
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

CBFLOWNET: GENERATING HIGHER-QUALITY CAN-
DIDATES VIA COMBINATORIAL BANDITS

Anonymous authors
Paper under double-blind review

ABSTRACT

As a probabilistic sampling framework, Generative Flow Networks (GFNs) show
strong potential for constructing complex combinatorial objects through the sequen-
tial composition of elementary components. However, existing GFlowNets often
suffer from excessive exploration over vast state spaces, leading to over-sampling
of low-reward regions and convergence to suboptimal distributions. Effectively
biasing GFlowNets toward high-reward solutions remains a non-trivial challenge.
In this paper, we propose CBFlowNet, which integrates a combinatorial multi-
armed bandit (CMAB) framework with GFN policies. The CMAB component
prunes low-quality actions, yielding compact subspaces for exploration. Restricting
GFNs to these compact subspaces accelerates the discovery of high-value candi-
dates, while the reduced complexity enables faster convergence. Experimental
results on multiple tasks demonstrate that CBFlowNet generates higher-reward
candidates than existing approaches, without sacrificing diversity. All implementa-
tions are publicly available at https://anonymous.4open.science/r/
CBFlowNet-E0BA/.

1 INTRODUCTION

Generative Flow Networks (GFlowNets) (Bengio et al., 2021; Zhang et al., 2022; Cretu et al., 2024)
have shown their impressive potential in generating diverse and high-scoring candidates across
various domains, especially in generating combinatorial objects (Zhang et al., 2023c;b). By unifying
MDPs’ sequential dynamics with flow-based probability matching, GFlowNets synthesize action
trajectories that sample candidates proportionally to the desired reward distribution.

Typically, GFlowNets model the generation process as a traversal on a directed acyclic graph (DAG)
(S,A). S represents the state space (set of nodes) and A = {(s→ s′) | s, s′ ∈ S} denotes the set
of possible state transitions (set of edges). The key objective of GFlowNets is to sample terminal
states (candidates) with probability proportional to a given reward function R(x), i.e., P (x) ∝ R(x).
This is achieved by learning a flow network, where F (s) represents the total flow through state s and
F (s→ s′) denotes the edge flow for action s→ s′. The forward policy π(s→ s′|s), which governs
the generation process, is defined as the normalized edge flow: π(s→ s′|s) = F (s→s′)

F (s) .

However, although the original objective of GFlowNet is to sample candidates in proportion to their
rewards, prior studies report that GFlowNet often struggles to generate high-scoring candidates due
to excessive exploration in large search spaces (Kim et al., 2023). Moreover, GFlowNet can converge
to distributions with average rewards lower than the target, even after extensive training (Shen et al.,
2023). Consequently, effectively biasing the sampling process toward high-reward solutions is
non-trivial.

A possible way to alleviate such a situation, i.e., avoiding oversampling from low-reward regions, is
training the model to sample proportionally to R(x)β , where β ≫ 1 represents an inverse temperature
parameter (Malkin et al., 2022a; Lau et al., 2024). Optimizing the inverse temperature parameter β
presents non-trivial challenges, as its selection critically impacts both the exploration-exploitation
balance and training stability in GFlowNets.

Aside from tuning the parameter β to control the greediness of GFlowNets, improving the sampling
process is also promising to increase the greediness of GFlowNets without worrying about stability
issues and mode collapse like β. Lau et al. (2024) combined the flow with Q values to make a greedier

1

https://anonymous.4open.science/r/CBFlowNet-E0BA/
https://anonymous.4open.science/r/CBFlowNet-E0BA/

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

sampling process. Kim et al. (2023) introduced a local search algorithm to make denser samples of
high-scoring regions. Our proposed method also focuses on improving the sampling process.

Unlike prior works, we focus on action pruning during the sampling process to avoid oversampling
from low-reward regions. Formally, pruning can be defined as selecting K actions to remove from
total N actions. Different pruning strategies induce different subspaces, some of which contain denser
clusters of high-reward candidates than others. However, pruning is non-trivial: when K scales with
N , the number of combinations

(
N
K

)
grows exponentially, causing a combinatorial explosion that

makes exhaustive search infeasible. With only a limited budget of sampling steps, it becomes essential
to efficiently locate promising subspaces, which inevitably introduces an exploration–exploitation
trade-off analogous to that in CMAB, where one must decide between exploiting the currently
identified high-reward subspaces and exploring alternative ones that may yield even better candidates.

Drop edge Mask Node

High Medium Low

Figure 1: Illustration of action pruning.The tri-
angle means initial state, the circles denote interior
states, and the squares denote the terminal states.
By pruning low-scoring actions(blue edges), can-
didates with low rewards(blue nodes) are masked.
Candidates with high rewards(Orange ones) are
more likely to be explored, addressing the over-
exploration of low-reward candidates.

Addressing this challenge, we combine a com-
binatorial multi-armed bandit algorithm
(CMAB) framework with GFlowNets, and in-
troduce CBFlowNet. By considering actions as
arms in the Multi-armed Bandit problem, we
can utilize the CMAB algorithm to select ac-
tions that are more likely to lead to high-reward
candidates. The combination of strategic prun-
ing with CMAB’s exploration mechanism cre-
ates a powerful synergy. The pruning of low-
quality actions by CMAB results in a greedier
sampling strategy that prioritizes high-scoring
actions. This bias systematically directs explo-
ration toward higher-quality subspaces, where
promising candidates are denser, thus improving
overall sample efficiency and generation qual-
ity. By focusing on such compact subspaces,
CBFlowNet accelerates the learning of high-
reward candidates, as the reduced complexity allows faster convergence. This efficiency extends
to other subspaces due to the overlaps of sub-regions. While the pruning focuses the search on
promising subspaces, the CMAB component ensures that potentially valuable but under-explored
subspaces continue to receive attention.

We evaluate the proposed CBFlowNet on several popular tasks used in prior works, including
molecule design (Bengio et al., 2021), three RNA design tasks (Sinai et al., 2020) and bit sequence
task (Malkin et al., 2022a). The result demonstrates that the proposed method discovers more
high-reward candidates and converges faster than baselines.

2 RELATED WORK

GFlowNets: Since their introduction by Bengio et al. (2021), GFlowNets have advanced rapidly in
theory and applications, with recent works establishing connections to variational inference (Malkin
et al., 2022b), distributional analysis (Silva et al., 2025), proxy-free training in offline settings
(Chen et al., 2025), and alternative loss designs (Hu et al., 2024). They have also been applied to
combinatorial optimization tasks, including general problems (Zhang et al., 2023b), computation
graphs (Zhang et al., 2023a), hierarchical exploration with evolutionary search (Kim et al., 2024b), and
multi-objective optimization (Zhu et al., 2023). In contrast to these approaches, which mainly employ
GFlowNets to solve combinatorial problems, our method leverages combinatorial optimization
techniques to improve GFlowNets themselves. Complementary efforts have enhanced GFlowNet
training through Q-value integration (Lau et al., 2024), local search (Kim et al., 2023), Thompson
sampling (Rector-Brooks et al., 2023), replay strategies (Vemgal et al., 2023; Shen et al., 2023),
genetic and evolutionary algorithms (Kim et al., 2024a; Ikram et al., 2024), and adaptive teacher
mechanisms (Kim et al., 2024c).

Combinatorial multi-armed bandit: The combinatorial multi-armed bandit (CMAB) framework
was first introduced by (Chen et al., 2013). Chen et al. (2016) later extended it to nonlinear reward
functions dependent on variable distributions. Subsequent work includes the cost-aware auction-based

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

CMAB by Gao et al. (2021) and full-bandit algorithms by Agarwal et al. (2021); Fourati et al. (2024b),
where no individual arm feedback is available.

3 PRELIMINARY

In the classic Combinatorial Multi-Armed Bandit (CMAB) problem (Chen et al., 2013; 2016), there
are N base arms, each associated with an unknown reward distribution. In every round, the player
selects a subset of K base arms, forming a super arm, and receives a joint reward. The goal is to
identify the best K arms that maximize the joint reward, which may be a non-linear function of
individual arm rewards, while minimizing regret—the gap between the expected reward of always
playing the optimal super arm and that of the algorithm’s choices (Chen et al., 2013; Slivkins et al.,
2019; Chen et al., 2016). The central challenge lies in balancing exploration (trying diverse super
arms to gather information) and exploitation (selecting the current best super arm for higher reward).
Notably, the flow network embodies a similar dilemma: some regions of the state space contain dense
clusters of high-reward candidates, and the algorithm must decide between probing new promising
subspaces and exploiting those already identified. The feedback models of CMAB can be categorized
into two types: 1) Full-bandit feedback(Chen et al., 2013; Fourati et al., 2024a), where only the
aggregate reward of the played super arm is observed, and 2) Semi-bandit feedback(Chen et al., 2013;
2021), where the individual rewards of each base arm in the super arm are additionally revealed. Our
problem adopts the semi-bandit setting because the full-bandit feedback would lead to significant
information loss regarding the quality of generated candidates. For instance, when a high-scoring
candidate is generated by the flow network, it might only utilize a subset of the base arms in the
super arm, while the full-bandit setting would obscure this critical information by only providing the
aggregated reward, thereby hindering the learning process about which specific base arms contribute
most to good solutions.

