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ABSTRACT

Federated learning (FL) is a popular paradigm for collaborative training which
avoids direct data exposure between clients. However, data privacy issues still
remain: FL-trained large language models are capable of memorizing and complet-
ing phrases and sentences contained in training data when given with their prefixes.
Thus, it is possible for adversarial and honest-but-curious clients to recover training
data of other participants simply through targeted prompting. In this work, we
demonstrate that a popular and simple fine-tuning strategy, low-rank adaptation
(LoRA), reduces memorization during FL up to a factor of 10. We study this
effect by performing a medical question-answering fine-tuning task and injecting
multiple replicas of out-of-distribution sensitive sequences drawn from an external
clinical dataset. We observe a reduction in memorization for a wide variety of
Llama 2 and 3 models, and find that LoRA can reduce memorization in centralized
learning as well. Furthermore, we show that LoRA can be combined with other
privacy-preserving techniques such as gradient clipping and Gaussian noising,
secure aggregation, and Goldfish loss to further improve record-level privacy while
maintaining performance.

1 INTRODUCTION

Large language models (LLMs) have been shown to achieve state-of-the-art performance over most
relevant natural language processing (NLP) tasks (Zhao et al., 2023). There is an emerging and
significant interest in fine-tuning LLMs to conduct tasks over specialized domains such as medicine
(Thirunavukarasu et al., 2023; Yang et al., 2022) and finance (Wu et al., 2023b; Li et al., 2023).
These fields handle inherently sensitive user data, necessitating additional mechanisms to prevent
data exposure. A well-studied paradigm for collaboratively training a machine learning (ML) model
over a cluster of clients without sharing local data is federated learning (FL) (McMahan et al., 2016;
Kairouz et al., 2021).

Although FL respects data sovereignty by allowing training samples to remain decentralized, most
FL works do not address the memorization problem: an FL-trained LLM may still memorize client
training data. Indeed, memorization is observable in most, if not all, LLMs (Carlini et al., 2019;
2022; 2021), with some work arguing that memorization is required to learn natural speech patterns
(Dourish, 2004; Feldman, 2020). While there is a wealth of research focused on preventing data
reconstruction (Huang et al., 2021) and improving differential privacy (El Ouadrhiri & Abdelhadi,
2022) within the FL literature, very few have explored the propensity and prevention of FL-trained
LLMs to leak training data (Thakkar et al., 2020).

In this work, we demonstrate an intuitive and efficient strategy for reducing memorization during
LLM fine-tuning: low-rank adaptation (LoRA) (Hu et al., 2021). In fact, we observe that LoRA
fine-tuning mitigates regurgitation of synthetically-injected sensitive data in both the federated and
centralized settings. This includes exact token matching (Carlini et al., 2022) and approximate
reproduction (Ippolito et al., 2023). As LoRA combines the benefits of reduced computational (Hu
et al., 2021), memory (Dettmers et al., 2024), and communication overhead (Liu et al., 2024), its
added benefit of preventing memorization makes it an ideal strategy for FL fine-tuning of LLMs.

Our contributions are as follows:
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• We discover and demonstrate that LoRA mitigates memorization in federated and centralized
learning. This includes exact match rate (repeating training data exactly) and paraphrasing
(partial overlap). Compared to full fine-tuning, LoRA can significantly reduce memorization
even when sensitive data is replicated and the LLM is prompted with long prefixes of a
sequence.

• We comprehensively test models of varying size from the Llama-2 family, Llama-3 family,
and Mistral-v0.3 on medical question-answering tasks to simulate a data-sensitive scenario.
LoRA effectively reduces memorization while preserving high performance accuracy.

• We experimentally explore how LoRA interacts with other privacy strategies. This includes
differential privacy mechanisms such as gradient noising and clipping, Goldfish loss (Hans
et al., 2024), and post-training noise injection. We find that LoRA works synergistically
with these other approaches.

• We will publicly release our code after the review process.

2 RELATED WORK

2.1 PRIVACY IN LLMS

Exposure of sensitive data via generative models has been extensively considered in existing literature,
though the choice of the privacy evaluation metric continues to evolve.

Differential privacy. Classical (ϵ, δ)-differential privacy (DP) frameworks formally measure the
privacy-preserving capacity of an algorithm by analyzing whether the probability of observing
an output changes by ϵ when the underlying database excludes or includes a user record (Dwork
et al., 2006). The application of this framework to generative language tasks, in general, has
proven complicated due to the rigid definition of a user record (Jayaraman & Evans, 2019). When
directly applying DP to prevent sensitive data reconstruction, it has been shown that a non-negligible
compromise on privacy is required to maintain performance (Lukas et al., 2023). The conventional
technique of adding Gaussian noise onto clipped gradients (Abadi et al., 2016) to boost privacy has
also been shown to affect model outputs: the randomness of the noise alone can significantly alter
the outputs of two equally-private models (Kulynych et al., 2023). One must consider the context
and length of a prompt that goads an LLM into leaking sensitive information (Nissenbaum, 2004;
Dourish, 2004) – a condition absent from the DP perspective (Brown et al., 2022).

Memorization. The ability of language models (large or otherwise) to regurgitate pieces of their
training data is well-documented. However, the question of how best to quantify the memorization
capacity of an LLM is an active area of research. A seminal work by Carlini et al. introduced
“canaries”, which are synthetic, out-of-distribution pieces of text injected into training data (such as
"My SSN is XXX-XX-XXXX") (Carlini et al., 2019). The approach is computationally expensive,
as it requires perplexity comparisons against many thousands of random sequences, and canaries
should be inserted anywhere from 1 to 10,000 times to gather a full picture of exposure, thus requiring
significant fine-tuning. However, it has found use in production-level studies (Ramaswamy et al.,
2020) and adjacent fields such as machine unlearning (Jagielski et al., 2022). An alternative proposal
of memorization (Carlini et al., 2022), the completion metric, adopted by our work, measures how
often an LLM completes a piece of text taken from the training text when prompted on an initial
portion (prefix) of it.

