

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 CBFLOWNET: GENERATING HIGHER-QUALITY CANDIDATES VIA COMBINATORIAL BANDITS

Anonymous authors

Paper under double-blind review

ABSTRACT

As a probabilistic sampling framework, Generative Flow Networks (GFNs) show strong potential for constructing complex combinatorial objects through the sequential composition of elementary components. However, existing GFlowNets often suffer from excessive exploration over vast state spaces, leading to over-sampling of low-reward regions and convergence to suboptimal distributions. Effectively biasing GFlowNets toward high-reward solutions remains a non-trivial challenge. In this paper, we propose CBFLOWNET, which integrates a combinatorial multi-armed bandit (CMAB) framework with GFN policies. The CMAB component prunes low-quality actions, yielding compact subspaces for exploration. Restricting GFNs to these compact subspaces accelerates the discovery of high-value candidates, while the reduced complexity enables faster convergence. Experimental results on multiple tasks demonstrate that CBFLOWNET generates higher-reward candidates than existing approaches, without sacrificing diversity. All implementations are publicly available at <https://anonymous.4open.science/r/CBFLOWNET-E0BA/>.

1 INTRODUCTION

Generative Flow Networks (GFlowNets) (Bengio et al., 2021; Zhang et al., 2022; Cretu et al., 2024) have shown their impressive potential in generating diverse and high-scoring candidates across various domains, especially in generating combinatorial objects (Zhang et al., 2023c;b). By unifying MDPs’ sequential dynamics with flow-based probability matching, GFlowNets synthesize action trajectories that sample candidates proportionally to the desired reward distribution.

Typically, GFlowNets model the generation process as a traversal on a directed acyclic graph (DAG) $(\mathcal{S}, \mathcal{A})$. \mathcal{S} represents the state space (set of nodes) and $\mathcal{A} = \{(s \rightarrow s') \mid s, s' \in \mathcal{S}\}$ denotes the set of possible state transitions (set of edges). The key objective of GFlowNets is to sample terminal states (candidates) with probability proportional to a given reward function $R(x)$, i.e., $P(x) \propto R(x)$. This is achieved by learning a flow network, where $F(s)$ represents the total flow through state s and $F(s \rightarrow s')$ denotes the edge flow for action $s \rightarrow s'$. The forward policy $\pi(s \rightarrow s'|s)$, which governs the generation process, is defined as the normalized edge flow: $\pi(s \rightarrow s'|s) = \frac{F(s \rightarrow s')}{F(s)}$.

However, although the original objective of GFlowNet is to sample candidates in proportion to their rewards, prior studies report that GFlowNet often struggles to generate high-scoring candidates due to excessive exploration in large search spaces (Kim et al., 2023). Moreover, GFlowNet can converge to distributions with average rewards lower than the target, even after extensive training (Shen et al., 2023). Consequently, effectively biasing the sampling process toward high-reward solutions is non-trivial.

A possible way to alleviate such a situation, i.e., avoiding oversampling from low-reward regions, is training the model to sample proportionally to $R(x)^\beta$, where $\beta \gg 1$ represents an inverse temperature parameter (Malkin et al., 2022a; Lau et al., 2024). Optimizing the inverse temperature parameter β presents non-trivial challenges, as its selection critically impacts both the exploration-exploitation balance and training stability in GFlowNets.

Aside from tuning the parameter β to control the greediness of GFlowNets, improving the sampling process is also promising to increase the greediness of GFlowNets without worrying about stability issues and mode collapse like β . Lau et al. (2024) combined the flow with Q values to make a greedier

054 sampling process. [Kim et al. \(2023\)](#) introduced a local search algorithm to make denser samples of
 055 high-scoring regions. Our proposed method also focuses on improving the sampling process.
 056

057 Unlike prior works, we focus on action pruning during the sampling process to avoid oversampling
 058 from low-reward regions. Formally, pruning can be defined as selecting K actions to remove from
 059 total N actions. Different pruning strategies induce different subspaces, some of which contain denser
 060 clusters of high-reward candidates than others. However, pruning is non-trivial: when K scales with
 061 N , the number of combinations $\binom{N}{K}$ grows exponentially, causing a combinatorial explosion that
 062 makes exhaustive search infeasible. With only a limited budget of sampling steps, it becomes essential
 063 to efficiently locate promising subspaces, which inevitably introduces an exploration–exploitation
 064 trade-off analogous to that in CMAB, where one must decide between exploiting the currently
 065 identified high-reward subspaces and exploring alternative ones that may yield even better candidates.
 066

067 Addressing this challenge, we combine a **com-
 068 binatorial multi-armed bandit algorithm
 069 (CMAB)** framework with GFlowNets, and in-
 070 troduce CBFFlowNet. By considering actions as
 071 arms in the Multi-armed Bandit problem, we
 072 can utilize the CMAB algorithm to select ac-
 073 tions that are more likely to lead to high-reward
 074 candidates. The combination of strategic prun-
 075 ing with CMAB’s exploration mechanism cre-
 076 ates a powerful synergy. The pruning of low-
 077 quality actions by CMAB results in a greedier
 078 sampling strategy that prioritizes high-scoring
 079 actions. This bias systematically directs explo-
 080 ration toward higher-quality subspaces, where
 081 promising candidates are denser, thus improving
 082 overall sample efficiency and generation qual-
 083 ity. By focusing on such compact subspaces,
 084 CBFFlowNet accelerates the learning of high-
 085 reward candidates, as the reduced complexity al-
 086 lows faster convergence. This efficiency extends
 087 to other subspaces due to the overlaps of sub-regions. While the pruning focuses the search on
 088 promising subspaces, the CMAB component ensures that potentially valuable but under-explored
 089 subspaces continue to receive attention.
 090

091 We evaluate the proposed CBFFlowNet on several popular tasks used in prior works, including
 092 molecule design ([Bengio et al., 2021](#)), three RNA design tasks ([Sinai et al., 2020](#)) and bit sequence
 093 task ([Malkin et al., 2022a](#)). The result demonstrates that the proposed method discovers more
 094 high-reward candidates and converges faster than baselines.
 095

2 RELATED WORK

096 **GFlowNets:** Since their introduction by [Bengio et al. \(2021\)](#), GFlowNets have advanced rapidly in
 097 theory and applications, with recent works establishing connections to variational inference ([Malkin
 098 et al., 2022b](#)), distributional analysis ([Silva et al., 2025](#)), proxy-free training in offline settings
 099 ([Chen et al., 2025](#)), and alternative loss designs ([Hu et al., 2024](#)). They have also been applied to
 100 combinatorial optimization tasks, including general problems ([Zhang et al., 2023b](#)), computation
 101 graphs ([Zhang et al., 2023a](#)), hierarchical exploration with evolutionary search ([Kim et al., 2024b](#)), and
 102 multi-objective optimization ([Zhu et al., 2023](#)). In contrast to these approaches, which mainly employ
 103 GFlowNets to solve combinatorial problems, our method leverages combinatorial optimization
 104 techniques to improve GFlowNets themselves. Complementary efforts have enhanced GFlowNet
 105 training through Q-value integration ([Lau et al., 2024](#)), local search ([Kim et al., 2023](#)), Thompson
 106 sampling ([Rector-Brooks et al., 2023](#)), replay strategies ([Vemgal et al., 2023; Shen et al., 2023](#)),
 107 genetic and evolutionary algorithms ([Kim et al., 2024a; Ikram et al., 2024](#)), and adaptive teacher
 108 mechanisms ([Kim et al., 2024c](#)).
 109

110 **Combinatorial multi-armed bandit:** The combinatorial multi-armed bandit (CMAB) framework
 111 was first introduced by ([Chen et al., 2013](#)). [Chen et al. \(2016\)](#) later extended it to nonlinear reward
 112 functions dependent on variable distributions. Subsequent work includes the cost-aware auction-based
 113

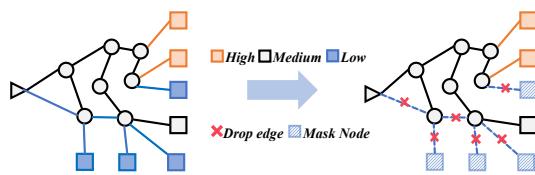


Figure 1: **Illustration of action pruning.** The triangle means initial state, the circles denote interior states, and the squares denote the terminal states. By pruning low-scoring actions(blue edges), candidates with low rewards(blue nodes) are masked. Candidates with high rewards(Orange ones) are more likely to be explored, addressing the over-exploration of low-reward candidates.

108 CMAB by [Gao et al. \(2021\)](#) and full-bandit algorithms by [Agarwal et al. \(2021\)](#); [Fourati et al. \(2024b\)](#),
 109 where no individual arm feedback is available.

112 3 PRELIMINARY

114 In the classic Combinatorial Multi-Armed Bandit (CMAB) problem ([Chen et al., 2013; 2016](#)), there
 115 are N base arms, each associated with an unknown reward distribution. In every round, the player
 116 selects a subset of K base arms, forming a super arm, and receives a joint reward. The goal is to
 117 identify the best K arms that maximize the joint reward, which may be a non-linear function of
 118 individual arm rewards, while minimizing regret—the gap between the expected reward of always
 119 playing the optimal super arm and that of the algorithm’s choices ([Chen et al., 2013; Slivkins et al.,](#)
 120 [2019; Chen et al., 2016](#)). The central challenge lies in balancing exploration (trying diverse super
 121 arms to gather information) and exploitation (selecting the current best super arm for higher reward).
 122 Notably, the flow network embodies a similar dilemma: some regions of the state space contain dense
 123 clusters of high-reward candidates, and the algorithm must decide between probing new promising
 124 subspaces and exploiting those already identified. The feedback models of CMAB can be categorized
 125 into two types: 1) Full-bandit feedback([Chen et al., 2013; Fourati et al., 2024a](#)), where only the
 126 aggregate reward of the played super arm is observed, and 2) Semi-bandit feedback([Chen et al., 2013;](#)
 127 [2021](#)), where the individual rewards of each base arm in the super arm are additionally revealed. Our
 128 problem adopts the semi-bandit setting because the full-bandit feedback would lead to significant
 129 information loss regarding the quality of generated candidates. For instance, when a high-scoring
 130 candidate is generated by the flow network, it might only utilize a subset of the base arms in the
 131 super arm, while the full-bandit setting would obscure this critical information by only providing the
 132 aggregated reward, thereby hindering the learning process about which specific base arms contribute
 133 most to good solutions.

