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ABSTRACT

Recent studies on end-to-end (E2E) speech generation with large language
models (LLMs) have attracted significant community attention, with multiple
works extending text-based LLMs to generate discrete speech tokens. Existing
E2E approaches primarily fall into two categories: (1) Methods that generate
discrete speech tokens independently without incorporating them into the LLM’s
autoregressive process, resulting in text generation being unaware of concurrent
speech synthesis. (2) Models that generate interleaved or parallel speech-
text tokens through joint autoregressive modeling, enabling mutual modality
awareness during generation. This paper presents DrVoice, a parallel speech-
text voice conversation model based on joint autoregressive modeling, featuring
dual-resolution speech representations. Notably, while current methods
utilize mainly 12.5Hz input audio representation, our proposed dual-resolution
mechanism reduces the input frequency for the LLM to 5Hz, significantly reducing
computational cost and alleviating the frequency discrepancy between speech
and text tokens and in turn better exploiting LLMs’ capabilities. Experimental
results demonstrate that DRVOICE-7B establishes new state-of-the-art (SOTA) on
OpenAudioBench and Big Bench Audio benchmarks, while achieving performance
comparable to the SOTA on VoiceBench and UltraEval-Audio benchmarks, making
it a leading open-source speech foundation model in ∼7B models.

1 INTRODUCTION

Developments in spoken dialogue systems are critical to human-computer interaction, as natural
human communication inherently relies on verbal exchanges. Recently, Large Language Model
(LLM) based spoken dialogue systems, exemplified by systems like GPT-4o (OpenAI, 2024b),
demonstrate great potential for seamless and natural interactions with users. LLM-based spoken
dialogue systems can be generally categorized into cascaded systems and end-to-end (E2E)
systems, with the distinction lying in whether the backbone LLM can directly comprehend speech
representations and generate speech outputs. Early cascaded systems integrate separately trained
Automatic Speech Recognition (ASR), LLM, and Text-to-Speech (TTS) modules. Such systems
inherently suffer from error accumulation, loss of acoustic details (e.g., emotion), and significant
latency. Alternatively, the ASR module could be eliminated by introducing audio understanding
foundation models (Chu et al., 2023; 2024). E2E systems have emerged to further eliminate ASR and
TTS modules, and establish direct connections between speech representations and LLMs. However,
training LLMs to generate highly intelligent speech outputs remains challenging. E2E systems
struggle with the quality of speech token generation, primarily due to inefficient utilization of textual
information during speech token generation.

Recent works on E2E models to address these challenges have focused on two primary direc-
tions (Chen et al., 2024a): Text-Driven Speech Models (Yao et al., 2024; Li et al., 2025) and Joint
Speech-Text Models. Text-Driven Speech Models refer to systems in which LLMs process speech
representations as input, produce textual responses, and utilize the LLM’s representations as input to
a speech decoder for speech generation. In contrast, Joint Speech-Text Models involve LLMs taking
speech representations as input and generating both text tokens and speech tokens simultaneously.
The key distinction lies in whether speech token generation can influence the subsequent generation
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of text tokens within the LLM: this feedback loop of speech tokens to LLM is present in Joint
models but absent in Text-Driven models. Joint Speech-Text Models can be further categorized into
interleaved speech-text modeling (Zeng et al., 2025; Zhang et al., 2024a) and parallel speech-text
modeling (Défossez et al., 2024; Chen et al., 2024a; KimiTeam et al., 2025). Interleaved speech-text
modeling alternates speech and text representations as inputs to the LLM, while parallel speech-text
modeling fuses speech and text representations before feeding them into the LLM.

While both Text-Driven Speech Models and Joint Speech-Text Models explicitly incorporate textual
guidance into speech token generation to leverage the LLM’s capabilities, they have distinct
limitations. The architecture of Text-Driven Speech Models creates a unidirectional information flow
where text generation is completed before speech synthesis begins. This prevents the LLM from
conditioning its textual output on the generated speech tokens, thus limiting its ability to explore
fine-grained paralinguistic attributes like emotion and prosody. On the other hand, Joint Speech-Text
Models degrade the original text generation capabilities due to speech token interference, making the
preservation of text capabilities a critical challenge. Nevertheless, Joint Speech-Text Models enforce
multimodal interaction and generation and empower greater potentials (Chen et al., 2024a); hence,
in this work, we focus on enhancing joint speech-text modeling. Recently, Kimi-Audio (KimiTeam
et al., 2025) sets a new state-of-the-art (SOTA) in joint speech-text modeling. However, this approach
still suffers from notable limitations. It not only requires extensive training data but also incurs
significant computational costs due to its 12.5Hz audio representation. Furthermore, the high token
rate creates a frequency mismatch with the much lower rate of text tokens (∼3Hz) (Chen et al.,
2024a), which can dilute semantic information and consequently hinder the full utilization of the
LLM’s core capabilities.

In this work, we propose DRVOICE, a novel parallel speech-text voice conversation model with
Dual-Resolution Speech Representations (DRSR). For speech comprehension, we introduce a
grouping mechanism that maps 25Hz discrete audio tokens to 5Hz speech representations, effectively
alleviating the temporal resolution discrepancy between speech and text tokens. During generation,
combined speech-text embeddings form the assistant’s autoregressive input. The hidden states
captured from shared LLM layer are then passed in parallel to a Text Head for text token prediction
and a Speech Refined Head (SRH) to generate the corresponding ungrouped speech tokens.

To further enhance the model’s reasoning and coherence of its output, we incorporate a Chain-of-
Modality (CoM) (Zhang et al., 2023a) strategy. CoM prompts the model to first generate a complete
response in text, allowing it to structure its thoughts before engaging in parallel speech-text generation.
This intermediate reasoning step improves modality alignment and reduces errors. We design system
prompts to control the output modes, enabling text-only output, direct parallel speech-text output, or
the CoM-enhanced parallel output. We also develop a Core-Cocktail training strategy to refine model
optimization and LLM knowledge retention1.

