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Abstract

Recently, neural networks have shown impres-001
sive progress across diverse fields, with speech002
processing being no exception. However, re-003
cent breakthroughs in this area require exten-004
sive offline training using large datasets and005
tremendous computing resources. Unfortu-006
nately, these models struggle to retain their pre-007
viously acquired knowledge when learning new008
tasks continually. In this paper, we investigate009
the problem of learning sequence-to-sequence010
models for spoken language understanding in011
a class-incremental learning (CIL) setting and012
we propose COCONUT , a CIL method that013
relies on the combination of experience replay014
and contrastive learning. Through a modified015
version of the standard supervised contrastive016
loss, COCONUT preserves the learned repre-017
sentations by pulling closer samples from the018
same class and pushing away the others. More-019
over, we leverage a multimodal contrastive loss020
that helps the model learn more discriminative021
representations of the new data by aligning au-022
dio and text features. We also investigate differ-023
ent contrastive designs to combine the strengths024
of the contrastive loss with teacher-student ar-025
chitectures used for distillation. Experiments026
on two established SLU datasets reveal the ef-027
fectiveness of our proposed approach and sig-028
nificant improvements over the baselines. We029
also show that COCONUT can be combined030
with methods that operate on the decoder side,031
resulting in further metrics improvements.032

1 Introduction033

With the rapid progress of intelligent voice-enabled034

personal assistants, the significance of Spoken Lan-035

guage Understanding (SLU) has gained substantial036

recognition in recent years (Arora et al., 2022; Qin037

et al., 2021). Conventional SLU models deploy a038

cascaded pipeline of an automatic speech recogni-039

tion (ASR) system followed by a natural language040

understanding (NLU) module (Mesnil et al., 2014;041

Horlock and King, 2003). ASR maps the input042

speech into text representations, and NLU extracts 043

the target intent labels from the intermediate text. 044

Even though these approaches can leverage a vast 045

abundance of ASR and NLU data, they suffer from 046

ASR error propagation. Conversely, end-to-end 047

(E2E) SLU (Agrawal et al., 2022; Lugosch et al., 048

2019; Saxon et al., 2021) has received more at- 049

tention in recent research because it uses a single 050

trainable model to map the speech audio directly to 051

the intent labels, bypassing the text transcript and 052

reducing latency and error propagation. 053

The assumption that the data distribution the 054

model will face after deployment aligns with what 055

it encountered during the training phase is brittle 056

and unrealistic. In fact, real-world scenarios entail 057

evolving streams of data where novel categories 058

(e.g., new vocabulary or intents) emerge sequen- 059

tially, known as continual learning (CL). Unfortu- 060

nately, while neural networks thrive in a stationary 061

environment, the situation is reversed in CL, re- 062

sulting in the “catastrophic forgetting” (CF) of the 063

existing knowledge in favor of fresh new informa- 064

tion (McCloskey and Cohen, 1989). Although the 065

majority of CL works have focused on computer vi- 066

sion tasks like image classification (Buzzega et al., 067

2020; Wang et al., 2022c) and semantic segmen- 068

tation (Maracani et al., 2021; Yang et al., 2022a), 069

a few works have recently turned their attention 070

towards text (Wang et al., 2023a; Ke et al., 2023) 071

and speech (Cappellazzo et al., 2023a; Diwan et al., 072

2023), as well as vision-language (Ni et al., 2023; 073

Zhu et al., 2023) and vision-audio (Mo et al., 2023; 074

Pian et al., 2023). 075

While most SLU works consider offline settings, 076

a thorough study of SLU under a class-incremental 077

learning (CIL) setup still lacks. In CIL, one single 078

model is adapted to a sequence of different tasks as 079

incremental labels emerge sequentially. Recently, 080

Cappellazzo et al. (2023b) studied the problem of 081

CIL in ASR-SLU, where SLU is carried out in a 082

sequence-to-sequence (seq2seq) fashion, thus com- 083
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puting the intent labels in an auto-regressive way084

