Under review as submission to TMLR

On the Importance of Uncertainty in Decision-Making with

Large Language Models

Anonymous authors
Paper under double-blind review

Abstract

We investigate the role of uncertainty in decision-making problems with natural language
as input. For such tasks, using Large Language Models as agents has become the norm.
However, none of the recent approaches employ any additional phase for estimating the
uncertainty the agent has about the world during the decision-making task. We focus on a
fundamental decision-making framework with natural language as input, which is the one of
contextual bandits, where the context information consists of text. As a representative of the
approaches with no uncertainty estimation, we consider an LLM bandit with a greedy policy,
which picks the action corresponding to the largest predicted reward. We compare this
baseline to LLM bandits that make active use of uncertainty estimation by integrating the
uncertainty in a Thompson Sampling policy. We employ different techniques for uncertainty
estimation, such as Laplace Approximation, Dropout, and Epinets. We empirically show
on real-world data that the greedy policy performs worse than the Thompson Sampling
policies. These findings suggest that, while overlooked in the LLM literature, uncertainty
plays a fundamental role in bandit tasks with LLMs.

1 Introduction

Large language models (LLMs) have emerged as 03501 — Greedy
a dominant paradigm in natural language process- 0.325 - Diag. LATS
ing (Ouyang et all, [2022; [OpenAl, [2023), achiev- 1 Eii;;ﬁ;ss
ing state-of-the-art performance across a wide range 0.300 7 —— Epinet TS
of tasks (Rae et al,, 2021). To reach this progress, g ;s
LLMs have pushed model scale and dataset size to g
unprecedented levels. By optimizing such immense 02501
models exclusively to predict text, perhaps surpris- g 0.225
ingly, LLMs have achieved strong performance on a
broad range of datasets and tasks (Bubeck et al., 0.2001
2023), including translation, question-answering, 0.175 4
and dialogue.

0.150 1 | | , , , |
In parallel, many critical real-world systems are in- 0 500 1000 1500 2000 2500 3000

creasingly relying on these models to make decisions
(Yang et al., [2023b)), where the consequences of a
particular action are typically reflected by a reward
signal. This usually works by fine-tuning an LLM

Observed data points

Figure 1: Average regret obtained on toxic content
detection bandit task.

to serve as a reward model, where we try to teach the network to predict the mean reward for each action.
A common way of using this model to make decisions is to use the predictions greedily (Riquelme et al.
2018)), taking the action with the greatest estimated reward. However, this approach ignores the fact that
reward estimates may be inaccurate, which can lead to never-ending pathological behavior (Russo et al.)
2018). On the other hand, the literature on contextual bandits (Wang et al., 2005 provides a principled
approach to deal with inaccurate reward estimates in a decision-making task. A popular modelling tool for
doing this in the Bayesian framework is to maintain a probabilistic reward model that relies on two separate

Under review as submission to TMLR

notions of uncertainty: epistemic and aleatoric. Epistemic uncertainty is the one that reflects the fact that
we have not yet seen enough fine-tuning data to estimate the mean reward well, while aleatoric uncertainty
reflects the irreducible noise associated with observing a reward. When such a reward model is coupled
with an action-selection algorithm like Thompson Sampling (Thompson, 1933), high-quality estimates of
epistemic uncertainty can be leveraged to produce a better balance between exploration and exploitation in
the decision-making task, evidenced by lower regret. In this paper, we want to investigate the importance
of employing epistemic uncertainty models in decision-making tasks with natural language and LLMs. In
particular, we focus on one of the most fundamental decision-making tasks with natural language as input:
contextual bandits. In a contextual bandit problem, the agent must continually take actions based on ob-
served context, which in our case is text, and observes the reward for the chosen action. This framework
is applicable to a myriad of real-world scenarios. A concrete example application we will consider is the
problem of automated content moderation on online platforms (Vaccaro et al., |2020; |(Gorwa et al., |2020;
Ma & Koul [2021). In such a scenario, we have users who may post on a platform, and an algorithm then
decides whether or not the content is safe to publish. In this paper, we study this scenario empirically,
combining the insights from the LLM and bandit communities. The greedy approach outlined above is
our main baseline and was chosen for its simplicity and ease of implementation. We benchmark it against
approximate Bayesian models coupled with the Thompson Sampling algorithm for action selection. Since
Thompson Sampling requires epistemic uncertainty to be of high quality to work well, we investigate several
different approaches of doing so. Specifically, we compare techniques for epistemic uncertainty estimation
that can be scaled up to be used with current LLMs. These are the Laplace Approximation (Daxberger
et al |2021), Dropout (Gal & Ghahramani, |2016|) and Epinets (Osband et al.l [2023a). We show that all our
TS policies significantly and consistently outperform the greedy baseline on a real-world bandit benchmark.
A preview of the results is shown in Figure[I] These findings suggest that, while often overlooked, epistemic
uncertainty plays a fundamental role in bandit tasks with LLMs.

Contributions

e We provide a comprehensive empirical study of LLM-based contextual bandits;

o We adapt existing neural epistemic uncertainty estimation techniques to LLMs. In particular, we
identify the best variant of the Laplace approximation and dropout to use, and we show one possible
epinet architecture that can also tackle this task;

e We empirically show on real-world data that the greedy policy is sub-optimal, and that epistemic
uncertainty is fundamental for solving contextual bandit problems with text data.

To the best of our knowledge, this is the first time that such an empirical analysis on bandit learning with
LLMs has been provided. This empirical evaluation sheds light on critical aspects of LLMs, such as their
performance on decision-making tasks and the importance of epistemic uncertainty for those models.

2 Preliminaries

In this section, we describe the problem statement, and then we introduce the topic of uncertainty in Machine
Learning models.

2.1 Batch Contextual Bandit problem

The contextual bandit problem is a sequential decision-making framework where an agent interacts with
an environment over a number of time steps. In particular, we focus on the more general case where, for
each time step, we observe a batch of contexts and the agent has to select a batch of actions (Kandasamy
et al., [2018). Let us call the total number of time steps T. At each time step ¢t = 1,2,...,T, the agent
observes a batch of contexts, which we denote with z},...,22. Each context 2% contains useful information
that should be used to solve the task. In this paper, we focus on decision-making problems driven by text.
Hence, in this case, each context z¥ consists of text information. The agent then uses the observed data

Under review as submission to TMLR

until now, which we call D, to select an action af from a set A of K possible actions, conditioned on the

given context x? with b € {1,..., B}. For each selected action a?, the agent receives a reward r?, that
depends on the context x? and action a?. At the end of the time step, we have observed a set of tuples
that we denote as D; = {(x1,a},7}),...,(x2,aP,rB)}. This set of tuples is added to the observed dataset

D <~ DUD;. The aim of the agent is to learn a policy that minimizes the regret over the T' time steps.
We define the average regret as the difference between the cumulative reward from the learned policy and
the cumulative reward from an optimal policy, all divided by the number of time steps. We define the
optimal policy 7* as the policy that, within the considered policy space II, maximizes the expected reward:

% = argmaxyen ExEqmr(.|z) [r(2,a)]. Let us call rf the expected rewards obtained by the optimal policy
at any time step {. We can define the average regret as follows:

T

1 1<
RT—TZ<7':—BZ7'§>
b=1

t=1

Since we focus on bandits with text information as contexts, we would like to use the state-of-the-art natural
language processing capabilities of pre-trained LLMs and build bandit policies based on these models. We
will explain in more detail how to design such deep bandits in Section [3]

2.2 Aleatoric and Epistemic Uncertainty in Machine Learning

In the field of machine learning, the concept of uncertainty plays a crucial role in both model interpretation
and reliability. A common framework to characterize uncertainty, given a particular model class, is to catego-
rize it into two types: aleatoric and epistemic. Aleatoric uncertainty arises from the inherent randomness in
the data or the environment. It represents the variability in the outcome that cannot be reduced even if more
data is provided. Hence, this type of uncertainty is irreducible and intrinsic to the current task or dataset.
On the other hand, epistemic uncertainty stems from the lack of knowledge. This type of uncertainty is
reducible by collecting more data. It reflects the uncertainty in the model parameters due to limited data
or limited model capacity.

As a concrete example, consider a contextual bandit setting with observed data D = {(z1,a1,71),...} and
a parametric model fy(x,a) that we wish to train to predict expected reward given context and action,
with parameters 6. In this regression setting, a common approach to model the aleatoric uncertainty is to
assume that there is additive noise in the rewards: r = E[r] + ¢, where the noise is distributed according to
a generic distribution € ~ P(¢). A simple but effective choice is to set the noise distribution to be Gaussian:
e ~ N(0,0%,), where o2, _ is the observation variance. This kind of uncertainty is independent of the model,
so it is irreducible even with infinite data.

Epistemic uncertainty, instead, stems from uncertainty in the model parameters . A principled Bayesian
approach is to maintain a posterior distribution over the parameters, P(#|D), that is updated as new data
arrives. The posterior covariance quantifies epistemic uncertainty. As the dataset grows, the posterior
distribution becomes more peaked, reducing the epistemic uncertainty.

Maintaining a posterior over 6 allows the model to “know what it does not know”, critical for balancing explo-
ration and exploitation in bandits. We will expand on using Bayesian techniques for principled exploration
in Section Bl

3 Large Language Model Bandits

In this section, we describe how to build bandit agents with pre-trained Large Language Models.