134 4 METHODOLOGY

136 In this section, we introduce **Combinatorial Bandit GFlowNet (CBFlowNet)**, a greedy training
 137 framework designed to enhance both the quality and diversity of generated candidates based on
 138 Combinatorial multi-armed bandit(CMAB). Unlike prior approaches that operate over the entire flow
 139 graph ([Lau et al., 2024](#)), CBFlowNet achieves a more balanced exploration–exploitation trade-off by
 140 selectively focusing on high-scoring subspaces of substantially reduced size.

142 4.1 FRAMEWORK DESIGN

144 4.1.1 DESIGN OF BASE AND SUPER ARMS

146 The core challenge in applying CMAB to GFlowNets is to define a set of base arms whose combina-
 147 tions (super arms) can meaningfully constrain the exploration space. A naive approach would be to
 148 treat every possible state transition $s \rightarrow s'$ as a distinct arm. However, this leads to an intractably
 149 large and state-dependent set of arms, making the CMAB problem ill-posed.

150 To overcome this, we observe that in many sequential generation tasks, actions can be decomposed
 151 into two components: A **state-dependent** component a_d that determines where to act (e.g., which
 152 position in a sequence to fill, which molecular stem to extend); A **state-independent** component a_i
 153 that determines what action to take, regardless of the specific state (e.g., which value to assign to a
 154 position, which building block to attach).

$$155 \quad \mathcal{A}_i = \{a_i \mid (a_d, a_i) \in \mathcal{A}_s, \forall s \in \mathcal{S}\}. \quad (1)$$

158 \mathcal{A}_s denotes the available transitions(action set) of state s . Intuitively, \mathcal{A}_i represents the "alphabet" of
 159 primitive choices available throughout the generative process. A super arm $\mathbb{S} \subseteq \mathcal{A}_i$ is then a subset
 160 of this alphabet. By selecting a super arm, we restrict the GFlowNet policy such that at any state s ,
 161 it can only take actions (a_d, a_i) where $a_i \in \mathbb{S}$. This effectively prunes all actions that use primitive
 162 choices outside \mathbb{S} . Task Examples are given in Table 1.

162

163 Table 1: Decomposition of actions into state-dependent and state-independent components across
164 different tasks.

Task	State-dependent Component (a_d)	State-independent Component (a_i , Base Arm)	A_i
Bit Sequence Generation	Position to edit	Binary value to assign	$\{0, 1\}$
Molecule Design	Stem to extend	Building block to attach	Vocabulary of 105 blocks
RNA Sequence Design	Prepend or Append	Nucleotide to add	$\{A, C, G, U\}$

168

169 4.1.2 DESIGN OF REWARDS FOR BASE AND SUPER ARMS
170171 We now turn to the assignment of rewards to base arms, a critical factor for ensuring stable learning.
172 In the semi-bandit setting with m base arms, the reward of base arm i at round t is defined as

173
$$X_i^t = \frac{1}{|C_i^t|} \sum_{x \in C_i^t} r(x), \quad (2)$$

174
175

176 where C_i^t denotes the set of candidates at round t that contain base arm i , and
177

178
$$r(x) = \text{normalize}(R(x)) \quad (3)$$

179

180 is the normalized reward of candidate x with raw reward $R(x)$ from the environment. Normalization
181 ensures all rewards fall within the range $[0, 1]$, which is necessary for effective exploration.

182 The reward of a super arm is then defined as the sum of the rewards of its constituent base arms.

183 However, combinatorial bandits (CMAB) require independence among base-arm rewards, which is
184 violated under naive pruning. Formally, if $\text{arm}_i = \text{arm}'_j$, then $X_i^t \stackrel{d}{=} X_j^t$ must hold. Yet, restricting
185 flow networks to a subspace \mathbb{S} artificially inflates the rewards of remaining arms due to the exclusion
186 of low-quality actions.

187 To address this issue, we adopt a two-phase sampling strategy:

188

189 **1 Constrained training.** Train the flow network restricted to \mathbb{S} .
190

191

192 **2 Unbiased evaluation.** Sample additional candidates without restrictions, and compute X_i
as the average reward over all candidates containing arm i .

193

194 This procedure doubles the sampling cost but does not increase network training complexity, while
195 ensuring unbiased reward estimates. Moreover, the extra cost does not scale linearly with time,
196 since the evaluation stage of deep networks remains unaffected. With multi-threaded sampling, the
197 overhead can be further reduced. A detailed comparison of time consumption is reported in Table 10.

198

199 4.1.3 DESIGN FOR ADJUSTING NETWORK STRUCTURE

200

201 We further propose a method to address the chal-
202 lenge that arises when the independent action
203 space is small but trajectories are long, resulting
in narrow yet deep networks.

204

205 For instance, in bit sequence generation, there
206 are only two independent actions, 0, 1, while a
207 complete sequence may require over 100 steps.
208 This leads to a deep but fragile network, where
209 pruning even a single action can collapse the
entire solution space.

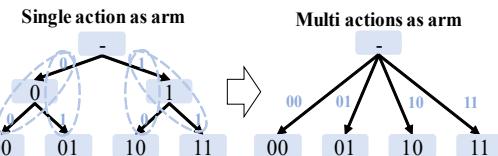
210

211 To address this, we redefine base arms as short
212 sequences of t consecutive actions:

213

214
$$a_1 \rightarrow a_2 \rightarrow \dots \rightarrow a_t.$$

215

216 Super arms then consist of sets of such sequences. A sub-trajectory is valid if its independent
217 subsequence belongs to the chosen super arm. This widens the effective search space, balances the
218 architecture, and preserves CMAB guarantees (see Fig. 2).217 Figure 2: Using short action sequences as arms
218 to transform the narrow-deep network architecture
219 into a more balanced wide structure.

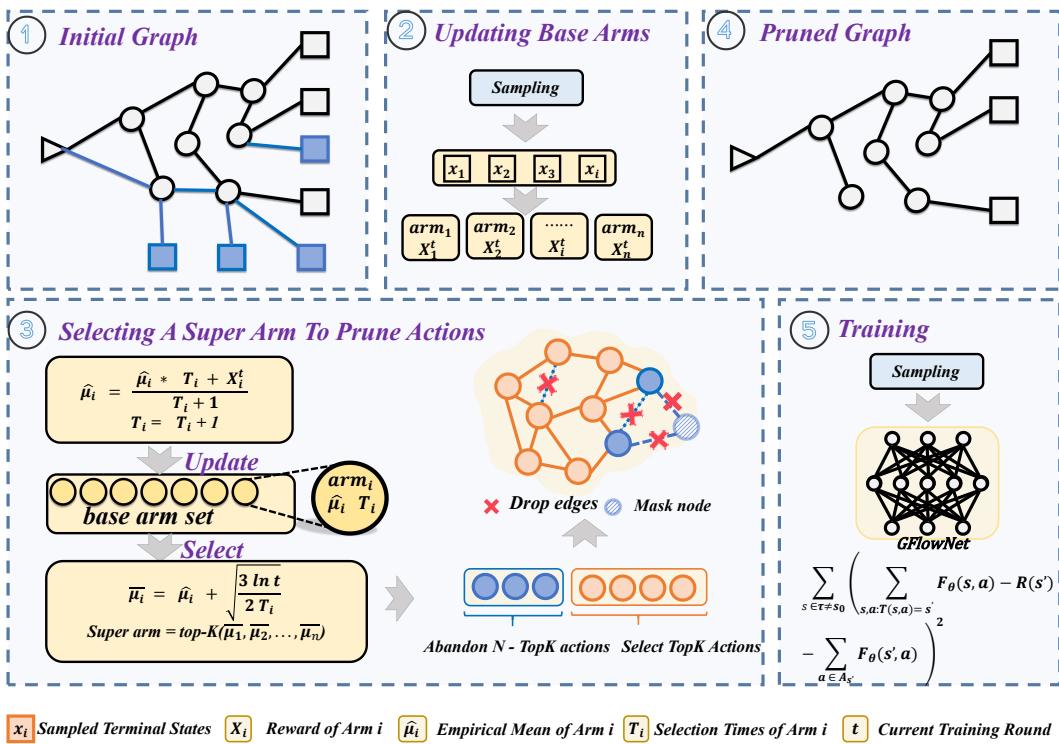
216 4.1.4 DESIGN OF PROCESS OF THE ALGORITHM
217

218 We integrate our framework into the *Combinatorial Upper Confidence Bound (CUCB)* algorithm
219 (Algorithm 1). For each arm i , we maintain its empirical mean reward $\hat{\mu}_i$ and selection count T_i . The
220 UCB-adjusted estimate is

$$221 \quad 222 \quad 223 \quad \bar{\mu}_i = \hat{\mu}_i + \sqrt{\frac{3 \ln t}{2T_i}}, \quad (4)$$

224 where t is the round index. This estimate ensures a principled balance between exploration and
225 exploitation.

226 Training begins with an initialization phase to provide each base arm with a reasonably accurate
227 initial estimate. In subsequent rounds, Figure 3 illustrates the pipeline. The framework first ingests
228 the full DAG, then performs an auxiliary sampling pass to refine reward estimates within the CMAB
229 module. Using these updated estimates, CUCB selects the top- K arms according to $\bar{\mu}_i$, constructs the
230 corresponding super arm. Training restricts sampling to this subspace, and the resulting candidates
231 are used to update the flow network via objectives such as Flow Matching (FM). Within CMAB, the
232 Combinatorial Upper Confidence Bound (CUCB) (as line 11 of Algorithm 1) rule balances exploitation
233 of the current best subspace with exploration of promising alternatives, improving efficiency without
234 compromising diversity.



260 Figure 3: **Illustration of workflow.** The triangle means initial state, the circles denote interior states,
261 and the squares denote the terminal states. Only one round is shown as an example for clarity. The
262 training objective shown is **Flow Matching(FM)** objective.
263

264 4.2 THEORETICAL FOUNDATIONS OF THE PROPOSED METHOD
265266 4.2.1 KEY ASSUMPTIONS OF CMAB IN FLOW NETWORKS
267

268 There are two assumptions required by CMAB methods. We show that flow networks naturally satisfy
269 these conditions.

270 **Monotonicity.** For a super arm \mathbb{S} , the expected reward $r_\mu(\mathbb{S})$ is non-decreasing in the reward vector
 271 μ . This assumption is natural in flow networks because if all base arms (actions) within a super arm
 272 \mathbb{S} exhibit higher expected rewards (i.e., $\mu'_i \geq \mu_i$ for all $i \in \mathbb{S}$), it implies that the flow network under
 273 μ' is better optimized than under μ .