together with the ASR transcriptions. By doing this,085

the model comprises three blocks: text and audio086

encoders, and an ASR decoder. While in that work087

the knowledge distillation (KD) principle applied088

to the ASR decoder is used, in this paper, we exploit089

the multi-modal audio-text setting and propose090

COCONUT : COntinual Contrastive spOken091

laNguage UndersTanding. COCONUT combines092

experience replay (ER) and contrastive learning093

principles. Whereas ER is a well-established ap-094

proach in CL (Rolnick et al., 2019), only recently095

has contrastive learning been harnessed to learn096

representations continually. Both supervised (Cha097

et al., 2021; Yang et al., 2022a) and self-supervised098

(Fini et al., 2022; Wang et al., 2022c) contrastive099

learning have proven useful to lessen the CF issue.100

Specifically, COCONUT relies on two contrastive101

learning-based losses that operate on a shared em-102

bedding space where the audio and text features103

are projected.104

The first loss coined Negative-Student Positive-105

Teacher (NSPT), is a modified version of the super-106

vised contrastive learning loss that aims to consol-107

idate what the model has learned in the previous108

tasks. It also exploits KD (Hinton et al., 2015; Li109

and Hoiem, 2017) to guide the current model (stu-110

dent) to produce representations that resemble the111

ones obtained with the model from the previous112

tasks (teacher). For this reason, this loss is com-113

puted only on the rehearsal data (i.e., the anchors).114

A key difference between our loss and the standard115

contrastive one is that the positive samples are com-116

puted using the teacher (the positives only come117

from the rehearsal data), whereas the negatives are118

computed with the student. In this way, we avoid119

stale and scattered representations for the new data.120

The second loss is inspired by the recent progress121

in multi-modal representation learning. Consid-122

ering that for audio-text paired data, audio and123

text represent the same information but in different124

ways, it has been shown that aligning their repre-125

sentations results in better performance for various126

speech-related problems (Zhu et al., 2022; Ye et al.,127

2022; Manco et al., 2022). Therefore, we propose128

a multi-modal (MM) supervised contrastive loss129

that, exclusively applied to the current task’s data,130

brings audio and text representations belonging to131

the same class into closer proximity in the shared132

feature space, resulting in features that are more133

transferable and resilient to CF. An overview of134

COCONUT is illustrated in Figure 1.135

In summary, our contributions are three-fold: 1) 136

we introduce COCONUT , a CL method that 137

makes use of two supervised contrastive learning 138

objectives to mitigate CF for seq2seq SLU mod- 139

els. 2) We conduct extensive experiments on two 140

popular SLU benchmarks demonstrating that CO- 141

CONUT achieves consistent improvements over 142

the baselines. We also show that it can be com- 143

bined with KD applied to the ASR decoder, lead- 144

ing to further improvements. Finally, 3) we ablate 145

the contribution of each loss and its components, 146

showcasing their pivotal role in COCONUT. 147

2 Problem Formulation 148

2.1 ASR-SLU Multi-task Learning 149

SLU is considered a more difficult task than ASR 150

and NLU since it involves both acoustic and se- 151

mantic interpretation (Tur and De Mori, 2011). For 152

this reason, it is common practice to include an 153

additional ASR objective such that the SLU labels 154

(in our case the intent labels) and the transcript are 155

generated in an auto-regressive fashion, resulting 156

in a multi-task learning setting (Arora et al., 2022; 157

Peng et al., 2023). By doing this, the text transcript 158

input to the model includes a class intent token that 159

is specific to the actual task. 160

Let θ be the parameters of a seq2seq ASR 161

model comprising an audio encoder, a text encoder 162

(i.e., embedding layer), and an ASR decoder. Let 163

x = [x0, . . . , xU−1] be an audio input sequence 164

of length U , and y = [ycls, ysep, y0, . . . , yJ−3] be 165

the “extended” input transcript of length J , where 166

with the term “extended” we refer to the original 167

transcript [y0, . . . , yJ−3] augmented with the intent 168

class token ycls and a special separation token ysep. 169

The goal of the ASR model is to find the most likely 170

extended transcript given the input sequence x: 171

ŷ = argmax
y∈Y∗

p(y|x; θ), (1) 172

where Y∗ is the set of all token sequences. The 173

predicted intent is obtained extracting ycls from ŷ. 174

2.2 Class-Incremental Learning 175

For our experiments, we consider a CIL setting 176

where we adapt a single model to learn sequentially 177

N tasks corresponding to non-overlapping subsets 178

of classes (in our case intents). Put formally, the 179

training dataset is divided into N distinct tasks, 180

D = {D0, . . . ,DN−1}, based on the intent token 181

ycls, so that one intent is included in one and only 182
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Figure 1: Overview of COCONUT . It uses two contrastive learning-based losses. The NSPT (negative-student
positive-teacher) loss is a supervised contrastive distillation loss that preserves the feature representations of the
past classes for both audio and text samples. The positive and negative samples are computed with the teacher and
student model, respectively. The MM (multi-modal) loss aims to align audio and text representations belonging to
the same new class. COCONUT produces features that are more transferable and resilient to catastrophic forgetting.