We approach the contextual bandit problem with a regression model. Specifically, we train a model to
predict the expected reward for each action, given the context. To leverage recent advances in large pre-
trained language models, we initialize our model with a pre-trained LLM. As these models are pre-trained
for next-token prediction, which is a classification task, we discard the final classification layer and append
a new linear regression output layer to predict expected rewards.

Under review as submission to TMLR

Algorithm 1 Greedy
Require: Bandit model fy.
1: Initialize D < 0
2: for time t=1,...,7T do
3: Observe contexts xy,...,zP.

4 forb=1,...,B do

5 Select a® = argmax, fo(z?,a).

6 Observe reward r?.

7: end for

8 Create D; = {(x},a},7}), ..., (xB,aB rB)}

9 Add to the observed dataset D < {Dy,...,D,}.

10: Update the parameters 6 training on the observed data D minimizing Eq.
11: end for

Specifically, let 7y, denote the pre-trained LLM with parameters fpr. Such a model is a function that maps
any sequence of tokens into a probability distribution over the vocabulary: mg..(x) € A(V), where A(V)
denotes the simplex over the vocabulary of tokens V. For our task, we do not need the final classification
head; hence, we consider only the features before the final layer, which we denote as 7g,..(z) € R%. Now, for
each tuple (z,a,r) in our dataset D, we feed = into the pre-trained feature extractor @ and we pass those
features through a final linear layer to produce the expected reward for each a € A. We call our model fy,
which is defined as follows:

fo(z) = linear (g, (z)) € RE | (1)
where K = | A|. Also, we denote the a-th output of our model as fy(z,a) € R.

3.1 Greedy policy

As a representative approach with no additional uncertainty estimation phase, we consider the greedy policy.
The behavior of this policy is illustrated in Algorithm[I] In particular, in our case, we use a pre-trained LLM
as a feature extractor with a linear layer on top to create a regression model fy, as described in Section
Given a context, the greedy policy selects the action for which the model predicts the highest reward. Let
us consider a certain time step ¢. After the action selection phase, we observe the real reward for the batch
of actions the policy has selected. The dataset will be composed of ¢ sets of tuples: D = {Dy,...,D;}. We
can exploit the observed data to update the parameters of the regression model before the beginning of the
next time step. A typical way to do so is to compute a maximum-a-posteriori (MAP) estimate. This is done
by minimizing a loss corresponding to the negative log posterior:

LO:;D)= > Ub;za,7) + @ : (2)

(z,a,r)€D negative log-prior

negative log-likelihood

Usually, for regression task, it is assumed that there is Gaussian aleatoric noise with zero mean and fixed
variance o, .. This implies that the negative log-likelihood part of the loss is a mean-squared error (MSE):
1(0;2,a,r) = ﬁ(r — fo(z,a))?. Regarding the prior, another typical assumption is to set the prior belief
on the parameters as indepentent Gaussians with 0 mean and 012, variance. However, in our case, it is
inconsistent to assume that all the weights have 0 prior since we initialize every weight (except for the last
layer) to have the same weight as a pre-trained LLM. Hence, we use a different prior mean: 6, = [fpr, 0],
where with the notation [v1,vs] we denote the concatenation of vectors v; and vy. Therefore, this means
that every weight (except for the last layer) has a prior centered in the pre-trained weight value, while the

last layer is regularized towards zero. The negative log-prior term hence becomeaﬂ r(0) = 5210 — 6,13
p

I This technique was also proposed in (Xuhong et al.[2018), and it has been shown to reduce the fine-tuning loss when using
pre-trained neural models.

Under review as submission to TMLR

Algorithm 2 Thompson Sampling

Require: Bandit model fy.

Require: Prior distribution on the parameters P(6) <— N (0,,%),).
1: Initialize D < 0
2: for time t =1,...,7T do
3: Observe context zj,...,z5.

4 forb=1,...,B do

5 Sample parameters § ~ P(6|D).

6 Select a? = argmax, f;(z,a).

7: Observe reward 77.

8 end for

9 Create Dy = {(x},at,7r}),..., (@B, aB, rP)}

10: Add to the observed dataset D < D U D;.
11: Update the posterior distribution P(6|D).
12: end for

Minimizing the loss shown in Equation [2] at the end of each time step, however, can have some drawbacks in
a bandit task. Indeed, it can be highly expensive for large neural models, especially because the complete
dataset is constantly increasing at each time step. An alternative and more scalable loss to minimize is the
following, which considers only the data D, observed at the current time step ¢:

B
LOD;Dy) =3 (rf — foo (af,a2)? + A0 — 003, (3)
b=1

where A = O'gbs/dg, and we set §(0) = 0,. This loss now only assumes that the data points in D, are i.i.d.,
and we update the prior at each time step with the weights obtained at the previous time step. This will be
the loss we will use to optimize the greedy bandit in our experimental analysis in Section

3.2 Thompson Sampling

Thompson Sampling (TS) (Thompson) |1933} Russo et al.,2018) is a probabilistic algorithm for the contextual
bandit problem. The key idea of Thompson Sampling is to maintain an epistemic uncertainty estimate in the
form of a posterior distribution over the parameters of the model P(6|D). Initially, this distribution is set to
a prior distribution P(#) that represents the agent’s initial uncertainty. On each time step, for each observed
context, the agent samples a set of parameters 0 ~ P(0|D) from the posterior distribution, and selects the
action with the highest reward according to the sampled model. At the end of the time step, the agent
updates the posterior distribution of the parameters with the observed data. A high-level description of this
procedure is provided in Algorithm This approach balances exploration and exploitation by sampling
from a posterior that quantifies the epistemic uncertainty. Actions with more uncertain estimates will be
explored, while actions that are currently believed to have higher rewards will be exploited. TS can be
thought as taking actions according to the (epistemic) probability that they are optimal, which leads to
a good balance between exploration and exploitation. The posterior distribution concentrates over time,
automatically adjusting the exploration-exploitation trade-off.

This approach has been shown to be effective both in theory and in practice (Chapelle & Li, |2011). When the
Bayesian updates are exact, there are theoretical guarantees on the performance of TS agents (Agrawal &
Goyal, [2017). However, in our case, we are dealing with a complex bandit model that uses a pre-trained LLM.
Therefore, an exact Bayesian update is computationally infeasible, and we have to resort to approximations.
In Section [d] we will show different techniques to estimate posterior distribution of the parameters of a neural
network and how to adapt such techniques to our case of LLM bandits.

Under review as submission to TMLR

4 Epistemic uncertainty estimation for pre-trained LLMs

In order to use a Thompson Sampling policy, we need to estimate the epistemic uncertainty of our model.
This additional step is not required for a greedy policy. Also, it is not a trivial step for deep neural networks,
for which there is no (tractable) closed-form solution to update the posterior distribution of the parameters.

Crucially, for our particular task, the uncertainty estimation technique is required to scale to very large
models, which are typically pre-trained at great expense, such as LLMs. This means that we cannot employ
techniques that require us to change the training process (Graves, [2011)), or ensembles (Lakshminarayanan
et al., [2017)), which require us to run training multiple times. Instead, we rely on more scalable techniques,
such as Dropout, Laplace Approximation, and Epinets. In the following, we discuss these epistemic uncer-
tainty estimation techniques in further detail, and we show how to adapt them to LLM bandits.

4.1 Dropout

The dropout technique (Srivastava et al.,|2014)) consists of randomly setting a proportion p of neuron outputs
to zero at each forward pass through the network during training. This random “dropping out” of neurons
allows the network to sample and train on different (but overlapping) architectures. In standard supervised
learning, dropout is then deactivated during inference, and all dropout neurons are re-scaled to account for
the fact that all dropout neurons are active. However, in our case, we still apply dropout during the action
selection (Gal & Ghahramani, 2016; Riquelme et al., [2018)). Using dropout in this phase, we randomly select
(according to the dropout probability) a set of parameters 0 to use. This procedure can be seen as sampling
parameters from an approximate posterior distribution: 6 ~ P(0|D). With such approximate posterior
distribution, we can apply Thompson Sampling. This technique is valuable for large models, such as our
LLM bandit, because it does not add any overhead to the procedure and does not require additional memory.

4.2 Laplace Approximation

The Laplace Approximation (LA) is a technique that can be used to approximate the posterior distribution
of the parameters of a neural model and does not require changing the training process or training multiple
models.

LA exploits the fact that, from a Bayesian point of view, minimizing a regularized loss can be seen as finding
a mazimum-a-posteriori (MAP) estimate: Oyap = argming £(D;0).

Then, LA consists of replacing the loss with its second-order Taylor expansion around Oyap:

1
E(D; 9) ~ C('D; GMAP) + 5(9 — QMAP)TH(Q — GMAP), H = V2£(D; 9)|9MAP (4)

Notice that the first-order term vanishes because we are expanding around 6y;ap, which is a point of minimum
of the loss. After some algebraic manipulations, it can be shown that the posterior distribution can be
expressed asﬂ

P(0|D) = N (fmar, H™) , (5)

which means that, after training, the posterior distribution of the parameters is a Gaussian distribution,
centered on the parameters obtained with training (i.e., Oyap), and with the inverse Hessian as covariance
matrix. Therefore, to derive the approximate posterior in practice, we need first to identify the weights Oyap
by training our LLM bandit regression model. Subsequently, the only additional step is the calculation of
the Hessian matrix H. This posterior distribution can be used to apply the Thompson Sampling policy by
sampling a set of parameters 0 ~ P(6|D) at each time step. Notice, however, that there are still significant
drawbacks in using LA with LLM bandits: (1) computing the Hessian requires looping through the whole
fine-tuning dataset, which is always increasing; (2) storing the Hessian is infeasible due to its size, which
is quadratic with the number of parameters; (3) computing the Hessian may be computationally infeasible,
and the Hessian may be indefinite. In the following, we show that there are many ways to cope with these
limitations.