274 **Bounded Smoothness.** There exists an increasing function f such that
 275

$$276 \quad |r_\mu(\mathbb{S}) - r_{\mu'}(\mathbb{S})| < f \left(\max_{i \in \mathbb{S}} |\mu_i - \mu'_i| \right). \quad (5)$$

279 In our framework, $r_\mu(\mathbb{S})$ is the cumulative reward of its arms, reducing f to $f(x) = Kx$ where
 280 $K = |\mathbb{S}|$. This ensures stability: small perturbations in individual arm rewards do not cause
 281 disproportionate fluctuations at the super-arm level.

283 4.2.2 DYNAMIC NATURE OF FLOW NETWORKS

285 Unlike standard CMAB problems with stationary distributions, flow networks evolve during training.
 286 It is therefore important to characterize this non-stationarity. The fundamental constraint for an ideal
 287 flow network is:

$$288 \quad \pi(x) = \frac{R(x)}{\sum_{x' \in \mathcal{X}} R(x')}, \quad \forall x \in \mathcal{X}, \quad (6)$$

291 where $\pi(x)$ represents the target distribution and $R(x)$ denotes the reward function. However, achieving
 292 this equilibrium condition requires exhaustive exploration of all states, which is impractical in
 293 real-world scenarios. Consequently, the expected rewards of individual base arms evolve dynamically
 294 throughout the training process of the flow network. Nevertheless, we establish theoretically that
 295 these reward distributions converge as training progresses.

296 **Theorem 1.** For a dynamic flow network where candidates are sampled proportionally to their
 297 rewards, the reward distribution of each base arm i converges to a stable distribution. The proof is
 298 given in Appendix C.

300 5 EXPERIMENT

302 We experimented on 5 commonly used standard tasks. As baselines, we use Trajectory Balance(TB)([Malkin et al., 2022a](#)), Sub-Trajectory Balance(SUBTB)([Madan et al., 2023](#)), Detailed
 303 Balance(DB)([Jain et al., 2022; Malkin et al., 2022a](#)), LSGFN([Kim et al., 2023](#)), Teacher([Kim et al.,
 304 2024c](#)) and QGFN([Lau et al., 2024](#)). We additionally introduced a random algorithm that randomly
 305 selects super arms called RandGFN. All experiments are conducted on NVIDIA Tesla A100 80GB
 306 GPUs.

309 5.1 BIT SEQUENCE GENERATION

311 5.1.1 TASK DEFINITION

313 The task is to generate binary bit sequences using the set $\{0, 1\}$ with a fixed length $n = 120$ with
 314 a terminal state space of $2^{120} \approx 10^{36}$ and more intermediate states. The reward of a terminal x is
 315 defined as $R(x) = \exp(-\min_{m \in M} \text{dist}(x, m))$, where $\text{dist}(x, m)$ is the Levenshtein Distance of
 316 two sequences following ([Malkin et al., 2022a; Zhang et al., 2023c](#)). M is a predefined sequence
 317 set to be discovered as modes. The mode $m \in M$ is regarded as found if there exists a sample x
 318 satisfying $\text{dist}(x, m) < \delta$, where δ is a predefined parameter.

319 In this task, we consider a more complex version with many more intermediate states. [Malkin et al.](#)
 320 ([2022a](#)) considers the process as a left-to-right generation where the state space is only a simple tree.
 321 [Lau et al. \(2024\); Shen et al. \(2023\)](#) use a prepend-append MDP to induce a DAG. In our setting,
 322 instead of prepending or appending to the existing sequence, we first divide the sequence into $\lfloor \frac{n}{k} \rfloor$
 323 positions. We can insert a generated k -bit into any unfilled position, resulting in a more complex
 DAG.

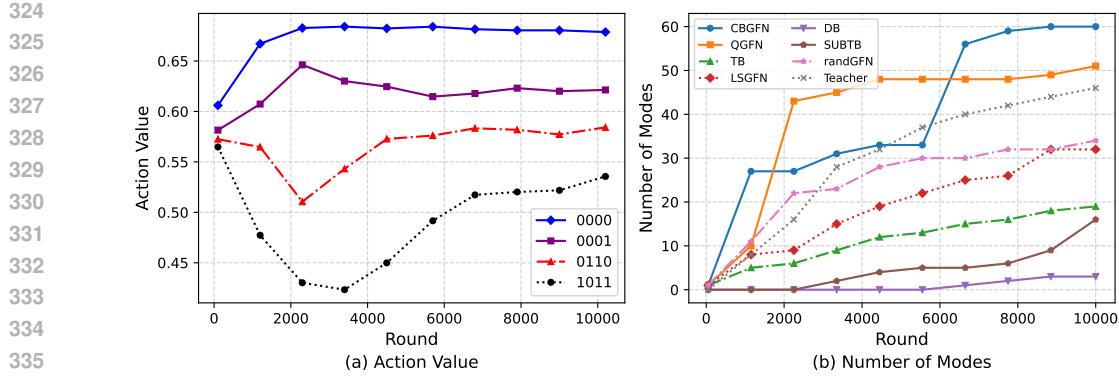


Figure 4: **Experimental results on Bit Sequence task.** Left panel shows how different action values change as the training progresses. Right panel shows the mode discovered by different methods.

5.1.2 RESULT

The performance comparison of different methods on the bit sequence task is illustrated in Figure 4 and Table 2. GFlowNets employing TB objective demonstrate superior results, outperforming all other objective functions. CBFN successfully identifies all potential modes, representing a substantial advancement in mode discovery efficiency. Figure 4-a illustrates the evolution of μ_i for various base arms (actions). As training progresses with the CUCB algorithm’s action selection, the arms diverge, converging to distinct outcomes. Notably, the actions {0000, 1111} emerge as the highest-scoring, aligning with the construction of M , where {0000, 1111} appear most frequently compared to other actions.

Table 2: Comparison on Bit Sequence Generation. *Modes* means the number of discovered modes. *Top1000* denotes the average reward of the best 1000 candidates.

Model	Modes	Top1000
CBGFN	60	3.60
QGFN	51	3.42
LSGFN	32	2.98
TB	19	2.89
SUBTB	16	2.84
DB	3	2.66
Teacher	46	3.17
RandGFN	32	3.06

Table 3: Comparison on Molecule Design. *Modes R>7.5/8* means the number of modes with a reward bigger than 7.5/8. *Top1000* denotes the average reward of the best 1000 candidates.

Model	Modes R>7.5	Modes R>8	Top1000
CBGFN	13074	3207	8.436
QGFN	8567	1420	8.364
LSGFN	4514	555	8.316
TB	2507	308	8.233
SUBTB	6	0	7.245
DB	6	0	7.124
Teacher	7811	1308	8.395
RandGFN	2188	282	8.248

5.2 MOLECULE DESIGN

5.2.1 TASK DEFINITION

We consider the most common scenario for GFlowNets, the fragment-based molecule generation task. The objective is to design a variety of molecules with a high reward, where the reward is given by a proxy model predicting the binding affinity to the sEH (soluble epoxide hydrolase) protein based on a docking prediction (Trott & Olson, 2010). We use the proxy model provided by (Bengio et al., 2021).

In this task, the states are represented as molecule graphs or SMILES¹. The action space consists of two components: selecting which molecular stems to extend and choosing which building blocks to add. The maximum number of allowed blocks controls the size of the state space. The vocabulary of building blocks consists of 105 distinct elements, where a block has several possible attachment points (stems). We generate a molecule graph of up to 8 fragments. Therefore, the terminal state space is more than $105^8 \approx 10^{16}$.

¹https://en.wikipedia.org/wiki/Simplified_Molecular_Input_Line_Entry_System

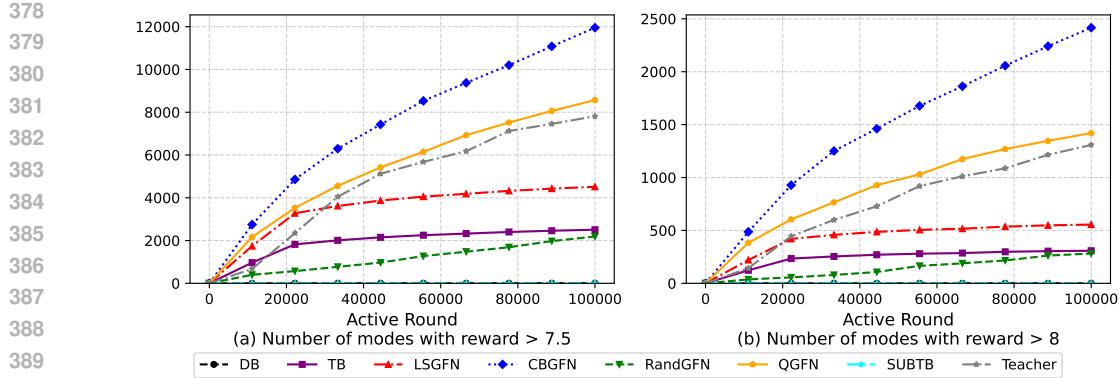


Figure 5: **The curve of number of modes varying with rounds (10^3) on Molecule Design.** Left panel shows the number of modes discovered with a reward $R > 7.5$. Right panel shows the number of modes discovered with a reward $R > 8$.

We define each block as a base arm and choose K blocks as a super arm. There are C_{105}^K different base arms. We use Tanimoto similarity (Bender & Glen, 2004) to distinguish different modes, with a threshold of 0.7. Furthermore, we conduct a comprehensive analysis to examine how different values of K affect the algorithm’s performance, particularly in terms of controlling its greediness. The detailed results of this analysis are presented in Appendix F.1. We also include top- K tanimoto similarity as a metric of diversity in Appendix J.

5.2.2 RESULT

The comparative performance of various models is summarized in Table 3 and Figure 5. What we found extremely strange is that the baseline SUBTB behaves poorly in both discovering high-scoring modes and generating high-scoring top 1000 candidates. This phenomenon also appears in the molecule design task of Lau et al. (2024). Our proposed CBFNet demonstrates remarkable improvements in high-scoring mode discovery. During our experiments, the model successfully identified over 10,000 high-scoring modes ($R > 7.5$) with just 400,000 sampled trajectories (equivalent to 100,000 training rounds). Furthermore, CBFNet achieves superior performance in terms of average reward for the top 1000 candidates, outperforming all baseline methods.

5.3 RNA-BINDING

5.3.1 TASK DEFINITION

The task is to generate a string of 14 nucleobases. We use a prepend-append MDP to keep adding tokens to a string until it reaches the maximum length, following Kim et al. (2023). There are 4 tokens: adenine (A), cytosine (C), guanine (G), and uracil (U). We conducted experiments on three different target transcriptions: L14-RNA1, L14-RNA2, and L14-RNA3 proposed by Sinai et al. (2020). We treat each token as a base arm, and K is set to 2/3, denoting that we can either choose 2 base arms or 3 base arms as a super arm.

