log ψ̂(Xw

s , s),

Zw
s = σ⊤∇ logψ(Xw

s , s) = u∗(Xw
s , s),

Ẑw
s = σ⊤∇ log ψ̂(Xw

s , s) = v∗(Xw
s , s),

where the process Xw is given by

dXw
s = (µ+ σw)(Xw

s , s) ds+ σ(s) dWs

with w ∈ U being an arbitrary control function. We then get the BSDE system{
dYw

s =
(
Zw

s · w(Xw
s , s)− 1

2∥Z
w
s ∥2

)
ds+ Zw

s · dWs,

dŶw
s =

(
1
2∥Ẑ

w
s ∥2 +∇ · (σẐw

s − µ(Xw
s , s)) + Ẑw

s · w(Xw
s , s)

)
ds+ Ẑw

s · dWs.

Furthermore, it holds

Yw
s + Ŷw

s = log pXu∗ (Xw
s , s) = log ⃗pY v∗ (Xw

s , s). (25)

Proof. The proof is similar to the one in Chen et al. (2021a). For brevity, we define D = 1
2σσ

⊤. We
can apply Itô’s lemma to the stochastic process Yw

s = logψ(Xw
s , s) and get

dYw
s =

(
∂s logψ +∇ logψ · (µ+ σw) + Tr

(
D∇2 logψ

))
(Xw

s , s) ds+σ
⊤∇ logψ(Xw

s , s)·dWs.

Further, via (22) it holds

∂s logψ =
1

ψ

(
−∇ψ · µ− Tr

(
D∇2ψ

))
= −∇ logψ · µ− Tr

(
D∇2ψ

ψ

)
,
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and we note the identity

∇2 logψ =
∇2ψ

ψ
− ∇ψ (∇ψ)⊤

ψ2
.

Combining the previous three equations, we get

dYw
s =

(
σ⊤∇ logψ · w − Tr

(
D
∇ψ (∇ψ)⊤

ψ2

))
(Xw

s , s) ds+ σ⊤∇ logψ(Xw
s , s) · dWs

=

(
Zw

s · w(Xw
s , s)−

1

2
∥Zw

s ∥2
)

ds+ Zw
s · dWs.

Similarly, we may apply Itô’s lemma to Ŷw
s = log ψ̂(Xw

s , s) and get

dŶw
s =

(
∂s log ψ̂ +∇ log ψ̂ · (µ+ σw) + Tr

(
D∇2 log ψ̂

))
(Xw

s , s) ds+ Ẑw
s · dWs.

Now, via (22) it holds that

∂s log ψ̂ =
1

ψ̂

(
−∇ ·

(
ψ̂µ
)
+Tr

(
D∇2ψ̂

))
= −∇ log ψ̂ · µ−∇ · µ+Tr

(
D∇2ψ̂

ψ̂

)
.

Combining the previous two equations, we get

dŶw
s =

(
Tr

(
D
∇2ψ̂

ψ̂
+D∇2 log ψ̂

)
−∇ · µ+ σ⊤∇ log ψ̂ · w

)
(Xw

s , s) ds+ Ẑw
s · dWs.

Now, noting the identity

Tr

(
D
∇2ψ̂

ψ̂
+D∇2 log ψ̂

)
= 2Tr

(
D
∇2ψ̂

ψ̂

)
− 1

2
∥σ⊤∇ log ψ̂∥2

=
1

2
∥σ⊤∇ log ψ̂∥2 +∇ ·

(
σσ⊤∇ log ψ̂

)
,

we can get the relation

dŶw
s =

(1
2
∥σ⊤∇ log ψ̂∥2 +∇ ·

(
σσ⊤∇ log ψ̂ − µ

)
+ σ⊤∇ log ψ̂ · w

)
(Xw

s , s) ds+ Ẑw
s · dWs

=
(1
2
∥Ẑw

s ∥2 +∇ · (σẐw
s − µ) + Ẑw

s · w
)
(Xw

s , s) ds+ Ẑw
s · dWs,

which concludes the proof.