2For a more detailed derivation, see Appendix

Under review as submission to TMLR

Recursive computation of the Hessian By applying Bayesian reasoning, we notice that the Hessian
at a given time step ¢t can be computed recursively, exploiting the Hessian computed at ¢ — 1. Let us assume
that we are at time step t. Hence, the dataset will look like this: D = {Dy,...,D;}, where each D; is
composed of i.i.d. data points. The posterior distribution of the parameters can be re-written as follows:

P(8D) x P(D,|6) - .. P(Ds]6) - P(D1[6) - P(6), (6)

xP(0]|D1)

o<P(6|D1,’D2)
where P(D,|0) = HbB:1 P(r?|zb, a2, 0). This implies that:

P(|Dy,...,D;) x P(Dy|0)P(0|Dy, ..., Dyr). (7)

Hence, the Hessian of the negative log-posterior at time ¢, which we call H(*) can be re-written as:

H(l:t) _ v2 o IOgP(Dt ‘ 0) + Ziil v2 - log P(Dt/ ‘ 9)|0(t/) + VQ — logp(e)

(t) (t)
‘QMAP MAP |9MAP

neg. log-likelihood Hessian Hl(t) previous neg. log-likelihood Hessians Hl“/) neg. log-prior Hessian Hy

This means that, at the end of any time step ¢, we just need to compute the log likelihood Hessian H. l(t) with
respect to the current data D; and sum the previous Hessian: H () = Hl(t) + H1:t=1),

Furthermore, this formulation gives rise to a loss that uses only the current data when training at time ¢:

1 , 2 1 _ L _
LOVD) = Y (r=fP@a) + SO0 -0 THOTIEY —6)) . ()

obs (z,a,r)ED,
neg. log prior / updated posterior: —log P(0|D1,...,D¢—1)

neg. log likelihood: —log P(D.|0)

If we are at time ¢t = 1, we assume that 91(\2)AP are the initial weights, and H1'9) = V2 log P(O)\e(%

MAP
Diagonal approximation Even if computed recursively, storing the full Hessian may be infeasible even
for small neural networks. Hence, it is not a viable option for the case of LLM bandits. A practical
approximation is to consider only the diagonal of the matrix, which is equivalent to maintain a posterior
distribution for each parameter independently. This reduces the memory complexity from quadratic to linear
in the number of parameters.

Fisher Hessian approximation To further reduce the computational complexity, we can replace the
true Hessian by the expected F' isherﬁ matrix. If we assume a model where the aleatoric noise is Gaussian

with mean zero and fixed variance o2, we can compute this approximation of the Hessian as follows:

diag(B") = —— 3 (Vfo(w.0))? (10)

obs (z,a)EDy

This approximation has the advantage of being positive semi-definite and (Kunstner et al.; 2019) showed
that it is accurate when the regression residuals are small. For more details on this approximation, see

Appendix [A]
4.3 Last-Layer Laplace Approximation

Alternatively, instead of using Hessian approximations, another way to scale LA for large models is to
compute the full Hessian but only for a subset of the parameters of the network, which typically is the last

3We use the term expected Fisher to stress the fact that it is different from the empirical Fisher matrix (Kunstner et al.
2019).

Under review as submission to TMLR

layer of the model. In our case, this means that we will compute the Hessian for the randomly initialized final
layer, while the pre-trained LLM layers remain fixed during the sampling phase of TS (every parameter is
still fine-tuned during training). This approximation can reduce the exploration due to the fixed weights, but
at the same time it allows a full quadratic Hessian computation, leading to a better quality of exploration.
Last layer LA is also equivalent to Bayesian linear regression (Box & Tiaol [2011)) on the features before the
last layer within a single batch. Also, with Gaussian likelihood, last-layer LA is exact within a single batch.

4.4 Epinets

A different approach to estimating epistemic uncertainty is the epinet (Osband et all 2023al). An epinet
is a heuristic approach that tries to estimate the epistemic uncertainty with a separate neural network. It
consists of a neural network added to a base network, which, in our case, is the LLM bandit model. The
epinet takes as inputs both features 7p(z) derived from the base network and an epistemic index z, which
is a random vector sampled from a reference distribution Pz. In the case of our LLM bandit model, 7o(x)
denotes the feature vector extracted by the model before the final regression layer. The prediction is then
obtained by adding the predictions of the base network and the epinet:

9o.n(w;2) = fo(x) + epi, (sgl7o(2)]; 2) ,

where with sg we denote the stop-gradient operator, and with 1 we denote the additional parameters of the
epinet.

The epinet epi, comprises two parts: a learnable network epiﬁ and a prior network epi”” that represents prior
uncertainty. The prior network has no trainable parameters. This allows the epinet to adapt uncertainty
estimates to observed data. In principle, every network that takes features and epistemic index as inputs
could be an epinet. However, for our use case, we need to use a small epinet so that we do not add excessive
computational overhead to the LLM bandit model. In Section [f], we describe in further detail the epinet
architecture we selected for our experiments.

During training, the epinet model g , is trained as a normal deep learning model, with the addition of a
sampling phase of an epistemic index z ~ Pz for each data point. Also during the action selection phase, for
each action to select, an epistemic index z is sampled. While this is not a Bayesian approach, the sampling
phase can be seen as an approximate Thompson Sampling, as shown by [Osband et al.| (2023b)).

5 Experiments

In this section, we provide a comprehensive empirical study of LLM-based contextual bandits on real-world
data. We show how to adapt the epistemic uncertainty estimation techniques we described to bandits with
pre-trained LLMs. In particular, we identify the best variant of the Laplace approximation and dropout to
use, in addition to a proposed Epinet architecture that we show works well for T'S with LLM bandits. Finally,
we empirically show that the greedy policy is sub-optimal, shedding light on the importance of epistemic
uncertainty for LLM bandits.

5.1 Experimental Methodology

Task We evaluate the bandit policies on an automated content moderation task. We use an open-source
dataset, called “measuring hate speech”, which is openly available on HuggingFace Datasetﬁﬂ This dataset
consists of around 136,000 comments. Each of them is associated with a continuous score, called the “hate
speech score”; provided for each comment. Comments with a score > 0.5 are considered “toxic” (around
36% of the comments are labeled as toxic, while the others are not toxic). The task is framed as a contextual
bandit problem where the context is the text comment, and the actions available to the agent are “not
publish” or “publish”. For each time step, the agent will observe a batch of B = 32 comments. If the agent
decides not to publish a comment, a reward of 0.5 is observed regardless of the actual toxicity of the comment.

4nttps://huggingface.co/datasets/ucberkeley-dlab/measuring-hate-speech

https://huggingface.co/datasets/ucberkeley-dlab/measuring-hate-speech

Under review as submission to TMLR

1.0 A
0-3501 —— Greedy
Diag. LATS
0-3231 — LastLATS 05
—— Dropout TS
0.300 1 —— Epinet TS E‘
Q
€ 0.275 B 0.6+
o o
@ s
% 0.250 ¢
g T 0.4
Z 0.225 A g
5} —— Greedy
0.200 A 0.2 Diag. LATS
—— Last LATS
0.175 A —— Dropout TS
—— Epinet TS
0.150 1 | | | | | | 0.01 . . . ; ; .
0 500 1000 1500 2000 2500 3000 200 225 250 275 300 325
Observed data points Cumulative regret

Figure 2: Average regret (+ std. err.) obtained on Figure 3: CDF of the regret obtained after observ-
the toxic content detection bandit task. ing 3200 data points on the toxic content detection
bandit task (one point for each random seed).

If the agent publishes a non-toxic comment, a reward of 1 is observed. If the agent publishes a toxic comment,
a reward of -0.5 is observed. This asymmetric reward function represents a possible example suitable for
this real-world scenario. The goal of the agent is to minimize the regret (compared to a clairvoyant optimal
publishing policy) over time by learning to make optimal publish/not publish decisions based on the text
content.

Bandit models To investigate the role of uncertainty in LLM bandits, we compare different TS variants
with the greedy baseline. Every bandit model is initialized as in Eq. |1} with a pre-trained GPT2 model with
124M parameters (Radford et al| |2019). We use GPT2 (despite larger models being available) because it
allows us to perform many experimental runs, making sure our experiments are statistically sound. While
this is important in general for LLM research, it is especially vital when it comes to decision-making tasks,
where there is inherent stochasticity in the bandit algorithm.