5.3.2 RESULT

Figure 6 reports the results on three RNA tasks, each evaluated by Number of Modes Discovered, Average Reward, and Top-1000 Reward. CBFNet consistently outperforms baselines: it discovers nearly twice as many modes as the strongest competitor and achieves higher average and Top-1000 rewards in Tasks 1 and 2, while remaining competitive in Task 3. The slight instability in Task 3 stems from averaging over only 10 rounds, during which the agent may explore subspaces with suboptimal rewards or insufficiently learned dynamics.

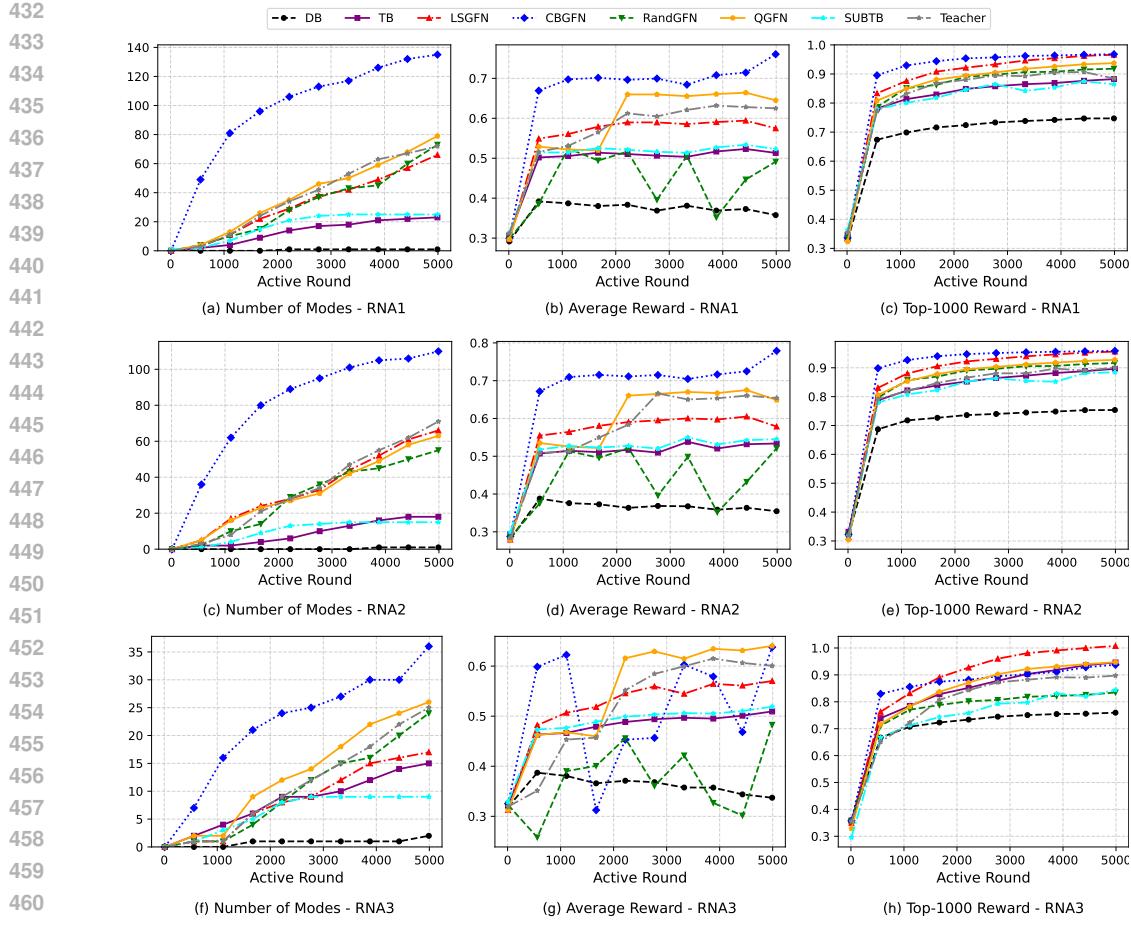


Figure 6: **Performance comparison on RNA design tasks.** Rows correspond to RNA-1, RNA-2, and RNA-3, respectively.

5.4 MORE DETAILS

We also reported evidence lower bound (ELBO) as an evaluation of goodness of fit to the target distribution in Appendix L. Besides, we reported some alternative pruning strategies aside from top K actions in Appendix H.

6 CONCLUSION AND LIMITATION

Conclusion: This paper proposes CBFNet, a method designed to enhance the greediness of the sampling process while preserving the diversity of generated candidates. We begin by partitioning the entire state space into multiple subspaces. Next, we employ the CUCB algorithm to effectively balance exploration and exploitation and find the optimal subspaces. To address the challenges posed by narrow-deep network architectures, we propose techniques to transform them into more balanced wide-deep structures. Experimental results across various tasks demonstrate the effectiveness and efficiency of CBFNet.

Limitations: Although our framework is theoretically applicable to listwise recommendation and combinatorial optimization problems, empirical validation on these tasks remains for future work. Another limitation of the proposed method is that it assumes a fixed reward distribution in the environment. In scenarios where the high-reward state space shifts during training, the benefits are limited and may even disappear.

486 ETHICS STATEMENT
487

488 This research is entirely based on publicly available benchmark environments, including the Bit
489 Sequence task (Malkin et al., 2022a), molecule design task (Bengio et al., 2021), and RNA sequence
490 design tasks (Sinai et al., 2020). These datasets do not contain any personally identifiable or sensitive
491 information, and no human or animal subjects were involved, so no ethical approval was required.
492 While generative modeling frameworks such as GFlowNets and CBFFlowNet may have downstream
493 applications in high-stakes domains (e.g., drug discovery or personalized recommendation), the
494 contributions of this work are purely methodological and restricted to controlled benchmark environments.
495 We encourage future applications to carefully assess potential societal impacts, incorporate
496 domain-specific safeguards, and ensure responsible deployment. We declare no conflicts of interest.
497

498 REPRODUCIBILITY STATEMENT
499

500 We have made all implementations and experimental details publicly available at <https://anonymous.4open.science/r/CBFflowNet-E0BA/>. The repository includes training
501 scripts, model definitions, and configuration files to reproduce the reported results. Hyperparameter
502 choices for all tasks are explicitly documented in the appendix (Tables 5, 6, and 7), along with details
503 of the baselines, evaluation metrics, and hardware setup (NVIDIA Tesla A100 80GB GPUs). We
504 additionally report sensitivity analyses on key parameters (e.g., K for super arms, β for reward
505 exponent, ϵ for exploration) in Appendices F and G. These results ensure that our findings are robust
506 and reproducible across different settings.
507

508 REFERENCES
509

510 Mridul Agarwal, Vaneet Aggarwal, Abhishek Kumar Umrawal, and Chris Quinn. Dart: Adaptive
511 accept reject algorithm for non-linear combinatorial bandits. In *Proceedings of the AAAI Conference
512 on Artificial Intelligence*, volume 35, pp. 6557–6565, 2021.

513 Andreas Bender and Robert C Glen. Molecular similarity: a key technique in molecular informatics.
514 *Organic & biomolecular chemistry*, 2(22):3204–3218, 2004.

516 Emmanuel Bengio, Moksh Jain, Maksym Korablyov, Doina Precup, and Yoshua Bengio. Flow
517 network based generative models for non-iterative diverse candidate generation. *Advances in
518 Neural Information Processing Systems*, 34:27381–27394, 2021.

519 Ruishuo Chen, Xun Wang, Rui Hu, Zhuoran Li, and Longbo Huang. Proxy-free gflownet. *arXiv
520 preprint arXiv:2505.20110*, 2025.

522 Wei Chen, Yajun Wang, and Yang Yuan. Combinatorial multi-armed bandit: General framework and
523 applications. In *International conference on machine learning*, pp. 151–159. PMLR, 2013.

524 Wei Chen, Wei Hu, Fu Li, Jian Li, Yu Liu, and Pinyan Lu. Combinatorial multi-armed bandit with
525 general reward functions. *Advances in Neural Information Processing Systems*, 29, 2016.

527 Wei Chen, Liwei Wang, Haoyu Zhao, and Kai Zheng. Combinatorial semi-bandit in the non-stationary
528 environment. In *Uncertainty in Artificial Intelligence*, pp. 865–875. PMLR, 2021.

529 Miruna Cretu, Charles Harris, Ilia Igashov, Arne Schneuing, Marwin Segler, Bruno Correia, Julien
530 Roy, Emmanuel Bengio, and Pietro Liò. Synflownet: Design of diverse and novel molecules with
531 synthesis constraints. *arXiv preprint arXiv:2405.01155*, 2024.

532 Fares Fourati, Mohamed-Slim Alouini, and Vaneet Aggarwal. Federated combinatorial multi-agent
533 multi-armed bandits. *arXiv preprint arXiv:2405.05950*, 2024a.

535 Fares Fourati, Christopher John Quinn, Mohamed-Slim Alouini, and Vaneet Aggarwal. Combinatorial
536 stochastic-greedy bandit. In *Proceedings of the AAAI Conference on Artificial Intelligence*,
537 volume 38, pp. 12052–12060, 2024b.

538 Guoju Gao, He Huang, Mingjun Xiao, Jie Wu, Yu-E Sun, and Sheng Zhang. Auction-based
539 combinatorial multi-armed bandit mechanisms with strategic arms. In *IEEE INFOCOM 2021-
IEEE Conference on Computer Communications*, pp. 1–10. IEEE, 2021.

540 Edward J Hu, Moksh Jain, Eric Elmoznino, Younese Kaddar, Guillaume Lajoie, Yoshua Bengio,
 541 and Nikolay Malkin. Amortizing intractable inference in large language models. *arXiv preprint*
 542 *arXiv:2310.04363*, 2023.

543 Rui Hu, Yifan Zhang, Zhuoran Li, and Longbo Huang. Beyond squared error: Exploring loss design
 544 for enhanced training of generative flow networks. *arXiv preprint arXiv:2410.02596*, 2024.

545 Zarif Ikram, Ling Pan, and Dianbo Liu. Evolution guided generative flow networks. *arXiv preprint*
 546 *arXiv:2402.02186*, 2024.

547 Moksh Jain, Emmanuel Bengio, Alex Hernandez-Garcia, Jarrid Rector-Brooks, Bonaventure FP
 548 Dossou, Chanakya Ajit Ekbote, Jie Fu, Tianyu Zhang, Michael Kilgour, Dinghuai Zhang, et al.
 549 Biological sequence design with gflownets. In *International Conference on Machine Learning*, pp.
 550 9786–9801. PMLR, 2022.