Note that the BSDE system is slightly more general than the one introduced in Chen et al. (2021a),
which can be recovered with the choice w(Xw

s , s) = Zw
s . Also, the roles of pprior and ptarget are

interchanged in Chen et al. (2021a) since they consider generative modeling instead of sampling from
densities.

A valid loss can now be derived by adding the two BSDEs and recalling relation (25), which yields

−B(Xw)− log(Z) = log
ptarget(X

w
T )

pprior(Xw
0 )

=
(
Yw
T + Ŷw

T

)
−
(
Yw
0 + Ŷw

0

)
=
(
RfBridge

u∗,v∗,w
+ Su∗+v∗

)
(Xw)

almost surely. Analogous to Berner et al. (2024); Huang et al. (2021) in generative modeling, the
above equality suggests a parameterized lower bound of the log-likelihood log pprior when replacing
the optimal controls in Zw

s = u∗(Xw, s) and Ẑw
s = v∗(Xw

s , s) with their approximations u and v,
see Chen et al. (2021a). This lower bound exactly recovers the loss given in (7). Further, note that the
variance of the left-hand minus the right-hand side is zero, which readily yields our log-variance loss
as defined in (8).
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A.4.1 SCHRÖDINGER HALF-BRIDGES (PIS)

For the Schrödinger half-bridge, also referred to as PIS, introduced in Section 3.3, we can find an
alternative derivation, motivated by the PDE perspective outlined in Appendix A.4. For this derivation
it is crucial that we assume the prior density to be concentrated at a single point, i.e., pprior := δx0

for some x0 ∈ Rd (typically x0 = 0), see Tzen & Raginsky (2019); Dai Pra (1991). We can recover
the corresponding objectives by noting that, in the case pprior = δx0

, the system of PDEs in (22)
can be decoupled. More precisely, we observe that the second equation in (22) is the Fokker-Planck
equation of X0 and we have that

ψ̂ = pXu∗ exp(ϕ) = pX0 and ψ̂(·, 0) = pX0
0
= δx0 .

In view of (24), we note that this defines v∗ = σ⊤∇ log pX0 . By (21), we observe that ψ =
p
Xu∗

pX0
,

which yields the boundary condition

ϕ(·, T ) = − logψ(·, T ) = log
pX0

T

ptarget
= log

ZpX0
T

ρ

to the HJB equation in (20). By the verification theorem (Dai Pra, 1991; Pavon, 1989; Nüsken &
Richter, 2021; Fleming & Soner, 2006; Pham, 2009), we thus obtain the PIS objective

LKL(u) = E

[
1

2

∫ T

0

∥u(Xu
s , s)∥2 ds+ log

pX0
T
(Xu

T )

ρ(Xu
T )

]
= E

[(
Rfref

u,0,u
+Bref

)
(Xu)

]
.

Moreover, the optimal control is given by u∗ = −σ⊤∇ϕ = σ⊤∇ logψ. We can also derive this
objective from the BSDE system in Proposition A.5. Since ψ̂(·, 0) = δx0

, we may focus on the
process Yw

s = logψ(Xw
s , s) only, and get

Yw
T − Yw

0 =

∫ T

0

Zw
s · w(Xw

s , s)−
1

2
∥Zw

s ∥2 ds+
∫ T

0

Zw
s · dWs.

The PIS objective now follows by choosing w(Xw
s , s) = Zw

s and noting that

Yw
T = logψ(Xw

T , T ) = log
ptarget
pX0

T

(Xw
T ).

Recalling our notation in (1), this also shows that the log-variance loss can be written as

Lw
LV(u) = V

[(
Rfref

u,0,w
+ Su +Bref

)
(Xw)

]
.

A.5 TRACTABLE SDES

Let us present some commonly used SDEs of the form

dXu
s = µ(Xu

s , s) ds+ σ(s) dWs

with affine drifts that have tractable marginals conditioned on their initial value, see Song et al. (2020).
For notational convenience, let us define

α(t) :=

∫ t

0

β(s)ds

with suitable β ∈ C([0, T ], (0,∞)).