4 METHODOLOGY

In this section, we introduce Combinatorial Bandit GFlowNet (CBFlowNet), a greedy training
framework designed to enhance both the quality and diversity of generated candidates based on
Combinatorial multi-armed bandit(CMAB). Unlike prior approaches that operate over the entire flow
graph (Lau et al., 2024), CBFlowNet achieves a more balanced exploration–exploitation trade-off by
selectively focusing on high-scoring subspaces of substantially reduced size.

4.1 FRAMEWORK DESIGN

4.1.1 DESIGN OF BASE AND SUPER ARMS

The core challenge in applying CMAB to GFlowNets is to define a set of base arms whose combina-
tions (super arms) can meaningfully constrain the exploration space. A naive approach would be to
treat every possible state transition s → s′ as a distinct arm. However, this leads to an intractably
large and state-dependent set of arms, making the CMAB problem ill-posed.

To overcome this, we observe that in many sequential generation tasks, actions can be decomposed
into two components: A state-dependent component ad that determines where to act (e.g., which
position in a sequence to fill, which molecular stem to extend); A state-independent component ai
that determines what action to take, regardless of the specific state (e.g., which value to assign to a
position, which building block to attach).

Ai = {ai | (ad, ai) ∈ As, ∀s ∈ S}. (1)

As denotes the available transitions(action set) of state s. Intuitively, Ai represents the "alphabet" of
primitive choices available throughout the generative process. A super arm S ⊆ Ai is then a subset
of this alphabet. By selecting a super arm, we restrict the GFlowNet policy such that at any state s,
it can only take actions (ad, ai) where ai ∈ S. This effectively prunes all actions that use primitive
choices outside S. Task Examples are given in Table 1.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Table 1: Decomposition of actions into state-dependent and state-independent components across
different tasks.

Task State-dependent Component (ad) State-independent Component (ai, Base Arm) Ai

Bit Sequence Generation Position to edit Binary value to assign {0, 1}
Molecule Design Stem to extend Building block to attach Vocabulary of 105 blocks
RNA Sequence Design Prepend or Append Nucleotide to add {A,C,G,U}

4.1.2 DESIGN OF REWARDS FOR BASE AND SUPER ARMS

We now turn to the assignment of rewards to base arms, a critical factor for ensuring stable learning.
In the semi-bandit setting with m base arms, the reward of base arm i at round t is defined as

Xt
i =

1

|Ct
i |
∑
x∈Ct

i

r(x), (2)

where Ct
i denotes the set of candidates at round t that contain base arm i, and

r(x) = normalize(R(x)) (3)

is the normalized reward of candidate x with raw reward R(x) from the environment. Normalization
ensures all rewards fall within the range [0, 1], which is necessary for effective exploration.

The reward of a super arm is then defined as the sum of the rewards of its constituent base arms.

However, combinatorial bandits (CMAB) require independence among base-arm rewards, which is
violated under naive pruning. Formally, if armi = arm′

j , then Xt
i

d
= X ′t

j must hold. Yet, restricting
flow networks to a subspace S artificially inflates the rewards of remaining arms due to the exclusion
of low-quality actions.

To address this issue, we adopt a two-phase sampling strategy:

❶ Constrained training. Train the flow network restricted to S.
❷ Unbiased evaluation. Sample additional candidates without restrictions, and compute Xi

as the average reward over all candidates containing arm i.

This procedure doubles the sampling cost but does not increase network training complexity, while
ensuring unbiased reward estimates. Moreover, the extra cost does not scale linearly with time,
since the evaluation stage of deep networks remains unaffected. With multi-threaded sampling, the
overhead can be further reduced. A detailed comparison of time consumption is reported in Table 10.

4.1.3 DESIGN FOR ADJUSTING NETWORK STRUCTURE

00 01 10 11

0 1

-
0 1

0 01 1

00 01 10 11

-

00 01 10 11

Single action as arm Multi actions as arm

00 01 10 11

Figure 2: Using short action sequences as arms
to transform the narrow-deep network architecture
into a more balanced wide structure.

We further propose a method to address the chal-
lenge that arises when the independent action
space is small but trajectories are long, resulting
in narrow yet deep networks.

For instance, in bit sequence generation, there
are only two independent actions, 0, 1, while a
complete sequence may require over 100 steps.
This leads to a deep but fragile network, where
pruning even a single action can collapse the
entire solution space.

To address this, we redefine base arms as short
sequences of t consecutive actions:

a1 → a2 → · · · → at.

Super arms then consist of sets of such sequences. A sub-trajectory is valid if its independent
subsequence belongs to the chosen super arm. This widens the effective search space, balances the
architecture, and preserves CMAB guarantees (see Fig. 2).

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

4.1.4 DESIGN OF PROCESS OF THE ALGORITHM

We integrate our framework into the Combinatorial Upper Confidence Bound (CUCB) algorithm
(Algorithm1). For each arm i, we maintain its empirical mean reward µ̂i and selection count Ti. The
UCB-adjusted estimate is

µi = µ̂i +
√

3 ln t
2Ti

, (4)

where t is the round index. This estimate ensures a principled balance between exploration and
exploitation.

Training begins with an initialization phase to provide each base arm with a reasonably accurate
initial estimate. In subsequent rounds, Figure 3 illustrates the pipeline. The framework first ingests
the full DAG, then performs an auxiliary sampling pass to refine reward estimates within the CMAB
module. Using these updated estimates, CUCB selects the top-K arms according to µi, constructs the
corresponding super arm. Training restricts sampling to this subspace, and the resulting candidates
are used to update the flow network via objectives such as Flow Matching (FM). Within CMAB, the
Combinatorial Upper Confidence Bound (CUCB)(as line 11 of Algorithm 1) rule balances exploitation
of the current best subspace with exploration of promising alternatives, improving efficiency without
compromising diversity.

Mask nodeDrop edges

Sampling

�� �� �� ��

����
���

����
���

⋯⋯
���

����
���

Abandon N - TopK actions Select TopK Actions

�� =
 �� ∗ �� + ���

 �� + �

 �� = �� + 1

�� = �� +
� �� �
� ��

Super arm = top-K(��, ��, . . . , ��)

Updating Base ArmsInitial Graph Pruned Graph

Selecting A Super Arm To Prune Actions Training

� ∈�≠��

�,�:�(�,�)= �’

��(�, �) − �(�’)

−
� ∈ ��’

��(�’, �)

�

�� Sampled Terminal States �� Reward of Arm i �� Empirical Mean of Arm i �� Selection Times of Arm i � Current Training Round

Sampling

����
�� �� base arm set

GFlowNet

Update

Select

Figure 3: Illustration of workflow. The triangle means initial state, the circles denote interior states,
and the squares denote the terminal states. Only one round is shown as an example for clarity. The
training objective shown is Flow Matching(FM) objective.

4.2 THEORETICAL FOUNDATIONS OF THE PROPOSED METHOD

4.2.1 KEY ASSUMPTIONS OF CMAB IN FLOW NETWORKS

There are two assumptions required by CMAB methods. We show that flow networks naturally satisfy
these conditions.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Monotonicity. For a super arm S, the expected reward rµ(S) is non-decreasing in the reward vector
µ. This assumption is natural in flow networks because if all base arms (actions) within a super arm
S exhibit higher expected rewards (i.e., µ′

i ≥ µi for all i ∈ S), it implies that the flow network under
µ′ is better optimized than under µ.

Bounded Smoothness. There exists an increasing function f such that

|rµ(S)− rµ′(S)| < f

(
max
i∈S
|µi − µ′

i|
)
. (5)

In our framework, rµ(S) is the cumulative reward of its arms, reducing f to f(x) = Kx where
K = |S|. This ensures stability: small perturbations in individual arm rewards do not cause
disproportionate fluctuations at the super-arm level.

4.2.2 DYNAMIC NATURE OF FLOW NETWORKS

Unlike standard CMAB problems with stationary distributions, flow networks evolve during training.
It is therefore important to characterize this non-stationarity. The fundamental constraint for an ideal
flow network is:

π(x) =
R(x)∑

x′∈X R(x′)
, ∀x ∈ X , (6)

where π(x) represents the target distribution and R(x) denotes the reward function. However, achiev-
ing this equilibrium condition requires exhaustive exploration of all states, which is impractical in
real-world scenarios. Consequently, the expected rewards of individual base arms evolve dynamically
throughout the training process of the flow network. Nevertheless, we establish theoretically that
these reward distributions converge as training progresses.