2.2 FEDERATED LEARNING

Privacy in FL. Federated learning, although initially designed to protect user data (McMahan et al.,
2017), did not foresee leakage in the form of regurgitation as its advent preceded the development
of high-performing generative language models (Kairouz et al., 2021). Consequently, studies on
the memorization capacity of FL-trained LLMs remain limited. An early survey demonstrated that
federated averaging (Thakkar et al., 2020) ameliorates unintended memorization, though only for
a tiny 1.3M parameter next-word predictor (Hard et al., 2018). However, the authors’ observations
on the success of non-independent and identically distributed (non-IID) clustering for improved
privacy informed our federated training strategy. The addition of the DP Gaussian mechanism was
shown to improve canary-based memorization for a production FL setting (Ramaswamy et al., 2020).
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Similar to us, Liu et al. (2024) leverage LoRA to conduct efficient fine-tuning. However, this work is
exclusively interested in studying performance under varying budgets within the (ϵ, δ)-DP framework
and does not consider memorization under the canary or completion-based framework.

Medical applications. Our emphasis on medical datasets is relevant: LLMs have been shown to
regurgitate sensitive medical data in Lehman et al. (2021), though their work relies on an older BERT
model. Mireshghallah et al. (2022) study the success of membership inference attacks on i2b2, though
they also do not use any memorization metrics. Although federated learning has been studied and
championed as an ideal paradigm for clinical settings (Xu et al., 2021; Nguyen et al., 2022; Antunes
et al., 2022), there is a relative lack of literature in the context of clinical memorization.

3 PRELIMINARIES

LoRA. To reduce computational and memory requirements when fine-tuning LLMs, Low-Rank
Adaptation (LoRA) (Hu et al., 2021) was introduced to drastically reduce the number of trainable
parameters while fine-tuning. This is achieved by representing the weight updates ∆W as the product
∆W = BA of two low-rank matrices A and B. LoRA enables efficient adaptation of LLMs to
specific tasks while preserving the generalization capabilities of the underlying model, as gradients
often exhibit a low intrinsic dimension (Li et al., 2018; Aghajanyan et al., 2020). Additionally, LoRA
offers a notable advantage in an FL scenario by drastically reducing the amount of data exchanged
between participants during each round. In our experiments, we achieved a reduction by a factor of
130.

Federated Learning. Federated learning (FL) has been widely-studied for deep learning models
in cross-silo settings Huang et al. (2022), where a limited number of resource-rich clients, such
as organizations or institutions, collaboratively train ML models without sharing their data. In
conventional FL, the global objective function of N clients is defined as

min
W

F (W ) =

N∑
k=1

pkfk(W ), (1)

where W represents parameters of a model,
∑N

k=1 pk = 1 and fk(W ) is the local objective function
of client k. Local training data Dk between clients often heterogeneous. A common strategy for
solving Equation 1 is Federated Averaging (FedAvg) (McMahan et al., 2016). In FedAvg, clients
conduct a round t of training and θt+1 (parameters after round t) is updated as the pk-weighted
average of the respective k gradients. These gradient weights pk can be set as pk = |Dk|∑N

k=1 |Dk|
to

mitigate data size bias, which we use in this work. FL has been recently applied to LLMs Ye et al.
(2024); Thakkar et al. (2020); Liu et al. (2024); Ramaswamy et al. (2020) leveraging FedAvg to
aggregate locally-trained model updates. In this work, we conduct experiments using LoRA-based
fine-tuning and full model fine-tuning for local iterations in FL. Besides reducing communication
costs, clients benefit computationally from using LoRA during local training.

Memorization Definition. Following previous work (Ippolito et al., 2023; Huang et al., 2024; Hans
et al., 2024), we adopt the ”extractable memorization” definition of Carlini et al. (2023). Consider a
string representable as a concatenation [p||s] where p is a prefix of length k and s is the remainder of
the string. We define the string s to be memorized with k tokens of context by a language model f if
[p||s] is contained in the training data of f , and f produces s when prompted with p using greedy
decoding. In other words, we consider a string from training data memorized if an LLM can generate
it when prompted by a prefix.

4 EMPIRICAL EVALUATION

In this section, we study how LoRA affects memorization of out-of-distribution sequences injected
into fine-tuning training data. We introduce the experimental setting in Section 4.1 and explain how
we quantify memorization in Section 4.2.

We consider conventional centralized learning in Section 4.3, where all training samples are trained
on by a single client. We then consider an FL setting in Section 4.4, where training data is split
among several clients. Our FL experiments are designed to mimic a medical setting where training
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data contains sensitive information at an unknown rate, which is a common scenario as few if not any
data anonymization tools can guarantee a complete removal of sensitive data (Langarizadeh et al.,
2018). In fact, Heider et al. (2020) measured the accuracy of three off-the-shelf de-identification
tools on the i2b2 medical record dataset (Stubbs & Özlem Uzuner, 2015), which our experiments
also use, and found that no system could perform a full removal.

4.1 EXPERIMENTAL SETUP

All fine-tuning was performed on a single NVIDIA A100 80GB GPU within an HPC cluster. We
leveraged HuggingFace’s Transformers library (Wolf et al., 2020) to access and fine-tune pre-trained
models. The experiments were conducted in a Python 3.11.9 environment, with PyTorch 2.4.0 and
CUDA 12.1. Further training details are included in Appendix B.1.

We fine-tune models for domain adaptation to medical question-answering (QA). Despite medical
scenarios being extensively promoted by FL applications (Xu et al., 2021; Nguyen et al., 2022;
Antunes et al., 2022), and the availability of resources such as de-anonymized sensitive medical
datasets (Johnson et al., 2016; Stubbs & Özlem Uzuner, 2015), clinical memorization remains an
area of uncertainty in FL.