one task. The dataset Dn of task n comprises audio183

signals Xn with associated transcriptions Yn, i.e.184

Dn = (Xn,Yn). The CIL setting is challenging185

in that the model must be able to distinguish all186

classes until task n, thus at inference time the task187

labels are not available (unlike in task-incremental188

learning) (Hsu et al., 2018).189

3 Proposed Approach190

3.1 Standard Rehearsal-based Approach191

We assume the availability of a rehearsal buffer,192

M, in which we can store a few samples for each193

class encountered in the previous tasks. During the194

training phase of task n, Dn, we refer to B as a195

mini-batch of samples (x, y), some of which come196

from the current task and others from the rehearsal197

memory. To increase the variance of the audio data,198

we apply SpecAug (Park et al., 2019) to the au-199

dio waveform x (see A.4 for more details). We do200

not implement any augmentation technique for the201

transcript y. We encode each modality separately202

through a dedicated feature encoder. An audio en-203

coder maps each audio input into a feature vector204

hA ∈ RU×dA , where dA is the audio hidden size.205

Similarly, a text encoder converts each text input206

into a feature vector hT ∈ RJ×dT , where dT is the207

text hidden size. At this point, if no specific CL208

losses are used, the ASR decoder generates the out-209

put sequence in an auto-regressive fashion, cross-210

attending on the audio encoder’s representations211

hA. Thus, at task n, we minimize the conventional212

cross-entropy loss over the current mini-batch B:213

LASR = − 1

|B|
∑

(x,y)∈B

log(p(y|x; θ)). (2)214

3.2 COCONUT 215

Preliminaries. We introduce here some notations 216

for our proposed approach. Since we work with 217

audio and text sequences, we need to aggregate 218

the features we obtain with the encoders before 219

computing the contrastive loss. For the audio com- 220

ponent hA we apply a mean operation over its se- 221

quence length, whereas for text we only select the 222

feature related to the intent token. Then, as is com- 223

mon practice in contrastive learning (Radford et al., 224

2021; Chen et al., 2020), the resulting embeddings 225

go through two separate linear projection layers 226

that map them into a shared embedding space. At 227

inference time, the projection layers are discarded. 228

Therefore, we get the projected embeddings a and 229

t in the following way: 230

a = gA(avg(hA)), t = gT(cls(hT)), (3) 231

where cls(·) is a function that extracts the feature 232

associated with the class token, gA(·) and gT(·) are 233

the projection layers, a ∈ RdS and t ∈ RdS , where 234

dS is the dimension of the shared space. 235

Furthermore, we introduce some notations for 236

the indices of samples coming from the current 237

mini-batch B. Let Ic and Ir represent the set of 238

indices of the new task samples and the indices of 239

the samples from the rehearsal memory (old task 240

samples) in B, respectively. Also, let I = Ic ∪ Ir, 241

and we define P(k) as the set of indices of positive 242

samples (i.e., samples with the same intent token). 243

The objective of a standard supervised con- 244

trastive loss (SCL) (Khosla et al., 2020) is to 245

push the representations of samples with different 246

classes (negative pairs) farther apart while cluster- 247

ing representation of samples with the same class 248
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Figure 2: Illustration of the NTPT loss and our proposed NSPT loss. Given an anchor sample from the current
mini-batch, the NTPT loss computes the negatives and positives using the teacher model (dashed circles). Instead,
the NSPT loss computes the positives with the teacher while the negatives are computed with the student model
(solid circles). If the features obtained with the teacher are scattered and static (the teacher is frozen), those obtained
with the student are more clustered and can be learned during the current task. Best viewed in color.

(positive pairs) closely together. Suppose that we249

get from the projection layers a generic represen-250

tation zDi for the i-th element in the batch, where251

z = {a, t} and the superscript D denotes whether252

the representation is computed with the teacher or253

student model. A generic formulation of the SCL254

loss takes the following form:255

LSCL =
∑
k∈I

−1

|P(k)|
∑

p∈P(k)

log
exp(zDk · zDp /τ)∑
i∈I exp(zDk · zDi /τ)

,

(4)256

τ ∈ R+ is a fixed temperature scaling parameter.257

Supervised Contrastive Distillation Loss258

(NSPT). This loss combines the benefits of KD259

with those of contrastive learning (Tian et al., 2020;260

Sun et al., 2020). First of all, since the teacher261

conveys information about the previous classes,262

we would like to use it as a guide for the stu-263

dent through a KD objective. In this way, the264

loss encourages the student to produce audio and265

text embeddings consistent with those obtained by266

the teacher. Therefore, only the rehearsal samples267

are involved in this process as the teacher had no268

chance to see the current data. Additionally, we269

want to pull closer embeddings sharing the same270

intent class (i.e. the positives), while we push away271

the others (i.e. the negatives, whose class is dif-272

ferent). This is obtained via a modified version273

of the standard supervised contrastive loss tailored274

for our setting. In fact, a standard one would use275

the teacher to compute both the positives and the276

negatives (Khosla et al., 2020). However, since the277

teacher is frozen and it is pointless to compute the278

representations of the samples from the current task279

using the teacher, we propose to use the student for280

computing the representations of the negatives. A281

small fraction of negatives come from the rehearsal 282

buffer, and we also compute them using the stu- 283

dent. We show in section 4.3 that using the teacher 284

deteriorates the performance. Therefore, our con- 285

trastive distillation loss computes the embeddings 286

of the anchor and its corresponding negatives us- 287

ing the student, while the positives come from the 288

teacher (we call this loss Negative-Student Positive- 289

Teacher, NSPT). On the contrary, for the standard 290

contrastive loss both the positives and negatives 291

are computed with the teacher (we call it Negative- 292

Teacher Positive-Teacher, NTPT). Figure 2 illus- 293

trates visually how the NTPT and NSPT work in 294

the shared embedding space. The NSPT loss is 295

computed for both audio and text embeddings, lead- 296

ing to two components, one for each modality, as 297

follows: 298

LNSPT =
∑
k∈Ir

−1

|P(k)|
∑

p∈P(k)

[
log

exp(an
k · an−1

p /τ)∑
i∈I exp(an

k · an
i /τ)︸ ︷︷ ︸

LA

+

log
exp(tnk · tn−1

p /τ)∑
i∈I exp(tnk · tni /τ)︸ ︷︷ ︸

LT

]
,

(5) 299

where n and n− 1 denote whether the representa- 300

tion is obtained with the student or teacher, and LA 301

and LT represent the audio and text contributions, 302

respectively. We empirically validate that the intu- 303

ition of the NSPT loss is beneficial in section 4.3. 304

Supervised Multi-Modal Contrastive Loss. 305

This loss is introduced for two reasons. First of all, 306

since during the first task (no CL) the NSPT loss is 307

not computed (i.e., we do not have a teacher yet), 308

this means that the projector layers of the model are 309

not trained. This would be a problem from the sec- 310
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ond task onwards in that the student would distill311

the knowledge from the teacher with randomly ini-312

tialized projectors. Second, we want to exploit the313

multi-modal nature of our SLU CIL setting. Con-314

sequently, we introduce a multi-modal (MM) loss315

that aims to align audio and text representations316

belonging to the same new class, and thus training317

the projectors of the model from the very begin-318

ning. This alignment is achieved via a supervised319

multi-modal (i.e., audio-text) contrastive learning320

objective where feature representations of samples321

sharing the same intent token are attracted while322

the others are pushed away. Similar to (Kwon et al.,323

2023), we use the [CLS] text token (ycls) for per-324

forming the multi-modal alignment. Furthermore,325

following (Cha et al., 2021), we always treat the re-326

hearsal samples as negatives, preventing them from327

being anchors during the learning process. This328

design choice is buttressed by two motivations: 1)329

rehearsal data have been learned by the previous330

model already and are preserved via the NSPT loss,331

and 2) we encourage the model to produce clusters332

for the new data that are separated from those of333

the rehearsal data. The MM loss is defined as:334

LMM =
∑
k∈Ic

−1

|P(k)|
∑

p∈P(k)