Theorem 1. For a dynamic flow network where candidates are sampled proportionally to their
rewards, the reward distribution of each base arm i converges to a stable distribution. The proof is
given in Appendix C.

5 EXPERIMENT

We experimented on 5 commonly used standard tasks. As baselines, we use Trajectory Bal-
ance(TB)(Malkin et al., 2022a), Sub-Trajectory Balance(SUBTB)(Madan et al., 2023), Detailed
Balance(DB)(Jain et al., 2022; Malkin et al., 2022a), LSGFN(Kim et al., 2023), Teacher(Kim et al.,
2024c) and QGFN(Lau et al., 2024). We additionally introduced a random algorithm that randomly
selects super arms called RandGFN. All experiments are conducted on NVIDIA Tesla A100 80GB
GPUs.

5.1 BIT SEQUENCE GENERATION

5.1.1 TASK DEFINITION

The task is to generate binary bit sequences using the set {0, 1} with a fixed length n = 120 with
a terminal state space of 2120 ≈ 1036 and more intermediate states. The reward of a terminal x is
defined as R(x) = exp(−minm∈M dist(x,m)), where dist(x,m) is the Levenshtein Distance of
two sequences following (Malkin et al., 2022a; Zhang et al., 2023c). M is a predefined sequence
set to be discovered as modes. The mode m ∈ M is regarded as found if there exists a sample x
satisfying dist(x,m) < δ, where δ is a predefined parameter.

In this task, we consider a more complex version with many more intermediate states. Malkin et al.
(2022a) considers the process as a left-to-right generation where the state space is only a simple tree.
Lau et al. (2024); Shen et al. (2023) use a prepend-append MDP to induce a DAG. In our setting,
instead of prepending or appending to the existing sequence, we first divide the sequence into ⌊nk ⌋
positions. We can insert a generated k-bit into any unfilled position, resulting in a more complex
DAG.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

0 2000 4000 6000 8000 10000
Round

0.45

0.50

0.55

0.60

0.65

Ac
tio

n
Va

lu
e

(a) Action Value

0000
0001
0110
1011

0 2000 4000 6000 8000 10000
Round

0

10

20

30

40

50

60

Nu
m

be
r o

f M
od

es

(b) Number of Modes

CBGFN
QGFN
TB
LSGFN

DB
SUBTB
randGFN
Teacher

Figure 4: Experimental results on Bit Sequence task. Left panel shows how different action values
change as the training progresses. Right panel shows the mode discovered by different methods.

5.1.2 RESULT

The performance comparison of different methods on the bit sequence task is illustrated in Figure
4 and Table 2. GFlowNets employing TB objective demonstrate superior results, outperforming
all other objective functions. CBFlowNet successfully identifies all potential modes, representing
a substantial advancement in mode discovery efficiency. Figure 4-a illustrates the evolution of µi

for various base arms (actions). As training progresses with the CUCB algorithm’s action selection,
the arms diverge, converging to distinct outcomes. Notably, the actions {0000, 1111} emerge as the
highest-scoring, aligning with the construction of M , where {0000, 1111} appear most frequently
compared to other actions.

Table 2: Comparison on Bit Sequence Genera-
tion. Modes means the number of discovered
modes. Top1000 denotes the average reward of
the best 1000 candidates.

Model Modes Top1000

CBGFN 60 3.60
QGFN 51 3.42
LSGFN 32 2.98

TB 19 2.89
SUBTB 16 2.84

DB 3 2.66
Teacher 46 3.17

RandGFN 32 3.06

Table 3: Comparison on Molecule Design.
Modes R>7.5/8 means the number of modes with
a reward bigger than 7.5/8. Top1000 denotes the
average reward of the best 1000 candidates.

Model Modes R>7.5 Modes R>8 Top1000

CBGFN 13074 3207 8.436
QGFN 8567 1420 8.364
LSGFN 4514 555 8.316

TB 2507 308 8.233
SUBTB 6 0 7.245

DB 6 0 7.124
Teacher 7811 1308 8.395

RandGFN 2188 282 8.248

5.2 MOLECULE DESIGN

5.2.1 TASK DEFINITION

We consider the most common scenario for GFlowNets, the fragment-based molecule generation task.
The objective is to design a variety of molecules with a high reward, where the reward is given by a
proxy model predicting the binding affinity to the sEH (soluble epoxide hydrolase) protein based on a
docking prediction(Trott & Olson, 2010). We use the proxy model provided by (Bengio et al., 2021).

In this task, the states are represented as molecule graphs or SMILES 1. The action space consists of
two components: selecting which molecular stems to extend and choosing which building blocks to
add. The maximum number of allowed blocks controls the size of the state space. The vocabulary
of building blocks consists of 105 distinct elements, where a block has several possible attachment
points(stems). We generate a molecule graph of up to 8 fragments. Therefore, the terminal state
space is more than 1058 ≈ 1016.

1https://en.wikipedia.org/wiki/Simplified_Molecular_Input_Line_Entry_
System

7

https://en.wikipedia.org/wiki/Simplified_Molecular_Input_Line_Entry_System
https://en.wikipedia.org/wiki/Simplified_Molecular_Input_Line_Entry_System

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

0 20000 40000 60000 80000 100000
Active Round

0

2000

4000

6000

8000

10000

12000

(a) Number of modes with reward > 7.5

0 20000 40000 60000 80000 100000
Active Round

0

500

1000

1500

2000

2500

(b) Number of modes with reward > 8
DB TB LSGFN CBGFN RandGFN QGFN SUBTB Teacher

Figure 5: The curve of number of modes varying with rounds (103) on Molecule Design. Left
panel shows the number of modes discovered with a reward R > 7.5. Right panel shows the number
of modes discovered with a reward R > 8.

We define each block as a base arm and choose K blocks as a super arm. There are CK
105 different

base arms. We use Tanimoto similarity (Bender & Glen, 2004) to distinguish different modes, with
a threshold of 0.7. Furthermore, we conduct a comprehensive analysis to examine how different
values of K affect the algorithm’s performance, particularly in terms of controlling its greediness.
The detailed results of this analysis are presented in Appendix F.1. We also include top-K tanimoto
similarity as a metric of diversity in Appendix J.

5.2.2 RESULT

The comparative performance of various models is summarized in Table 3 and Figure 5. What we
found extremely strange is that the baseline SUBTB behaves poorly in both discovering high-scoring
modes and generating high-scoring top 1000 candidates. This phenomenon also appears in the
molecule design task of Lau et al. (2024). Our proposed CBFlowNet demonstrates remarkable
improvements in high-scoring mode discovery. During our experiments, the model successfully
identified over 10,000 high-scoring modes (R>7.5) with just 400,000 sampled trajectories (equivalent
to 100,000 training rounds). Furthermore, CBFlowNet achieves superior performance in terms of
average reward for the top 1000 candidates, outperforming all baseline methods.

5.3 RNA-BINDING

5.3.1 TASK DEFINITION

The task is to generate a string of 14 nucleobases. We use a prepend-append MDP to keep adding
tokens to a string until it reaches the maximum length, following Kim et al. (2023). There are 4
tokens: adenine (A), cytosine (C), guanine (G), and uracil (U). We conducted experiments on three
different target transcriptions: L14-RNA1, L14-RNA2, and L14-RNA3 proposed by Sinai et al.
(2020). We treat each token as a base arm, and K is set to 2/3, denoting that we can either choose 2
base arms or 3 base arms as a super arm.

5.3.2 RESULT

Figure 6 reports the results on three RNA tasks, each evaluated by Number of Modes Discovered,
Average Reward, and Top-1000 Reward. CBFlowNet consistently outperforms baselines: it discovers
nearly twice as many modes as the strongest competitor and achieves higher average and Top-1000
rewards in Tasks 1 and 2, while remaining competitive in Task 3. The slight instability in Task 3 stems
from averaging over only 10 rounds, during which the agent may explore subspaces with suboptimal
rewards or insufficiently learned dynamics.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

DB TB LSGFN CBGFN RandGFN QGFN SUBTB Teacher

0 1000 2000 3000 4000 5000
Active Round

0

20

40

60

80

100

(c) Number of Modes - RNA2

0 1000 2000 3000 4000 5000
Active Round

0.3

0.4

0.5

0.6

0.7

0.8

(d) Average Reward - RNA2

0 1000 2000 3000 4000 5000
Active Round

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(e) Top-1000 Reward - RNA2

0 1000 2000 3000 4000 5000
Active Round

0

5

10

15

20

25

30

35

(f) Number of Modes - RNA3

0 1000 2000 3000 4000 5000
Active Round

0.3

0.4

0.5

0.6

(g) Average Reward - RNA3

0 5000
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1000 2000 3000 4000
 Active Round

(h) Top-1000 Reward - RNA3

0 1000 2000 3000 4000 5000
Active Round

0

20

40

60

80

100

120

140

(a) Number of Modes - RNA1

0 1000 2000 3000 4000 5000
Active Round

0.3

0.4

0.5

0.6

0.7

(b) Average Reward - RNA1

0 1000 2000 3000 4000 5000
Active Round

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(c) Top-1000 Reward - RNA1

Figure 6: Performance comparison on RNA design tasks. Rows correspond to RNA-1, RNA-2,
and RNA-3, respectively.