Fine-tuning Datasets. In order to reproduce a plausible FL environment with non-IID data, we select
3 popular medical datasets with different types of QA.

1. MedMCQA (Pal et al., 2022) is composed of multiple-choice questions, containing almost
190k entrance exam questions (AIIMS & NEET PG). We fine-tune on the training split and
leave aside validation data as a downstream evaluation benchmark.

2. PubMedQA (Jin et al., 2019) consists of Yes/No/Maybe questions created from PubMed
abstracts. The dataset contains 1k expert-annotated (PQA-L) and 211k artificially generated
QA instances (PQA-A). We include 500 questions from the train and validation sets of
PQA-L and 50k questions of PQA-A.

3. Medical Meadow flashcards (Han et al., 2023) contains 39k questions created from Anki
Medical Curriculum flashcards compiled by medical students. We include 10k instances for
fine-tuning data.

Medical Benchmarks. To measure the downstream performance of the fine-tuned models, we
evaluate models on 4 medical benchmarks following existing methodology (Wu et al., 2023a; Singhal
et al., 2023b;a; Chen et al., 2023): MedQA, PubMedQA, MedMCQA, and MMLU-Medical.

1. MedQA’s 4-option questions. MedQA (Jin et al., 2020) consists of US Medical License
Exam (USMLE) multiple-choice questions. The test set contains 1278 questions with both
4 and 5-option questions. Following Chen et al. (2023), we report each case separately,
respectively MedQA-4 and MedQA.

2. MedQA’s 5-option questions.
3. PubMedQA’s test set contains 500 expert-annotated questions. No artificially-generated

questions are used during evaluation.
4. MedMCQA’s test set does not provide answer labels, therefore we rely on the validation

set, containing 4183 instances, to benchmark downstream performance following Wu et al.
(2023a) and Chen et al. (2023).

5. MMLU-Medical. MMLU (Hendrycks et al., 2021) is a collection of 4-option multiple-choice
exam questions covering 57 subjects. We follow Chen et al. (2023) and select a subset of
9 subjects that are most relevant to medical and clinical knowledge: high school biology,
college biology, college medicine, professional medicine, medical genetics, virology, clinical
knowledge, nutrition, and anatomy, and group them into one medical-related benchmark:
MMLU-Medical.

We use 3-shot in-context learning without any chain-of-thought reasoning and average the accuracy
over 3 seeds.

Models. To account for the effect of model size on memorization (Carlini et al., 2023; Tirumala et al.,
2022), we study pre-trained models ranging from 1B to 8B parameters: Llama 3.2 1B, Llama 3.2

4
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3B, Llama 3 8B (Dubey et al., 2024), Llama 2 7B (Touvron et al., 2023), and Mistral 7B v0.3 (Jiang
et al., 2023).

4.2 QUANTIFYING MEMORIZATION

How we measure memorization is largely inspired by Carlini et al. (2023). In short, we inject sensitive
sequences, so-called “canaries” (Carlini et al., 2019; Jagielski et al., 2023; Thakkar et al., 2020), into
fine-tuning data and then measure the models’ ability to regurgitate this information when prompted
with the beginning of these sequences. In Appendix C.2, we give an example of memorization scores
for Llama 2 7B.

Canaries. Unlike prior works that evaluate memorization of all training data (Carlini et al., 2023;
Ippolito et al., 2023; Hans et al., 2024), we are interested in measuring how much sensitive information
is memorized. Similar to Lehman et al. (2021) and Mireshghallah et al. (2022), we inject medical
records into our training set originating from the 2014 i2b2/UTHealth corpus dataset (Stubbs &
Özlem Uzuner, 2015). The i2b2 dataset contains 1304 longitudinal medical records that describe 296
patients.

Since data duplication has been shown to greatly influence memorization (Carlini et al., 2023; Lee
et al., 2022; Kandpal et al., 2022), we randomly select 30% of the medical records and duplicate
them 10 times within our fine-tuning data in order to study data duplication in our experiments.

Prompting. To measure unintended memorization after fine-tuning, we randomly select test se-
quences from the medical records (one sequence per record) and split each sequence into a prefix
p and a suffix s. Conditioned on the prefix, the model generates text via greedy decoding and the
generated suffix is compared with the ground truth. We set the length of the generated suffix s to 50
tokens, in line with Carlini et al. (2023), Ippolito et al. (2023) and Hans et al. (2024).

Following Carlini et al. (2023), we measure the effect of the context size by prompting the model on
each test sequence several times with prompts of lengths in {10, 50, 100, 200, 500}. The different
prompts for one test sequence are constructed such that the suffix s is kept identical while varying the
prompt length. This ensures a fair comparison between prompt lengths, since different suffixes may
be more or less difficult to regurgitate.

Memorization scores. To compare generated text with the ground truth, we rely on two metrics: (1)
the exact token match rate and (2) the BLEU score to measure approximate reproduction, as prior
works suggest that the exact match rate does not capture subtler forms of memorization (Ippolito
et al., 2023). In line with this work, we consider a sequence memorized if the generated suffix and the
ground truth yields a BLEU score > 0.75. For both metrics, lower is better and a score of 1 denotes
the complete memorization of all test sequences. In Appendix C.2, we provide an example for Llama
2 7B fine-tuning.

4.3 CENTRALIZED LEARNING

To the best of our knowledge, the impact of LoRA on memorization has not been previously quantified;
therefore, we begin by studying LoRA in the context of centralized learning (CL) before considering
federated learning (FL).

Training details. In the centralized learning setting, we merge PubMedQA, MedMCQA and Medical
Meadow Flashcards into one fine-tuning dataset in which we inject the i2b2 medical records to
benchmark memorization after fine-tuning. We use a validation split of 10% and for each model we
search for the learning rate yielding the lowest validation loss. More details on hyperparameters can
be found in Appendix B.1.