[
log

exp(an
k · tnp/τ)∑

i∈I exp(an
k · tni /τ)

+

log
exp(tnk · an

p/τ)∑
i∈I exp(tnk · an

i /τ)

]
.

(6)335

The first term of the internal loss is the audio-to-text336

component, whereas the second is the text-to-audio337

component (Zhang et al., 2022). The presence338

of both directions (A → T and T → A) makes339

the MM loss symmetric. All in all, COCONUT340

minimizes the following loss:341

L = LASR + λMMLMM + λNSPTLNSPT, (7)342

where lambdas are loss-specific weights. Note that343

during the first task LNSPT is not computed.344

4 Experiments345

4.1 Experimental Setup and Implementation346

Details347

Datasets and CIL setting. We evaluate CO-348

CONUT on two SLU datasets: the Fluent Speech349

Commands (FSC) (Lugosch et al., 2019) and the350

Spoken Language Understanding Resource Pack-351

age (SLURP) (Bastianelli et al., 2020). FSC in-352

cludes 30,043 English utterances, recorded at 16353

kHz, resulting in 31 intent classes in total. The354

SLURP dataset comprises around 56 hours of au- 355

dio of people interacting with a home assistant 356

(slurp_real), with the addition of 43.5 hours of syn- 357

thetic data (slurp_synth). It is considered the most 358

challenging SLU dataset due to its lexical complex- 359

ity. Each utterance is annotated with 3 semantics: 360

scenario, action, and entity. The pair (scenario, 361

action) defines an intent. Overall, there are 18 sce- 362

narios and 69 intents. For our experiments, we 363

only perform intent classification. Following (Cap- 364

pellazzo et al., 2023b), we use the scenario labels 365

as splitting criterion to define the CIL setting (we 366

refer to A.3 for more details on this). We exper- 367

iment on two configurations: 1) the datasets are 368

partitioned into 3 tasks, each task comprising 6 369

scenarios for SLURP (denoted as SLURP-3), and 370

10 intents for FSC (FSC-3); 2) a more challenging 371

configuration with 6 tasks, each task including 3 372

scenarios for SLURP (SLURP-6), and 5 intents for 373

FSC (FSC-6). 374

Implementation Details. For both datasets, the 375

text encoder is a standard text embedding layer 376

with size 768. For the audio encoder, we use a 377

Wav2vec 2.0 base model (Baevski et al., 2020) pre- 378

trained and fine-tuned on 960 hours of Librispeech 379

for SLURP (∼ 94.3M parameters), while we use 380

DistilHuBERT base (Chang et al., 2022) for FSC 381

(∼ 23.5M parameters). Both encoders have hid- 382

den sizes of 768. Since FSC is a less challenging 383

dataset than SLURP, we found that a smaller pre- 384

trained encoder is sufficient to achieve state-of-the- 385

art results. Moreover, experimenting with diverse 386

architectures helps evaluate the generalizability of 387

our proposed method. As in (Radford et al., 2021), 388

we employ linear projection layers to map from 389

each encoder’s representation to the audio-text em- 390

bedding space, whose dimension is 512. The ASR 391

decoder is transformer-based with 6 layers, hidden 392

size equal to 768, 8 attention heads, and the dimen- 393

sion of the feedforward layers is 2048. We set the 394

temperature τ to 0.1 for both NSPT and MM loss 395

(please refer to A.5 for a detailed analysis). 396

For the tokenization we apply Byte-Pair Encod- 397

ing (BPE) (Sennrich et al., 2016) for SLURP, with 398

a vocabulary size of 1000 and BPE dropout equal 399

to 0.1, whereas for FSC, given the limited number 400

of unique words, we use word tokenization, result- 401

ing in 139 tokens. BPE automatically assigns to 402

each intent a dedicated token, whereas for FSC we 403

manually add the intent tokens. We refer the reader 404

to A.2 for an exhaustive description of the hyperpa- 405

rameters. Regarding the weight coefficients, we set 406
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Table 1: Results in terms of Average Accuracy (↑), Last Accuracy (↑), and Average WER (↓) for different strategies
on FSC and SLURP datasets. All CL methods exploit a buffer whose size is 1% of the training dataset. Bold and
underscore numbers denote the best and second best method for a specific setting and metric, respectively. We show
in the last row that COCONUT and S-KD can be used together, leading to the best results. For simplicity, the values
of the last row are not in bold even though attain the best results.