Our contributions are three-fold: 1) We propose DRVOICE, a novel parallel speech-text conversation
model featuring Dual-Resolution Speech Representations (DRSR). This core architectural
innovation effectively alleviates the temporal resolution mismatch between speech and text tokens,
reducing computational costs and better preserving the LLM’s semantic processing capabilities. 2)
We introduce two new training strategy, including a CoM-Mixing training strategy acting as a
curriculum, using the structured CoM reasoning to scaffold speech generation, and a Core-Cocktail
training strategy for retaining the knowledge of LLMs. 3) Our comprehensive experimental
results reveal that DRVOICE-7B achieves new SOTA performance on prominent benchmarks
like OpenAudioBench (audio understanding) and Big Bench Audio (reasoning and understanding
capabilities of audio-processing models), alongside performance on par with the SOTA on other
benchmarks such as VoiceBench (benchmarking LLM-based voice assistants) and UltraEval-Audio
(both speech understanding and generation), solidifying its position as a premier open-source speech
foundation model among ∼7B models.

2 RELATED WORK

Speech Tokenization. Two primary directions exist for converting continuous speech signal into
processable sequences: continuous representations, e.g., Whisper (Radford et al., 2022), and discrete

1For reproducibility, we will release all source code and model checkpoints.
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representations. Since LLMs generate discrete tokens, continuous representations face challenges
in direct integration with LLMs for speech generation. In contrast, discrete tokens enable LLMs to
handle speech similar to text tokens, and are typically categorized into two categories: 1) acoustic
tokens optimized for reconstructing high-quality audio through neural audio codecs (Défossez et al.,
2023), and 2) semantic tokens typically derived from self-supervised pre-trained models with masked
language modeling as training objective (Hassid et al., 2023) or supervised learning as S3Tokenizer
using in CosyVoice (Du et al., 2024a;b; 2025), and prioritized for linguistic content (Hsu et al.,
2021). While acoustic tokens achieve superior acoustic fidelity in sound reconstruction, semantic
tokens demonstrate stronger alignment with semantic representations (Zhang et al., 2023b), thereby
facilitating more effective extension of MLLMs’ capabilities in both speech comprehension and
generation (Zeng et al., 2025; Zhang et al., 2024b; 2023a; Borsos et al., 2023). In this work, we use
S3Tokenizer as the speech tokenizer due to its solid semantic capabilities and compatibility with
the strong Speech Detokenizer from CosyVoice for synthesis. S3Tokenizer is a supervised semantic
speech tokenizer based on the pre-trained SenseVoice-Large model (An et al., 2024) that enhances
the semantic relationship of extracted tokens. S3Tokenizer is robust to data noise, and reduces the
reliance on clean data.

E2E Speech Foundation Models. Text-Driven Speech Models (Fang et al., 2024; Wang et al., 2024;
Fu et al., 2025; Yao et al., 2024; Huang et al., 2025; Chen et al., 2025) integrate speech encoder,
adapter, LLM, and a streaming speech decoder, and can simultaneously generate text and speech.
Qwen2.5-Omni (Xu et al., 2025) employs the Thinker-Talker architecture, with Thinker handling
multimodal understanding and text generation and Talker handling speech token production. Since
Thinker cannot receive speech tokens during generation, the framework inherently limits awareness
of speech token generation states, constraining applications such as full-duplex voice conversation.

Joint Speech-Text Models explore two different architectures, Interleaved and Parallel. Interleaved
models (Zhang et al., 2024a; Zeng et al., 2025; Li et al., 2025; Long et al., 2025; Wu et al., 2025)
adopt interleaved decoding to support simultaneous generation of speech and text tokens, while
parallel models (Défossez et al., 2024; Xie & Wu, 2024a;b; Chen et al., 2024a; KimiTeam et al., 2025)
conduct parallel decoding. The parallel model Moshi (Défossez et al., 2024) employs a compact Deep
Transformer to predict k tokens while relying solely on current-step representations. To mitigate
limitations of discrete tokens in audio understanding, Kimi-Audio (KimiTeam et al., 2025) introduces
dual-tokenizer combining discrete semantic tokens with continuous Whisper (Radford et al., 2023)
features, preserving both semantic and acoustic information. In order to further enhance the efficiency
of both training and inference and alleviate the issue of granularity misalignment between the text
and speech modalities, our approach leverages DRSR to reduce the LLM input frame rate to 5Hz,
without sacrificing performance.

3 METHODOLOGY

Figure 1 illustrates the architecture of DRVOICE. The system consists of three main components:
(1) Speech Encoder and Speech Tokenizer process the speech wave into hidden representations for
the user end and the assistant end respectively, (2) a Multimodal Large Language Model (MLLM)
consists of shared LLM layer, a Text Head, and a Speech Refined Head (SRH) for token generation,
and (3) Speech Detokenizer to generate wave from speech tokens. The system operates through
multimodal input encoding and coordinated speech-text output generation. During inference, user
inputs (text or speech) are first mapped to a unified semantic space, processed by MLLM to produce
parallel speech-text responses through SRH and text head. To effectively train this system, we
introduce the CoM-Mixing Training and Core-Cocktail Training strategies.