5.4 MORE DETAILS

We also reported evidence lower bound (ELBO) as an evaluation of goodness of fit to the target
distribution in Appendix L. Besides, we reported some alternative pruning strategies aside from top
K actions in Appendix H.

6 CONCLUSION AND LIMITATION

Conclusion: This paper proposes CBFlowNet, a method designed to enhance the greediness of the
sampling process while preserving the diversity of generated candidates. We begin by partitioning
the entire state space into multiple subspaces. Next, we employ the CUCB algorithm to effectively
balance exploration and exploitation and find the optimal subspaces. To address the challenges posed
by narrow-deep network architectures, we propose techniques to transform them into more balanced
wide-deep structures. Experimental results across various tasks demonstrate the effectiveness and
efficiency of CBFlowNet.

Limitations: Although our framework is theoretically applicable to listwise recommendation and
combinatorial optimization problems, empirical validation on these tasks remains for future work.
Another limitation of the proposed method is that it assumes a fixed reward distribution in the
environment. In scenarios where the high-reward state space shifts during training, the benefits are
limited and may even disappear.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

This research is entirely based on publicly available benchmark environments, including the Bit
Sequence task (Malkin et al., 2022a), molecule design task (Bengio et al., 2021), and RNA sequence
design tasks (Sinai et al., 2020). These datasets do not contain any personally identifiable or sensitive
information, and no human or animal subjects were involved, so no ethical approval was required.
While generative modeling frameworks such as GFlowNets and CBFlowNet may have downstream
applications in high-stakes domains (e.g., drug discovery or personalized recommendation), the
contributions of this work are purely methodological and restricted to controlled benchmark environ-
ments. We encourage future applications to carefully assess potential societal impacts, incorporate
domain-specific safeguards, and ensure responsible deployment. We declare no conflicts of interest.

REPRODUCIBILITY STATEMENT

We have made all implementations and experimental details publicly available at https://
anonymous.4open.science/r/CBFlowNet-E0BA/. The repository includes training
scripts, model definitions, and configuration files to reproduce the reported results. Hyperparameter
choices for all tasks are explicitly documented in the appendix (Tables 5, 6, and 7), along with details
of the baselines, evaluation metrics, and hardware setup (NVIDIA Tesla A100 80GB GPUs). We
additionally report sensitivity analyses on key parameters (e.g., K for super arms, β for reward
exponent, ϵ for exploration) in Appendices F and G. These results ensure that our findings are robust
and reproducible across different settings.

REFERENCES

Mridul Agarwal, Vaneet Aggarwal, Abhishek Kumar Umrawal, and Chris Quinn. Dart: Adaptive
accept reject algorithm for non-linear combinatorial bandits. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 35, pp. 6557–6565, 2021.

Andreas Bender and Robert C Glen. Molecular similarity: a key technique in molecular informatics.
Organic & biomolecular chemistry, 2(22):3204–3218, 2004.

Emmanuel Bengio, Moksh Jain, Maksym Korablyov, Doina Precup, and Yoshua Bengio. Flow
network based generative models for non-iterative diverse candidate generation. Advances in
Neural Information Processing Systems, 34:27381–27394, 2021.

Ruishuo Chen, Xun Wang, Rui Hu, Zhuoran Li, and Longbo Huang. Proxy-free gflownet. arXiv
preprint arXiv:2505.20110, 2025.

Wei Chen, Yajun Wang, and Yang Yuan. Combinatorial multi-armed bandit: General framework and
applications. In International conference on machine learning, pp. 151–159. PMLR, 2013.

Wei Chen, Wei Hu, Fu Li, Jian Li, Yu Liu, and Pinyan Lu. Combinatorial multi-armed bandit with
general reward functions. Advances in Neural Information Processing Systems, 29, 2016.

Wei Chen, Liwei Wang, Haoyu Zhao, and Kai Zheng. Combinatorial semi-bandit in the non-stationary
environment. In Uncertainty in Artificial Intelligence, pp. 865–875. PMLR, 2021.

Miruna Cretu, Charles Harris, Ilia Igashov, Arne Schneuing, Marwin Segler, Bruno Correia, Julien
Roy, Emmanuel Bengio, and Pietro Liò. Synflownet: Design of diverse and novel molecules with
synthesis constraints. arXiv preprint arXiv:2405.01155, 2024.

Fares Fourati, Mohamed-Slim Alouini, and Vaneet Aggarwal. Federated combinatorial multi-agent
multi-armed bandits. arXiv preprint arXiv:2405.05950, 2024a.

Fares Fourati, Christopher John Quinn, Mohamed-Slim Alouini, and Vaneet Aggarwal. Combinatorial
stochastic-greedy bandit. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 38, pp. 12052–12060, 2024b.

Guoju Gao, He Huang, Mingjun Xiao, Jie Wu, Yu-E Sun, and Sheng Zhang. Auction-based
combinatorial multi-armed bandit mechanisms with strategic arms. In IEEE INFOCOM 2021-
IEEE Conference on Computer Communications, pp. 1–10. IEEE, 2021.

10

https://anonymous.4open.science/r/CBFlowNet-E0BA/
https://anonymous.4open.science/r/CBFlowNet-E0BA/

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Edward J Hu, Moksh Jain, Eric Elmoznino, Younesse Kaddar, Guillaume Lajoie, Yoshua Bengio,
and Nikolay Malkin. Amortizing intractable inference in large language models. arXiv preprint
arXiv:2310.04363, 2023.

Rui Hu, Yifan Zhang, Zhuoran Li, and Longbo Huang. Beyond squared error: Exploring loss design
for enhanced training of generative flow networks. arXiv preprint arXiv:2410.02596, 2024.

Zarif Ikram, Ling Pan, and Dianbo Liu. Evolution guided generative flow networks. arXiv preprint
arXiv:2402.02186, 2024.

Moksh Jain, Emmanuel Bengio, Alex Hernandez-Garcia, Jarrid Rector-Brooks, Bonaventure FP
Dossou, Chanakya Ajit Ekbote, Jie Fu, Tianyu Zhang, Michael Kilgour, Dinghuai Zhang, et al.
Biological sequence design with gflownets. In International Conference on Machine Learning, pp.
9786–9801. PMLR, 2022.

Hyeonah Kim, Minsu Kim, Sanghyeok Choi, and Jinkyoo Park. Genetic-guided gflownets for sample
efficient molecular optimization. arXiv preprint arXiv:2402.05961, 2024a.

Minsu Kim, Taeyoung Yun, Emmanuel Bengio, Dinghuai Zhang, Yoshua Bengio, Sungsoo Ahn, and
Jinkyoo Park. Local search gflownets. arXiv preprint arXiv:2310.02710, 2023.

Minsu Kim, Sanghyeok Choi, Hyeonah Kim, Jiwoo Son, Jinkyoo Park, and Yoshua Bengio. Ant
colony sampling with gflownets for combinatorial optimization. arXiv preprint arXiv:2403.07041,
2024b.

Minsu Kim, Sanghyeok Choi, Taeyoung Yun, Emmanuel Bengio, Leo Feng, Jarrid Rector-Brooks,
Sungsoo Ahn, Jinkyoo Park, Nikolay Malkin, and Yoshua Bengio. Adaptive teachers for amortized
samplers. arXiv preprint arXiv:2410.01432, 2024c.

Elaine Lau, Stephen Lu, Ling Pan, Doina Precup, and Emmanuel Bengio. Qgfn: Controllable
greediness with action values. Advances in neural information processing systems, 37:81645–
81676, 2024.

Kanika Madan, Jarrid Rector-Brooks, Maksym Korablyov, Emmanuel Bengio, Moksh Jain, An-
drei Cristian Nica, Tom Bosc, Yoshua Bengio, and Nikolay Malkin. Learning gflownets from
partial episodes for improved convergence and stability. In International Conference on Machine
Learning, pp. 23467–23483. PMLR, 2023.