Variance-preserving (VP) SDE: This Ornstein-Uhlenbeck process is given by

σ(t) := ν
√

2β(t) I and µ(x, t) := −β(t)x.
with ν ∈ (0,∞). Then, we have that

Xt|X0 ∼ N
(
e−α(t)X0, ν

2
(
1− e−2α(t)

)
I
)
.

This shows that for α(T ) sufficiently large it holds that XT ≈ N
(
0, ν2I

)
. For X0 ∼ N (m,Σ), we

further have that
Xt ∼ N

(
e−α(t)m, e−2α(t)

(
Σ− ν2I

)
+ ν2I

)
. (26)
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Algorithm 1 Training of a generalized time-reversed diffusion sampler
Input: neural networks uθ, vγ with initial parameters θ, γ, optimizer method step for updating the

parameters, number of steps K, batch size m
Output: optimized parameters θ, γ

for k ← 1, . . . ,K do
L ← choose KL-based loss LKL in (7) or log-variance loss LLV in (8) ▷ Setup
if L = LKL then

w ← uθ
p← pprior

else
w ← choose (detached) control for the forward process
p← choose initial distribution for the forward process

end if

for i = 1, . . . ,m do ▷ Approximate cost (batched in practice)
x← sample from p
(W,Xw)← simulate discretizations of Brownian motion W and SDE Xw with Xw

0 = x
(RfBridge

uθ,vγ,w
, B)← compute approximations of the running and terminal costs using Xw

rndi ← RfBridge
uθ,vγ,w

+B

if L = LLV then
Suθ+vγ ← compute approximation of the stochastic integral using W
rndi ← rndi + Suθ+vγ

end if
end for

mean← 1
m

∑m
i=1 rndi ▷ Compute loss

if L = LKL then
L̂ ← mean

else
L̂ ← 1

m−1

∑m
i=1(rndi −mean)2

end if

θ ← step
(
θ,∇θL̂

)
▷ Gradient descent

γ ← step
(
γ,∇γL̂

)
end for

Variance-exploding (VE) SDE / scaled Brownian motion: This SDE is given by a scaled Brown-
ian motion, i.e., µ := 0 and σ as defined above. It holds that

Xt|X0 ∼ N
(
X0, 2ν

2α(t)I
)
.

For X0 ∼ N (m,Σ), we thus have that

Xt ∼ N
(
m, 2ν2α(t)I + Σ

)
.

A.6 COMPUTATIONAL DETAILS

For convenience, we first outline our method in Algorithm 1. Recall that the methods DIS, PIS, and
DDS can be recovered when making particular choices for v, r, and pprior, see Table 1. We specify
the corresponding setting and further computational details in the following.

General setting: Every experiment is executed on a single GPU and, in our PyTorch implementa-
tion, we generally follow the settings and hyperparameters of DIS and PIS as presented in Berner
et al. (2024), which itself is based on the implementation of Zhang & Chen (2022). In particular, we
use the Fourier MLPs of Zhang & Chen (2022), a batch size of 2048, and the Adam optimizer. To
facilitate the comparisons, we use a fixed number of 200 steps for the Euler-Maruyama scheme. A
difference to Berner et al. (2024) is that we observed better performance (for all considered methods
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and losses) by using an exponentially decaying learning rate starting at 0.005 and decaying every 100
steps to a final learning rate of 10−4. We use 60000 gradient steps for the experiments with d ≤ 10
and 120000 gradient steps otherwise to approximately achieve convergence. However, we observed
that the differences between the losses are already visible before convergence, see, e.g., Figure 1.

PIS: We follow Zhang & Chen (2022) and use a Brownian motion starting at δ0 for the uncontrolled
SDE X0. Furthermore, we also leverage the score of the target density ∇ log ρ (typically given
in closed-form or evaluated via automatic differentiation) for the parametrization of the control u,
see Zhang & Chen (2022); Berner et al. (2024).

DIS: We use the VP-SDE in Song et al. (2020) for the SDE Y 0. Specifically, we use ν := 1 and

β(t) := (1− t)βmin + tβmax, t ∈ [0, 1],

with βmin = 0.05 and βmax = 5, see Appendix A.5. Moreover, we employ a linear interpolation of
∇ log ρ and ∇ log pprior for the parametrization of the control u, see Berner et al. (2024).