3.1 SPEECH TOKENIZATION AND DETOKENIZATION

Aiming for enhanced audio understanding, we utilize Whisper-Large-v3 Speech Encoder to extract
continuous audio representations at the user end. Subsequently, an Adapter is introduced to
downsample the temporal resolution of these representations and align their hidden dimension
with that of the LLM. Semantic tokens have been widely used for speech tokenization (Zhang et al.,
2023a; Borsos et al., 2023), due to their strong alignment with text (Zhang et al., 2023b); therefore, we
employ S3Tokenizer (Du et al., 2024a;b; 2025) as the Speech Tokenizer to convert speech waveform
to semantic speech token sequence S = [s0, s1, · · · , sT−1] at the assistant end, where T is the speech
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Shared LLM Layer
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Mixed Hidden
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Speech Detokenizer
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One-Time Forward
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B2_S
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Grouping Speech HiddenText prompt

Assistant Text Token

Figure 1: Overview of DRVOICE. User speech inputs are tokenized, grouped, and encoded by the
MLLM for autoregressive text and speech token prediction. The MLLM consists of Shared LLM
Layer, a Text Head, and a Speech Refined Head (SRH) for token generation. The generated speech
tokens are then converted to speech waveform by the speech detokenizer. Note that SRH generates k
speech tokens through k autoregressive forward passes, where k is the grouping factor.

token sequence length. For speech detokenization, conditioned on speaker embeddings capturing
acoustic details such as timbre, the Flow Matching model (Lipman et al., 2023) converts speech
tokens S into the Mel spectrum for a given speaker. Finally, a pre-trained vocoder HiFi-GAN (Kong
et al., 2020) transforms the Mel spectrum back into audio signal.

3.2 MULTIMODAL LARGE LANGUAGE MODEL (MLLM)

Built upon text-LLMs, the MLLM learns joint speech-text modeling to process speech or text inputs
while producing parallel speech and text outputs.

Parallel Joint Speech-Text Model. Inspired by Moshi (Défossez et al., 2024), explicit text streaming
is incorporated to aid speech generation as a common semantic scaffold. We focus on performing
modality alignment exclusively at the assistant end. This design adheres to the asymmetric nature
of human-machine interactions: while user inputs are typically unimodal (either text or speech), the
assistant’s responses can be a coordinated multimodal output.

Leveraging the autoregressive generation capability of LLMs, both generated speech tokens st and
text tokens tt are iteratively fed back into the shared LLM layer at each timestep. Their embeddings
are added as model input, forming a parallel speech-text architecture. Formally, the combined input
embedding ct at timestep t is computed as:

ct = Espeech(st) + Etext(tt) (1)

where Espeech and Etext denote the embeddings of speech and text tokens, respectively. Since the
lengths of speech tokens and text tokens are typically mismatched, the shorter sequence is padded
with a special token <|SIL|>to align them for each utterance. The autoregressive generation process is
as follows:

P (yt|y<t, x) =

t∏
i=1

P (yi|y<i, x) (2)

where x is the input sequence and yt = (st, tt) denotes the joint speech-text output at timestep
t. This unified formulation enables seamless integration of speech and text generation within
a single autoregressive framework. To preserve the intrinsic linguistic understanding and
generation capabilities of pretrained text-LLMs while enabling cross-modal interactions, three

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

key methodological designs are introduced for intermodal coordination, including Speech Token
Grouping and Ungrouping, and Speech Refined Head.

Speech Token Grouping. A crucial parameter for discrete tokens is the sampling rate, which
determines the input/output sequence length. GLM-4-Voice (Zeng et al., 2025) investigates sampling
rates from 6.25Hz to 50Hz on LibriSpeech, revealing minimal differences in Word Error Rate (WER)
between 50Hz and 25Hz but significant degradation at 12.5Hz and 6.25Hz. Hence, our work adopts
25Hz sampling rate. To resolve the temporal resolution mismatch between speech signals (25Hz) and
text tokenization (∼3Hz) (Chen et al., 2024a), a grouping mechanism is designed:

gi = Linear

(
(i+1)k−1

∥
j=ik

sj

)
∈ Rdtext (3)

where sj denotes speech tokens, ∥ represents feature concatenation, and k is the grouping factor
determined by the ratio between speech token rates and text token rates. This design compresses the
speech token length from T to T/k and the resulting grouped speech representations align better
with text. Notably, different from Chen et al. (2024a) that employs linear projection of audio logits
into group-sized representations for parallel multi-token prediction, DRVOICE strategically designs
an ungrouping mechanism and incorporates a dedicated Speech Refined Head (SRH) to enable
autoregressive generation of individual speech tokens.

Speech Refined Head (SRH). SRH is proposed to enhance speech generation capabilities. It utilizes
the last hidden state of the shared LLM layer (SLLM) as conditional input and incorporates contextual
speech information to autoregressively generate speech tokens. While conventional speech grouping
strategies–which cluster speech tokens into semantically meaningful units–have proven effective for
speech recognition and understanding tasks (Chen et al., 2024a; Zhang et al., 2024b), our experiments
reveal their inherent limitations in generative scenarios, since speech token grouping inevitably loses
some fine-grained acoustic details. To address this limitation, DRVOICE performs an ungrouping
process as follows: the SLLM’s final hidden state is mapped to group-sized embeddings via linear
projection

hug = Wph
[SLLM]
L where Wp ∈ Rdg×dh , (4)

and time splitting
H = Splitk(hug) = [h(1)

ug ,h
(2)
ug , . . . ,h

(k)
ug ], (5)

where h
(i)
ug ∈ Rdug/k. The resulting H serves as the conditional input for SRH that autoregressively

generates speech tokens. Following our practice on SLLM, representations of preceding speech tokens
and H are aggregated. Speech token prediction is trained to maximize the conditional probability:

LSRH = −
T∑

i=1

logP (si|s<i,H<i), (6)

where si represents the i-th speech token. By optimizing this objective, SRH learns to predict
subsequent speech tokens conditioned on both preceding speech tokens and the rich contextual
embeddings H derived from SLLM. This design enables SRH to effectively leverage the semantic
and acoustic information encoded in the hidden representations of SLLM, thereby producing more
natural and coherent speech outputs compared to conventional grouping-based approaches.