As TS variants, we include dropout, Diagonal Fisher LA (which we will call Diag. LA), LA with full Hessian
on the last layer (which we will call Last LA), and Epinet TS. Regarding the epinet architecture, we follow
prior work on epinets (Osband et all 2023a3b) and select an architecture with a multi-layer perceptron h
which is multiplied with a dot product with the epistemic index: epi, (x; z) = hy([sg(76(2)), 2])" z. For more
details on the architecture, see Appendix [B] Every model is trained with regularized MSE loss as in Eq.
except for Diag. LA, which updates the prior with the new posterior at each time step, as shown in Eq. [0
All the parameters are updated during training. We train each model at the end of each time step for 50
epochs with the Adam optimizer (Kingma & Ba, 2014), with learning rate set to 3 - 107°. For each model,
hyperparameters are tuned on 10 random runs (with different seeds than the testing ones) with 7' = 30. We
did not tune the dropout probability because we wanted to exploit the fact that GPT2 was pre-trained with
dropout p = 0.1 and use the same p. We investigate the effectiveness of this choice in the results section.
We describe the training phase and the hyperparameter tuning procedure in more detail in Appendix [B]

5.2 Results

The experimental results (20 random runs, 7" = 100) are shown in Figure These results empirically
exhibit the importance of actively using epistemic uncertainty in contextual bandit problems with Large
Language Models. Overall, we notice how the approaches leveraging epistemic uncertainty tend to achieve
lower regret compared to the greedy policy. Also, we notice that the confidence interval of the greedy policy
is larger compared to the ones of the TS policies. This suggests that there is a high variance in the results

Under review as submission to TMLR

Action selection ratio for action "publish"

1.0 4 1.04 = Greedy
Diag. LATS
0.8 1 0.8 1
0.6 0.6 1
|
0.4 1 0.41
0.2 4 0.2
0.0 1 0.0 1
T T T T T T T T T T T T T T
0 500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000
Actions taken Actions taken

Figure 4: Action selection ratio for the action “publish” for two particular sample runs.

obtained by the greedy policy. In Figure [3| we show the empirical cumulative distribution function (CDF)
of the cumulative regret. From this Figure we notice that, while there are cases where greedy performs well,
there are worse cases where greedy gets a very high regret. To further investigate the cause of this finding,
let us define the action selection ratio as sr(a) = 5 Zthl I(a; = a). We selected two sample runs and
plotted the action selection ratio for the action “publish” during these two sample runs in Figure @ Notice
that the action “publish” is a risky action, meaning that it can lead to a strongly negative reward if toxic
content is published, while the action “not publish” is safer and gives a constant reward. Figure [4] clearly
shows that there are cases where the greedy policy suffers from under-exploration and persists in choosing
a suboptimal arm, while Thompson Sampling (in this case, Diag. LA) exhibits a more balanced behavior.
Due to this issue, the greedy algorithm will incur constant regret in the random runs which require more

balanced exploration. This issue makes the greedy policy perform worse than TS policies in our experiments.

Among the Thompson Sampling techniques, the Dropout method delivers strong results even without tuning
the dropout probability. In Appendix [B] we investigated the effect of changing the dropout probability.

Regarding the Epinet TS, we see that it has a lower average regret compared to greedy but with a larger
variance compared to other TS policies. From Figure [3] we notice that this variance is due to a high worst-
case regret. We conjecture that the choice of the Epinet architecture may influence results. Indeed, Epinets
are a very broad class of neural networks, and exploring Epinet design was not the focus of this work. Hence,
we did not perform an extensive architecture search, but we believe that our work can shed light on the
potential of epinets and we leave further investigation to future work.

Additional experiment on the IMDDb dataset In order to show how our findings generalize across
datasets, we conducted an additional experiment on a different dataset (IMDb (Maas et al., |2011))), which
we describe in Appendix [C]

6 Prior Work

Decision-making with Large Language Models Large language models (LLMs) recently emerged as
a dominant paradigm in natural language processing (Ouyang et al.| 2022} |(OpenAl, [2023), achieving state-
of-the-art performance across a wide range of tasks (Rae et al. 2021), pushing model scale and dataset size
to unprecedented levels. Models such as the OpenAl’s GPT LLM series (Radford et al.; [2018}; |2019; Brown
et al.l |2020; |OpenAl, 2023), Google’s PaLM (Chowdhery et al., |2023) and Gemini (Gemini Team et al.
2023), or Meta’s LLaMA (Touvron et all 2023ajb)) have leveraged the transformer architecture (Vaswani
et al [2017)) with model sizes ranging from hundreds of millions to hundreds of billions of parameters and
are trained on up to hundreds of billions of text examples.

10

Under review as submission to TMLR

Due to their remarkable capabilities in text processing, LLMs have also been applied to decision-making tasks
(Yang et al.,[2023b), and there is a plethora of papers in the research literature that investigated this idea (Li
et al.[[2022; |Carta et al|2023; |Chen et al|2023; Klissarov et al.|[2023} inter alia). One of the most prominent
examples is that of dialogue agents. Many recent papers model the dialogue between the LLM and a user
as a sequential decision-making problem, where the action is the answer that the LLM should provide to
the user after receiving the user’s message. In particular, those works typically use Reinforcement Learning
(RL) techniques (Ouyang et al., [2022) to fine-tune language models for dialogue applications. Hence, they
use the LLM as a policy to solve the RL problem with state-of-the-art RL algorithms, such as Prozimal
Policy Optimization (Schulman et al., 2017). Another example is enhancing LLMs by allowing them to use
external tools (Thoppilan et all 2022; [Yang et al., |2023a; [Hao et al., [2023; |Gao et al., 2023; Mialon et al.,
2023} |Schick et al.,|2023). In this case, the LLM-based agent has an action space which is the set of external
tools at disposal and the various interactions possible with those tools.

The aforementioned approaches typically assume that a sufficient amount of data has been collected a priori
to train an effective policy. They do not explicitly address the exploration-exploitation trade-off and they do
not systematically explore issues around the role of epistemic uncertainty in decision-making. In contrast,
in our work, we explicitly consider the problem of learning from interaction, and we focus on one of the
most fundamental and natural decision-making tasks, which is the one of contextual bandits (Chapelle & Li,
2011). We comprehensively investigate the role of epistemic uncertainty for bandit models with pre-trained
LLMs.

Uncertainty in Deep Learning Deep learning models provide state-of-the-art performance in several
different tasks, ranging from image recognition to natural language processing. However, these models
usually provide poor uncertainty estimates (Kendall & Gal, |2017). For this reason, several techniques have
been proposed in the literature that allow the estimation of the uncertainty of deep learning algorithms.
A useful mathematical model for characterizing uncertainty in deep learning is to categorize it into two
types: epistemic and aleatoric (Gal, [2016; Hullermeier & Waegeman, [2021). Epistemic uncertainty stems
from our lack of knowledge about the best model to describe a process. It is reducible as more data or
knowledge is gathered. Aleatoric uncertainty, in contrast, is due to the inherent randomness in the data or
environment and is irreducible even with more data. In particular, epistemic uncertainty has been proven
to be particularly helpful when it comes to decision-making problems.

A possible way to capture epistemic uncertainty in deep learning is to equip neural networks with a distri-
bution over the parameters, which is then updated upon seeing new data. This kind of neural network is
usually called Bayesian Neural Network (BNN). From a theoretical perspective for decision making under
uncertainty, Bayesian neural networks (BNNs) are appealing since they provide a full posterior distribu-
tion over models, allowing the derivation of formal regret bounds to guide exploration (Agrawal & Goyal,
2017). However, exact BNN inference is intractable for large models like LLMs. Thus, we must rely on
approximations.

One common approach to approximate the posterior distribution is Dropout (also called Monte Carlo
Dropout) (Gal & Ghahramani, 2016)). Dropout is a technique initially proposed for standard supervised
learning (Srivastava et al., |2014]), which consists of randomly setting a proportion p of neuron outputs to
zero at each forward pass through the network during training. In standard supervised learning, dropout
is then deactivated during inference, and all dropout neurons are re-scaled to account for the fact that all
dropout neurons are active. However, we can still apply dropout during inference. In this way, we randomly
select (according to the dropout probability) a set of parameters 6 to use. This procedure can be seen
approximately as sampling parameters from a posterior Bayesian distribution, and it is proven to have links
with variational inference techniques (Gal & Ghahramani), 2015)).

Another popular technique is Variational Inference (VI) (Graves,|[2011). VIis a technique in machine learning
used for approximating complex posterior distributions in Bayesian inference. The goal is to find a simpler,
parameterized distribution (the variational distribution) that is close to the true posterior distribution of
interest by solving an optimization problem. However, it requires changes in the training procedure, which
is not possible if we want to use pre-trained models.

11

Under review as submission to TMLR

Laplace Approximation (LA) (MacKay), [1992)) is another technique that is used to approximate the posterior
distribution of the parameters of a neural network. It consists of assuming that the training consists of a
maximum-a-posteriori estimate of the parameters and replacing the loss with its second-order Taylor expan-
sion around the MAP estimate. With these two steps, an analytical solution for the posterior distribution
of the weights can be found. In particular, the weights are distributed as a multivariate Gaussian with the
MAP estimate as the mean and the inverse of the Hessian as the covariance matrix. The key advantage
of LA is that the MAP estimate of the weights is usually available after standard deep learning training.
A more problematic issue is the computation of the Hessian. However, a recent paper (Daxberger et al.,
2021) investigates different techniques to approximate the Hessian, making the computation feasible even
for modern neural networks.

There are also non-Bayesian approaches to estimating epistemic uncertainty. Deep Ensembles (Lakshmi-
narayanan et all 2017)) provide a conceptually simple way to capture uncertainty, but are expensive and do
not yield a well-defined posterior. The authors show that the degree of disagreement among the NNs within
the ensemble is indicative of the epistemic uncertainty of the ensemble. While promising, this approach is not
suitable for LLMs, for which an ensemble would be prohibitively expensive for both training and inference.