Nikolay Malkin, Moksh Jain, Emmanuel Bengio, Chen Sun, and Yoshua Bengio. Trajectory balance:
Improved credit assignment in gflownets. Advances in Neural Information Processing Systems, 35:
5955–5967, 2022a.

Nikolay Malkin, Salem Lahlou, Tristan Deleu, Xu Ji, Edward Hu, Katie Everett, Dinghuai Zhang,
and Yoshua Bengio. Gflownets and variational inference. arXiv preprint arXiv:2210.00580, 2022b.

Jarrid Rector-Brooks, Kanika Madan, Moksh Jain, Maksym Korablyov, Cheng-Hao Liu, Sarath
Chandar, Nikolay Malkin, and Yoshua Bengio. Thompson sampling for improved exploration in
gflownets. arXiv preprint arXiv:2306.17693, 2023.

Max W Shen, Emmanuel Bengio, Ehsan Hajiramezanali, Andreas Loukas, Kyunghyun Cho, and
Tommaso Biancalani. Towards understanding and improving gflownet training. In International
conference on machine learning, pp. 30956–30975. PMLR, 2023.

Tiago Silva, Rodrigo Barreto Alves, Eliezer de Souza da Silva, Amauri H Souza, Vikas Garg, Samuel
Kaski, and Diego Mesquita. When do gflownets learn the right distribution? In The Thirteenth
International Conference on Learning Representations, 2025.

Sam Sinai, Richard Wang, Alexander Whatley, Stewart Slocum, Elina Locane, and Eric D Kelsic.
Adalead: A simple and robust adaptive greedy search algorithm for sequence design. arXiv preprint
arXiv:2010.02141, 2020.

Aleksandrs Slivkins et al. Introduction to multi-armed bandits. Foundations and Trends® in Machine
Learning, 12(1-2):1–286, 2019.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Oleg Trott and Arthur J Olson. Autodock vina: improving the speed and accuracy of docking with
a new scoring function, efficient optimization, and multithreading. Journal of computational
chemistry, 31(2):455–461, 2010.

Nikhil Vemgal, Elaine Lau, and Doina Precup. An empirical study of the effectiveness of using a
replay buffer on mode discovery in gflownets. arXiv preprint arXiv:2307.07674, 2023.

David W Zhang, Corrado Rainone, Markus Peschl, and Roberto Bondesan. Robust scheduling with
gflownets. arXiv preprint arXiv:2302.05446, 2023a.

Dinghuai Zhang, Nikolay Malkin, Zhen Liu, Alexandra Volokhova, Aaron Courville, and Yoshua
Bengio. Generative flow networks for discrete probabilistic modeling. In International Conference
on Machine Learning, pp. 26412–26428. PMLR, 2022.

Dinghuai Zhang, Hanjun Dai, Nikolay Malkin, Aaron C Courville, Yoshua Bengio, and Ling Pan.
Let the flows tell: Solving graph combinatorial problems with gflownets. Advances in neural
information processing systems, 36:11952–11969, 2023b.

Dinghuai Zhang, Ling Pan, Ricky TQ Chen, Aaron Courville, and Yoshua Bengio. Distributional
gflownets with quantile flows. arXiv preprint arXiv:2302.05793, 2023c.

Yiheng Zhu, Jialu Wu, Chaowen Hu, Jiahuan Yan, Tingjun Hou, Jian Wu, et al. Sample-efficient
multi-objective molecular optimization with gflownets. Advances in Neural Information Processing
Systems, 36:79667–79684, 2023.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

CONTENTS

1 Introduction 1

2 Related Work 2

3 Preliminary 3

4 Methodology 3

4.1 Framework Design . 3

4.1.1 Design of Base and Super Arms . 3

4.1.2 Design of Rewards for Base and Super Arms 4

4.1.3 Design for Adjusting Network Structure 4

4.1.4 Design of Process of the Algorithm . 5

4.2 Theoretical Foundations of the Proposed Method 5

4.2.1 Key Assumptions of CMAB in Flow Networks 5

4.2.2 Dynamic Nature of Flow Networks . 6

5 Experiment 6

5.1 Bit Sequence Generation . 6

5.1.1 Task Definition . 6

5.1.2 Result . 7

5.2 Molecule Design . 7

5.2.1 Task Definition . 7

5.2.2 Result . 8

5.3 RNA-Binding . 8

5.3.1 Task Definition . 8

5.3.2 Result . 8

5.4 More details . 9

6 Conclusion and Limitation 9

A LLM Usage Statement 14

B Symbol Table 14

C Theorem Proof 15

D Regret Analysis 16

D.1 Absence of Optimal Super Arms . 16

D.2 Regret Bound . 16

E Experiment details: Bit Sequence 17

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

E.1 Optimal Super Arm Configuration . 17

E.2 Experiments on different ϵ . 17

F Experiment details: Molecule Design 18

F.1 Experiments on different K . 18

G Experiment details: RNA-Binding 19

G.1 Different settings: exponent β . 19

H alternative strategies of super arms 20

I Illustration of workflow 21

J Diversity metric for molecule generation 22

K Time and GPU Memory Consumption 22

L Evidence Lower Bound (ELBO) 23

M Scalability 23

N Experiments with Large Language Model Task 24

O Algorithm of the proposed method 24

A LLM USAGE STATEMENT

We only use LLMs as a language optimization tool to polish sentences, improving their readability
and fluency. The LLM did not contribute to the scientific ideas, algorithm design, or experimental
setup. All substantive content, reasoning, and conclusions are entirely the product of the authors. We
accept full responsibility for all content in the paper, including parts refined or corrected by the LLM,
and affirm that no text generated by the LLM constitutes original scientific contributions attributed to
it.

B SYMBOL TABLE

This section provides a summary of the key notations and symbols used throughout this paper. The
symbols are listed in Table 4.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Table 4: Notation
Symbol Description
S State space
A Action space
s0, s

′, s Possible states
x Terminal state
S Super arm
X Set of terminal states
β Inverse temperature parameter
Ai Independent action set
As Valid action set of state s
ai State-independent action component
ad State-dependent action component
Xt

i the reward of base arm i at round t
Ct

i the set of candidates at round t that contain base arm i
R(x) Reward of terminal state
r(x) Normalized reward of terminal state
µ̂i Empirical mean reward of base arm i
Ti Number of times base arm i been selected
µi UCB-adjusted reward of base arm i
µ, µ′ reward vector of base arms
K Number of base arms in a super arm
N Size of base arm set
s→ s′ state transition
F (s) State Flow
F (s→ s′) Edge Flow from state s to s′

Z Flow of the initial state s0
PF (s

′|s) Forward transition probability from s to s′

PB(s|s′) Backward transition probability from s′ to s
LFM Flow Matching Objective
π(s→ s′|s) Policy for selecting action s→ s′ at node s

C THEOREM PROOF

Theorem 1. For a dynamic flow network where candidates are sampled proportionally to their
rewards, the reward distribution of each base arm i converges to a stable distribution.

Proof . We establish the convergence in two parts:

Part 1: Stability under Fixed Flow Network
When the flow network stabilizes, the reward distribution of arm i becomes stationary. Let:

Xi,t =
1

|Ci,t|
∑

x∈Ci,t

R(x), (7)

where:

• Ci,t = {x1, . . . , x|Ci,t|} denotes candidates sampled at round t containing base arm i.
• Xi ⊂ X represents terminal states containing base arm i.
• R(x) : Xi → R follows a fixed distribution.
• Candidates x ∈ Ci,t are generated with probability p(x) = F (x)/

∑
x′∈Xi

F (x′).

Since R(x) are i.i.d. and p(x) becomes stationary, Xi,t converges to a fixed distribution by the Law
of Large Numbers.

Part 2: Convergence under Network Evolution
As the flow network converges, we have:

Ci,t
d−→ Ci, (8)

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

where Ci denotes the limiting candidate distribution. Because:

• R(x) are i.i.d. and depend only on x

• The mapping (Ci,t, {R(x)}x∈Ci,t
) 7→ Xi,t is continuous in the discrete topology (where

any function on a discrete space is continuous).

By the Continuous Mapping Theorem, we obtain:

Xi,t
d−→ Xi =

1

|Ci|
∑
x∈Ci

R(x), (9)

establishing the desired convergence result.

D REGRET ANALYSIS

D.1 ABSENCE OF OPTIMAL SUPER ARMS

The CMAB framework typically relies on an oracle capable of providing an (α, β)-approximation
of the optimal super arm (i.e., a subset of base arms that maximizes the expected reward) to make a
tight analysis of the regret bound. However, in flow networks, identifying the exact optimal super
arm is computationally prohibitive due to the combinatorial explosion of possible states. Even an
(α, β)-approximation of the optimal super arm is impractical because the α, β might change when
the flow network is different.