Setting → FSC-3 FSC-6 SLURP-3 SLURP-6
————————— ————————— ————————— —————————

Metric → Avg Last Avg Avg Last Avg Avg Last Avg Avg Last Avg
Method ↓ Acc Acc WER Acc Acc WER Acc Acc WER Acc Acc WER

Offline 99.28 - 0.48 99.28 - 0.48 84.41 - 17.65 84.41 - 17.65
Fine-tuning 49.13 17.61 36.37 29.92 7.59 54.66 46.65 18.42 28.32 31.90 10.57 34.79

ER rand 79.17 69.81 15.87 68.61 63.71 24.04 71.44 61.88 21.25 66.57 58.22 24.50
ER iCaRL 82.04 74.00 13.45 69.76 64.12 23.22 71.94 63.22 21.06 68.08 62.29 26.05

T-KD 82.11 75.43 12.95 69.08 64.73 23.82 72.44 62.43 21.19 66.95 60.47 24.26
A-KD 84.79 78.12 11.54 73.54 67.05 20.36 72.10 63.84 20.67 68.52 62.51 24.29
S-KD 84.29 75.31 12.39 73.65 67.71 21.27 74.28 65.95 21.26 69.91 63.22 24.26
COCONUT 86.39 80.21 11.08 77.09 73.80 19.05 72.75 64.62 21.25 70.17 63.66 24.29

COCONUT+S-KD 87.64 80.45 10.49 77.57 74.01 18.47 75.58 67.39 20.61 71.91 65.41 24.16
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Figure 3: Left: the trend of the intent accuracy on the observed tasks for the FSC-6 setting. Right: the trend of the
intent accuracy on the observed tasks for SLURP-6.

λMM to 0.1, and similarly to (Douillard et al., 2022;407

Wu et al., 2019) we set λNSPT to Lp

Lp+Ln
, where Lp408

and Ln count the number of past and new classes.409

Baselines. Apart from the standard offline (1410

task, no continual) and fine-tuning (no CL strate-411

gies) baselines, we compare COCONUT against412

standard experience replay (ER) methods with413

random and iCaRL (Rebuffi et al., 2017) sampling414

strategies. We note that ER is already a strong base-415

line for FSC and SLURP. We also point out that416

adapting standard CL strategies to our setting is not417

trivial as they are usually proposed for classifica-418

tion tasks and not for auto-regressive tasks. Plus,419

we report two methods proposed in (Cappellazzo420

et al., 2023b) that combine rehearsal and KD prin-421

ciples: audio-KD (A-KD) that applies the KD on422

the audio features of the rehearsal samples, and423

seq-KD (S-KD) that, at the end of the current task,424

stores the text transcriptions computed with beam 425

search only for the rehearsal samples and use them 426

as pseudo-transcriptions for the next task. This 427

method operates on the ASR decoder. For the sake 428

of completeness, we also report text-KD (T-KD), 429

the text counterpart of the A-KD. 430

Metrics. Following (Douillard et al., 2022), we 431

report the results in terms of the Avg Acc, which 432

is the average of the intent accuracies after each 433

training task, and the Last Acc, which is the intent 434

accuracy after the last task. We also report the Avg 435

WER, the average of the Word Error Rate (WER) 436

of the extended transcription after each task. 437

4.2 Main Results 438

In the first two rows of Table 1, we include the 439

upper and lower bounds represented by the offline 440

learning (which is in line with the state-of-the-art) 441
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Figure 4: Left: the trend of the WER on the observed tasks for the FSC-6 setting. Right: the accuracy of COCONUT
and other methods as a function of the memory size.