The E2E training objective LMLLM integrates the two losses through multi-task learning:

LMLLM = λLTH + µLSRH, (7)

LTH = −
T∑

i=1

logP (ti|c<i,g), (8)

where LTH is the autoregressive loss over the text head, λ and µ are hyperparameters.

3.3 TRAINING STRATEGY

Initialization. The Speech Encoder is initialized with the weights of Whisper-Large-v3, while the
Shared LLM Layer is initialized using Qwen2.5. Additionally, the pre-trained Speech Tokenizer and
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Table 1: Multimodal Interaction Patterns.
Pattern Name Abbr. Modality Flow
Speech-to-Multimodal S2M Speech→ Joint speech-text response
Speech-to-Text S2T Speech→ Text-only response
Text-to-Multimodal T2M Text→ Joint speech-text response
Text-to-Text T2T Text→ Text-only response
Speech-Text Chain STC Speech→ Text transcription→ Text response→Multimodal response
Speech-Assisted Chain SAC Speech→ Text response (agent perspective)→Multimodal response
Speech-User Chain SUC Speech→ Text transcription (user perspective)→Multimodal response

Detokenizer from CosyVoice are employed and kept frozen throughout the entire training process.
We initialize SRH with a pre-trained TTS model.

CoM-Mixing Training. The chain-of-modality (CoM) methodology (Zhang et al., 2023a) can
enhance performance by leveraging intermediate textual transcriptions, which is particularly suitable
for scenarios where real-time processing is not critical. Furthermore, practical applications
involve scenarios where both speech and text output or text-only output are required, necessi-
tating the system to dynamically generate different modalities based on specific needs. Seven
interaction patterns for diverse input-output requirements are summarized in Table 1. System
prompts are employed to regulate the model’s output behavior. For example, prompts such
as “[System] You are a helpful assistant and asked to generate both
text and speech tokens at the same time.” explicitly guide the model to produce
multimodal outputs. Detailed prompts are shown in Appendix B. During inference, specifying these
system prompts enables the generation of desired output results. For CoM-Mixing training, we
construct data variants following the seven interaction patterns and obtain a mixture of data for
training the model. During inference, user can manually prepend the appropriate system prompt to
the input sequence to meet the output requirement. This flexibility ensures adaptability to varying
modality generation demands.

Core-Cocktail Training. We identify a learning rate dilemma: employing a high learning rate
significantly compromises the performance of the MLLM, whereas using a low learning rate leads to
training stagnation, with the loss decreasing quite slowly. To overcome this optimization challenge,
we develop a specialized two-stage training strategy, termed “Core-Cocktail”. The first stage involves
full fine-tuning the entire MLLM with a relatively high learning rate. The goal of this phase is to
rapidly move the model’s parameters into a more favorable region of the loss landscape. However,
to counteract the potential performance degradation of the MLLM caused by this aggressive initial
training, an intermediate merging step is introduced. Drawing inspiration from Xiao et al. (2024),
the parameters of the MLLM trained in the first stage (M1) are merged with the parameters of the
base, pre-trained LLM (M0). This merging creates a new, interpolated model, Mr, as defined by the
following equation:

Mr ← αM1 + (1− α)M0

where Mr denotes the merged model and α is the interpolation weight. The merging step effectively
re-integrates the robust knowledge of the base LLM. A smaller α corresponds to a greater preservation
of the base LLM’s capabilities. The second stage conducts full fine-tuning on the merged model
Mr using a small learning rate. The core-cocktail training approach allows for careful and precise
optimization, refining the model’s performance without instability from a high learning rate.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets. Approximately 100K hours of audio-text paired data for speech-text modality alignment is
adopted for pre-training Speech Refined Head. For DRVOICE post-training, we first synthesize speech
for about 3B text tokens using CosyVoice (Du et al., 2024a;b; 2025), then select about 26K hours for
speech-to-speech conversation and about 20K hours user speech plus 1.3B assistant tokens for speech-
to-text conversation, based on Word Error Rate (WER) of the synthesized speech. Furthermore, to
enhance the model’s comprehension of real-world speech, the training data was augmented with
about 10K hours of English Automatic Speech Recognition (ASR) data, comprising several corpora,
including Common Voice (Ardila et al., 2020), MELD (Poria et al., 2019), LibriSpeech (Panayotov
et al., 2015), SPGISpeech (O’Neill et al., 2021), and Voxpopuli (Wang et al., 2021). Following prior
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Table 2: Performance Comparison on various benchmarks in terms of benchmark-specific metrics
(the best result in each row is in bold). With the exception of GLM4-Voice, whose results are cited
from Xu et al. (2025) and Chen et al. (2024b), all other results were generated by running inference on
the released checkpoints. FR(In/Out) denotes the input speech frame rate and the output speech plus
text frame rate for the LLM backbone. τ denotes the average number of text tokens corresponding to
one second of speech.

GLM4-Voice MiniCPM
-o 2.6

Baichuan
-Omni-1.5

Qwen2.5
-Omni

Kimi
-Audio

Step-Audio2
-Mini DRVOICE

FR (In/Out) 12.5/12.5+τ 25/τ 12.5/12.5+τ 25/τ 12.5/12.5 12.5/25+τ 5/5
OpenAudioBench (S2T)

AlpacaEval 57.89 64.10 77.90 72.76 75.73 59.60 78.34
Llama Q. 76.00 78.00 78.50 75.33 79.33 75.00 80.33
Reasoning QA 47.43 38.60 50.00 63.76 58.02 46.04 57.92
TriviaQA 51.80 63.00 57.20 57.06 62.10 57.70 61.50
Web Q. 55.40 69.20 59.10 62.80 70.20 65.10 68.10
Overall 57.70 62.58 64.54 66.34 69.08 60.69 69.24

VoiceBench (S2T)