D.2 REGRET BOUND

The flow network evolves dynamically throughout training, resulting in time-varying reward distribu-
tions for each base arm i. Although these distributions are guaranteed to converge asymptotically,
the inherent non-stationarity introduces considerable uncertainty into the system. Such temporal
variability, together with the absence of clearly defined optimal super arms, presents significant
challenges for deriving a precise regret bound for the learning algorithm.

However, we can still construct empirical regret metrics to evaluate algorithm performance. A
practical approach is to use the best empirical arm observed up to time t, denoted as µ̂t(S∗), as a
proxy for the unknown optimal mean reward. The estimated cumulative regret is then computed as:

R̂(T) =

T∑
t=1

(µ̂t(S∗)− µ̂t(S)). (10)

We employ the metric of empirical cumulative regret to quantify the performance gap between
consistently selecting the currently known optimal super arm and the super arm chosen by our
algorithm. To comprehensively evaluate our method’s efficacy in minimizing regret, we introduce a
baseline random strategy called RandGFN that uniformly selects K base arms at each round.

Figure 7 presents the cumulative regret curves for CBFlowNet and the RandGFN, revealing distinct
performance differences across tasks:

1. Bit Sequence Generation Task (left panel): The random policy exhibits competitive performance,
resulting in a moderate regret gap between the two models. This suggests that simple heuristics
suffice in this simpler task setting.

2. Molecule Design Task (middle panel): CBFlowNet demonstrates substantial improvement,
achieving a significantly lower cumulative regret than RandGFN. This highlights the proposed
model’s effectiveness in optimizing structured, complex objectives.

3. L14-RNA1 Task (right panel): The regret gap widens again, where CBFlowNet substantially
outperforms RandGFN, indicating its ability to handle intricate combinatorial challenges in nucleic
acid sequence optimization.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

0 20 40 60 80 100
Decision Step

0

5

10

15

20

25

30

Cu
m

ul
at

iv
e

Re
gr

et

0 200 400 600 800 1000
Decision Step

2000

4000

6000

8000

0 100 200 300 400 500
Decision Step

0

250

500

750

1000

1250

1500

1750

RandGFN CBGFN

Figure 7: Experimental result on cumulative regret with different tasks. Left: Cumulative regret
of models in Bit Sequence Generation Task. Center: Cumulative regret of models in Molecule Design
Task. Right: Cumulative regret of models in L14-RNA1 Task.

Table 5: Key hyperparameter setting in Bit Sequence Generation task
Parameter Value
Batch size 16
Number of steps 10000
k-bits 4
Lamda 1.9
Learning rate 1e-3
Z Learning rate 1e-3
β 2
Explore Epsilon 0.01
K 4
Decision Interval 100

E EXPERIMENT DETAILS: BIT SEQUENCE

Here we present the hyperparameter configuration for our bit sequence generation experiments (Table
5). While adopting the baseline framework from Malkin et al. (2022a), we reduce the training steps
from 50,000 to 10,000. Each action is represented by k = 4 bits, and through empirical validation, we
selected K=4 candidate arms from {2, 4, 6, 8, 10}. For the CMAB algorithm, we determined 100 steps
to be the optimal decision interval after evaluating candidates from {50, 100, 200, 300, 400, 500}.

E.1 OPTIMAL SUPER ARM CONFIGURATION

The set M is constructed through random combinations of substrings derived from the base pat-
terns {00000000, 11111111, 11110000, 00001111, 00111100}. For the case where K = 4, we can
analytically determine the optimal super arm configuration as S = {0000, 1111, 1100, 0011}. This
configuration enables perfect mode identification within its substate space, achieving an average
distance of 0.0 to all target modes. We evaluate the performance when consistently selecting this
optimal super arm configuration in Figure 8(a).

E.2 EXPERIMENTS ON DIFFERENT ϵ

We conduct a systematic investigation of the exploration parameter ϵ, which controls the probability
of random actions in the GFlowNets framework. This parameter critically influences the sampling
behavior of the flow network within substate spaces. As shown in Figure 8(b), through comprehensive
testing across ϵ values {0.1, 0.01, 0.02, 0.001, 0.0005}, we find that ϵ = 0.01 demonstrates superior
performance in terms of mode discovery and sample quality.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

0
10
20
30
40
50
60
70
80
90

100

0 1 2 3 4 5 6 7 8 9 10

#
M

od
es

Rounds (10^3)

CBGFN QGFN TB LSGFN

DB SUBTB randGFN optimal

(a) Average reward of each individual arm

0

10

20

30

40

50

60

0 10 20 30 40 50 60 70 80 90 100

0.001 0.01
0.1 0.02
0.0005

(b) Number of modes discovered

Figure 8: Supplementary Experimental Results for the Bit Sequence Task. Left: Number of
modes identified by CBFlowNet when consistently selecting the optimal super arm. Right: Number
of modes identified across varying ϵ values.

Table 6: Key hyperparameter setting in Molecule Design
Parameter Value
Batch size 4
Number of steps 100000
Lamda 0.99
Learning rate 5e-4
Z Learning rate 5e-3
Tanimoto Similarity Threshold 0.7
β 8
Explore Epsilon 0.05
K 30
Decision Interval 400

The results indicate that moderate exploration (ϵ = 0.01) achieves the best balance between explo-
ration and exploitation, while higher values lead to excessive randomness and lower values result in
insufficient exploration of the state space.

F EXPERIMENT DETAILS: MOLECULE DESIGN

We present the hyperparameter configurations for our Molecule Design Task experiments, as detailed
in Table 6. Building upon the framework established by Bengio et al. (2021), we maintain their
default parameter settings while introducing specific optimizations. After empirical evaluation,
we set the number of base arms K to 30, selected from {8, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100},
and determined the optimal decision interval for the CMAB algorithm to be 400 from
{50, 100, 200, 300, 400, 500}.

F.1 EXPERIMENTS ON DIFFERENT K

The hyperparameter K, which determines the size of the super arm, serves as our primary mechanism
for controlling the method’s greediness. In our molecule generation experiments, we evaluate 10
distinct K values ranging from 8 to 100. Smaller K values correspond to greedier selections, as
we restrict our choice to only the top K base arms, resulting in more compact sub-state spaces.
However, this increased greediness comes at the cost of reduced candidate diversity, as demonstrated
in Figure 9. While K ∈ {8, 10, 20} yields higher average scores among the top 1000 candidates, it
significantly compromises molecular diversity (measured by the number of distinct modes). Through
a comprehensive evaluation, we identify K = 30 as the optimal setting for our molecular design task,
achieving an effective balance between candidate quality and diversity.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

0

2000

4000

6000

8000

10000

12000

14000

8 10 20 30 40 50 60 70 80 90 100

#Modes (R>7.5)

0

500

1000

1500

2000

2500

3000

3500

8 10 20 30 40 50 60 70 80 90 100

#Modes (R>8)

8

8.1

8.2

8.3

8.4

8.5

8 10 20 30 40 50 60 70 80 90 100

R_avg (Top1000)

Figure 9: Experimental result on Molecule Design with different k with 400,000 samples. Left:
The number of modes R>7.5 with a Tanimoto similarity threshold of 0.7. Center: The number of
modes R>8 with a Tanimoto similarity threshold of 0.7. Right: The average reward of the top 1000
high-scoring samples.

Table 7: Key hyperparameter setting in RNA-Binding task
Parameter Value
Batch size 32
Number of steps 5000
RNA length 14
MDP style Prepend and Append
Lamda 0.9
Learning rate 1e-4
Z Learning rate 1e-2
Mode metric Hamming Ball 1
β 20
Explore Epsilon 0.01
K 2/3
Decision Interval 50

G EXPERIMENT DETAILS: RNA-BINDING

In this section, we give the hyperparameters used for each of our experiments’ RNA-Binding Task
as shown in Table 7. In our experimental setup, the learning rate of 1 × 10−4 is selected from
{1× 10−5, 1× 10−4, 1× 10−3, 5× 10−3} and the Z learning rate of 1× 10−2 is selected from {1×
10−5, 1×10−4, 1×10−3, 5×10−3}. The Lambda for SUBTB uses 0.9 out of {0.8, 0.9, 0.99, 0.999}.
The explore epsilon is used to control the random action probability, five values are tested, including
{0.1, 0.01, 0.001, 0.0001, 0.0005}. We set the reward exponent β to 8 from {3, 4, 5, 6, 7, 8, 9, 10}.
K is the number of base arms to compose the super arm selected from {1, 1/2, 2, 2/3, 3, 3/4, 4},
where x/x + 1 denotes we can choose x or x + 1 base arms as a super arm. Please note that the
RNA1 environment we use is a little different from Teacher(Kim et al., 2024c). Our environment
has 1590 modes in total, but Kim et al. (2024c) has 8967 modes. We replace the environment file
of Teacher with our environment file to make a fair comparison. The environment is constructed
following Kim et al. (2023).