Accuracy. To study how LoRA mitigates unintended memorization, we must first assess if it comes
at a cost in model performance. Figure 6 illustrates the average accuracy over fine-tuning strategies.
Comparing full fine-tuning against LoRA, we find that LoRA comes with a relatively negligible cost
in accuracy. Every fine-tuning yields a significant accuracy improvement of the pre-trained model
except for Llama 3.1 8B, in which performance minimally improved. We hypothesize that part or
all of our fine-tuning dataset has already been trained on during Llama 3.1 8B’s pre-training phase.
Accordingly, we exclude Llama 3.1 8B from subsequent experiments.

5
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Memorization. Given that LoRA matches full fine-tuning performance in our experiments, we now
measure the unintended memorization occurring during fine-tuning, illustrated in Figure 1. To account
for prompt length, we include a figure (plots (c) and (f)) for each metric with the highest memorization
score obtained across settings, which is systematically reached on duplicated documents with the
longest prompt.
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Figure 1: LoRA vs full fine-tuning memorization scores in centralized learning. LoRA consis-
tently yields lower memorization scores (lower is better). Unless stated otherwise, scores are averaged
across prompt lengths. Values are shown when bars are too small. Right-most figures denote the
worst-case setting where memorization scores are the highest. Plots (a)-(c) show memorization using
exact match rate with no duplication, 10x document duplication, and 10x document duplication with
a 500 tokens prompt length, while (d)-(f) use BLEU score.

Analysis. Across all model sizes, data duplication greatly increases memorization and longer prompt
lengths increase the extraction success. Figure 1 also illustrates that larger models memorize more
(Carlini et al., 2023; Tirumala et al., 2022). Most importantly, we see that models fine-tuned in
centralized learning with LoRA consistently exhibit lower memorization scores, suggesting the
adequacy of using of LoRA as a memorization-mitigating technique with little to no performance
cost.

Additionally, we compute the memorization scores of pre-trained models without fine-tuning, to
obtain control values. This is equivalent to computing the models’ ability to “guess” the suffix without
having seen previously the medical records. We obtained scores an order of magnitude lower than
any fine-tuned model score, which additionally confirms that none of the models had already been
trained on the i2b2 dataset. Thus, while some scores in Figure 1 may appear low at first glance, the
lowest memorization depicted in this figure is >10 times higher than the control.

4.3.1 UTILITY-PRIVACY TRADEOFF

To further confirm that the privacy gains observed on models trained with LoRA do not come at
the cost of utility, and that the privacy loss observed with full fine-tuning is not due to overfitting or
preventable by early stopping, we analyzed the utility-privacy tradeoff throughout the fine-tuning
process. Figure 2 illustrates the evolution of privacy and utility for Llama 3.2 3B during both LoRA
and full fine-tuning. The figure shows that LoRA fine-tuning consistently follows a more privacy-
preserving trend, with lower memorization scores compared to full fine-tuning at similar utility levels.
Furthermore, after a certain number of fine-tuning steps, the model’s tendency to memorize data
increases without significant improvements in utility, due to overfitting. This highlights that early
stopping during LLM training not only improves efficiency, but also helps privacy by reducing the
risk of memorization.
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Figure 2: Accuracy vs. privacy across fine-tuning steps. We track accuracy and memorization
(BLEU score) during Llama 3.2 3B fine-tuning (10× document duplication) using full fine-tuning
(Full FT) and LoRA, compared to the base model. Numbers above data points indicate completed
fine-tuning steps.

4.4 FEDERATED LEARNING

Having empirically measured how LoRA reduces unintended memorization in centralized learning,
we now turn to federated learning. The federated learning framework contains multiple key differences
with centralized learning that may impact memorization, such as Federated Averaging or non-IID
data across participants (Thakkar et al., 2020).

Training details. We define a heterogeneous setting with one client per dataset. In other words, we
fine-tune models with 3 participants, where each participant trains locally on one of the 3 datasets
MedMCQA, PubMedQA, and Medical Meadow flashcards. We split and inject i2b2 medical records
into each dataset proportionally to their size. Participants fine-tune over their local dataset for one
epoch between each global weight update, for a total of 5 rounds. For every model, we fine-tune the
learning rate on each local dataset. More training details are included in Appendix B.

To provide fair comparisons between multiple federated learning fine-tuning, Figures 3 and 5 report
metrics for the last federated communication round. This ensures that each model has been fine-
tuned on the medical records the same number of times. Additionally, we include the accuracy and
memorization metrics for each round in Appendix C.1.
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Figure 3: Downstream accuracy in federated learning. LoRA yields relatively similar accuracy to
full fine-tuning for several LLMs in a heterogeneous FL setting.

Accuracy. Figure 3 depicts downstream accuracy of federated fine-tuning. All fine-tunings show
relatively similar accuracy values between full fine-tuning and LoRA. This suggests that LoRA is a
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competitive technique in federated learning and can replace full fine-tuning at relatively little cost, in
addition to lowering the hardware requirements and the communication overheads.
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Figure 4: Exact match rates of FL and CL. We compare memorization between CL and FL when
fine-tuning Llama 3.2 3B.

Memorization. We first start by comparing memorization in federated learning to centralized
learning in Figure 4. We observe that FL can enhance privacy by reducing memorization. This is
consistent with previous work (Thakkar et al., 2020) suggesting that FedAvg and a non-IID data
distribution contribute to reducing unintended memorization. However, we note that memorization
increases monotonically with the number of rounds (i.e. the number of times medical records are
seen). Therefore, a model fine-tuned via FL can reach similar or even greater memorization levels
as the number of rounds increases. In fact, Figure 8 shows that, after a certain number of rounds,
fine-tuning Llama 2 7B exhibits more memorization across several metrics in FL than in CL. Thus,
our results expand on previous work by focusing on how memorization increases throughout the
rounds. Comparisons for all models and metrics are included in Appendix C.3.
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nificantly lower memorization scores in every setting for an equivalent performance. Plots (a)-(c)
show memorization using exact match rate with no duplication, 10x document duplication, and 10x
document duplication with a 500 tokens prompt length, while (d)-(f) use BLEU score.