Bridge: For the general bridge, we consider the loss (7), which corresponds to the setting in Chen
et al. (2021a) adapted to unnormalized densities. We use an analogous setting to DIS; however,
we additionally employ a Fourier MLP to control the process Y v. Since Y 0

T is already close to
pprior by construction of the VP-SDE, we use a lower initial learning rate of 10−4 for the control v.
While these choices already provide better results for the KL divergence, see Table 5, we note that
more sophisticated, potentially problem-specific choices might be investigated in future studies. In
particular, for the general bridge, we would be free to choose the prior density pprior as well as the
drift function µ in the SDEs (2) and (3).

Log-variance loss: For the log-variance loss, we only change the objective from LKL to Lw
LV,

where we used the default choice of w := u, i.e., Xw := Xu. We emphasize that we do not need
to differentiate w.r.t. w, which results in reduced training times, see Figure 9. In practice, we can
thus detach Xw from the computational graph without introducing any bias. This can be achieved by
the detach and stop gradient operations in PyTorch and TensorFlow, respectively. We leave
other choices of w to future research and anticipate that choosing noisy versions of u in the initial
phase of training might lead to even better exploration and performance. Furthermore, we use the
same hyperparameters for the log-variance loss as for the KL-based loss. As these settings originate
form Berner et al. (2024) and have been tuned for the KL-based loss, we suspect that optimizing the
hyperparameters for the log-variance loss can lead to further improvements.

Evaluation: To evaluate our metrics, we consider n = 105 samples (x(i))ni=1 and use the ELBO as
an approximation to the log-normalizing constant logZ, see Appendix A.6.1. We further compute
the (normalized) effective sample size

ESS :=

(∑n
i=1 w

(i)
)2

n
∑n

i=1

(
w(i)

)2 ,
where (w(i))ni=1 are the importance weights of the samples (x(i))ni=1 in path space. Finally, we
estimate the Sinkhorn distance5 W2

γ (Cuturi, 2013) and report the error for estimating the average
standard deviation across the marginals, i.e.,

std :=
1

d

d∑
k=1

√
V[Gk], where G ∼ ptarget.

A.6.1 COMPUTATION OF LOG-NORMALIZING CONSTANTS

For the computation of the log-normalizing constant logZ in the general bridge setting, we note that
for any u, v ∈ U it holds that

E

[
dP ⃗Y

v

dPXu

(Xu)

]
= 1.

5Our implementation of the Sinkhorn distance is based on https://github.com/fwilliams/
scalable-pytorch-sinkhorn with the default parameters.

22

https://github.com/fwilliams/scalable-pytorch-sinkhorn
https://github.com/fwilliams/scalable-pytorch-sinkhorn


Published as a conference paper at ICLR 2024

Together with Proposition 2.3, this shows that

logZ = logE
[
exp

(
−
(
RfBridge

u,v,u
+ Su+v +B

)
(Xu)

)]
. (27)

If u = u∗ and v = v∗, the expression in the expectation is almost surely constant, which implies

logZ = −
(
RfBridge

u∗,v∗,u∗
+ Su∗+v∗ +B

)
(Xu∗

). (28)

If we only have approximations of u∗ and v∗, Jensen’s inequality shows that the right-hand side in
(28) yields a lower bound to logZ. For PIS and DIS, the log-normalizing constants can be computed
analogously, see Zhang & Chen (2022); Berner et al. (2024). If not further specified, we use the lower
bound as an estimator for logZ in our experiments.

A.7 PARTIAL TRAJECTORY OPTIMIZATION

In this section, we present a method that does not need the simulation of entire trajectories but can rely
on subtrajectories only. On the one hand, this promises faster computations and, on the other hand,
it can be used for exploration strategies since subtrajectories can be started at arbitrary prescribed
locations, independent of the control u. Crucially, this strategy only works for the log-variance loss
and not for the KL-based loss.