G.1 DIFFERENT SETTINGS: EXPONENT β

Since introduced by Bengio et al. (2021), there is already a useful technique to increase the greediness
of GFlowNets, that is the exponent β. The adjusted reward function is formulated as ˆR(x) = R(x)β .
The higher β makes the model greedier but at the cost of greater numerical instability. Besides, since
the middle-reward regions are adjusted into low-reward regions, the diversity is also reduced, leading
to mode collapse (Lau et al., 2024). The choice of exponent β critically influences the behavior of the
CUCB algorithm, as it directly modulates the reward scaling of individual arms. We experimented on
different settings of exponent β as shown in Figure10, Figure11 and Figure12.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

0 1000 2000 3000 4000 5000
Active Round

0

20

40

60

80

100

120

140

Nu
m

be
r o

f M
od

es

(a) Number of Modes

0 1000 2000 3000 4000 5000
Active Round

0.3

0.4

0.5

0.6

0.7

Av
er

ag
e

Re
wa

rd

(b) Average Reward

0 1000 2000 3000 4000 5000
Active Round

0.4

0.5

0.6

0.7

0.8

0.9

To
p-

10
00

 R
ew

ar
d

(c) Top-1000 Reward
Beta:1 Beta:10 Beta:100 Beta:20 Beta:50 Beta:5

Figure 10: Experimental result on RNA-Binding Task 1 with different β.

In the L14-RNA1 task, models with varying β values consistently identified over 100 distinct
modes, with the β = 20 configuration demonstrating superior performance compared to other
settings. Notably, the model with β = 1 exhibited significantly poorer performance relative to
other β values. Regarding average reward metrics, the β = 20 model achieved substantially better
results, establishing a clear performance gap over other configurations. However, all models showed
comparable performance when evaluating the top 1000 rewards.

0 1000 2000 3000 4000 5000
Active Round

0

20

40

60

80

100

Nu
m

be
r o

f M
od

es

(a) Number of Modes

0 1000 2000 3000 4000 5000
Active Round

0.3

0.4

0.5

0.6

0.7

0.8

Av
er

ag
e

Re
wa

rd

(b) Average Reward

0 1000 2000 3000 4000 5000
Active Round

0.3

0.4

0.5

0.6

0.7

0.8

0.9

To
p-

10
00

 R
ew

ar
d

(c) Top-1000 Reward
Beta:1 Beta:10 Beta:100 Beta:20 Beta:50 Beta:5

Figure 11: Experimental result on RNA-Binding Task 2 with different β.

In the L14-RNA2 task, while maintaining performance trends consistent with L14-RNA1, the task
proved more challenging for mode discovery. All models identified fewer modes compared to
L14-RNA1, yet the β = 20 configuration consistently demonstrated superior performance across all
metrics, maintaining its lead over other parameter settings.

L14-RNA3 proves to be the most challenging task, exhibiting a significant decline in both discovered
modes and average reward compared to other tasks. In this setting, β = 10 achieves the best overall
performance, whereas β = 20, while attaining a higher average reward, suffers from instability.
The task’s difficulty suggests that using an excessively large β may be suboptimal, as it risks mode
collapse by overly prioritizing high-reward candidates while neglecting mid-reward solutions.

H ALTERNATIVE STRATEGIES OF SUPER ARMS

Aside from top-K actions, we came up with three alternatives of arm selection: 1) selecting base arms
proportional to their scores; 2) selecting base arms randomly; 3) keeping hard pruning but removing
CMAB. Here, hard pruning refers to the permanent removal of some fixed actions from the selection
pool. Random selection assigns equal selection probabilities to all base arms when constructing the
super arm.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

0 1000 2000 3000 4000 5000
Active Round

0

10

20

30

40

Nu
m

be
r o

f M
od

es

(a) Number of Modes

0 1000 2000 3000 4000 5000
Active Round

0.3

0.4

0.5

0.6

Av
er

ag
e

Re
wa

rd

(b) Average Reward

0 1000 2000 3000 4000 5000
Active Round

0.4

0.5

0.6

0.7

0.8

0.9

To
p-

10
00

 R
ew

ar
d

(c) Top-1000 Reward
Beta:1 Beta:10 Beta:100 Beta:20 Beta:50 Beta:5

Figure 12: Experimental result on RNA-Binding Task 3 with different β.

Table 8: Comparison of Different Methods in the molecule generation task.
Method Modes R > 7.5 Modes R > 8 Top-1000 Reward Top-1000 Similarity

Hard-Pruning 1069 132 7.95 0.47
Proportional 7554 1190 8.19 0.46
Random 2179 284 8.03 0.47
CBFlowNet 12089 2952 8.31 0.49

When employing a simple hard-pruning approach without the CMAB framework, GFlowNet ini-
tially discovers numerous high-reward modes quickly. However, the mode distribution within this
constrained subspace is sparse, and after these easily accessible modes are found, the discovery rate
drops significantly as the remaining modes become increasingly difficult to identify.

In contrast, a random selection strategy explores the space uniformly by choosing super arms
indiscriminately, yielding an expected reward equal to the average across all sub-spaces. This
approach achieves performance comparable to the Trajectory Balance (TB) method.

A proportional selection strategy, which chooses arms according to their estimated rewards, naturally
outperforms random selection by favoring higher-reward regions. However, it remains less aggressive
than the top-K approach used in CBFlowNet. The proportional method discovers fewer total modes
(7,554 vs. CBFlowNet’s 12,089) yet achieves marginally better performance in top-1000 similarity
metrics. The results suggest that while proportional selection maintains better diversity, CBFlowNet’s
more aggressive top-K strategy enables superior overall mode coverage.

I ILLUSTRATION OF WORKFLOW

Here, we present a case study to illustrate how the proposed method work in the bit sequence
generation task. The set M is constructed by randomly combining substrings derived from the base
patterns 00000000, 11111111, 11110000, 00001111, 00111100. For K = 4, theoretical analysis
reveals that the optimal super arm configuration is S = 0000, 1111, 1100, 0011, which achieves
perfect mode identification within its substate space with an average distance of 0.0 to all target
modes.

Initially, the base arm 0000 gradually gains higher values (as shown in Figure 4), leading to a
suboptimal super arm configuration S = 0000, 1111, 1100, 0001. The UCB mechanism in line 11
of Algorithm 1 then identifies 0011 as a promising alternative - while its current estimated value is
slightly lower than 0001, its higher uncertainty (due to insufficient exploration) suggests significant
potential. This triggers an exploration phase where the algorithm selects S = 0000, 1111, 1100, 0011
as the new super arm. Subsequent evaluations confirm that 0011 consistently generates higher-quality
candidates, and the value update in line 15 of Algorithm 1 reinforces its estimate in future rounds.

Notably, even though we know a priori that S is optimal, the CMAB framework continues to explore
alternative subspaces with some probability. This characteristic ensures the algorithm maintains the

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

capability to discover potentially better configurations while predominantly exploiting the known
optimal solution, effectively balancing the exploration-exploitation trade-off throughout the learning
process.

J DIVERSITY METRIC FOR MOLECULE GENERATION

While our current approach uses Tanimoto similarity with a 0.7 threshold for mode differentiation, it
is still important to evaluate the mean internal Tanimoto similarity. Specifically, we compared the
mean internal Tanimoto similarity among top-scoring candidates between CBFlowNet and TB. Given
that increased top-K reward typically correlates with higher molecular similarity (as demonstrated
in (Malkin et al., 2022a)), we conducted additional comparative analyses between models with
comparable reward performance: specifically, CBFlowNet at training rounds 104 versus TB at rounds
105. The results are summarized below:

Table 9: Performance comparison between differe nt methods.

Method Training Round Top-100 Top-1000

Reward Similarity Reward Similarity

TB 105 8.23 0.50 8.01 0.47
CBFlowNet 105 8.43 0.55 8.31 0.49
CBFlowNet 104 8.30 0.48 8.10 0.46

If we always sample through the same subspace, there is no doubt that the Tanimoto similarity
of generated candidates is higher compared to sampling through the whole state space. However,
the CMAB framework frequently changes the subspaces (as in line 11 of Algorithm 1) and the
candidates sampled from different sub state spaces are more likely to have lower Tanimoto similarity,
which alleviates this problem. This analysis demonstrates that while our approach may show slightly
higher similarity within concentrated sampling periods, the overall diversity is maintained and even
improved when considering equivalent performance levels, benefiting from our strategic subspace
selection mechanism.