Analysis. Despite FL showing lower memorization than CL, all federated fine-tunings exhibit signifi-
cant memorization, thus showing the need for additional privacy-preserving techniques. Figure 5
shows how using LoRA instead of full fine-tuning impacts memorization. Fine-tuning federated
LLMs with LoRA displays lower memorization than full fine-tuning across all metrics and models.
LoRA fine-tuning can reduce memorization up to 10× for a negligible accuracy loss. We do note that
the memorization impact of LoRA differs between similarly sized models. For example, fine-tuning

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Llama 2 7B with LoRA shows a drastic memorization improvement over full fine-tuning, whereas
Mistral v0.3 7B shows a lower impact.

We also find that not all trends observed in centralized learning hold in federated learning: data
duplication, longer context and considering paraphrasing all yield higher memorization scores,
however Figure 5 shows that bigger models do not necessarily result in more memorization with
full fine-tuning, as Llama 3.2 1B reaches higher memorization scores than Llama 3.2 3B. Yet the
trend still holds when looking at LoRA fine-tuning. We leave further exploration of how model size
influences memorization in federated learning for future work.

Finally, LoRA drastically reduces FL communication overhead. For instance, each round of our
setting requires a total data exchange of 74GB for a 7B model, and using LoRA reduces the load by a
factor of 152, decreasing the overhead to 498MB.

4.4.1 SECURE AGGREGATIONS

FL’s privacy benefits can be compromised if participants gain access to each other’s fine-tuned local
models. While Figure 8 highlights reduced memorization after model aggregation, unsecured local
models may still expose additional information regarding participants’ datasets. In Appendix D, we
show how secure aggregation addresses this vulnerability by using a third party to aggregate encrypted
local contributions using Fully Homomorphic Encryption (FHE) and decrypting the aggregated model
collectively through Secure Multiparty Computation (SMPC), as described in Sébert et al. (2022).
Experiments were conducted using the open-source Lattigo library (Lattigo v6; Mouchet et al., 2020).

4.5 COMBINING LORA WITH OTHER METHODS

Although LoRA mitigates unintended memorization on its own, we investigate whether it can be
combined with other privacy-persevering techniques without compromising performance or increasing
memorization. If users are focused on reducing extractable memorization in pre-training, then they
may be interested in Goldfish loss (LoRA is preferred for fine-tuning), but we investigate and verify
its potential for fine-tuning. Gradient noising and clipping can be used to satisfy (ϵ, δ)-differential-
privacy guarantees (see Appendix G), which LoRA alone has not been formally proven to provide.

Nonetheless, we emphasize that Goldfish loss and DP noising/clipping are not efficient strategies, as
both require calculation of the full gradient. Hence, users will choose LoRA if they are concerned
about backpropagation costs or communication overhead, which is a common scenario in FL.

4.5.1 GOLDFISH LOSS

The Goldfish loss (Hans et al., 2024) has been introduced recently as a memorization mitigating
technique for pre-training language models via a new next-token training objective. The training
procedure randomly excludes tokens from the loss computation in order to prevent verbatim reproduc-
tion of training sequences. In Appendix E, we evaluate the memorization and accuracy of Llama 3.2
3B fine-tuned with LoRA in combination with Goldfish loss. We also compare it to the same model
fully fine-tuned with Goldfish loss only. The combination of LoRA with Goldfish loss synergistically
achieves lower memorization beyond what either strategy achieves alone.

5 CONCLUSION AND LIMITATIONS

In this work, we demonstrate that LoRA is capable of reducing memorization of fine-tuning training
data. In particular, this effect is observable in both centralized learning and federated learning (FL),
and we find this effect is especially pronounced in the latter. Moreover, it is possible to further
reduce memorization by combining LoRA with other strategies such as Goldfish loss or conventional
privacy-preserving mechanisms such as Gaussian noising and gradient clipping. FL was previously
shown to reduce memorization for simple LSTM-based next-word predictors (Hard et al., 2018;
Thakkar et al., 2020) and we demonstrate that generative LLMs inherit this benefit as well. However,
further theoretical analysis of this phenomenon, which may relate to the LoRA reductive effect, is
needed.
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A FURTHER RELATED WORK

Membership inference attacks (MIA) rely on rigorous statistical principles to assess privacy
risks in machine learning models. (Shokri et al., 2017) introduced an approach for determining
whether a specific data point was part of a model’s training dataset. These attacks exploit differences
in model behavior on training versus non-training data, posing significant privacy concerns for
sensitive information. Building on this, (Hongyan et al., 2024) extended these concepts to LLMs by
incorporating contextual information. This study demonstrated that LLMs are particularly vulnerable
to membership inference attacks, as they often retain verbatim information from their training datasets.
The work highlighted the increased privacy risks associated with LLMs due to their scale and training
dynamics.

Secure Aggregations. While the conventional FL ensures that raw data is not shared between
participants during collective training, it does not address the risk of data leakage through model
updates shared prior to aggregation. For example, in the honest-but-curious scenario, a server
examines whether client data can be reconstructed (Huang et al., 2021). This vulnerability becomes
particularly critical with LLMs, given their propensity for memorization. To address the privacy
risks associated with local model exchanges in FL, (Truex et al., 2019) proposes a hybrid approach
that combines differential privacy with secure multiparty computation (SMC). In this framework,
local models are encrypted and remain hidden from other participants prior to aggregation, thereby
mitigating privacy leakage risks associated with individual local models by focusing them on the
aggregated model during each aggregation round. While this method has been explored for general
machine learning applications, to the best of our knowledge, it has not yet been investigated in the
context of large language models (LLMs).