Let us recall that the log-variance loss in (8) is defined for any processXw. In particular, in addition to
the control w, we can also freely choose the initial condition of Xw, see the proof of Proposition 2.3.
Motivated by Zhang et al. (2023), we can leverage this fact to train the DIS or DDS methods on
smaller time-intervals [t, T ]. Specifically, recall that the log-variance loss for the DIS method in (14)
is given by

Lw
LV(u) = V

[(
RfDIS

u,w
+ Su +B

)
(Xw)

]
, (29)

where the optimal control is defined by

u∗ = σ⊤∇ log ⃗pY 0 , (30)

see Section 3.2. Also, recall that

B(Xw) = log
pprior(X

w
0 )

ρ(Xw
T )

, (31)

where pprior ≈ pY 0
T

. Now, assuming an approximation Φ(·, t) ≈ log pY 0
t

for t ∈ [0, T ], we can
replace log pprior in (31) by Φ(·, t), and consider the corresponding sub-problems on time intervals
[t, T ]. For the log-variance loss, we can then sample t ∼ Unif([0, T ]), choose an arbitrary initial
condition Xw

t , and minimize the loss (29) on the time interval [t, T ].

In order to obtain an approximation Φ(·, t) ≈ log pY 0
t

, we could train a separate network, e.g., by
using the underlying optimality PDEs in Appendix A.4. However, for the DIS method, this is not
needed if we parametrize the control u as

u = σ⊤∇ ⃗Φ, (32)

where Φ is a neural network. Based on (30) we can then use Φ(·, t) as an approximation of log pYt

during training. Therefore, we can therefore optimize the loss

Lw
LV,sub(Φ) := V

[(
RfDIS

σ⊤∇ ⃗Φ,w

+ Sσ⊤∇ ⃗Φ +BΦ,sub

)
(Xw)

]
,

w.r.t. the function Φ. In the above, we can pick t ∼ Unif([0, T ]), Xw
t ∼ ν with ν being a suitable

probability measure on Rd, and

BΦ,sub(X
w) := Φ(Xw

t , t)− log ρ(Xw
T ),

where (with slight abuse of notation) the integrals R and S defined in (1) now run from t to T .

The subtrajectory training procedure has three potential benefits. First, training may be accelerated
since we consider smaller time-intervals [t, T ], leading to faster simulation of the SDEs. Second,
we can choose Xw

t in a suitable way to prevent mode collapse, e.g., we can sample Xw
t from a
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Table 3: We compare the performance of DIS without using the target information ∇ log ρ in the
parametrization. In this case, the performance of the KL-based loss is generally decreasing, as
also observed in Zhang & Chen (2022). For the log-variance loss, we can counteract this decrease
by relying on sub-trajectories starting at random t ∼ Unif([0, T ]) and x ∼ Unif([−a, a]d) (for
sufficiently large a ∈ (0,∞)) in order to facilitate exploration, see Appendix A.7. This allows to
obtain competitive results without using any gradient information of the target.

Problem Loss ∆ logZ ↓ W2
γ ↓ ESS ↑ ∆std ↓

GMM (d = 2) KL-DIS (Berner et al., 2024) 2.291 3.661 0.8089 3.566
LV-DIS-Subtraj. (ours) 0.059 0.020 0.8613 0.008

DW (d = 5,m = 5, δ = 4) KL-DIS (Berner et al., 2024) 3.983 5.517 0.3430 1.795
LV-DIS-Subtraj. (ours) 0.394 0.121 0.4378 0.002
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Figure 4: Contour plots of a Gaussian mixture model ptarget with 40 modes analogous to the problem
proposed in Midgley et al. (2023). We plot samples of the prior pprior = N (0, I) (left) and the DIS
method trained with the KL-based loss, the log-variance loss, and partial trajectory optimization (from
left to right), see Appendix A.7. For all methods, we use T = 2 to guarantee pY 0

T
≈ pprior. Using

the setting from Table 3, subtrajectory training can recover all modes without gradient information
from the target, whereas other methods suffer from mode collapse—despite making use of∇ log ρ.
Midgley et al. (2023) report mode collapse on this benchmark for several state-of-the-art methods. We
remark that LV-DIS (unlike KL-DIS) recovers all modes when slightly increasing the prior variance.

distribution ν with sufficiently large variance. Third, in (32), we consider a parametrization of u that
does not rely on∇ log ρ, which may not be available or expensive to compute.