When comparing models with the same number of training rounds (105), CBFlowNet shows slightly
higher Tanimoto similarity among top candidates. When comparing models with comparable reward
performance (e.g., CBFlowNet at rounds 104 vs TB at 105 rounds), CBFlowNet achieves better
diversity (lower similarity scores).

K TIME AND GPU MEMORY CONSUMPTION

Table 10 reports the runtime and GPU memory usage of TB-GFN and CBFlowNet in the molecule
generation task. With the current implementation, training CBFlowNet for 100 rounds requires
slightly more time than TB-GFN while consuming a comparable amount of GPU memory. Given the
faster convergence of CBFlowNet, this marginal overhead does not substantially increase the overall
training cost. Moreover, the extra sampling step can be efficiently parallelized using multi-threading,
which further alleviates time consumption.

Table 10: Efficiency comparison between methods.
Method Time Cost (s / 100 rounds) GPU Memory Cost

TB-GFN 24.37 4827 MiB
CBFlowNet 27.95 4840 MiB

The time cost represents the duration required for completing 100 training rounds, where each round
involves sampling candidate solutions for training and generating new candidates with a batch size of
four. Thus, 100 rounds yield 400 candidates for evaluation. Multi-threading was employed to reduce
time consumption.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

-4
.9
8

-4
.2
1

-1
.5
6

-3
.1
6 -0
.9
8

-0
.5
1

-0.
47

-0.
49

27.31

30.42

33.28
30.27
32.10
34.7035.4638.79

4.58

3.16
6.12

6.49
6.85

7.
226.
77

7.
71

6.
36

4.2
1

10
.25

9.5
410.2
111.04

10.57
11.69

8.27

6.49

12.37

12.08

13.22
13.67

14.01
14.75

BitSeq

M
ol
sG

en

RNA-1

RNA-2

RN
A-
3

DB
SubTB
RandGFN
TB
LS-GFN
QGFN
Teacher
CBFlowNet (Ours)

Figure 13: Experiment results on ELBO.

L EVIDENCE LOWER BOUND (ELBO)

We evaluate the goodness of fit to the target distribution using the evidence lower bound (ELBO)
introduced by Kim et al. (2024c). ELBO is estimated by sampling M candidates and averaging the
estimated logZ through a transformed TB objective:

Z

n∏
t=1

PF (st|st−1) = F (X)

n∏
t=1

PB(st−1|st). (11)

The corresponding ELBO is approximated as:

ELBO ≈ 1

M

M∑
i=1

(
logR(xi) +

ni∑
t=1

PB(st−1|st)−
ni∑
t=1

PF (st|st−1)

)
, (12)

where ni is the length of the trajectory that generates terminal state xi. Results are presented in
Figure 13. The proposed CBFlowNet achieves slightly better performance than the baselines, with
Teacher remaining the strongest competitor.

M SCALABILITY

We show that the proposed method scales effectively to larger action spaces both theoretically and
empirically. When selecting K arms from N total base arms to form a super arm, the accuracy of
reward estimates µ̂i typically requires more rounds to converge as N grows. However, in practice, K
often scales proportionally with N—for example, setting K = 0.1N (selecting 10% of base arms).
Under this scheme, the estimation accuracy of µ̂i remains stable with respect to N , leading to a fixed
convergence rate.

Moreover, the computation of rewards µ̂i can be embedded within the flow-matching updates at
negligible cost. Since our algorithm is heuristic, the additional computational burden is minimal, as
also indicated in Table 10.

To further validate scalability, we experimented with enlarged action spaces. The molecule design
task originally contains 105 building blocks with several stems each. By combining two actions
into one base arm, the action space increases to 105× 105 = 11025, denoted as CBFlowNet (CA).
As shown in Table 11, CBFlowNet (CA) exhibits comparable or slightly better performance in
discovering high-reward modes while incurring only negligible computational overhead.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Table 11: Performance comparison of different methods.
Method Training Round Modes R > 7.5 Modes R > 8 Top-1000 Reward Top-1000 Similarity Time (s / 100 rounds)

TB-GFN 105 1915 233 8.01 0.47 24.37
CBFlowNet 105 12089 2952 8.31 0.49 27.95
CBFlowNet (CA) 105 12433 2520 8.29 0.50 28.73

N EXPERIMENTS WITH LARGE LANGUAGE MODEL TASK

We also report experiments on a task with dynamic reward distributions (see Section 6) as a limitation
study. Following Hu et al. (2023), we considered a subjectivity classification task where each movie
review is labeled as either objective or subjective. This task is particularly challenging, as it involves
both the E-step and M-step of the EM algorithm, with GFlowNet serving as the inference model in
the E-step.

We adopt the default settings from the public implementation of Hu et al. (2023). For fine-tuning, we
tested both GPT-2 and GPT-J 6B backbones.

Table 12: Comparison of CBFlowNet and GFlowNet under GPT-2 and GPT-J backbones with
different sample sizes. Results are reported as mean ± standard deviation.

Method GPT-2 GPT-J 6B

10 Samples 20 Samples 50 Samples 10 Samples 20 Samples 50 Samples

CBFlowNet 0.59 ±0.02 0.63 ±0.03 0.78 ±0.02 0.71 ±0.02 0.83 ±0.01 0.90 ±0.01

GFlowNet 0.58 ±0.03 0.61 ±0.02 0.75 ±0.03 0.71 ±0.02 0.81 ±0.02 0.87 ±0.02

The results in Table 12 show that CBFlowNet marginally outperforms GFlowNet in test accuracy
across all training sample sizes. However, this task highlights a limitation of CBFlowNet. The reward
of a terminal state Z, defined as pLM (Z, Y | X), depends on both the label Y and input X . For
instance, the word factual may yield a high reward when the label is “objective” but a low reward
when the label is “subjective.” Thus, the high-reward state space shifts during training, which differs
fundamentally from our original setting.

We categorize base arms into four groups: A) high-scoring under “objective” and low-scoring under
“subjective”; B) high-scoring under “subjective” and low-scoring under “objective”; C) consistently
high-scoring; D) consistently low-scoring.

Our framework is primarily designed to identify and filter arms of type D while retaining type C. In
this dynamic setting, where types A and B fluctuate, we increased the base-arm set size K to ensure
sufficient coverage of relevant arms (types A, B, and D).

O ALGORITHM OF THE PROPOSED METHOD

Algorithm 1 presents the proposed Combinatorial Upper Confidence Bound (CUCB) framework
augmented with a flow network. The algorithm alternates between an initialization phase, where all
base arms are explored, and a main learning phase, where super arms are adaptively selected based
on UCB values.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Algorithm 1 Combinatorial Upper Confidence Bound (CUCB) with Flow Network
Maintain for each arm i: • Ti: Number of times arm i has been selected

• µ̂i: Empirical mean reward of arm i
Input parameters: • m: Total number of base arms

• K = |S|: Size of super arm
1: // Initialization Phase:
2: while ∃i ∈ S with Ti = 0 do
3: GFLOWNET.TRAIN(ALL)
4: Receive feedback from GFLOWNET.GEN(ALL)
5: Update Ti and µ̂i for all i ∈ S
6: m← m+ 1
7: end while
8: // Main Learning Phase:
9: for t = m to T do

10: Compute UCB for each arm:

11: µi ← µ̂i +
√

3 ln t
2Ti

12: Select super arm S = topK(µ1, . . . , µm)
13: GFLOWNET.TRAIN(S)
14: Receive feedback from GFLOWNET.GEN(ALL)
15: Update Ti and µ̂i for all i ∈ S
16: end for

25

	Introduction
	Related Work
	Preliminary
	Methodology
	Framework Design
	Design of Base and Super Arms
	Design of Rewards for Base and Super Arms
	Design for Adjusting Network Structure
	Design of Process of the Algorithm

	Theoretical Foundations of the Proposed Method
	Key Assumptions of CMAB in Flow Networks
	Dynamic Nature of Flow Networks

	Experiment
	Bit Sequence Generation
	Task Definition
	Result

	Molecule Design
	Task Definition
	Result

	RNA-Binding
	Task Definition
	Result

	More details

	Conclusion and Limitation
	LLM Usage Statement
	Symbol Table
	Theorem Proof
	Regret Analysis
	Absence of Optimal Super Arms
	Regret Bound

	Experiment details: Bit Sequence
	Optimal Super Arm Configuration
	Experiments on different

	Experiment details: Molecule Design
	Experiments on different K

	Experiment details: RNA-Binding
	Different settings: exponent

	alternative strategies of super arms
	Illustration of workflow
	Diversity metric for molecule generation
	Time and GPU Memory Consumption
	Evidence Lower Bound (ELBO)
	Scalability
	Experiments with Large Language Model Task
	Algorithm of the proposed method