551 Hyeonah Kim, Minsu Kim, Sanghyeok Choi, and Jinkyoo Park. Genetic-guided gflownets for sample
 552 efficient molecular optimization. *arXiv preprint arXiv:2402.05961*, 2024a.

553 Minsu Kim, Taeyoung Yun, Emmanuel Bengio, Dinghuai Zhang, Yoshua Bengio, Sungsoo Ahn, and
 554 Jinkyoo Park. Local search gflownets. *arXiv preprint arXiv:2310.02710*, 2023.

555 Minsu Kim, Sanghyeok Choi, Hyeonah Kim, Jiwoo Son, Jinkyoo Park, and Yoshua Bengio. Ant
 556 colony sampling with gflownets for combinatorial optimization. *arXiv preprint arXiv:2403.07041*,
 557 2024b.

558 Minsu Kim, Sanghyeok Choi, Taeyoung Yun, Emmanuel Bengio, Leo Feng, Jarrid Rector-Brooks,
 559 Sungsoo Ahn, Jinkyoo Park, Nikolay Malkin, and Yoshua Bengio. Adaptive teachers for amortized
 560 samplers. *arXiv preprint arXiv:2410.01432*, 2024c.

561 Elaine Lau, Stephen Lu, Ling Pan, Doina Precup, and Emmanuel Bengio. Qgfn: Controllable
 562 greediness with action values. *Advances in neural information processing systems*, 37:81645–
 563 81676, 2024.

564 Kanika Madan, Jarrid Rector-Brooks, Maksym Korablyov, Emmanuel Bengio, Moksh Jain, Andrei
 565 Cristian Nica, Tom Bosc, Yoshua Bengio, and Nikolay Malkin. Learning gflownets from
 566 partial episodes for improved convergence and stability. In *International Conference on Machine
 567 Learning*, pp. 23467–23483. PMLR, 2023.

568 Nikolay Malkin, Moksh Jain, Emmanuel Bengio, Chen Sun, and Yoshua Bengio. Trajectory balance:
 569 Improved credit assignment in gflownets. *Advances in Neural Information Processing Systems*, 35:
 570 5955–5967, 2022a.

571 Nikolay Malkin, Salem Lahlou, Tristan Deleu, Xu Ji, Edward Hu, Katie Everett, Dinghuai Zhang,
 572 and Yoshua Bengio. Gflownets and variational inference. *arXiv preprint arXiv:2210.00580*, 2022b.

573 Jarrid Rector-Brooks, Kanika Madan, Moksh Jain, Maksym Korablyov, Cheng-Hao Liu, Sarath
 574 Chandar, Nikolay Malkin, and Yoshua Bengio. Thompson sampling for improved exploration in
 575 gflownets. *arXiv preprint arXiv:2306.17693*, 2023.

576 Max W Shen, Emmanuel Bengio, Ehsan Hajiramezanali, Andreas Loukas, Kyunghyun Cho, and
 577 Tommaso Biancalani. Towards understanding and improving gflownet training. In *International
 578 conference on machine learning*, pp. 30956–30975. PMLR, 2023.

579 Tiago Silva, Rodrigo Barreto Alves, Eliezer de Souza da Silva, Amauri H Souza, Vikas Garg, Samuel
 580 Kaski, and Diego Mesquita. When do gflownets learn the right distribution? In *The Thirteenth
 581 International Conference on Learning Representations*, 2025.

582 Sam Sinai, Richard Wang, Alexander Whatley, Stewart Slocum, Elina Locane, and Eric D Kelsic.
 583 Adalead: A simple and robust adaptive greedy search algorithm for sequence design. *arXiv preprint*
 584 *arXiv:2010.02141*, 2020.

585 Aleksandrs Slivkins et al. Introduction to multi-armed bandits. *Foundations and Trends® in Machine
 586 Learning*, 12(1-2):1–286, 2019.

594 Oleg Trott and Arthur J Olson. Autodock vina: improving the speed and accuracy of docking with
595 a new scoring function, efficient optimization, and multithreading. *Journal of computational*
596 *chemistry*, 31(2):455–461, 2010.

597

598 Nikhil Vemgal, Elaine Lau, and Doina Precup. An empirical study of the effectiveness of using a
599 replay buffer on mode discovery in gflownets. *arXiv preprint arXiv:2307.07674*, 2023.

600 David W Zhang, Corrado Rainone, Markus Peschl, and Roberto Bondesan. Robust scheduling with
601 gflownets. *arXiv preprint arXiv:2302.05446*, 2023a.

602

603 Dinghuai Zhang, Nikolay Malkin, Zhen Liu, Alexandra Volokhova, Aaron Courville, and Yoshua
604 Bengio. Generative flow networks for discrete probabilistic modeling. In *International Conference*
605 *on Machine Learning*, pp. 26412–26428. PMLR, 2022.

606 Dinghuai Zhang, Hanjun Dai, Nikolay Malkin, Aaron C Courville, Yoshua Bengio, and Ling Pan.
607 Let the flows tell: Solving graph combinatorial problems with gflownets. *Advances in neural*
608 *information processing systems*, 36:11952–11969, 2023b.

609

610 Dinghuai Zhang, Ling Pan, Ricky TQ Chen, Aaron Courville, and Yoshua Bengio. Distributional
611 gflownets with quantile flows. *arXiv preprint arXiv:2302.05793*, 2023c.

612 Yiheng Zhu, Jialu Wu, Chaowen Hu, Jiahuan Yan, Tingjun Hou, Jian Wu, et al. Sample-efficient
613 multi-objective molecular optimization with gflownets. *Advances in Neural Information Processing*
614 *Systems*, 36:79667–79684, 2023.

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648	CONTENTS	
649		
650		
651	1 Introduction	1
652		
653	2 Related Work	2
654		
655	3 Preliminary	3
656		
657	4 Methodology	3
658		
659	4.1 Framework Design	3
660	4.1.1 Design of Base and Super Arms	3
661	4.1.2 Design of Rewards for Base and Super Arms	4
662	4.1.3 Design for Adjusting Network Structure	4
663	4.1.4 Design of Process of the Algorithm	5
664	4.2 Theoretical Foundations of the Proposed Method	5
665	4.2.1 Key Assumptions of CMAB in Flow Networks	5
666	4.2.2 Dynamic Nature of Flow Networks	6
667		
668		
669		
670		
671	5 Experiment	6
672		
673	5.1 Bit Sequence Generation	6
674	5.1.1 Task Definition	6
675	5.1.2 Result	7
676	5.2 Molecule Design	7
677	5.2.1 Task Definition	7
678	5.2.2 Result	8
679	5.3 RNA-Binding	8
680	5.3.1 Task Definition	8
681	5.3.2 Result	8
682		
683		
684		
685	5.4 More details	9
686		
687	6 Conclusion and Limitation	9
688		
689		
690	A LLM Usage Statement	14
691		
692	B Symbol Table	14
693		
694	C Theorem Proof	15
695		
696	D Regret Analysis	16
697		
698	D.1 Absence of Optimal Super Arms	16
699	D.2 Regret Bound	16
700		
701	E Experiment details: Bit Sequence	17

702	E.1 Optimal Super Arm Configuration	17
703	E.2 Experiments on different ϵ	17
704		
705		
706		
707	F Experiment details: Molecule Design	18
708	F.1 Experiments on different K	18
709		
710		
711	G Experiment details: RNA-Binding	19
712	G.1 Different settings: exponent β	19
713		
714		
715		
716	H alternative strategies of super arms	20
717		
718		
719	I Illustration of workflow	21
720		
721		
722	J Diversity metric for molecule generation	22
723		
724		
725	K Time and GPU Memory Consumption	22
726		
727		
728	L Evidence Lower Bound (ELBO)	23
729		
730		
731	M Scalability	23
732		
733	N Experiments with Large Language Model Task	24
734		
735		
736	O Algorithm of the proposed method	24
737		
738		
739		
740	A LLM USAGE STATEMENT	
741		
742		

743 We only use LLMs as a language optimization tool to polish sentences, improving their readability
 744 and fluency. The LLM did not contribute to the scientific ideas, algorithm design, or experimental
 745 setup. All substantive content, reasoning, and conclusions are entirely the product of the authors. We
 746 accept full responsibility for all content in the paper, including parts refined or corrected by the LLM,
 747 and affirm that no text generated by the LLM constitutes original scientific contributions attributed to
 748 it.

749

750

751

B SYMBOL TABLE

752

753

754 This section provides a summary of the key notations and symbols used throughout this paper. The
 755 symbols are listed in Table 4.

756

757

758

Table 4: Notation

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

C THEOREM PROOF

790

Theorem 1. For a dynamic flow network where candidates are sampled proportionally to their rewards, the reward distribution of each base arm i converges to a stable distribution.

791

Proof. We establish the convergence in two parts:

792

793

Part 1: Stability under Fixed Flow Network

794

When the flow network stabilizes, the reward distribution of arm i becomes stationary. Let:

795

796

797

$$X_{i,t} = \frac{1}{|C_{i,t}|} \sum_{x \in C_{i,t}} R(x), \quad (7)$$

798

where:

799

800

801

802

803

804

- $C_{i,t} = \{x_1, \dots, x_{|C_{i,t}|}\}$ denotes candidates sampled at round t containing base arm i .
- $\mathcal{X}_i \subset \mathcal{X}$ represents terminal states containing base arm i .
- $R(x) : \mathcal{X}_i \rightarrow \mathbb{R}$ follows a fixed distribution.
- Candidates $x \in C_{i,t}$ are generated with probability $p(x) = F(x) / \sum_{x' \in \mathcal{X}_i} F(x')$.

805

Since $R(x)$ are i.i.d. and $p(x)$ becomes stationary, $X_{i,t}$ converges to a fixed distribution by the Law of Large Numbers.

806

807

Part 2: Convergence under Network Evolution

808

809

As the flow network converges, we have:

$$C_{i,t} \xrightarrow{d} \mathcal{C}_i, \quad (8)$$

810 where \mathcal{C}_i denotes the limiting candidate distribution. Because:
 811

812 • $R(x)$ are i.i.d. and depend only on x
 813 • The mapping $(C_{i,t}, \{R(x)\}_{x \in C_{i,t}}) \mapsto X_{i,t}$ is continuous in the discrete topology (where
 814 any function on a discrete space is continuous).