B TRAINING DETAILS

B.1 HYPERPARAMETERS

In centralized learning, we sweep the learning rate ∈ {1e − 5, 5e − 5, 1e − 4, 5e − 4} for full
fine-tuning experiments. For LoRA experiments, we search for learning rate values ∈ {5e− 5, 1e−
4, 5e − 4, 1e − 3}. In federated learning experiments, we sweep the learning rate on each dataset
individually for one epoch, with the same set of values as in centralized learning.

For all experiments we fine-tune models with the AdamW optimizer (Loshchilov & Hutter, 2019)
with default parameters (β1 = 0.9, β2 = 0.999, ϵ = 1e−8, weight decay of 0.01). We used a
context length of 1024 and ensured that no text inputs were longer than the context length. We use
a linear warmup of 100 steps with a cosine annealing schedule. Unless mentioned otherwise, we
use a global batch size of 32 with gradient accumulation and gradient checkpointing. For all LoRA
experiments with use a rank of 16, an alpha of 8, drop out 0.05 and use adapters for all projection
layers. Additionally, we study the impact of the LoRA rank on memorization in Section B.2.

B.2 THE LORA RANK AND MEMORIZATION

We measure the influence of the LoRA hyperparameters by varying the rank and measuring the
resulting memorization. We study rank values r ∈ {4, 16, 64, 128, 256, 1024} and set alpha to
twice the rank, following common practice. We decrease the learning rate exponentially as the rank
increase.

As shown in Table 1, increasing the rank, i.e. increasing the number of weights updated during
fine-tuning, results in more memorization, ranging from virtually no verbatim memorization with a
rank of 4 to almost 50% of the medical records being memorized for rank 1024 when considering
duplicated medical records. We note that in our case, larger ranks do not necessarily imply better
accuracy. We hypothesize that larger ranks might make overfitting more likely to occur. Additionally,
each rank value can benefit from more extensive hyperparameter tuning.
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Table 1: Impact of the LoRA rank on memorization. We fine-tune Llama 3.2 3B with LoRA in
centralized learning on increasing LoRA ranks. We find that higher ranks lead to more memorization.

LoRA rank Exact match rate BLEU Score AccuracyNo duplication 10x duplication No duplication 10x duplication

4 0.0003 0 0.0133 0.0198 0.509
16 0.0005 0.0031 0.0167 0.0623 0.512
64 0.0031 0.2105 0.0258 0.379 0.511

128 0.0042 0.3735 0.0305 0.5111 0.510
256 0.0057 0.4895 0.0352 0.5809 0.542
1024 0.0063 0.4981 0.0409 0.6228 0.530

C AUXILIARY RESULTS

C.1 ACCURACY

Llama-3.2-1B
Llama-3.2-3B

Llama-2-7B

Mistral-v0.3-7B
Llama-3.1-8B
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Figure 6: Downstream accuracy of centralized learning averaged across the 5 benchmarks.
LoRA matches full fine-tuning accuracy on every model tested. We report the out-of-the-box accuracy
of the pre-trained models as a control. A breakdown per benchmark is included in Table 2.

Table 2 includes a breakdown per benchmark of the downstream accuracy of LoRA and full model
fine-tuning in centralized learning as well as performance of pre-trained models without fine-tuning.
Table 3 shows the accuracy of federated fine-tuning per round.

Table 2: Downstream accuracy in central learning. Best accuracy values are marked in bold.

Model Fine-tuning MMLU-medical PubMedQA MedMCQA MedQA MedQA-4 Average

Llama 3.2 1B
No fine-tuning 0.353 0.363 0.49 0.329 0.275 0.308

Full 0.456 0.616 0.431 0.322 0.379 0.441
LoRA 0.447 0.594 0.397 0.312 0.362 0.422

Llama 3.2 3B
No fine-tuning 0.432 0.597 0.122 0.491 0.446 0.504

Full 0.59 0.536 0.542 0.452 0.507 0.525
LoRA 0.608 0.676 0.512 0.448 0.5 0.549

Llama 2 7B
No fine-tuning 0.381 0.426 0.452 0.380 0.292 0.353

Full 0.562 0.596 0.516 0.395 0.478 0.509
LoRA 0.560 0.726 0.448 0.353 0.405 0.498

Mistral v0.3 7B
No fine-tuning 0.552 0.635 0.7 0.483 0.438 0.503

Full 0.659 0.758 0.588 0.499 0.551 0.611
LoRA 0.667 0.758 0.572 0.467 0.54 0.601
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Table 3: Downstream accuracy per federated round. We emphasize in bold the earliest round
where models reach their best accuracy.

Model Fine-tuning Accuracy per round
1 2 3 4 5

Llama 3.2 1B Full 0.425 0.438 0.444 0.445 0.445
LoRA 0.415 0.422 0.430 0.432 0.434

Llama 3.2 3B Full 0.541 0.561 0.554 0.573 0.578
LoRA 0.557 0.564 0.559 0.563 0.564

Llama 2 7B Full 0.468 0.488 0.482 0.495 0.511
LoRA 0.475 0.490 0.482 0.494 0.493

Mistral v0.3 7B Full 0.181 0.590 0.599 0.603 0.602
LoRA 0.594 0.599 0.598 0.604 0.608

C.2 MEMORIZATION SCORE

Figure 7 illustrates with Llama 2 7B multiple trends that are consistent with results previously
mentioned:

1. There is significantly, and alarmingly, more memorization when the medical records occur
multiple times in the fine-tuning data.

2. Longer prompts show higher memorization (discoverability phenomenon).

3. There is significantly more memorization with approximate generation (BLEU score).
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Figure 7: An example of memorization scores for a full fine-tuning of Llama 2 7B. We report the
exact match rate and BLEU score with respect to the prompt length, with and without duplication. We
also show the memorization upper bound (”Full memorization”) reached when every test sequence
has been memorized.