In addition to these benefits, we show in Table 3 that subtrajectory training can achieve competitive
performance compared to the results in Table 2. On the contrary, we show that the performance of
DIS with the KL-based loss gets worse when not using parametrizations that contain the term∇ log ρ.
Note that subtrajectory training cannot be used with the KL-based loss since, for this loss, we need to
sample the initial condition according to Xu

t .

In Figure 4, we compare the performance on the benchmark proposed in Midgley et al. (2023). We
show that partial trajectory optimization can identify all 40 modes of the Gaussian mixture model,
significantly outperforming the DIS method, even when using the log-variance loss and the derivative
of the target in the parametrization. We note that Midgley et al. (2023) report mode collapse on
this benchmark for other state-of-the-art methods, such as Stochastic Normalizing Flows (Wu et al.,
2020), Continual Repeated Annealed Flow Transport Monte Carlo (Arbel et al., 2021), and flows
with Resampled Base Distributions (Stimper et al., 2022).

A.8 FURTHER EXPERIMENTS AND COMPARISONS

In this section, we present further results and ablation studies. In Table 4, we show that the log-
variance loss also leads to improvements for smaller batch sizes. This can be motivated by its
variance-reducing effect, see Proposition 2.5, Remark A.2, and Figure 5. In Figures 6 and 7, we
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Table 4: The same setting as in Table 2 is considered, however, with a smaller batch size of 512
instead of 2048. We again observe that the log-variance loss consistently yields better performance.
This can be motivated by the inherent variance reduction of its gradient estimators (particularly
helpful for smaller batch sizes), see Proposition 2.5, Remark A.2, and Figure 5.

Problem Method Loss ∆ logZ ↓ W2
γ ↓ ESS ↑ ∆std ↓

GMM (d = 2) PIS KL (Zhang & Chen, 2022) 2.201 2.708 0.0002 3.576
LV (ours) 2.200 2.629 0.0002 3.564

DIS KL (Berner et al., 2024) 1.725 0.088 0.0045 2.711
LV (ours) 0.063 0.020 0.8517 0.004

DW (d = 5,m = 5, δ = 4) PIS KL (Zhang & Chen, 2022) 3.693 4.949 0.0001 1.793
LV (ours) 0.285 0.124 0.5957 0.008

DIS KL (Berner et al., 2024) 4.047 5.068 0.0015 1.797
LV (ours) 0.447 0.121 0.3917 0.002
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Figure 5: We compare the standard deviations of the loss and (average) gradient estimators using
either the KL-based loss or the log-variance loss. Each standard deviation is computed over 40
simulations of the loss without updating the parameters. We show results for the DIS method on the
5-dimensional DW target. As predicted by our theory, the log-variance loss exhibits significantly
smaller standard deviations for both the loss and its gradient.

show that the log-variance loss can counteract mode collapse in both moderate as well as very high
dimensions. Moreover, we present the results for the general bridge approach in Table 5, and we
consider a problem from Wu et al. (2020) in Figure 8. In Figure 9, we present boxplots to show that
our results from Table 2 are robust w.r.t. different seeds.