816 By the Continuous Mapping Theorem, we obtain:
 817

818
$$X_{i,t} \xrightarrow{d} X_i = \frac{1}{|\mathcal{C}_i|} \sum_{x \in \mathcal{C}_i} R(x), \quad (9)$$

 819
 820

821 establishing the desired convergence result.
 822

823 **D REGRET ANALYSIS**

826 **D.1 ABSENCE OF OPTIMAL SUPER ARMS**

828 The CMAB framework typically relies on an oracle capable of providing an (α, β) -approximation
 829 of the optimal super arm (i.e., a subset of base arms that maximizes the expected reward) to make a
 830 tight analysis of the regret bound. However, in flow networks, identifying the exact optimal super
 831 arm is computationally prohibitive due to the combinatorial explosion of possible states. Even an
 832 (α, β) -approximation of the optimal super arm is impractical because the α, β might change when
 833 the flow network is different.

834 **D.2 REGRET BOUND**

837 The flow network evolves dynamically throughout training, resulting in time-varying reward distributions
 838 for each base arm i . Although these distributions are guaranteed to converge asymptotically,
 839 the inherent non-stationarity introduces considerable uncertainty into the system. Such temporal
 840 variability, together with the absence of clearly defined optimal super arms, presents significant
 841 challenges for deriving a precise regret bound for the learning algorithm.

842 However, we can still construct empirical regret metrics to evaluate algorithm performance. A
 843 practical approach is to use the best empirical arm observed up to time t , denoted as $\hat{\mu}_t(\mathbb{S}^*)$, as a
 844 proxy for the unknown optimal mean reward. The estimated cumulative regret is then computed as:

845
$$\hat{R}(T) = \sum_{t=1}^T (\hat{\mu}_t(\mathbb{S}^*) - \hat{\mu}_t(\mathbb{S})). \quad (10)$$

 846
 847

849 We employ the metric of empirical cumulative regret to quantify the performance gap between
 850 consistently selecting the currently known optimal super arm and the super arm chosen by our
 851 algorithm. To comprehensively evaluate our method’s efficacy in minimizing regret, we introduce a
 852 baseline random strategy called RandGFN that uniformly selects K base arms at each round.

853 Figure 7 presents the cumulative regret curves for CBFNet and the RandGFN, revealing distinct
 854 performance differences across tasks:

855 1. Bit Sequence Generation Task (left panel): The random policy exhibits competitive performance,
 856 resulting in a moderate regret gap between the two models. This suggests that simple heuristics
 857 suffice in this simpler task setting.

858 2. Molecule Design Task (middle panel): CBFNet demonstrates substantial improvement,
 859 achieving a significantly lower cumulative regret than RandGFN. This highlights the proposed
 860 model’s effectiveness in optimizing structured, complex objectives.

861 3. L14-RNA1 Task (right panel): The regret gap widens again, where CBFNet substantially
 862 outperforms RandGFN, indicating its ability to handle intricate combinatorial challenges in nucleic
 863 acid sequence optimization.

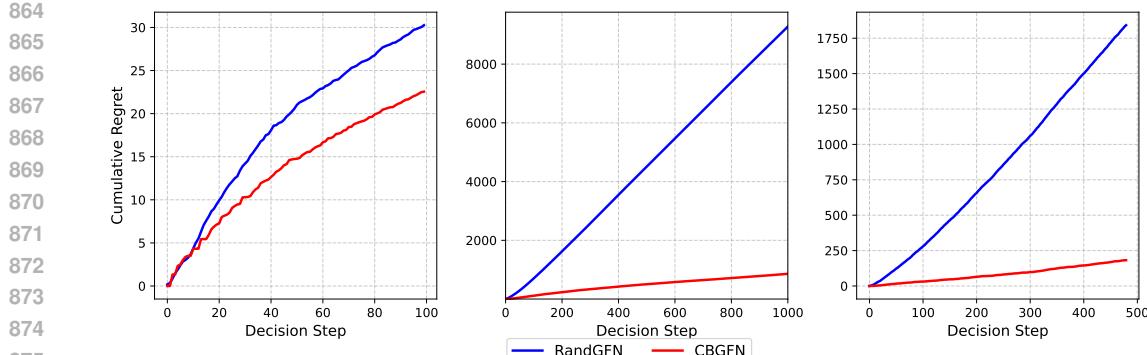


Figure 7: **Experimental result on cumulative regret with different tasks.** Left: Cumulative regret of models in Bit Sequence Generation Task. Center: Cumulative regret of models in Molecule Design Task. Right: Cumulative regret of models in L14-RNA1 Task.

Table 5: Key hyperparameter setting in Bit Sequence Generation task

Parameter	Value
Batch size	16
Number of steps	10000
k-bits	4
Lamda	1.9
Learning rate	1e-3
Z Learning rate	1e-3
β	2
Explore Epsilon	0.01
K	4
Decision Interval	100

E EXPERIMENT DETAILS: BIT SEQUENCE

Here we present the hyperparameter configuration for our bit sequence generation experiments (Table 5). While adopting the baseline framework from [Malkin et al. \(2022a\)](#), we reduce the training steps from 50,000 to 10,000. Each action is represented by $k = 4$ bits, and through empirical validation, we selected $K=4$ candidate arms from $\{2, 4, 6, 8, 10\}$. For the CMAB algorithm, we determined 100 steps to be the optimal decision interval after evaluating candidates from $\{50, 100, 200, 300, 400, 500\}$.

E.1 OPTIMAL SUPER ARM CONFIGURATION

The set M is constructed through random combinations of substrings derived from the base patterns $\{00000000, 11111111, 11110000, 00001111, 00111100\}$. For the case where $K = 4$, we can analytically determine the optimal super arm configuration as $\mathbb{S} = \{0000, 1111, 1100, 0011\}$. This configuration enables perfect mode identification within its substate space, achieving an average distance of 0.0 to all target modes. We evaluate the performance when consistently selecting this optimal super arm configuration in Figure 8(a).

E.2 EXPERIMENTS ON DIFFERENT ϵ

We conduct a systematic investigation of the exploration parameter ϵ , which controls the probability of random actions in the GFlowNets framework. This parameter critically influences the sampling behavior of the flow network within substate spaces. As shown in Figure 8(b), through comprehensive testing across ϵ values $\{0.1, 0.01, 0.02, 0.001, 0.0005\}$, we find that $\epsilon = 0.01$ demonstrates superior performance in terms of mode discovery and sample quality.

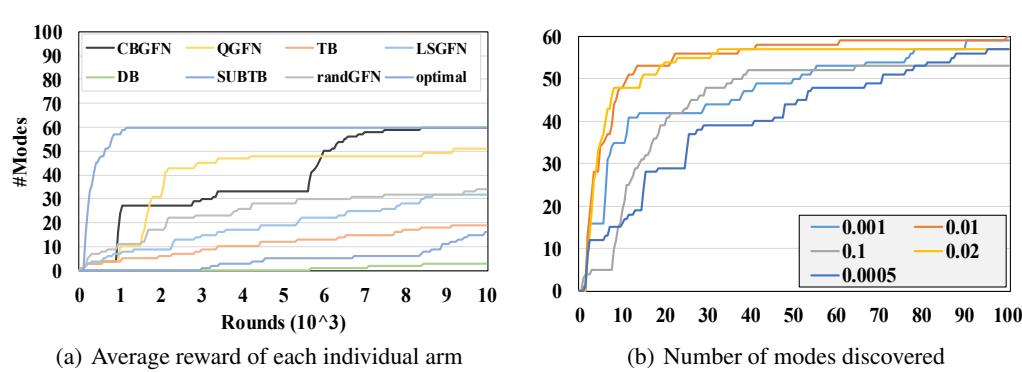


Figure 8: **Supplementary Experimental Results for the Bit Sequence Task.** Left: Number of modes identified by CBFlowNet when consistently selecting the optimal super arm. Right: Number of modes identified across varying ϵ values.

Table 6: Key hyperparameter setting in Molecule Design

Parameter	Value
Batch size	4
Number of steps	100000
Lamda	0.99
Learning rate	5e-4
Z Learning rate	5e-3
Tanimoto Similarity Threshold	0.7
β	8
Explore Epsilon	0.05
K	30
Decision Interval	400

The results indicate that moderate exploration ($\epsilon = 0.01$) achieves the best balance between exploration and exploitation, while higher values lead to excessive randomness and lower values result in insufficient exploration of the state space.

F EXPERIMENT DETAILS: MOLECULE DESIGN

We present the hyperparameter configurations for our Molecule Design Task experiments, as detailed in Table 6. Building upon the framework established by [Bengio et al. \(2021\)](#), we maintain their default parameter settings while introducing specific optimizations. After empirical evaluation, we set the number of base arms K to 30, selected from $\{8, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100\}$, and determined the optimal decision interval for the CMAB algorithm to be 400 from $\{50, 100, 200, 300, 400, 500\}$.

F.1 EXPERIMENTS ON DIFFERENT K

The hyperparameter K , which determines the size of the super arm, serves as our primary mechanism for controlling the method's greediness. In our molecule generation experiments, we evaluate 10 distinct K values ranging from 8 to 100. Smaller K values correspond to greedier selections, as we restrict our choice to only the top K base arms, resulting in more compact sub-state spaces. However, this increased greediness comes at the cost of reduced candidate diversity, as demonstrated in Figure 9. While $K \in \{8, 10, 20\}$ yields higher average scores among the top 1000 candidates, it significantly compromises molecular diversity (measured by the number of distinct modes). Through a comprehensive evaluation, we identify $K = 30$ as the optimal setting for our molecular design task, achieving an effective balance between candidate quality and diversity.

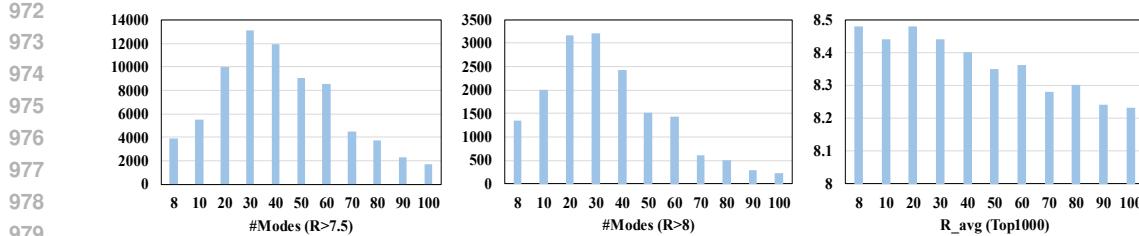


Figure 9: **Experimental result on Molecule Design with different k with 400,000 samples.** Left: The number of modes $R > 7.5$ with a Tanimoto similarity threshold of 0.7. Center: The number of modes $R > 8$ with a Tanimoto similarity threshold of 0.7. Right: The average reward of the top 1000 high-scoring samples.