A more affordable approach is the use of epinets (Osband et al. 2023a)). An epinet estimates the epistemic
uncertainty with a separate neural network that takes as inputs both features derived from the base network
(usually before the last layer) and an epistemic index, which is a random vector sampled from a fixed
reference distribution. The prediction is then obtained by adding the predictions of the base network and
the epinet. Though not Bayesian, epinets has been shown to provide useful uncertainty estimates for guiding
exploration combined with a Thompson Sampling policy, with much lower overhead than ensembles (Osband
et al., |2023b).

In our paper, we focus on scalable approaches to estimating epistemic uncertainty, and we adapt them to
the case of pre-trained LLM: we used the pre-trained weights as prior, exploited the dropout probability
used in the pre-training phase, and used different Hessian approximations. Finally, we empirically show the
importance of using epistemic uncertainty by embedding it into Thompson Sampling policies (Thompson,
1933). This significantly outperforms a greedy policy that does not account for uncertainty in decision-
making.

7 Conclusion

In this paper, we investigated the role of epistemic uncertainty estimation in decision-making tasks that
use natural language as input. For such tasks, using Large Language Models as agents has become the
norm. However, none of the recent approaches estimates the epistemic uncertainty of the agent. We focused
on a fundamental decision-making task: the contextual bandit problem, where context consists of text.
We approached the bandit task with a deep regression model initialized with a pre-trained LLM. As a
representative of the approaches with no uncertainty estimation, we considered an LLM bandit with a
greedy policy, which picks the action corresponding to the largest predicted reward. We compared the greedy
baseline with various approaches integrating uncertainty estimates into the decision process via Thompson
Sampling. We adapted several epistemic uncertainty estimation techniques to LLMs, such as dropout,
Laplace Approximation, and epinets. Finally, we provided an empirical analysis of bandit learning with
LLMs on real-world data. Our experiments showed that using uncertainty information leads to greatly
improved performance over the greedy approach. These improvements highlight the benefits of modeling
uncertainty for exploration in bandit problems with text and Large Language Models. Our work suggests
that uncertainty should play a more central role in developing LLM-based agents for decision-making.

References

Shipra Agrawal and Navin Goyal. Near-optimal regret bounds for thompson sampling. Journal of the ACM
(JACM), 64(5):1-24, 2017.

George EP Box and George C Tiao. Bayesian inference in statistical analysis. John Wiley & Sons, 2011.

12

Under review as submission to TMLR

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are few-shot learners.
Advances in neural information processing systems, 33:1877-1901, 2020.

Sébastien Bubeck, Varun Chandrasekaran, Ronen Eldan, Johannes Gehrke, Eric Horvitz, FE.ce Kamar, Peter
Lee, Yin Tat Lee, Yuanzhi Li, Scott Lundberg, et al. Sparks of artificial general intelligence: FEarly
experiments with gpt-4. arXiv preprint arXiv:2303.12712, 2023.

Thomas Carta, Clément Romac, Thomas Wolf, Sylvain Lamprier, Olivier Sigaud, and Pierre-Yves Oudeyer.
Grounding large language models in interactive environments with online reinforcement learning. In
Andreas Krause, Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan
Scarlett (eds.), International Conference on Machine Learning, ICML 2023, 23-29 July 2023, Honolulu,
Hawaii, USA, volume 202 of Proceedings of Machine Learning Research, pp. 3676-3713. PMLR, 2023.
URL https://proceedings.mlr.press/v202/carta23a.html.

Olivier Chapelle and Lihong Li. An empirical evaluation of thompson sampling. Advances in neural infor-
mation processing systems, 24, 2011.

Liting Chen, Lu Wang, Hang Dong, Yali Du, Jie Yan, Fangkai Yang, Shuang Li, Pu Zhao, Si Qin, Saravan
Rajmohan, et al. Introspective tips: Large language model for in-context decision making. arXiv preprint
arXiv:2305.11598, 2023.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam Roberts,
Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, et al. Palm: Scaling language
modeling with pathways. Journal of Machine Learning Research, 24(240):1-113, 2023.

Erik Daxberger, Agustinus Kristiadi, Alexander Immer, Runa Eschenhagen, Matthias Bauer, and Philipp
Hennig. Laplace redux-effortless bayesian deep learning. Advances in Neural Information Processing
Systems, 34:20089-20103, 2021.

Yarin Gal. Uncertainty in deep learning. 2016.

Yarin Gal and Zoubin Ghahramani. Bayesian convolutional neural networks with bernoulli approximate
variational inference. arXiv preprint arXiv:1506.02158, 2015.

Yarin Gal and Zoubin Ghahramani. Dropout as a bayesian approximation: Representing model uncertainty
in deep learning. In international conference on machine learning, pp. 1050-1059. PMLR, 2016.

Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon, Pengfei Liu, Yiming Yang, Jamie Callan, and Graham
Neubig. Pal: Program-aided language models. In International Conference on Machine Learning, pp.
10764-10799. PMLR, 2023.

Gemini Team, Rohan Anil, Sebastian Borgeaud, Yonghui Wu, Jean-Baptiste Alayrac, Jiahui Yu, Radu Sori-
cut, Johan Schalkwyk, Andrew M Dai, Anja Hauth, et al. Gemini: a family of highly capable multimodal
models. arXiv preprint arXiw:2312.11805, 2023.

Robert Gorwa, Reuben Binns, and Christian Katzenbach. Algorithmic content moderation: Technical and
political challenges in the automation of platform governance. Big Data & Society, 7(1):2053951719897945,
2020.

Alex Graves. Practical variational inference for neural networks. In J. Shawe-Taylor, R. Zemel, P. Bartlett,
F. Pereira, and K.Q. Weinberger (eds.), Advances in Neural Information Processing Systems, volume 24.
Curran Associates, Inc., 2011. URL https://proceedings.neurips.cc/paper_files/paper/2011/
file/7eb3c8be3d411e8ebfab08ebabf49632-Paper. pdf.

Shibo Hao, Tianyang Liu, Zhen Wang, and Zhiting Hu. Toolkengpt: Augmenting frozen language models
with massive tools via tool embeddings. arXiv preprint arXiv:2305.11554, 2023.

Dan Hendrycks and Kevin Gimpel. Gaussian error linear units (gelus). arXiv preprint arXiv:1606.08415,
2016.

13

https://proceedings.mlr.press/v202/carta23a.html
https://proceedings.neurips.cc/paper_files/paper/2011/file/7eb3c8be3d411e8ebfab08eba5f49632-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2011/file/7eb3c8be3d411e8ebfab08eba5f49632-Paper.pdf

Under review as submission to TMLR

Eyke Hiillermeier and Willem Waegeman. Aleatoric and epistemic uncertainty in machine learning: An
introduction to concepts and methods. Machine Learning, 110:457-506, 2021.

Kirthevasan Kandasamy, Akshay Krishnamurthy, Jeff Schneider, and Barnabés Péczos. Parallelised bayesian
optimisation via thompson sampling. In International Conference on Artificial Intelligence and Statistics,
pp. 133-142. PMLR, 2018.

Alex Kendall and Yarin Gal. What uncertainties do we need in bayesian deep learning for computer vision?
Advances in neural information processing systems, 30, 2017.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Martin Klissarov, Pierluca D’Oro, Shagun Sodhani, Roberta Raileanu, Pierre-Luc Bacon, Pascal Vincent,
Amy Zhang, and Mikael Henaff. Motif: Intrinsic motivation from artificial intelligence feedback. arXiv
preprint arXiv:2310.00166, 2023.

Frederik Kunstner, Philipp Hennig, and Lukas Balles. Limitations of the empirical fisher approximation for
natural gradient descent. Advances in neural information processing systems, 32, 2019.

Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell. Simple and scalable predictive uncer-
tainty estimation using deep ensembles. Advances in neural information processing systems, 30, 2017.

Shuang Li, Xavier Puig, Chris Paxton, Yilun Du, Clinton Wang, Linxi Fan, Tao Chen, De-An Huang,
Ekin Akytirek, Anima Anandkumar, et al. Pre-trained language models for interactive decision-making.
Advances in Neural Information Processing Systems, 35:31199-31212, 2022.

Renkai Ma and Yubo Kou. “how advertiser-friendly is my video?”: Youtuber’s socioeconomic interac-
tions with algorithmic content moderation. Proceedings of the ACM on Human-Computer Interaction, 5
(CSCW2):1-25, 2021.

Andrew Maas, Raymond E Daly, Peter T Pham, Dan Huang, Andrew Y Ng, and Christopher Potts. Learning
word vectors for sentiment analysis. In Proceedings of the 49th annual meeting of the association for
computational linguistics: Human language technologies, pp. 142-150, 2011.

David JC MacKay. Bayesian interpolation. Neural computation, 4(3):415-447, 1992.

Grégoire Mialon, Roberto Dessi, Maria Lomeli, Christoforos Nalmpantis, Ram Pasunuru, Roberta Raileanu,
Baptiste Roziere, Timo Schick, Jane Dwivedi-Yu, Asli Celikyilmaz, et al. Augmented language models: a
survey. arXiv preprint arXiv:2302.07842, 2023.

OpenAl. Gpt-4 technical report, 2023.