AlpacaEval 3.97 4.42 4.50 4.33 4.46 4.17 4.52
CommonEval 3.42 4.15 4.05 3.84 3.97 3.00 3.77
SD-QA 36.98 50.72 43.40 57.41 63.12 56.06 68.54
MMSU 39.75 54.78 57.25 56.38 62.17 52.18 60.31
OpenBookQA 53.41 78.02 74.51 79.12 83.52 64.18 79.56
IFEval 52.80 49.25 54.54 53.88 61.10 38.01 59.30
AdvBench 88.08 97.69 97.31 99.62 100.00 93.08 98.65
Overall 59.83 71.69 71.14 72.83 76.93 63.84 76.02

UltraEval-Audio (S2S)

AlpacaEval 51.00 51.00 58.69 56.10 44.20 51.72 49.65
Llama Q. 50.00 61.00 67.33 66.30 57.33 67.67 68.00
TriviaQA 36.40 40.20 30.57 40.52 35.71 33.50 35.35
Web Q. 32.00 40.00 38.09 38.93 33.90 34.65 37.65
Overall 42.35 48.05 48.67 50.46 42.79 46.89 47.66

Big Bench Audio (S2T & S2S)

S2T 44.8 56.2 47.1 54.2 59.4 50.9 71.6
S2S 42.7 55.4 44.6 53.6 51.0 47.5 60.9
Overall 43.8 55.8 45.8 53.9 55.2 49.2 66.3

Table 3: Speech quality performance on the collections of UltraEval-Audio, in terms of UTMOS for
assessing overall speech quality and ASR-WER for assessing alignment between generated speech
and text. FR(In/Out) indicates the input speech frame rate and the output (speech + text) frame rate
for the LLM backbone, while τ represents the average text tokens per second of speech.

Model FR(In/Out)↓ UTMOS↑ ASR-WER↓
MiniCPM-o 2.6 (2025) 25/τ 4.18 13.17
Baichuan-Omni-1.5 (2025) 12.5/12.5+τ 4.27 23.38
Qwen2.5-Omni (2025) 25/τ 4.28 3.48
Kimi-Audio (2025) 12.5/12.5 3.06 21.06
Step-Audio2-mini (2025) 12.5/25+τ 4.53 9.5

DRVOICE 5/5 4.29 11.2

works (Yao et al., 2024; KimiTeam et al., 2025; OpenAI, 2024b), we evaluate the performance on the
widely used benchmarks, VoiceBench (Chen et al., 2024b) and OpenAudioBench 2 for Speech-To-
Text (S → T ) evaluation, UltraEval-Audio 3 for Speech-to-Speech (S → S) evaluation, and Big
Bench Audio 4 for both evaluations.

2https://huggingface.co/datasets/baichuan-inc/OpenAudioBench
3https://github.com/OpenBMB/UltraEval-Audio
4https://huggingface.co/datasets/ArtificialAnalysis/big_bench_audio
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Table 4: Ablation study of Continuous Speech Encoder (CSE), Speech Refined Head (SRH), SRH-
Pretraining and CoM-Mixing Training on the Llama Questions dataset. S2M, S2T, etc are defined in
Table 1.

Model S2M (T/S) S2T T2M (T/S) T2T STC (T/S) SAC (T/S) SUC (T/S)
DRVOICE-Small 68.67 / 56.00 72.33 72.33 / 56.00 75.33 75.67 / 68.33 71.67 / 62.67 73.33 / 62.00

w/o. CSE 61.67 / 53.00 62.33 70.00 / 60.00 74.00 69.33 / 61.00 63.00 / 55.00 66.33 / 58.67
w/o. SRH-Pretraining 38.33 / 30.33 56.00 59.33 / 46.33 73.33 67.33 / 57.67 54.00 / 42.33 54.33 / 42.67

w/o. SRH 21.67 / 15.33 56.00 45.22 / 35.00 73.00 64.33 / 50.67 55.67 / 42.33 40.33 / 27.67
w/o. CoM-Mixing 58.00 / 49.00 58.00 69.33 / 55.00 68.33 –/– –/– –/–

Evaluation Metrics. Evaluations adhere to the established protocols for each respective benchmark.
Specifically, for the open-ended QA tasks on AlpacaEval and CommonEval, G-Eval (Liu et al., 2023)
is used for scoring. For AdvBench, the Refusal Rate is reported, while performance on all other
benchmarks is assessed with Accuracy. The generated speech is transcribed using Whisper-v3-large
model (Radford et al., 2022), then WER (denoted by ASR-WER) of transcripts is computed against
the generated text to assess the alignment between generated speech and text. UTMOS (Saeki et al.,
2022) is used to evaluate the overall speech quality, following Zeng et al. (2025).

Baselines. Representive and competitive open-source audio language models are selected as
baselines to cover diverse modeling paradigms: Text-Driven models including MiniCPM-o 2.6
(8B) (Yao et al., 2024) and Qwen2.5-Omni (7B) (Xu et al., 2025). Among Joint Speech-Text models,
interleaved models including GLM-4-Voice (9B) (Zeng et al., 2025), Baichuan-Omni-1.5 (7B) (Li
et al., 2025), and Step-Audio2-Mini (8B) (Wu et al., 2025), alongside the parallel model Kimi-
Audio (7B) (KimiTeam et al., 2025). This suite enables systematic comparisons across mainstream
speech-text modeling strategies.

Implementation Details can be found in Appendix A.