and fine-tuning approaches. For the fine-tuning442

approach, we can notice how CF deteriorates the443

knowledge of the prior classes. We then include ER444

baselines with buffer capacity equal to 1% of the445

dataset size. From these results we can see that ER-446

based methods achieve good results for all metrics447

and configurations, confirming themselves as solid448

baselines. For FSC, COCONUT outperforms the449

other baselines by a significant margin, in terms of450

both accuracy and WER. Its combination with the451

S-KD leads to additional improvements (last row).452

If we turn our focus to SLURP we see that, for453

the setting with 3 tasks, S-KD turns out to be the454

best approach in terms of intent accuracy, followed455

by COCONUT. For the WER, all the methods456

achieve similar performance and do not provide457

significant enhancements. We speculate that, as458

only some words are task-specific while the others459

are spread across multiple tasks, the text modality460

is less affected by CF. It is also compelling to note461

that the A-KD always achieves better performance462

than T-KD, a trend that will also be observed for463

the NSPT loss in the ablation studies. For SLURP-464

6, COCONUT slightly surpasses S-KD in terms of465

accuracy, and performs on par with the others for466

the WER metric. This indicates that COCONUT467

scales properly with the number of tasks. Addi-468

tionally, we point out that, for SLURP, COCONUT469

provides less noticeable improvements than FSC.470

This can be attributable to the higher complexity471

of the dataset due to its larger dictionary and to the472

larger number of intents with respect to FSC (69473

vs. 31). Finally, similar to FSC, the combination474

of COCONUT with S-KD attains the best results,475

confirming that fighting CF both at the encoders476

and ASR decoder is an effective solution.477

In Fig. 3 we illustrate the trend of the intent478

accuracy after each task for FSC-6 and SLURP- 479

6. For FSC-6, COCONUT outperforms the other 480

baselines by a large margin after each task. For 481

SLURP-6, COCONUT has a similar trend as S- 482

KD, and their combination leads to a noteworthy 483

boost in performance. On the left part of Fig. 4 we 484

also show the trend of the WER task by task. 485

4.3 Ablation Study 486

Is COCONUT effective when we vary the buffer 487

memory size? On the right side of Fig. 4, we study 488

the trend of COCONUT for different quantities 489

of rehearsal samples per class. Note that 8 sam- 490

ples per class is equivalent to a buffer capacity of 491

1% of the entire training dataset. The maximum 492

gain provided by COCONUT with respect to the 493

ER baseline is reached for 4 and 8 samples per 494

class (9.27 and 6.69, respectively), while for the 495

extreme cases of 2 and 30 samples, the gap is re- 496

duced. This is explained by the fact that when few 497

samples are stored for each class, the effect of the 498

NSPT loss is highly reduced given its reliance on 499

the rehearsal data, whilst in the opposite case the 500

abundance of rehearsal data makes the ER baseline 501

already strong, thereby improving it becomes more 502

challenging. Regarding the latter case we note that 503

when we increase the buffer memory size, we im- 504

plicitly move toward the offline setting (the upper 505

bound), which is not the objective of this paper. 506

Ablation on the NSPT Loss. In Table 2 we 507

evaluate the difference in performance between the 508

standard NTPT loss and our proposed NSPT loss 509

and some of its variants. Specifically, we study 510

two design properties: 1) which samples should 511

be used as anchors? 2) Should the rehearsal nega- 512

tives be computed using the teacher model rather 513

than the student, unlike the negatives coming from 514
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Table 2: Ablation on the use of NSPT and NTPT losses.

Dataset → FSC-6 SLURP-6

Metric → Avg Last Avg Last
Method ↓ Acc Acc Acc Acc

ER iCaRL 69.76 64.12 68.08 62.29
MM 71.12 67.76 68.78 62.94
MM + NTPT 74.05 67.61 68.91 62.57
MM + NSPT-AA 76.30 72.34 69.74 62.54
MM + NSPT-AN 66.37 63.89 64.72 56.84
MM + NSPT 77.09 73.80 70.17 63.66

the new task? Regarding point (1), we study the515

case where the anchor samples are both the re-516

hearsal data (our proposed design) and the new517

data. This means that in the outer sum of Equa-518

tion 5 the samples are picked from I. Note that519

this design choice requires to compute the loss for520

all samples in the dataset, thus incurring an ap-521

preciable increase in the computational cost. We522

denote this variant where we Ablate the Anchor523

design as NSPT-AA. As for the second point, we524

compute the negatives coming from the rehearsal525

memory using the teacher (the teacher has seen526

those classes in the previous tasks), whereas the527

samples from the current task are computed with528

the student model. The denominators of Equa-529

tion 5 become (we use z to refer to both a and t):530 ∑
i∈Ic exp(z

n
k · zni /τ) +

∑
h∈Ir exp(z

n
k · zn−1

h /τ).531

We call it NSPT-AN (Ablate Negatives).532

Looking at Table 2, we see that for FSC-6, the533

use of our proposed NSPT loss gives a considerable534

improvement over the NTPT loss in terms of all535

three considered metrics. For SLURP-6, the trend536

is maintained, and now the NTPT even brings a537

small deterioration over the MM baseline in terms538

of Last Acc. Also, the MM loss alone contributes539

positively over the ER baseline for both settings.540

We recall that it is not possible to study the individ-541

ual contribution of the NSPT loss because, without542

the MM loss, the teacher projectors are randomly543

initialized during the second task (see section 3.2).544

Furthermore, we observe that the design choices of545

(1) and (2) are crucial to obtaining superior perfor-546

mance. Whereas the model is less sensitive to the547

anchors choice, the computation of the rehearsal548

negatives using the teacher yields a severe degra-549

dation in the performance. We suspect that this550

happens because mixing the teacher and student551

at the denominators makes the learning process552

more complex as feature representations of differ-553

Table 3: Ablation study of the MM (upper part) and
NSPT (bottom part) components. CLS: whether only
the intent class token is used; Anchor: whether ER data
are excluded from the anchors. LA/LT: whether the
audio/text component of NSPT loss is used.

CLS Anchor LA LT Avg Acc

70.10
✓ 70.49

✓ 71.09
✓ ✓ 71.12
✓ ✓ ✓ 76.84
✓ ✓ ✓ 73.11
✓ ✓ ✓ ✓ 77.09

ent models interact, inducing more interference and 554

thus leading the model to make more mistakes. 555

Ablation on the MM Loss. Finally, in Table 3 556

we study the design properties of the MM loss on 557

FSC-6, and with its best configuration, we deter- 558

mine the individual contribution of the audio and 559

text components to the NSPT loss. For the MM 560

loss, we see that using the intent token and pre- 561

venting the ER data from being anchors brings 562

additional improvements. For the NSPT loss, as 563

was evident for the A-KD and T-KD, with the for- 564

mer giving better results, here we also discover 565

that the audio component is predominant. Plus, the 566

concurrent use of both components brings a mod- 567

erate increase in accuracy, and this is due to the 568

alignment between audio and text via the MM loss. 569

5 Conclusion 570

In this work, we study the problem of E2E SLU us- 571

ing a seq-2-seq model for class-incremental learn- 572

ing. In order to mitigate catastrophic forgetting 573

we propose COCONUT , a CL approach that 574

exploits experience replay and contrastive learning 575

paradigms. On the one hand, it preserves the previ- 576

ously learned feature representations via an ad-hoc 577

supervised contrastive distillation loss, on the other 578

it contributes to aligning audio and text representa- 579

tions, thus resulting in more transferable and robust 580

to catastrophic forgetting representations. We show 581

that COCONUT outperforms the other baselines 582

and that synergizes with other KD techniques op- 583

erating on the decoder side. We finally dissect the 584

design choices of COCONUT through specific ab- 585

lation studies, showcasing that each component is 586

pivotal to attain the best results. 587
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6 Limitations588