Tan Osband, Zheng Wen, Seyed Mohammad Asghari, Vikranth Dwaracherla, Morteza Ibrahimi, Xiuyuan Lu,
and Benjamin Van Roy. Epistemic neural networks. Advances in Neural Information Processing Systems,
36, 2023a.

Tan Osband, Zheng Wen, Seyed Mohammad Asghari, Vikranth Dwaracherla, Morteza Ibrahimi, Xiuyuan Lu,
and Benjamin Van Roy. Approximate thompson sampling via epistemic neural networks. In Proceedings
of the Thirty-Ninth Conference on Uncertainty in Artificial Intelligence, UAI ’23. JMLR.org, 2023b.

Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton, Fraser Kelton, Luke Miller,
Maddie Simens, Amanda Askell, Peter Welinder, Paul Christiano, Jan Leike, and Ryan Lowe. Training
language models to follow instructions with human feedback, 2022.

Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya Sutskever, et al. Improving language understanding
by generative pre-training. 2018.

14

Under review as submission to TMLR

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language models
are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

Jack W Rae, Sebastian Borgeaud, Trevor Cai, Katie Millican, Jordan Hoffmann, Francis Song, John
Aslanides, Sarah Henderson, Roman Ring, Susannah Young, et al. Scaling language models: Methods,
analysis & insights from training gopher. arXiv preprint arXiv:2112.11446, 2021.

Carlos Riquelme, George Tucker, and Jasper Snoek. Deep bayesian bandits showdown: An empirical com-
parison of bayesian deep networks for thompson sampling. In International Conference on Learning
Representations, 2018.

Daniel J Russo, Benjamin Van Roy, Abbas Kazerouni, Ian Osband, Zheng Wen, et al. A tutorial on thompson
sampling. Foundations and Trends® in Machine Learning, 11(1):1-96, 2018.

Timo Schick, Jane Dwivedi-Yu, Roberto Dessi, Roberta Raileanu, Maria Lomeli, Luke Zettlemoyer, Nicola
Cancedda, and Thomas Scialom. Toolformer: Language models can teach themselves to use tools. arXiv
preprint arXiv:2302.04761, 2023.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy optimiza-
tion algorithms. arXiv preprint arXiv:1707.06847, 2017.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov. Dropout: a
simple way to prevent neural networks from overfitting. The journal of machine learning research, 15(1):
1929-1958, 2014.

William R Thompson. On the likelihood that one unknown probability exceeds another in view of the
evidence of two samples. Biometrika, 25(3-4):285-294, 1933.

Romal Thoppilan, Daniel De Freitas, Jamie Hall, Noam Shazeer, Apoorv Kulshreshtha, Heng-Tze Cheng,
Alicia Jin, Taylor Bos, Leslie Baker, Yu Du, et al. Lamda: Language models for dialog applications. arXiv
preprint arXiv:2201.08239, 2022.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Roziere, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and efficient foundation
language models. arXiv preprint arXiv:2302.13971, 2023a.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay Bash-
lykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation and fine-tuned
chat models. arXiv preprint arXiv:2307.09288, 2023b.

Kristen Vaccaro, Christian Sandvig, and Karrie Karahalios. “at the end of the day facebook does what
it wants” how users experience contesting algorithmic content moderation. Proceedings of the ACM on
human-computer interaction, 4(CSCW2):1-22, 2020.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, f.ukasz Kaiser,
and Illia Polosukhin. Attention is all you need. Advances in neural information processing systems, 30,

2017.

Chih-Chun Wang, Sanjeev R Kulkarni, and H Vincent Poor. Bandit problems with side observations. I[EEE
Transactions on Automatic Control, 50(3):338-355, 2005.

LI Xuhong, Yves Grandvalet, and Franck Davoine. Explicit inductive bias for transfer learning with convo-
lutional networks. In International Conference on Machine Learning, pp. 2825-2834. PMLR, 2018.

Rui Yang, Lin Song, Yanwei Li, Sijie Zhao, Yixiao Ge, Xiu Li, and Ying Shan. Gpt4tools: Teaching large
language model to use tools via self-instruction. arXiv preprint arXiv:2305.18752, 2023a.

Sherry Yang, Ofir Nachum, Yilun Du, Jason Wei, Pieter Abbeel, and Dale Schuurmans. Foundation models
for decision making: Problems, methods, and opportunities. arXiv preprint arXiv:23083.04129, 2023b.

15

Under review as submission to TMLR

A Additional details on Laplace Approximation

In this section, we describe in more detail the Laplace Approximation technique.

Laplace Approximation The Laplace Approximation (LA) technique can be used to approximate the
posterior distribution of weights of a neural network. As we will see, Laplace Approximation does not require
any change in the training process nor training multiple models; thus, it is feasible for modern deep learning
neural networks (such as LLMs) that are typically pre-trained (hence, their training procedure can not be
modified) and expensive to train (hence, training multiple models is unfeasible).

Typically, deep neural networks are trained via the minimization of a loss. Let us say that we are given a
dataset D = {(z;,y;)}2;. We call the neural network we want to train fy, which is a parametric function.
The parameters of the neural network are § € R"V. Standard deep learning losses can usually be decomposed
in a regularization term and a sum of empirical loss terms on single data points:

L(D;0) = r(0) + > Ui, y:;0) (11)

i=1

From a Bayesian point of view, it is straightforward to interpret the regularization term as the negative log
prior: r(f) = —log P(6), and the sum of empirical losses as the negative log-likelihoods: ZZ1 Wz yi30) =
—log P(D|6) = —Zil log P(y;|fo(2z;)). This means that minimizing such a loss is actually leading to a
mazimum-a-posteriori (MAP) estimate: Oyap = argming £(D;0). From these considerations, we can also
re-write the posterior distribution as follows:

P(O|D) = %p(p\a)p(e) . %exp(fﬁ(p;a)), 7= /P(D\@)P(&)de (12)

Now, Laplace Approximation consists in replacing the loss with its second-order Taylor expansion around
Ovap:

1
L(D;0) =~ L(D; Ouar) + 5(‘9 — Onar)TH(0 — Onap), H = ViL(D;0)|oyar (13)

Notice that the first-order term vanishes because we are expanding around fy;ap, which is a point of minimum
of the loss.

Starting from this approximation, it can be shown that the posterior distribution is a multivariate Gaussian.
First, we obtain a closed-form solution for the normalizing constant Z:

Z - / P(D|6)P(0)d0 = / exp(—L(D: 0))d0

1
~ /exp(—E(D; GMAP) (0 — GMAP)TH(H — QMAP))dG

2
= exp(—L(D; Omap)) /eXp(f%(Q — Oviap) TH(O — Oyap))do
B s (2m) %
= exp(L(D, QMAP))i(det H)% ,

where the last equality derives from the multivariate normal density.

16

Under review as submission to TMLR

Now, if we come back to the posterior distribution, we obtain:
1 1
POIP) = ZP(PIIP(O) = 5 exp(=L(2:0)

((EZZJ)LI) eXp(_%(e — Oniar) " H (0 — Oniap)) "

= N(0; Onap, H™)

Therefore, to derive the approximate posterior in practice, we need first to identify the weights Oyap that
maximize the log-posterior function. This, in deep learning terms, corresponds to the training phase, where a
regularized loss is minimized. Subsequently, the only additional step is the calculation of the Hessian matrix
at the point Oyap. This means that LA can also be applied to pre-trained neural networks with no need
to change the training procedure. This is a fundamental requirement if we want to apply this procedure to
LLMs.

Expected Fisher Matrix The Laplace approximation as outlined above requires the knowledge of the
Hessian of the loss function. Typically, a further approximation is used. First of all, let us rewrite the
Hessian as the sum of the Hessian of the likelihood and the Hessian of the prior: H = H; + H,. Now, the
true Hessian of the likelihood is replaced by the expected Fishelﬂ matrix.

Despite the fact that the Hessian on the left hand side depends on the true regression targets, while the
right hand side does not, the approximation is accurate when the regression residuals are small (Kunstner,
et al.;|2019). In order to make the formula in equation [15| practical, we replace the expectation with respect
to the datapoints using a Monte-Carlo estimate.

D| BBy py(yla) [~V 10g Po(yl2)] = D Eyopy(yla) [~V log Po(ylz)] (16)
€D

We can further use the identity (Kunstner et al., [2019)

> Eyeryle) [~V log Po(ylz)] = > Eyop,yle) [V1og Po(ylz)V log Po(y|z) '] (17)
x€D x€D

to obtain a formula that does not require us to compute second-order derivatives. This highlights one benefit
of the expected Fisher matrix: it is positive-semi-definite by construction.

Diagonal Approximation While equation [I7] is possible to evaluate in principle, the resulting size of
the Hessian matrix is still way too large to store for even small-scale LLMs. We therefore make another
approximation H;, computing only the diagonal entries in equation

diag(Hy) = 3 Byeopy gy [(Vlog Po(y])?] (18)

z€D

The diagonal approximation corresponds to taking the Taylor expansion behind the Laplace approximation
for each coordinate separately, which leads to a posterior being a normal distribution with diagonal co-
variance. However, this distribution is not necessarily the best KL-projection of the Gaussian arising from
equation [17] on the space of diagonal Gaussiansﬂ

5We use the term expected Fisher to stress the fact that it is different from the empirical Fisher matrix (Kunstner et al.,
2019).
®Such a projection could be obtained by inverting the formula in equation and taking the diagonal, which is intractable.