Finally, in Table 6, we show that our methods are competitive to other state-of-the-art sampling
baselines. However, we want to emphasize that the focus of our work is not to extensively compare
against MCMC methods or normalizing flows. Our goal is to show that recently developed methods,
such as PIS, DDS, and DIS, can be unified under a common framework, which enables the usage of
different divergences. We then propose the log-variance divergence, which makes diffusion-based
samplers even more competitive and mitigates potential downsides compared to other methods. The
fact that there are general trade-offs between the considered diffusion-based samplers and variants of
MCMC has already been discussed and numerically analyzed in the papers introducing the respective
methods, see Zhang & Chen (2022); Vargas et al. (2023a).
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Figure 6: Marginals of samples from PIS and DIS (left and right) for the DW problem with d = 5,
m = 5, and δ = 4. The mode coverage of the log-variance loss is superior to the KL-based loss for
all marginals (from top to bottom).
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Figure 7: Marginals of the first four coordinates of samples from DIS for a high-dimensional shifted
double well problem in dimension d = 1000 withm = 3 and δ = 2 (see Section 4.1), using the KL or
the log-variance loss, respectively. Again one observes the better mode coverage of the log-variance
loss as compared to the reverse KL divergence.
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Table 5: Metrics of the general bridge approach in Section 2.3 for selected benchmark problems. We
observe a clear improvement using the log-variance loss. Moreover, for the KL divergence, we note
that the general bridge framework can obtain better results than DIS or PIS, see Table 2. As in Table 2,
we report the median over five independent runs. We show errors for estimating the log-normalizing
constant ∆ logZ as well the standard deviations ∆std of the marginals. Furthermore, we report the
normalized effective sample size ESS and the Sinkhorn distanceW2

γ (Cuturi, 2013). The arrows ↑
and ↓ indicate whether we want to maximize or minimize a given metric.

Problem Method Loss ∆ logZ ↓ W2
γ ↓ ESS ↑ ∆std ↓

GMM (d = 2) Bridge KL (Chen et al., 2021a) 0.328 0.393 0.0180 0.698
LV (ours) 0.084 0.020 0.9669 0.010

DW (d = 5,m = 5, δ = 4) Bridge KL (Chen et al., 2021a) 0.872 0.132 0.0561 0.099
LV (ours) 0.215 0.119 0.5940 0.002

Groundtruth KL-PIS LV-PIS (ours) KL-DIS LV-DIS (ours)

Figure 8: Comparison of samples for the target in Wu et al. (2020). For the KL-based losses, a
large fraction of the samples (PIS: 86%, DIS: 67%) lies outside of the domain despite the low
density values. On the other hand, the log-variance loss significantly improves performance, yielding
competitive performance compared to stochastic normalizing flows presented in Wu et al. (2020).

Table 6: We compare our methods to Continual Repeated Annealed Flow Transport Monte Carlo
(CRAFT), see Arbel et al. (2021). We adapt the proposed configurations6 to use the same batch
size and number of iterations as our methods and evaluate all methods using 105 samples. We see
that diffusion-based sampling, in combination with the log-variance loss, can provide competitive
performance across a range of metrics. We report the median over five independent runs and compare
the log-normalizing constant (using the reweighted estimator in (27)), the Sinkhorn distance to ground
truth samples, and the error in estimating the average standard deviation.

Problem Method ∆ logZ (rw) ↓ W2
γ ↓ ∆std ↓

GMM (d = 2) CRAFT (Arbel et al., 2021) 0.012 0.020 0.019
LV-PIS (ours) 0.001 0.020 0.023
LV-DIS (ours) 0.017 0.020 0.004

Funnel (d = 10) CRAFT (Arbel et al., 2021) 0.123 5.517 6.139
LV-PIS (ours) 0.097 5.593 6.852
LV-DIS (ours) 0.028 5.075 5.224

DW (d = 5,m = 5, δ = 4) CRAFT (Arbel et al., 2021) 0.001 0.118 0.000
LV-PIS (ours) 0.000 0.121 0.001
LV-DIS (ours) 0.043 0.120 0.001

DW (d = 50,m = 5, δ = 2) CRAFT (Arbel et al., 2021) 0.000 6.821 0.001
LV-PIS (ours) 0.001 6.823 0.000
LV-DIS (ours) 0.422 6.855 0.009

6The configuration files can be found at https://github.com/deepmind/annealed_flow_
transport/blob/master/configs.
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Figure 9: Boxplots for five independent runs for each problem and method (KL-PIS, LV-PIS (ours),
KL-DIS, LV-DIS (ours) from left to right in each plot) in the settings of Table 2 and corresponding
ground truth or optimal values (dashed lines). It can be seen that the performance improvements
of the log-variance loss are robust across different seeds. At the same time, the log-variance loss
reduces the average time per gradient step by circumventing differentiation through the SDE solver.
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