Our work comes with some limitations. First of all,589

the number of suitable SLU datasets for CIL set-590

tings is limited since few datasets provide enough591

intent classes. Then, we could not use batches592

larger than 32 owing to computational limitations,593

and it is known that contrastive learning benefits594

from larger batches. Finally, as pointed out in the595

paper, almost all CIL methods are proposed for596

classification tasks, so their adaptation to our set-597

ting is not trivial. For this reason, we focused more598

on past baselines tailored for our setting, as well599

as rehearsal approaches that confirm themselves as600

strong approaches while being simple. Finally, we601

do not see any potential risks linked to our work.602
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A Appendix932

A.1 Related Work933

A vast array of CL strategies exist in the litera-934

ture (Wang et al., 2023b; Zhou et al., 2023), which935

can be categorized into some macro groups: reg-936

ularization-based, experience replay, and archi-937

tecture-based. Regularization methods contrast938

forgetting either by introducing some ad-hoc reg-939

ularization terms that penalize changes to model940

weights (Ebrahimi et al., 2020; Kirkpatrick et al.,941

2017) or to model predictions (Hou et al., 2018;942

Li and Hoiem, 2017; Fini et al., 2020). Experi-943

ence replay approaches interleave the new data944

with cherry-picked samples from the prior tasks945

(Chaudhry et al., 2019; Bang et al., 2021; Buzzega946

et al., 2020), or they incorporate regularization947

terms with this additional data to steer the opti-948

mization process and prevent catastrophic forget-949

ting (Chaudhry et al., 2019; Wang et al., 2021;950

Yang et al., 2022b). Finally, architecture methods951

involve creating task-specific/adaptive parameters,952

such as dedicated parameters to each task (Xue953

et al., 2022; Wang et al., 2022a) or task-adaptive954

sub-modules or subnetworks (Aljundi et al., 2017;955

Ostapenko et al., 2021).956

Contrastive learning (Oord et al., 2018; Chen957

et al., 2020) is a popular approach in self-958

supervised learning, but it can also be used in959

supervised learning (Gui et al., 2023) and multi-960

modal learning (Radford et al., 2021). Its objective961

is to learn discriminative feature representations962

by pushing apart different samples (negatives) and963

bringing closer similar ones (positives). In the case964

of supervised CIL, it has been shown that endow-965

ing the model with contrastive learning objectives966

results in more robust representations against CF.967

For incremental semantic segmentation, Yang et al.968

(2022a) and Zhao et al. (2023) propose to exploit 969

contrastive learning in conjunction with knowledge 970

distillation. For image classification, Wang et al. 971

(2022b) advance a contrastive learning strategy 972

based on the vision transformer architecture for 973

online CL. 974

A.2 Hyper-parameters 975

We list the main hyperparameters used for our ex- 976

periments in table 4. We also mention the num- 977

ber of epochs for each setting. For FSC-3, the 978

number of epochs for each task is {40,30,30}, 979

while for SLURP-3 we use {40,25,25}. For FSC- 980

6 and SLURP-6 we use {40,30,30,30,30,30} and 981

{40,25,20,20,20,20} epochs, respectively. We fi- 982

nally note that we set lr = 5 · 10−4 for the text 983

encoder, the ASR decoder and the classifier, while 984

for the audio encoder we set a smaller learning rate, 985

lr = 5 · 10−5, because it is pre-trained. For our 986

experiments, we used a single Tesla V100 or Am- 987

pere A40 GPU. Finally, each experiment reports 988

the mean and standard deviation over 3 runs for 989

FSC and 2 runs for SLURP, respectively. 990

A.3 Additional Details on the Definition of the 991

CIL Setting for SLURP 992

As the SLURP dataset provides multiple levels of 993

annotations (scenario, action, entity[es]), in prin- 994

ciple one could decide to divide the dataset into 995

multiple CIL tasks following one of these criteria. 996

Following (Cappellazzo et al., 2023b), we use the 997

scenarios as splitting criterion because they repre- 998

sent more general concepts than the actions and 999

entities, and then the accuracy is computed on the 1000

intent, defined as the pair (scenario,action). In ad- 1001

dition to this, we define the order of the classes 1002

in the various tasks depending on their cardinality, 1003

meaning that the classes with more samples are 1004

seen first by the model. This is done because the 1005

cardinality of SLURP scenarios varies consistently 1006

from class to class, and this should resemble a prac- 1007

tical situation in which the model accrues sufficient 1008

general knowledge, learning the largest scenarios 1009

first, that will be useful for learning more specific 1010

scenarios. All in all, we tried to be as consistent 1011

with the original implementation in (Cappellazzo 1012

et al., 2023b) as possible in order to ensure a fair 1013

comparison with prior works. 1014

A.4 SpecAug Details 1015

In this section, we elaborate on the use of SpecAug 1016

for augmenting the audio input data. SpecAug 1017
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Table 4: Training hyperparameters for FSC and SLURP.