4.2 MAIN RESULTS

Overall Performance. Table 2 compares DRVOICE (7B) with representative and competitive
baselines on speech-to-text (S→T) and speech-to-speech (S→S) generation performance. As shown
in the table, DRVOICE demonstrates exceptional capabilities across a wide range of tasks, achieving
new SOTA on OpenAudioBench (audio understanding) with an overall score of 69.24 and on Big
Bench Audio (reasoning and understanding) with a score of 66.3, significantly outperforming the
second best model by over 10 points. DRVOICE also achieves performance comparable to the
SOTA on VoiceBench (benchmarking LLM-based voice assistants) with a score of 76.02, narrowly
behind the leader’s 76.93, and remains highly competitive on UltraEval-Audio (both speech
understanding and generation). The strong and balanced performance across diverse benchmarks
establishes DRVOICE as a leading open-source speech foundation model in the ∼7B parameter class.

Computational Efficiency and Speech Quality. A key innovation of DRVOICE is its remarkable
computational efficiency, highlighted in Table 2 and Table 3. As shown in the FR (In/Out) rows,
DRVOICE operates at a frame rate of 5/5, indicating that the LLM backbone processes only 5 audio
tokens per second for both input and output. This is a substantial reduction compared to other models,
which operate at frame rates of 12.5 or 25, thereby significantly lowering computational requirements
and potential latency. Crucially, this efficiency does not come at the cost of speech quality. Table 3
shows that despite its low frame rate, DRVOICE produces high-quality and well-aligned speech. It
achieves UTMOS score of 4.29 for overall speech quality, which is competitive with top-performing
models like Qwen2.5-Omni (4.28) and superior to others like Kimi-Audio (3.06). With an ASR-WER
of 11.2, the model shows robust speech-text alignment and surpasses several baselines. Still, it
underperforms compared to Qwen2.5-Omni. A potential explanation lies in the architectural design:
Qwen2.5-Omni’s feeding text directly to its “Talker” module, whereas the proposed model only sends
hidden states to SRH. Therefore, introducing text to the speech refined head is a logical next step
for improving textual control and lowering the ASR-WER. This unique combination of SOTA
performance, high-quality speech generation, and unparalleled efficiency makes DRVOICE a
highly powerful and practical model for real-world applications.
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4.3 ABLATION AND ANALYSES

We conduct extensive ablation study and analyses. For computational efficiency, some experiments
are performed on DRVOICE-Small (1.5B). More analyses about the data quality and data scaling can
be found in Appendix C.

Core-Cocktail Training Strategy. While Stage 1 training causes a performance drop from text
baseline of 81.77 to 70.19, Stage 2 reverses this trend, recovering the performance to 74.73. This result
confirms that the strategy effectively counteracts the initial degradation and leads to an optimized
model. Further details are available in Appendix C.

Continuous Speech Encoder. As shown in Table 4, the Continuous Speech Encoder (CSE) is vital for
tasks involving speech inputs. Removing it from DRVOICE-Small leads to a significant performance
drop in speech understanding and speech generation. Specifically, the S2T score decreases from
72.33 to 62.33 (13.8% relatively), and the S2M (T) score falls from 68.67 to 61.67 (10.2% relatively).
In contrast, the impact on text-only tasks is minimal, with the T2T score only slightly decreasing
from 75.33 to 74.00. This confirms the CSE’s effectiveness in representing speech.

Dual-Resolution Speech Representations (DRSR). Our dual-resolution approach combines input
grouping for efficiency and comprehension with a refinement head for high-quality generation. 1)
Grouping Factor. Contrary to degrading generation, grouping substantially improves both speech
understanding (S2T) and speech-to-speech generation (S2M). For instance, increasing the grouping
factor from 1 to 5 raises the S2T score from 55.67 to 63.33 (a 13.7% relative gain). The S2M
(T/S) score sees a significant improvement, peaking at 37.67 / 28.00 with a grouping factor of 5.
Furthermore, using a grouping factor of 5 instead of 1 reduces nearly 50% GPU hours in each setting,
proving the efficiency of grouping machinism. Detail results can be found in Appendix C. 2) Speech
Refinement Head. As shown in Table 4, the Speech Refinement Head (SRH) is remarkably effective
for speech token generation tasks. By comparing the model with SRH (w/o. SRH-Pretraining) to one
without (w/o. SRH), we observe that adding SRH achieves a 76.9% relative improvement in S2M (T)
(from 21.67 to 38.33) and a 31.2% relative improvement in T2M (T) (from 45.22 to 59.33). The text-
only performance (T2T) remains stable, confirming that SRH enhances speech generation without
interfering with text processing pathways. Our dual-resolution architecture effectively combines
these components, using grouping for efficient comprehension and SRH at the raw frame resolution
for speech generation.

SRH-Pretraining. To examine the impact of pretraining, we remove the SRH pretraining step and
retrain the model. As shown in Table 4, removing pretraining (comparing w/o. CSE with w/o. SRH-
Pretraining) has the most significant impact on speech generation, causing S2M (T) performance to
drop by 37.8% and T2M (T) by 15.2%. The effect on S2T is smaller (10.2% drop), and negligible for
T2T. This underscores the critical importance of SRH pretraining for refining speech token generation.

CoM-Mixing Training Strategy. As shown in Table 4, where tasks guided by contextual system
prompts (STC/SAC/SUC) demonstrate substantial improvements over direct S2M generation. For
example, STC (T) achieves a score of 75.67, significantly surpassing the S2M (T) baseline of 68.67.
This shows the model successfully learns to adopt the generation paradigm guided by system prompts.
The data augmentation effect is confirmed by ablating the CoM-Mixing strategy entirely. Training
without it (w/o. CoM-Mixing Training) results in a 15.5% relative performance degradation in S2M
(T) (from 68.67 to 58.00), confirming the value of our mixed-modality training approach.