17

Under review as submission to TMLR

Analytic Solution for Gaussian Aleatoric Noise If we assume a model where the aleatoric noise is
Gaussian with mean zero and fixed variance o, , we can compute the expectation in equation [18{analytically.
For the sake of clarity, let us consider the one-dimensional case. The parametric likelihood Py(y|x) is defined

as

Py(yla) = - fe(x))2> |

1 (1
- exp | ———
\/ 27rc7c2)bS 2031)5

Hence, the gradient of the log-likelihood is:

Y log Py(ylz) = UQL@ — fo(x)V fo(x) .

obs

The expected value of the squared gradient of the log-likelihood is:

\Y 2 1> 1
Ey~ Py (y]2) [(VlogPe(ylw))Z] ! fzix)) / Py (y — fe(m))zﬁ
obs —oo Yobs TO s

exp ((- fe(ﬂf))z) dy .

-
2O-obs

I

(19)
Now let us focus on the quantity I:
1 > 1
I =—— — fo(x))——(y — fo(x))exp | — — fo(x 2)d
T |0 0@ 3= e (o=))y
- s (- fo0?) |
=———|—(y — fo(x))exp | — y— folz
27TO'(2)bS ’ 2ch)bs. ? —00 (20)
[e (g - fa@)?) a
————exp | —=—5—(y — folx
- 27’1’0’ng p 20_ng Yy 2 Y
=0+1=1.
Hence, we obtained an analytical solution for the quantity of interest:
(Vfo(x))?
Eymrayle) [(V1og Polyle))’] = 2570 (21)

Oobs
B Additional experimental details

B.1 Experimental setting

B.1.1 Computational resources

Our experiments were conducted on one NVIDIA A100 GPU with 40GBs of VRAM. One random run, with,
T = 100 took about 30 minutes for the fastest bandits (i.e., greedy and dropout) and up to 40 minutes for
the bandits that had to compute the Hessian (i.e., Diag. LA and Last LA). We ran 5 different bandit models
for 20 random runs during the testing phase, taking a total of around 58 hours of computation.

B.1.2 Data

We use an open-source dataset, called “measuring hate speech”, which is also openly available on HuggingFace
Dataset{} This dataset consists of around 136,000 comments. Each of them is associated with a continuous
score, called the “hate speech score”, provided for each comment. Comments with a score > 0.5 are considered
“toxic” (around 36% of the comments are labeled as toxic, while the others are not toxic). The text is
tokenized with the GPT2 Tokenizer. In particular, we rely on the implementation provided by HuggingFace{ﬂ
We selected 128 as the maximum number of tokens for each comment (only 0.3% of the total comments were
longer than 128 tokens), and we applied left padding for the comments with lengths less than 128.

“https://huggingface.co/datasets/ucberkeley-dlab/measuring-hate-speech
8https://huggingface.co/docs/transformers/model_doc/gpt2#transformers.GPT2Tokenizer

18

https://huggingface.co/datasets/ucberkeley-dlab/measuring-hate-speech
https://huggingface.co/docs/transformers/model_doc/gpt2#transformers.GPT2Tokenizer

Under review as submission to TMLR

Algorithm 3 Dropout TS

Require: Bandit model fy, regularization scale .
1: 9p < [GPT,O]
2: Initialize D < ()
3: for time t =1,...,7T do

4 Observe context zj,...,z5.
5 forb=1,...,B do
6 Apply dropout to parameters: 6 < dropout(6).
7: Select a? = argmax, f;(z},a).
8 Observe reward 77.
9: end for
10: Create D; = {(z},a},7}), ..., (xB,aB,rB)}
11: Add to the observed dataset D < D U D;.
12: Train the model fy with Adam optimizer for 50 epochs minimizing:
B
LOV; D) =Yt — fyw (af,a)))* + A0 — 00 V)3
b=1
13: end for
B.1.3 Task

We evaluate the bandit policies on an automated content moderation task. The task is framed as a contextual
bandit problem where the context is the text comment, and the actions available to the agent are “not
publish” or “publish”. For each time step, the agent will observe a batch of B = 32 comments. If the
agent decides not to publish a comment, a reward of 0.5 is observed regardless of the actual toxicity of the
comment. If the agent publishes a non-toxic comment, a reward of 1 is observed. If the agent publishes a
toxic comment, a reward of -0.5 is observed. This asymmetric reward function represents a possible example
suitable for this real-world scenario. The goal of the agent is to minimize the regret (compared to the optimal
publishing policy) over time by learning to make optimal publish/not publish decisions based on the text
content.

B.1.4 Bandit models

To investigate the role of uncertainty in LLM bandits, we compare different TS variants with the greedy
baseline. Every bandit model is initialized as in Eq. [T} with a pre-trained GPT2 model with 124M parameters
(Radford et al., 2019). We use the implementation provided by the HuggingFace libraryﬂ GPT2 is a Causal
Language Model, which means that the attention of each token can only look to the current token and the
previous ones. For our purposes, we remove the final classification head, and we take the embedded features
of the last token. This is because the last token can look to all the tokens in the sentence with the attention
mechanism. In the GPT2 model, this final feature vector has a dimension of 768. We then add a final
linear layer with 2 output neurons, which will be trained to solve our regression task. All the parameters
are updated during training. We train each model at the end of each time step for 50 epochs with the Adam
optimizer (Kingma & Bal, [2014)), with learning rate set to 3 - 107°. As TS variants, we include dropout,
Diagonal Fisher LA (which we will call Diag. LA), LA with full Hessian on the last layer (which we will call
Last LA), and Epinet TS. In the following paragraphs, we describe in further detail the different TS bandit
models.

Dropout TS The dropout TS differs from standard supervised learning because we still apply dropout
during the action selection phase (Gal & Ghahramani| 2016; Riquelme et al., [2018]). Using dropout in this
phase, we randomly select (according to the dropout probability) a set of parameters 6 to use. This procedure
can be seen approximately as sampling parameters from a posterior distribution: 6 ~ P(0|D). With such

9https://huggingface.co/docs/transformers/model_doc/gpt2

19

https://huggingface.co/docs/transformers/model_doc/gpt2

Under review as submission to TMLR

Algorithm 4 Diag. LA TS
Require: Bandit model fy, prior variance oi, observation variance agbs.

1: 9p — [QPT,O]

2: H10 = diag(1/0?)

3. P(0) = P(0|0) = N(6,, H™!)

4: Initialize D « ()

5: for time t =1,...,7 do

6: Observe context zj,...,z5.

7 forb=1,...,B do

8: Sample parameters: § ~ P(0|D).

9: Select a? = argmax, fy(z, a).

10: Observe reward r?.

11: end for

12: Create D; = {(z},a},7}), ..., (xB,aB rP)}
13: Add to the observed dataset D < D U D;.
14: Train the model fy with Adam optimizer for 50 epochs minimizing:

1 1 - . _
buap argmin L0 D) = = Y (r = Sy (w,a)) + 56 — 65) TH D (00 — 6(1)

g
obs (z,a,m)ED:

15: Compute current Hessian of the likelihood: diag(ﬁl(t)) = = > (@ayen, (Violz, a))?
obs ’ t

16: Update Hessian H(1) « Hl(t) + H®t=1)
17: Update posterior distribution P(6|D) < N (fyiap, H™1), where H = H(:*)
18: end for

approximate posterior distribution, we can apply Thompson Sampling. After the action selection phase, we
observe the rewards for the selected action, and we update all the parameters of the model by minimizing a
MSE loss. A detailed explanation of the Dropout TS is provided in Algorithm [3]

Diag. LA TS With the Diag. LA TS, we have to maintain a diagonal Hessian for all the weights. At the
beginning, the Hessian is initialized as a diagonal matrix with all the entries equal to the inverse of the prior
variance 012). Then, action selection is performed by sampling every time a different set of weights. Finally, a
maximum-a-posteriori loss is minimized. Once we finished the training phase, we obtain a set of weights which
we call fyap. We update our Hessian using the recursive formula and the expected Fisher approximation.
With these quantities, we update the posterior distribution P(8|D) as P(0|D) = N (6map, H~!). Then, we
can re-start observing context and selecting actions, repeating the loop. An algorithmic description of this
bandit procedure is provided in Algorithm [4

Last LA TS With the Last LA TS, we have to maintain a full Hessian only for the last layer parameters.
At the beginning, the Hessian is initialized as a diagonal matrix with all the entries equal to the inverse
of the prior variance O'Z and prior weights equal to zero. Then, action selection is performed by sampling
every time a different set of weights for the last layer, while all the other parameters stay fixed. Finally, a
regularized MSE loss is minimized. Once we finished the training phase, we obtain a set of weights which
we call Oyiap for the last layer. We update our Hessian using the recursive formula and computing the full
Hessian on the likelihood part of the loss. With these quantities, we update the posterior distribution on
the last layer parameters P(0|D) as P(0|D) = N (6nap, H1). Then, we can re-start observing context and
selecting actions, repeating the loop. An algorithmic description of this bandit procedure is provided in

Algorithm

Epinet TS Regarding the epinet architecture, we follow prior work on epinets (Osband et al., 2023ajbl)
and select an architecture with a multi-layer perceptron i which is multiplied with a dot product with the
epistemic index: epi, (;2) = hy([sg(7g()), 2])" 2. In particular, we insert a hidden layer with 256 neurons

20

Under review as submission to TMLR

Algorithm 5 Last LA TS

Require: Bandit model fy, prior variance Uz, observation variance agbs.