Table 7: Key hyperparameter setting in RNA-Binding task

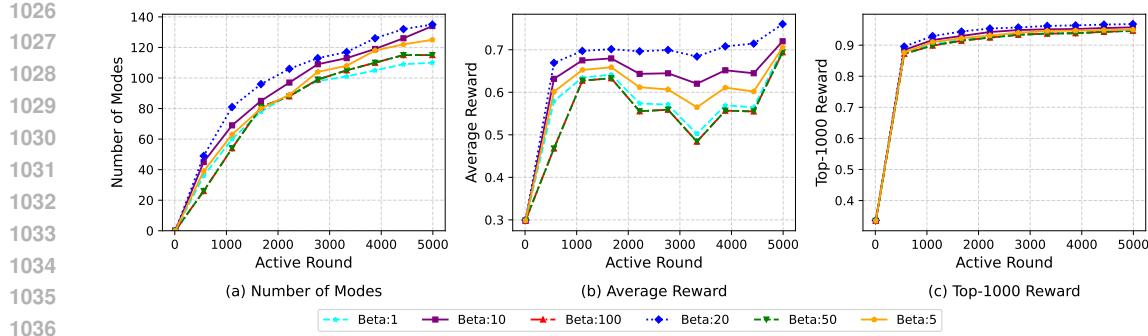
Parameter	Value
Batch size	32
Number of steps	5000
RNA length	14
MDP style	Prepend and Append
Lamda	0.9
Learning rate	1e-4
Z Learning rate	1e-2
Mode metric	Hamming Ball 1
β	20
Explore Epsilon	0.01
K	2/3
Decision Interval	50

G EXPERIMENT DETAILS: RNA-BINDING

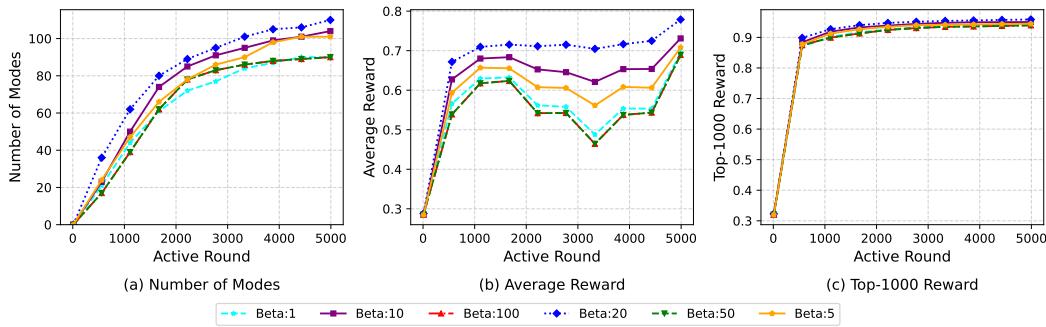
In this section, we give the hyperparameters used for each of our experiments’ RNA-Binding Task as shown in Table 7. In our experimental setup, the learning rate of 1×10^{-4} is selected from $\{1 \times 10^{-5}, 1 \times 10^{-4}, 1 \times 10^{-3}, 5 \times 10^{-3}\}$ and the Z learning rate of 1×10^{-2} is selected from $\{1 \times 10^{-5}, 1 \times 10^{-4}, 1 \times 10^{-3}, 5 \times 10^{-3}\}$. The Lambda for SUBTB uses 0.9 out of $\{0.8, 0.9, 0.99, 0.999\}$. The explore epsilon is used to control the random action probability, five values are tested, including $\{0.1, 0.01, 0.001, 0.0001, 0.00001\}$. We set the reward exponent β to 8 from $\{3, 4, 5, 6, 7, 8, 9, 10\}$. K is the number of base arms to compose the super arm selected from $\{1, 1/2, 2, 2/3, 3, 3/4, 4\}$, where $x/x + 1$ denotes we can choose x or $x + 1$ base arms as a super arm. Please note that the RNA1 environment we use is a little different from Teacher(Kim et al., 2024c). Our environment has 1590 modes in total, but Kim et al. (2024c) has 8967 modes. We replace the environment file of Teacher with our environment file to make a fair comparison. The environment is constructed following Kim et al. (2023).

G.1 DIFFERENT SETTINGS: EXPONENT β

Since introduced by Bengio et al. (2021), there is already a useful technique to increase the greediness of GFlowNets, that is the exponent β . The adjusted reward function is formulated as $R(x) = R(x)^\beta$. The higher β makes the model greedier but at the cost of greater numerical instability. Besides, since the middle-reward regions are adjusted into low-reward regions, the diversity is also reduced, leading to mode collapse (Lau et al., 2024). The choice of exponent β critically influences the behavior of the CUCB algorithm, as it directly modulates the reward scaling of individual arms. We experimented on different settings of exponent β as shown in Figure 10, Figure 11 and Figure 12.

Figure 10: Experimental result on RNA-Binding Task 1 with different β .

In the L14-RNA1 task, models with varying β values consistently identified over 100 distinct modes, with the $\beta = 20$ configuration demonstrating superior performance compared to other settings. Notably, the model with $\beta = 1$ exhibited significantly poorer performance relative to other β values. Regarding average reward metrics, the $\beta = 20$ model achieved substantially better results, establishing a clear performance gap over other configurations. However, all models showed comparable performance when evaluating the top 1000 rewards.

Figure 11: Experimental result on RNA-Binding Task 2 with different β .

In the L14-RNA2 task, while maintaining performance trends consistent with L14-RNA1, the task proved more challenging for mode discovery. All models identified fewer modes compared to L14-RNA1, yet the $\beta = 20$ configuration consistently demonstrated superior performance across all metrics, maintaining its lead over other parameter settings.

L14-RNA3 proves to be the most challenging task, exhibiting a significant decline in both discovered modes and average reward compared to other tasks. In this setting, $\beta = 10$ achieves the best overall performance, whereas $\beta = 20$, while attaining a higher average reward, suffers from instability. The task's difficulty suggests that using an excessively large β may be suboptimal, as it risks mode collapse by overly prioritizing high-reward candidates while neglecting mid-reward solutions.

H ALTERNATIVE STRATEGIES OF SUPER ARMS

Aside from top-K actions, we came up with three alternatives of arm selection: 1) selecting base arms proportional to their scores; 2) selecting base arms randomly; 3) keeping hard pruning but removing CMAB. Here, hard pruning refers to the permanent removal of some fixed actions from the selection pool. Random selection assigns equal selection probabilities to all base arms when constructing the super arm.

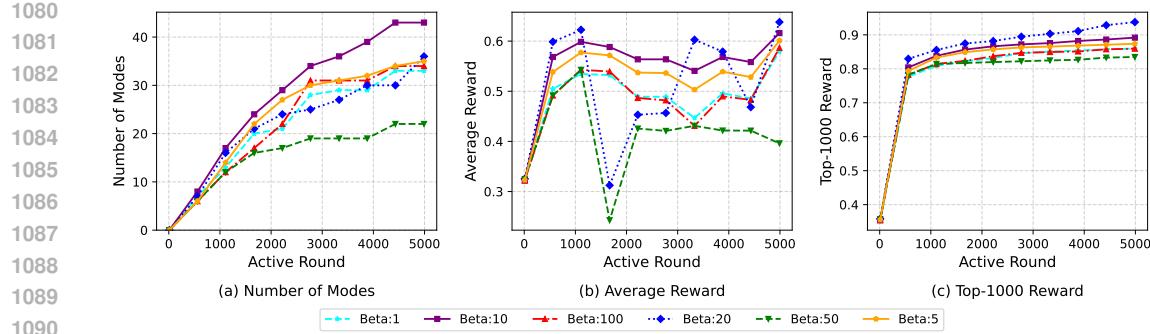
Figure 12: Experimental result on RNA-Binding Task 3 with different β .

Table 8: Comparison of Different Methods in the molecule generation task.

Method	Modes $R > 7.5$	Modes $R > 8$	Top-1000 Reward	Top-1000 Similarity
Hard-Pruning	1069	132	7.95	0.47
Proportional	7554	1190	8.19	0.46
Random	2179	284	8.03	0.47
CBFlowNet	12089	2952	8.31	0.49

When employing a simple hard-pruning approach without the CMAB framework, GFlowNet initially discovers numerous high-reward modes quickly. However, the mode distribution within this constrained subspace is sparse, and after these easily accessible modes are found, the discovery rate drops significantly as the remaining modes become increasingly difficult to identify.

In contrast, a random selection strategy explores the space uniformly by choosing super arms indiscriminately, yielding an expected reward equal to the average across all sub-spaces. This approach achieves performance comparable to the Trajectory Balance (TB) method.

A proportional selection strategy, which chooses arms according to their estimated rewards, naturally outperforms random selection by favoring higher-reward regions. However, it remains less aggressive than the top- K approach used in CBFlowNet. The proportional method discovers fewer total modes (7,554 vs. CBFlowNet's 12,089) yet achieves marginally better performance in top-1000 similarity metrics. The results suggest that while proportional selection maintains better diversity, CBFlowNet's more aggressive top- K strategy enables superior overall mode coverage.

I ILLUSTRATION OF WORKFLOW

Here, we present a case study to illustrate how the proposed method work in the bit sequence generation task. The set M is constructed by randomly combining substrings derived from the base patterns 00000000, 11111111, 11110000, 00001111, 00111100. For $K = 4$, theoretical analysis reveals that the optimal super arm configuration is $S = 0000, 1111, 1100, 0011$, which achieves perfect mode identification within its substate space with an average distance of 0.0 to all target modes.

Initially, the base arm 0000 gradually gains higher values (as shown in Figure 4), leading to a suboptimal super arm configuration $S = 0000, 1111, 1100, 0001$. The UCB mechanism in line 11 of Algorithm 1 then identifies 0011 as a promising alternative - while its current estimated value is slightly lower than 0001, its higher uncertainty (due to insufficient exploration) suggests significant potential. This triggers an exploration phase where the algorithm selects $S = 0000, 1111, 1100, 0011$ as the new super arm. Subsequent evaluations confirm that 0011 consistently generates higher-quality candidates, and the value update in line 15 of Algorithm 1 reinforces its estimate in future rounds.