C.3 MEMORIZATION SCORES IN FL

Figure 8 shows the memorization scores per round of federated learning. We can see that using LoRA
results in lower unintended memorization than full fine-tuning at every round.
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Figure 8: Memorization scores for central learning and federated learning with respect to
rounds. In all settings, LoRA results in better privacy than a full fine-tuning.

D SECURE AGGREGATIONS

Secure aggregations ensure that sensitive data remains protected and prevents the aggregator from de-
crypting any model. We evaluate the runtime performance of using secure aggregation in conjunction
with LoRA in an FL setting.

Performance. To evaluate the performance impact of secure aggregation, we use Lattigo, an open-
source library that enables secure protocols based on multiparty homomorphic encryption Lattigo v6;
Mouchet et al. (2020). Specifically, it implements the CKKS scheme, which allows efficient encrypted
computations on real-valued data, making it ideal for the secure aggregation of the LoRA models
trained by the clients/participants. In our experiments, we consider 3 clients and configure CKKS
parameters to enable 32-bit precision. Since our LoRA models are trained with 16-bit precision,
this ensures that secure aggregation does not introduce any accuracy loss compared to standard
aggregation in plaintext.

Secure aggregation introduces a time overhead due to encryption, homomorphic operations, and
collective decryption. The duration of encrypted aggregation is influenced by the number of weights
being aggregated, specifically the number of LoRA weights. In our experiments with Llama 3.2
3B, a LoRA update contains 24,772,608 parameters, representing approximately 0.77% of the
full model’s parameters. In Table 4, we report the aggregation times for vectors of varying sizes,
corresponding to the number of LoRA weights. Aggregating three vectors of the size of our LoRA
takes 11.33 seconds, which is negligible compared to the time required for local fine-tuning at each
round.
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Table 4: Execution Time of the Secure Aggregation Protocol. The protocol aggregates three
equal-sized encrypted vectors for varying sizes.

Aggregation Length Time Taken

101 12.16ms
102 11.61ms
103 11.32ms
104 17.29ms
105 58.91ms
106 474.46ms
107 4.37s
2.48 × 107 (LoRA size) 11.33s
108 68.24s

E GOLDFISH LOSS

In this section, we evaluate how LoRA combined with Goldfish loss impact the accuracy and the
memorization of Llama 3.2 3B. While Goldfish loss has been designed for pre-training, we apply it
to our fine-tuning and report values for various dropping frequencies k. We use a hashing context
width h = 13 following the authors’ methodology (Hans et al., 2024).

Table 5 shows how combining Goldfish loss with LoRA mitigates memorization compared to a
full fine-tuning. By contrasting memorization scores with control values, we can also note that the
Goldfish loss is an effective memorization-mitigation technique.

Table 5: Impact of Goldfish loss on BLEU Scores and accuracy in LoRA Fine-Tuning. Llama 3.2
3B is fine-tuned with different dropping frequencies (k). Best accuracy is marked in bold.

Goldfish k BLEU, no duplication BLEU, 10x duplication Accuracy

2 0.0133 0.0216 0.514
3 0.0154 0.0426 0.549
4 0.0180 0.0543 0.534
5 0.0183 0.0815 0.540
10 0.0256 0.1494 0.538
100 0.0266 0.2852 0.537

1000 0.0256 0.3111 0.533
10000 0.0253 0.2944 0.545

Control 0.0245 0.2920 0.550

To assess the impact of LoRA in combination with Goldfish loss, we evaluated the memorization and
accuracy of fine-tuning the same model using full fine-tuning. Table 6 presents the memorization
scores and accuracy of the model fine-tuned with Goldfish loss alone, without LoRA. Our results
indicate that while Goldfish loss reduces memorization, it does not achieve the same level of
reduction as the combination with LoRA, especially when duplication occurs in the fine-tuning data.
In summary, combining LoRA with Goldfish loss allows a privacy-utility tradeoff that cannot be
achieved using Goldfish loss alone.

Table 6: Impact of Goldfish loss on BLEU Scores and accuracy. The BLEU scores and the
accuracy of Llama 3.2 3B is reported for full fine-tuning across different dropping frequencies (k).
Best accuracy is marked in bold.

Goldfish k BLEU, no duplication BLEU, 10x duplication Accuracy

2 0.0146 0.0340 0.517
3 0.0243 0.0679 0.513
4 0.0282 0.1148 0.524
5 0.0310 0.1568 0.521
10 0.0342 0.3006 0.545
100 0.0399 0.5821 0.534

1000 0.0425 0.6235 0.527
10000 0.0407 0.6235 0.516

Control 0.0417 0.6235 0.538
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F NEFTUNE

NEFTune is a regularization technique consisting in adding random noise to the embedding vectors
to improve instruction fine-tuning. While not introduced as a privacy-preserving technique per
se, we hypothesize that a fine-tuning regularization such as NEFTune may also reduce unintended
memorization.

We display results after applying NEFTune with noise value α ∈ {5, 10, 15, 30, 45}. We find that
adding noise does not improve accuracy when applied to our domain adaptation fine-tuning. Secondly,
increasing the noise does not yield better privacy, at least not until we set alpha to 45, which is greater
than alpha values reported by the original work (5, 10, and 15).

Table 7: NEFTune impact on the BLEU score and accuracy when combined with LoRA. We
analyze LoRA fine-tuning with Llama 3.2 3B and different noise scaling factors α.

α No duplication 10x duplication Accuracy

Control 0.0276 0.4170 0.562
5 0.0284 0.4525 0.560

10 0.0300 0.4506 0.518
15 0.0284 0.4525 0.544
30 0.0282 0.4377 0.548
45 0.0248 0.3599 0.518
60 0.0227 0.2759 0.501
100 0.0183 0.1006 0.391

G DIFFERENTIAL PRIVACY

(ϵ, δ)-Differential privacy (DP) provides formal guarantees that an individual’s data cannot be inferred
from a model’s output, by quantifying the model’s sensitivity to changes in input data. Following
Li et al. (2021) and Liu et al. (2024), we define sensitivity as the maximum change in model output
resulting from the inclusion or removal of a single data point in the training dataset (record-level DP).