5 CONCLUSIONS

We introduce DRVOICE, a novel parallel speech-text voice conversation model that leverages joint
autoregressive modeling with dual-resolution speech representations. Our experimental results
demonstrated that DRVOICE establishes a new state-of-the-art (SOTA) on OpenAudioBench for
audio understanding and on Big Bench Audio for reasoning capabilities. Furthermore, it achieved
performance comparable to the SOTA on VoiceBench for voice assistant tasks and on UltraEval-
Audio for both speech understanding and generation, confirming its strong and versatile capabilities.
Notably, its dual-resolution mechanism significantly improves inference speed and computational
efficiency without sacrificing performance. We discuss limitations and future work in Appendix D.
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REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our results, we will make our resources publicly available.
The complete source code for our model, training and evaluation scripts, and all pre-trained
model checkpoints will be released upon publication. The speech data used in our experiments
were synthesized using the publicly available CosyVoice model; we will provide the necessary
scripts and instructions to replicate the dataset. Furthermore, a comprehensive description of the
implementation details, including architectural choices, hyperparameters, and training setup, is
provided in Appendix A. We believe these resources are sufficient for the community to reproduce
our findings and build upon our work.
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Appendices
A IMPLEMENTATION DETAILS

Qwen2.5-0.5B is trained following T2M paradigm with Speech-text Alignment data to initialize
SRH (SRH-PT). The maximum sequence length is set to 2K tokens, which corresponds to an audio
duration of approximately 6.8 minutes. DRVOICE uses Qwen2.5-7B-Instruct as its base LLM, while
DRVOICE-Small utilizes Qwen2.5-1.5B-Instruct as the base LLM. Grouping factor is set to k = 5.
Core-cocktail interpolated factor is set to α = 0 for extremely maintaining the base LLM capability.
Multiple loss hyperparameters are set to λ = 1 and µ = 1. The warmup rate is set to 2% of the total
training steps. For the two-stage training of DRVOICE, the learning rate is decayed from 1× 10−4

to 1 × 10−5 in stage one, and subsequently from 2 × 10−5 to 2 × 10−6 in stage two, with both
stages utilizing a cosine annealing schedule. In contrast, DRVOICE-Small and SRH-PT are trained
in a single stage, which adopts the same learning rate schedule as the first stage of DRVOICE. The
AdamW method (Loshchilov & Hutter, 2019) is used for optimization. Experiments are run on 64x
NVIDIA Tesla A800 80G GPUs with Brain floating-point format (BF16) (Kalamkar et al., 2019)
to accelerate training and decoding. For DRVOICE, DeepSpeed ZeRO-2 (Rajbhandari et al., 2020)
is implemented to prevent GPU out-of-memory. It takes about 20 hours on SRH-PT, and about 45
hours on DRVOICE post-training.

B PROMPT TEMPLATES

System prompts for multimodal interaction patterns. As shown in Table 5, there are five types
of system prompts categorized based on the model’s output partitioning. During inference, specifying
these system prompts enables the generation of desired output results.

Table 5: System Prompts for Multimodal Interaction.
Pattern Abbr. System Prompts
S2M & T2M You are a helpful assistant and asked to generate both text and speech tokens at the

same time.

S2T & T2T You are a helpful assistant and asked to generate text tokens.

STC You are a helpful assistant. Let’s think step by step. Convert speech to text if the
query is speech, think of an appropriate text response, and then convert the
response back to both text and speech tokens at the same time.

SAC You are a helpful assistant. Let’s think step by step. Think of an appropriate text
response, and then convert the response back to both text and speech tokens at the
same time.

SUC You are a helpful assistant. Let’s think step by step. Convert speech to text if the
query is speech, and then think of both appropriate text and speech responses at the
same time.

C MORE ABLATION AND ANALYSES

Core-Cocktail Training Strategy. Table 6 shows the precise trade-offs and benefits of our two-
stage approach. For instance, under the comprehensive Inhouse v2, MagpiePro, InfGen dataset
setting, the model’s average performance after Stage 1 drops to 70.19, a significant decline of
over 11 points compared to the text-only baseline (81.77). This observation perfectly aligns with
our initial hypothesis: the aggressive full fine-tuning with a high learning rate in Stage 1, while
intended to rapidly move parameters into a more favorable region of the loss landscape, temporarily
compromises the model’s general capabilities, as predicted. This performance degradation is precisely
the problem that the subsequent steps are designed to rectify. Following the intermediate merging
step—which “cocktails” the aggressively trained model with the base LLM to re-integrate its robust
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Table 6: Training Strategy Performance comparison on the Voicebench benchmark with different
training datasets.

Description AlpacaEval CommonEval SD-QA MMSU OpenBookQA IFEval AdvBench Avg
Qwen2.5-7B-Instruct (T2T) 4.67 4.34 76.13 69.97 82.20 65.45 99.04 81.86

Inhouse v1

OnlyText-Training (T2T) 4.15 3.57 60.15 54.50 66.50 50.22 99.40 69.31
Stage 2 (S2T) 4.08 3.54 55.88 52.80 69.45 38.48 99.23 66.89

Inhouse v2

OnlyText-Training (T2T) 4.22 3.60 68.35 58.10 68.13 65.69 99.62 73.76
Stage 2 (S2T) 4.10 3.15 64.01 58.30 79.56 55.25 98.27 71.48

Inhouse v2, MagpiePro, InfGen

OnlyText-Training (T2T) 4.64 4.26 71.79 69.97 84.40 68.84 99.42 81.77
Stage 1 (S2T) 4.25 3.09 57.32 54.29 75.82 58.07 99.04 70.19
Stage 2 (S2T) 4.54 3.35 64.56 61.61 80.44 59.83 98.85 74.73
Stage 2 w/. ASR data (S2T) 4.52 3.77 68.54 60.31 79.56 59.30 98.65 76.02
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Figure 2: Computational Resources under 17K hours training data across different Grouping Factor.

knowledge—Stage 2 proceeds with careful fine-tuning using a small learning rate. As shown in
the table, this second stage successfully recovers and refines the model, boosting the average score
significantly to 74.73. This substantial improvement from Stage 1 demonstrates that our strategy
effectively mitigates the instability caused by the initial high-learning-rate training. This two-stage
process confirms that the Core-Cocktail strategy provides a powerful solution to the learning rate
dilemma, enabling rapid adaptation without sacrificing final performance.