Notably, even though we know a priori that S is optimal, the CMAB framework continues to explore alternative subspaces with some probability. This characteristic ensures the algorithm maintains the

1134 capability to discover potentially better configurations while predominantly exploiting the known
 1135 optimal solution, effectively balancing the exploration-exploitation trade-off throughout the learning
 1136 process.
 1137

1138 J DIVERSITY METRIC FOR MOLECULE GENERATION

1140 While our current approach uses Tanimoto similarity with a 0.7 threshold for mode differentiation, it
 1141 is still important to evaluate the mean internal Tanimoto similarity. Specifically, we compared the
 1142 mean internal Tanimoto similarity among top-scoring candidates between CBFFlowNet and TB. Given
 1143 that increased top- K reward typically correlates with higher molecular similarity (as demonstrated
 1144 in (Malkin et al., 2022a)), we conducted additional comparative analyses between models with
 1145 comparable reward performance: specifically, CBFFlowNet at training rounds 10^4 versus TB at rounds
 1146 10^5 . The results are summarized below:
 1147

1148 Table 9: Performance comparison between different methods.

Method	Training Round	Top-100		Top-1000	
		Reward	Similarity	Reward	Similarity
TB	10^5	8.23	0.50	8.01	0.47
CBFlowNet	10^5	8.43	0.55	8.31	0.49
CBFlowNet	10^4	8.30	0.48	8.10	0.46

1156 If we always sample through the same subspace, there is no doubt that the Tanimoto similarity
 1157 of generated candidates is higher compared to sampling through the whole state space. However,
 1158 the CMAB framework frequently changes the subspaces (as in line 11 of Algorithm 1) and the
 1159 candidates sampled from different sub state spaces are more likely to have lower Tanimoto similarity,
 1160 which alleviates this problem. This analysis demonstrates that while our approach may show slightly
 1161 higher similarity within concentrated sampling periods, the overall diversity is maintained and even
 1162 improved when considering equivalent performance levels, benefiting from our strategic subspace
 1163 selection mechanism.
 1164

1165 When comparing models with the same number of training rounds (10^5), CBFFlowNet shows slightly
 1166 higher Tanimoto similarity among top candidates. When comparing models with comparable reward
 1167 performance (e.g., CBFFlowNet at rounds 10^4 vs TB at 10^5 rounds), CBFFlowNet achieves better
 1168 diversity (lower similarity scores).
 1169

1170 K TIME AND GPU MEMORY CONSUMPTION

1172 Table 10 reports the runtime and GPU memory usage of TB-GFN and CBFFlowNet in the molecule
 1173 generation task. With the current implementation, training CBFFlowNet for 100 rounds requires
 1174 slightly more time than TB-GFN while consuming a comparable amount of GPU memory. Given the
 1175 faster convergence of CBFFlowNet, this marginal overhead does not substantially increase the overall
 1176 training cost. Moreover, the extra sampling step can be efficiently parallelized using multi-threading,
 1177 which further alleviates time consumption.
 1178

1179 Table 10: Efficiency comparison between methods.

Method	Time Cost (s / 100 rounds)	GPU Memory Cost
TB-GFN	24.37	4827 MiB
CBFlowNet	27.95	4840 MiB

1184 The time cost represents the duration required for completing 100 training rounds, where each round
 1185 involves sampling candidate solutions for training and generating new candidates with a batch size of
 1186 four. Thus, 100 rounds yield 400 candidates for evaluation. Multi-threading was employed to reduce
 1187 time consumption.
 1188

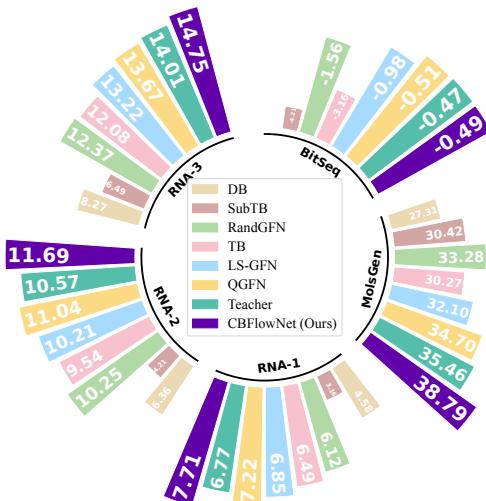


Figure 13: Experiment results on ELBO.

L EVIDENCE LOWER BOUND (ELBO)

We evaluate the goodness of fit to the target distribution using the evidence lower bound (ELBO) introduced by [Kim et al. \(2024c\)](#). ELBO is estimated by sampling M candidates and averaging the estimated $\log Z$ through a transformed TB objective:

$$Z \prod_{t=1}^n P_F(s_t|s_{t-1}) = F(X) \prod_{t=1}^n P_B(s_{t-1}|s_t). \quad (11)$$

The corresponding ELBO is approximated as:

$$ELBO \approx \frac{1}{M} \sum_{i=1}^M \left(\log R(x_i) + \sum_{t=1}^{n_i} P_B(s_{t-1}|s_t) - \sum_{t=1}^{n_i} P_F(s_t|s_{t-1}) \right), \quad (12)$$

where n_i is the length of the trajectory that generates terminal state x_i . Results are presented in Figure 13. The proposed CBFNet achieves slightly better performance than the baselines, with Teacher remaining the strongest competitor.

M SCALABILITY

We show that the proposed method scales effectively to larger action spaces both theoretically and empirically. When selecting K arms from N total base arms to form a super arm, the accuracy of reward estimates $\hat{\mu}_i$ typically requires more rounds to converge as N grows. However, in practice, K often scales proportionally with N —for example, setting $K = 0.1N$ (selecting 10% of base arms). Under this scheme, the estimation accuracy of $\hat{\mu}_i$ remains stable with respect to N , leading to a fixed convergence rate.

Moreover, the computation of rewards $\hat{\mu}_i$ can be embedded within the flow-matching updates at negligible cost. Since our algorithm is heuristic, the additional computational burden is minimal, as also indicated in Table 10.

To further validate scalability, we experimented with enlarged action spaces. The molecule design task originally contains 105 building blocks with several stems each. By combining two actions into one base arm, the action space increases to $105 \times 105 = 11025$, denoted as CBFNet (CA). As shown in Table 11, CBFNet (CA) exhibits comparable or slightly better performance in discovering high-reward modes while incurring only negligible computational overhead.

1242

1243

Table 11: Performance comparison of different methods.

1244

1245

1246

Method	Training Round	Modes $R > 7.5$	Modes $R > 8$	Top-1000 Reward	Top-1000 Similarity	Time (s / 100 rounds)
TB-GFN	10^5	1915	233	8.01	0.47	24.37
CBFlowNet	10^5	12089	2952	8.31	0.49	27.95
CBFlowNet (CA)	10^5	12433	2520	8.29	0.50	28.73

1247

1248

N EXPERIMENTS WITH LARGE LANGUAGE MODEL TASK

1249

1250

We also report experiments on a task with dynamic reward distributions (see Section 6) as a limitation study. Following [Hu et al. \(2023\)](#), we considered a subjectivity classification task where each movie review is labeled as either objective or subjective. This task is particularly challenging, as it involves both the E-step and M-step of the EM algorithm, with GFlowNet serving as the inference model in the E-step.

1251

1252

We adopt the default settings from the public implementation of [Hu et al. \(2023\)](#). For fine-tuning, we tested both GPT-2 and GPT-J 6B backbones.

1253

1254

Table 12: Comparison of CBFlowNet and GFlowNet under GPT-2 and GPT-J backbones with different sample sizes. Results are reported as mean \pm standard deviation.

1255

1256

Method	GPT-2			GPT-J 6B		
	10 Samples	20 Samples	50 Samples	10 Samples	20 Samples	50 Samples
CBFlowNet	0.59 ± 0.02	0.63 ± 0.03	0.78 ± 0.02	0.71 ± 0.02	0.83 ± 0.01	0.90 ± 0.01
GFlowNet	0.58 ± 0.03	0.61 ± 0.02	0.75 ± 0.03	0.71 ± 0.02	0.81 ± 0.02	0.87 ± 0.02

1257

1258

The results in Table 12 show that CBFlowNet marginally outperforms GFlowNet in test accuracy across all training sample sizes. However, this task highlights a limitation of CBFlowNet. The reward of a terminal state Z , defined as $p_{LM}(Z, Y | X)$, depends on both the label Y and input X . For instance, the word *factual* may yield a high reward when the label is “objective” but a low reward when the label is “subjective.” Thus, the high-reward state space shifts during training, which differs fundamentally from our original setting.

1259

1260

We categorize base arms into four groups: A) high-scoring under “objective” and low-scoring under “subjective”; B) high-scoring under “subjective” and low-scoring under “objective”; C) consistently high-scoring; D) consistently low-scoring.

1261

1262

Our framework is primarily designed to identify and filter arms of type D while retaining type C. In this dynamic setting, where types A and B fluctuate, we increased the base-arm set size K to ensure sufficient coverage of relevant arms (types A, B, and D).

1263

1264

O ALGORITHM OF THE PROPOSED METHOD

1265

1266

Algorithm 1 presents the proposed Combinatorial Upper Confidence Bound (CUCB) framework augmented with a flow network. The algorithm alternates between an initialization phase, where all base arms are explored, and a main learning phase, where super arms are adaptively selected based on UCB values.

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296
 1297
 1298
 1299
 1300
 1301
 1302
 1303
 1304
 1305
 1306
 1307
 1308
 1309
 1310
 1311
 1312

Algorithm 1 Combinatorial Upper Confidence Bound (CUCB) with Flow Network

1313
Maintain for each arm i : $\bullet T_i$: Number of times arm i has been selected
 1314 $\bullet \hat{\mu}_i$: Empirical mean reward of arm i
 1315
Input parameters: $\bullet m$: Total number of base arms
 1316 $\bullet K = |\mathbb{S}|$: Size of super arm
 1317
 1: // Initialization Phase:
 2: **while** $\exists i \in \mathbb{S}$ with $T_i = 0$ **do**
 3: GFLOWNET.TRAIN(*ALL*)
 4: Receive feedback from GFLOWNET.GEN(*ALL*)
 5: Update T_i and $\hat{\mu}_i$ for all $i \in \mathbb{S}$
 6: $m \leftarrow m + 1$
 7: **end while**
 8: // Main Learning Phase:
 9: **for** $t = m$ to T **do**
 10: Compute UCB for each arm:
 11: $\bar{\mu}_i \leftarrow \hat{\mu}_i + \sqrt{\frac{3 \ln t}{2T_i}}$
 12: Select super arm $\mathbb{S} = \text{topK}(\bar{\mu}_1, \dots, \bar{\mu}_m)$
 13: GFLOWNET.TRAIN(\mathbb{S})
 14: Receive feedback from GFLOWNET.GEN(*ALL*)
 15: Update T_i and $\hat{\mu}_i$ for all $i \in \mathbb{S}$
 16: **end for**

1334
 1335
 1336
 1337
 1338
 1339
 1340
 1341
 1342
 1343
 1344
 1345
 1346
 1347
 1348
 1349