= s e
R o

9p — WPT, 0]

Initialize the Hessian for the last layer H(1:0) = diag(1/07)

Initialize the prior distribution for the last layer P(0) = P(0|0) = N (0, H~!)
Initialize D + 0

for timet=1,...,7T do

Observe context zj,...,z5.

forb=1,...,B do
Sample last layer parameters: § ~ P(A|D) (the remaining parameters stay fixed).
Select a? = argmax, fy(z?, a).
Observe reward 7?7.

end for

Create Dy = {(z},at,7}1),..., (P, aB,rB)}

Add to the observed dataset D < D U D;.

Train the model fy with Adam optimizer for 50 epochs minimizing:

B
Onap argmin L0 D) = (1] = foo (a7, a)) + N[0 — 05
b=1

— 52 2
where \ = oy /0.

15: Compute the full Hessian of the likelihood (only for the last layer parameters):
N 1
Y= = > (r-fo(z,0)
2Uobs
(z,a,r)E€D:
16: Update last layer Hessian H(1) « Hl(t) + {1
17: Update posterior distribution P(|D) < N (fyiap, H™1), where H = H(:)
18: end for
Model Hyperparameter Range Selected
Greedy Regularization factor A | 0.1, 0.5, 1 1
. Prior variance o2 0.0001, 0.0005, 0.001, 0.005, 0.01 | 0.0001
Diag. LA TS .
Obs. variance o, 0.0001, 0.0005, 0.001, 0.005, 0.01 | 0.01
Prior variance o2 0.0001, 0.0005, 0.001, 0.005, 0.01 | 0.01
p))))
Last LATS | () ¢ variance o2 0.0001, 0.0005, 0.001, 0.005, 0.01 | 0.01
Epinet Regularization factor A | 0.1, 0.5, 1 1

with GELU activation function (Hendrycks & Gimpel, [2016]) (the same as GPT2). The last layer of the
epinet is a linear layer with a two-dimensional output of dimension 32 x 2. While we conjecture that the
choice of the Epinet architecture may influence results, exploring Epinet design was not the focus of this
work. Therefore, we used this architecture, which is inspired by prior work (Osband et al., 2023b). Epinets
are a very broad class of neural networks. We believe that our work can shed light on the potential of epinets

Table 1: List of the tuned hyperparameters

and we leave further investigation to future work.

B.2 Hyperparameter tuning

For each model, hyperparameters are tuned on 10 random runs (with different seeds than the testing ones)
with T = 50. The set of hyperparameters are shown in Table [I] In particular, for all the hyperparameter
configurations, we selected the ones that best performed on average, measured by cumulative regret, except

21

Under review as submission to TMLR

Algorithm 6 Epinet TS

Require: Epinet bandit model gy ,, regularization scale), reference distribution Py.
1: 9p «— [GPT,O]
2: Initialize D < ()
3: for time t =1,...,7T do

4 Observe context zj,...,z5.
5 forb=1,...,B do
6: Sample epistemic index z ~ Py
7: Select a? = argmax, go.,(22, a; 2).
8 Observe reward 7?7.
9: end for
10: Create D; = {(z},a},7}), ..., (xB,aB rB)}
11: Add to the observed dataset D < D U D;.
12: Train the model gy, with Adam optimizer for 50 epochs minimizing:
B
LW, 0D D) =D (1] = goww o (2F, al; 2°)* + MN[0 — 69|53,
b=1
where 2% ~iq Pz.
13: end for
0.350 4 Dropout TS — p=0.05
= Dropout TS — p=0.1
0.325 4 = Dropout TS — p=0.2

for the LA TS models. For the LA TS models, we selected the best configuration and the ones that are not
statistically different from the best (measured with a t-test, p-value=0.05). Among those configurations, we
selected the ones with the highest values for prior and observation variances, in order to induce exploration.

0.300 -

Average regret
I
N
~
w

ot
N
o
o

0.225 A

0.200 -

0.175 -

T T T T u T T u
0 200 400 600 800 1000 1200 1400 1600
Observed data points

Figure 5: Average regret obtained with different dropout values

B.3 Additional ablation experiment on dropout

Among the Thompson Sampling techniques, the Dropout method delivers strong results even without tuning
the dropout probability. By relying on the same dropout rate used during pre-training, we are using the
same uncertainty that the original model had in learning to generate natural language. Therefore, it is
not necessarily the best dropout probability to use in a bandit task. To investigate the importance of this
hyperparameter in our experiments, we show dropout TS policies across various dropout probabilities in
Figure bl From these results, the rate originally used for pre-training appears optimal for the bandit task.
Also, we notice that, for a smaller value of p (p = 0.05), the reduced exploration induces a larger variance,

as expected.

22

Under review as submission to TMLR

C Additional experiment on the IMDb dataset

In this section, we describe an analogous bandit experiment we conducted on a different dataset, in order to
show how our findings generalize across datasets.

C.1 Experimental setting
C.1.1 Data

We use the open-source IMDb dataset (Maas et al., 2011)), which is also openly available on HuggingFace
Datasetﬂ This dataset consists of 50,000 movie reviews. Each of them is associated with a class, which
can be “positive” or “negative”, according to the sentiment expressed in the review. The dataset consists of
exactly 50% “positive” reviews and 50% “negative” reviews. The text is tokenized with the GPT2 Tokenizer.
In particular, we rely on the implementation provided by HuggingFace. We selected 256 as the maximum
number of tokens for each comment, and we applied left padding for the reviews with lengths less than 256.

C.1.2 Task

We evaluate the bandit policies on an automated content moderation task. The task is framed as a contextual
bandit problem where the context is the text comment, and the actions available to the agent are “not
publish” or “publish”. In this case, we simulate this task by considering a negative review as a toxic content,
which we do not want to publish. For each time step, the agent will observe a batch of B = 32 comments. If
the agent decides not to publish a review, a reward of 0.5 is observed regardless of the actual toxicity of the
content. If the agent publishes a non-toxic comment (which, in this case, is a positive review), a reward of
1 is observed. If the agent publishes a toxic comment (which, in this case, is a negative review), a reward of
-0.5 is observed. This asymmetric reward function represents a possible example suitable for this real-world
scenario. The goal of the agent is to minimize the regret (compared to the optimal publishing policy) over
time by learning to make optimal publish/not publish decisions based on the text content.

C.1.3 Bandit models and Hyperparameter tuning

For this task, we employ the same bandit models used for the experiment shown in Section [B] As for
the hyperparameters, we do not tune any hyperparameter for this task specifically. Rather, we use the
hyperparameters found in the hyperparameter tuning procedure for the previous experiment, shown in
Section [Bl

Ohttps://huggingface.co/datasets/imdb

23

https://huggingface.co/datasets/imdb

Under review as submission to TMLR

C.2 Results
1.0
0.375 A1 —— Greedy = Greedy
—— Diag. LATS - Diag. LATS
0.350 —— LastLATS P Last LATS
—— Dropout TS . —— Dropout TS
0.325 - —— Epinet TS E - Epinet TS
8 2
[-
S 0.300 506
e o
g g
80275 =
% E 0.4 1
0.250 5
(@]
0.225 0.2
0.200
0.0 1, : : : ' '
0 500 1000 1500 2000 2500 3000 16 18 20 22 24 26
Observed data points Cumulative regret

Figure 6: Average regret (+ std. err.) obtained on Figure 7: CDF of the regret obtained after observing
the IMDDb dataset. 3200 data points on the IMDb dataset (one point for
each random seed).

The experimental results (20 random runs, T’ = 100) are shown in Figure[6] These results empirically exhibit
the importance of actively using epistemic uncertainty in contextual bandit problems with Large Language
Models also with this dataset. Overall, we notice how the greedy policy is the one that achieves the highest
regret in this task. In this new task, Dropout TS and Diag. LA TS exhibit a slightly lower average regret
compared to the greedy algorithm, but this improvement is within the std. err. of the greedy regret. This
may be the result of the fact that we did not fine-tune the hyperparameters for this new task. Instead, we
used the same hyperparameters resulted from a hyperparameter tuning on a different dataset. However, we
notice that Last LA TS and Epinet TS achieve a significantly lower regret compared to the other policies.
This shows that epistemic uncertainty is fundamental for a better exploration, also in this new bandit task.
These findings are also confirmed by Figure [} which shows the empirical CDF of the cumulative regrets
obtained over the 20 random runs.

24

	Introduction
	Preliminaries
	Batch Contextual Bandit problem
	Aleatoric and Epistemic Uncertainty in Machine Learning

	Large Language Model Bandits
	Greedy policy
	Thompson Sampling

	Epistemic uncertainty estimation for pre-trained LLMs
	Dropout
	Laplace Approximation
	Last-Layer Laplace Approximation
	Epinets

	Experiments
	Experimental Methodology
	Results

	Prior Work
	Conclusion
	Additional details on Laplace Approximation
	Additional experimental details
	Experimental setting
	Computational resources
	Data
	Task
	Bandit models

	Hyperparameter tuning
	Additional ablation experiment on dropout

	Additional experiment on the IMDb dataset
	Experimental setting
	Data
	Task
	Bandit models and Hyperparameter tuning

	Results