Hyperparameter FSC SLURP

Batch Size 32
Optimizer AdamW
β1 0.9
β2 0.98
ϵ 10−6

lr 5 · 10−4

Weight Decay 0.1
Tokenizer Word Tok. BPE Tok.
Beam Search width 5 20
Temperature τ 0.1

(Park et al., 2019) is a popular augmentation tech-1018

nique that is applied directly on the log mel spec-1019

trogram of an audio signal, with the aim of making1020

the model invariant to features deformation. In the1021

original paper, they advance three different types of1022

distortions: time warping, and time and frequency1023

masking, where blocks of consecutive time steps1024

and frequency channels are zero-masked, respec-1025

tively. Since our audio encoders (i.e., DistilHu-1026

BERT and Wav2vec 2.0) work on the raw audio1027

waveforms, SpecAug is not applicable by default.1028

In order to circumvent this problem, we apply an1029

approximated version of SpecAug directly to the1030

raw waveform, as proposed in the SpeechBrain li-1031

brary (Ravanelli et al., 2021). We randomly drop1032

chunks of the audio waveform (by zero-masking)1033

and frequency bands (with band-drop filters). Un-1034

like the SpeechBrain implementation, we do not1035

apply speed perturbation. In more detail, with prob-1036

ability 0.5 we randomly drop up to 2 frequencies,1037

while with probability 0.5 we randomly drop up to1038

3 chunks of audio whose length is sampled from a1039

uniform distribution ∼ U(0, 0.05 · len(x)), where1040

len(x) is the length of the considered audio wave-1041

form x.1042

A.5 On the Impact of the Temperature1043

Parameter1044

In this section we analyze the role of the tempera-1045

ture parameter in the CIL process for the MM loss1046

(see Equation 6) on the FSC-6 setting. We first1047

try to set the value beforehand (0.07, 0.1, 0.2), and1048

then we make the temperature a learnable hyperpa-1049

rameter (initial value is 0.07). Results are reported1050

in Table 5. We can observe that τ = 0.1 is the best1051

configuration for the accuracy metric. Note that,1052

however, the model does not seem very sensitive to1053

Table 5: Ablation study of the temperature τ for the MM
loss. We experiment on FSC-6 by setting τ beforehand
and making it a learnable hyperparameter as is common
practice in offline settings (Radford et al., 2021). The
light-blue row corresponds to the value we used for our
experiments.

Metric → Avg Last Avg
Temp. (τ ) ↓ Acc Acc WER

0.07 71.06 64.75 22.07
0.1 71.12 67.76 22.88
0.2 71.01 62.35 22.78
Learnable 69.05 66.33 24.57

the temperature for the Avg Acc, whereas the Last 1054

Acc is more influenced. Since the Avg Acc does 1055

not change much across the three configurations, 1056

yet the Last Acc sways much more, this means that 1057

for τ = 0.1 the model struggles more during the 1058

initial tasks, but it performs better towards the end 1059

of the learning process. On the other hand, learning 1060

τ task by task does not seem to be the right choice 1061

as the Avg Acc and WER metrics deteriorate with 1062

respect to the other three configurations where it 1063

is fixed. In fact, we observed that during the first 1064

tasks, the model is learning the optimal value for τ 1065

until it finds it (this value approximately lies in the 1066

range 0.134−0.142). This initial transitional phase 1067

penalizes the accuracy of the first tasks, which in 1068

turn leads to a deterioration in the Avg Acc metric. 1069

A.6 Computational Time Analysis 1070

In this section, we study the computational cost of 1071

COCONUT and compare it with the other base- 1072

lines. The computational time includes the training 1073

and inference time, as well as the time needed for 1074
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Figure 5: Computational cost analysis of various CIL methods for FSC-6 (left) and SLURP-6 (right).

selecting the rehearsal samples to store in the mem-1075

ory (the S-KD method also computes the pseudo-1076

labels that will be stored in the memory). The main1077

difference between the baselines (ER iCaRL, A-1078

KD, S-KD) and COCONUT is that the baselines1079

focus on the rehearsal data only, while COCONUT1080

is applied to both the rehearsal data (NSPT loss)1081

and the new data (MM loss), and so COCONUT1082

requires an additional compute time due to the MM1083

loss. Nevertheless, this additional time does not1084

hinder its applicability as it is somewhat limited.1085

Indeed, for the FSC-6 setting, the KD baselines1086

require an additional 3/7 % of computational time1087

with respect to the fine-tuning baseline, while CO-1088

CONUT requires around 11%. For SLURP-3, the1089

KD baselines require around 8% of additional com-1090

pute time, whereas COCONUT requires around1091

35%. Undoubtedly COCONUT requires slightly1092

more running time than the other KD baselines that1093

are only applied to the rehearsal samples, but this1094

overhead is minimal and consequently we believe1095

this is not an issue for a practical scenario, consider-1096

ing also that COCONUT leads to much-improved1097

performance. Additionally, from a memory over-1098

head point of view, COCONUT requires the storage1099

of the rehearsal samples and a copy of the model1100

from the previous task. These storage requirements1101

are the same as the A-KD baseline. Instead, the1102

S-KD approach, in addition to the aforementioned1103

storage requirements, also necessitates the storage1104

of the rehearsal text transcriptions generated with1105

beam search from the previous task, thus increas-1106

ing the requested memory overhead with respect to1107

COCONUT.1108

A.7 Future Work1109

COCONUT relies on two contrastive learning-1110

based losses applied to the projections of audio and1111

text encoders outputs. In principle, COCONUT 1112

could be exploited in other multi-modal settings 1113

such as audio-vision or vision-language. There- 1114

fore, it would be interesting to study whether CO- 1115

CONUT can be exploited in other different multi- 1116

modal scenarios. Also, since these settings usually 1117

involve a larger number of classes than ours, we 1118

would be able to test how COCONUT scales to the 1119

number of tasks. 1120
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