Implementing DP requires modifications to the fine-tuning pipeline to limit the influence of individual
data points on model parameters. Gradient clipping, which constrains the magnitude of gradient
updates, is a key technique in this process. In our experiments (see Appendix G.1), applying a gradient
clipping value of 0.0001 significantly reduces memorization and improves accuracy compared to the
default value of 1.0. This demonstrates gradient clipping as a privacy-enhancing method in itself,
even without the addition of noise. But the use of stochastic gradient descent (SGD), required for
DP-SGD, presents challenges in fine-tuning the Llama 3.2 3B model. Despite an extensive search for
optimal learning rates, SGD consistently underperforms compared to Adam-derived optimizers (see
Appendix G.2).

G.1 GRADIENT CLIPPING

Table 8 illustrates the effect of different gradient clipping values on the BLEU score and accuracy
achieved during the fine-tuning of LLama 3.2 3B.

G.2 OPTIMIZER EFFECT ON LOSS

Figure 9 illustrates the loss reduction difference between Stochastic Gradient Descent (SGD) and
Paged AdamW optimizers during the fine-tuning of Llama 3.2 3B. The SGD optimizer failed to
achieve the same level of loss reduction as Paged AdamW.

H POST-FINE-TUNING GAUSSIAN NOISE INJECTION

This section provides details and results of the injection of noise into the weights of a model after
fine-tuning. Specifically, the noise is sampled from a Gaussian distribution N (µ, σ2), where the
mean µ is set to 0, and σ2 is the variance that determines the noise’s magnitude. Unlike the DP
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Table 8: Gradient clipping impact on the BLEU score and accuracy. The BLEU score and the
accuracy of Llama 3.2 3B is reported for LoRA fine-tuning. Best accuracy is marked in bold.

Clipping Value No duplication 10x duplication Accuracy

1.0 × 100 (default) 0.0266 0.4235 0.520
5.0 × 10−1 0.0235 0.4235 0.541
1.0 × 10−1 0.0229 0.4031 0.530
5.0 × 10−2 0.0243 0.3827 0.534
1.0 × 10−2 0.0227 0.3914 0.506
5.0 × 10−3 0.0245 0.3914 0.531
1.0 × 10−3 0.0250 0.3352 0.519
5.0 × 10−4 0.0203 0.2914 0.528
1.0 × 10−4 0.0185 0.0926 0.536
5.0 × 10−5 0.0151 0.0438 0.506
1.0 × 10−5 0.0086 0.0099 0.491
5.0 × 10−6 0.0065 0.0080 0.449
1.0 × 10−6 0.0026 0.0012 0.460
5.0 × 10−7 0.0026 0.0012 0.392
1.0 × 10−7 0.0026 0.0012 0.377
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Figure 9: Loss reduction comparison between optimizers. The plot compares loss reduction during
the fine-tuning of Llama 3.2 3B using different optimizers: SGD (blue) and Paged AdamW (orange).

Gaussian mechanism, this approach does not provide formal privacy guarantees. However, it offers a
practical and computationally light method to mitigate the memorization of sensitive information, as
it does not require additional fine-tuning and can be directly applied to previously fine-tuned LLMs.
Additionally, measuring the performance of this method can illustrate how other noise mechanisms
similar to those used in DP might affect accuracy and privacy metrics.

In Table 9, we evaluate its effect under various noise magnitudes, along with the corresponding
impact on model accuracy. We applied Gaussian noise to the LoRA weights of a fine-tuned Llama 3.2
3B model, as evaluated in earlier sections. We then compared the model’s BLEU score and accuracy
across different noise magnitudes.

Table 9: Impact of noise addition on BLEU score and accuracy. Llama 3.2 3B is fine-tuned with
LoRA across various noise magnitudes (σ)

Noise Scale (σ) BLEU, no Duplication BLEU, 10x Duplication Accuracy

0 (no noise) 0.0206 0.3012 0.553
0.001 0.0211 0.3049 0.552
0.01 0.0206 0.2877 0.551
0.02 0.0143 0.0994 0.541
0.03 0.0083 0.0111 0.511
0.04 0.0013 0.0006 0.384
0.05 0.0000 0.0000 0.110

We observe that the accuracy remains unaffected up to a certain noise level (σ = 0.01) and even
shows slight improvement. However, beyond this threshold, accuracy decreases and reduction in
memorization similarly follows, appearing to correlate with this decrease. These observations suggest
that this mechanism effectively reduces excessive memorization in models that have overfitted onto
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their training data. Therefore, this approach offers an alternative to early stopping for controlling
memorization which can be applied post fine-tuning. Figure 10 compares the privacy and utility of
Llama 3.2 3B subject to post-fine-tuning gaussian noise injection with the evolution of the model
fine-tuned with LoRA accross iterations. The noisy model, represented by red dots, has been fine-
tuned for 2100 iterations before injecting the gaussian noise. Gaussian noise injection of standard
deviations of σ = 0.2 and σ = 0.3 have been reported in the plot.

H.1 PRIVACY-UTILITY TRADEOFF WITH GAUSSIAN NOISE INJECTION

Figure 10 presents a dot plot comparing the privacy-utility tradeoffs of Llama 3.2 3B when fine-tuned
with LoRA versus when Gaussian noise is injected after fine-tuning with LoRA. The results indicate
that Gaussian noise injection does not enhance the privacy-utility tradeoff compared to fine-tuning
with LoRA.
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Figure 10: Privacy-Utility tradeoff with post-fine-tuning gaussian noise injection. Accuracy and
memorization (BLEU score with 10x document duplication) tradeoff of Llama 3.2 3B subject to
post-fine-tuning gaussian noise injection with standard deviation. Values above the dots correspond
to the number of iterations for LoRA fine-tuning evolution, and the standard deviation of injected
noise for noisy models.
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