Data Quality. The OnlyText-Training (T2T) results in Table 6 serve as a powerful indicator of the
maximum potential embedded within the textual content of our datasets. There is a clear correlation
between data quality and the final model’s performance: as the T2T average score improves from
Inhouse v1 (69.31) to our most comprehensive dataset (81.77), the final Stage 2 (S2T) model
performance also sees a substantial lift. Notably, our final dataset mixture enables the T2T model
to reach an average score of 81.77, almost perfectly matching the text-only Qwen2.5-7B-Instruct
backbone. This confirms the exceptional quality of our instructional data and establishes a high-
performance ceiling. Our final S2T model (74.73) successfully translates a significant portion of this
potential into the multimodal domain.

Furthermore, the results underscore the critical importance of data composition for specific tasks.
The CommonEval benchmark, which evaluates models on real human speech, is a case in point. Our
standard Stage 2 (S2T) model achieves a score of 3.35 on this challenging benchmark. However,
by augmenting the training data with ASR-derived pairs (Stage 2 w/. ASR data), the CommonEval
score noticeably increases to 3.77. This gain is because ASR data exposes the model to the natural
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Figure 3: Performance Scaling of DRVOICE-Small (w/o. Continuous Speech Encoder) on LLaMA
Question Benchmark.

Table 7: Impact of the Grouping Factor on Llama Q. S2T and S2M performance, using DRVOICE-
Small (1.5B) w/o CSE and data subsets for faster experiments. The S2T model is trained exclusively
on mixed S2T and T2T data, while the S2M model is trained on mixed S2M and T2T data.

Grouping Factor S2T S2M (T/S)
1 55.67 4.00 / 2.67
3 64.67 15.67 / 5.00
5 63.33 37.67 / 28.00
7 62.67 36.00 / 16.67

disfluencies, varied intonations, and ambient noise present in real-world speech, enhancing its
robustness.

Data Scaling. To investigate the impact of data scaling, we conduct experiments by progressively
expanding the S2S training data on DRVOICE-Small (w/o. Continous Speech Encoder). Each S2S
instance can be augmented into 7 distinct multimodal interaction patterns. As illustrated in Figure 3,
expanding the dataset from 3.6K to 17.8K samples yields consistent improvements. The performance
of T2M(S) exhibits nearly linear growth, while other patterns, despite showing slower growth
rates, still demonstrate upward trends in the figure, suggesting potential for further performance
enhancement through additional data.

Grouping Factor. Table 7 and Figure 2 demonstrate that our grouping strategy significantly
enhances both performance and computational efficiency. Contrary to degrading generation,
grouping substantially improves both speech understanding (S2T) and speech-to-speech generation
(S2M). For instance, increasing the grouping factor from 1 to 5 raises the S2T score from 55.67 to
63.33 (a 13.7% relative gain). The S2M (T/S) score sees a significant improvement, peaking at 37.67
/ 28.00 with a grouping factor of 5. Furthermore, as shown in Figure 2, using a grouping factor of
5 instead of 1 reduces nearly 50% GPU hours in each setting, proving the efficiency of grouping
machinism.

Retention vs Forgetting. An attempt is made to select suitable open-source datasets for speech
synthesis. All results are from fine-tuning Qwen2.5-7B-Instruct at a low learning rate (1e-5), so they
primarily indicate retention vs. forgetting rather than absolute capability gains. The gap to the baseline
quantifies forgetting: magpie_pro_llama3_3_500k_filtered and InfGen exhibit the smallest overall
deltas (about 3–4 points on both suites), while very large, noisier corpora like Inf7M induce substantial
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Table 8: Benchmark Results: VoiceBench (T2T)

Data VoiceBench

AlpacaEval CommonEval SD-QA MMSU OBQA IFEval AdvBench Overall

Qwen2.5-7B-Instruct 4.67 4.34 76.13 69.97 82.20 65.45 99.04 81.86
Inf7M 3.83 3.50 69.98 55.43 71.87 48.79 94.42 69.58
InfGen 4.51 4.13 74.14 62.46 76.04 58.35 98.46 77.46
openorca_gpt4 4.33 4.03 73.96 61.00 73.85 54.05 96.35 75.20
openorca_gpt3_5 4.35 4.17 71.07 57.84 66.59 49.39 95.00 72.90
Evol_Instruct_Code 4.19 4.06 69.26 63.14 81.54 56.40 90.38 75.10
Evol_Instruct 4.09 3.91 71.61 60.38 72.31 54.02 98.27 73.80
magpie_pro_llama3_1_300k 4.42 4.08 72.69 58.33 74.95 56.08 86.73 74.11
magpie_pro_mt_llama3_1_300k 4.46 4.05 73.60 58.07 60.00 60.05 86.35 72.61
numinamath_cot 4.11 3.78 70.16 55.43 68.35 52.00 97.69 71.63
OpenHermes_v2_5 4.05 3.71 71.61 62.20 74.07 51.59 82.88 71.08
Synthia_v1_3 4.30 3.96 72.33 63.63 76.70 53.32 97.69 75.55
tulu_3_sft 4.04 3.73 65.64 61.74 79.78 61.78 100.00 74.91
magpie_pro_llama3_3_500k_filtered 4.48 4.17 73.42 64.31 81.32 64.81 92.88 78.53

Table 9: Benchmark Results: UltraEval-Audio (T2T) & OpenAudioBench (T2T)

Data Tokens
(M)

UltraEval-Audio OpenAudioBench Total

AlpacaEval LlamaQ TriviaQA WebQ Overall Reasoning QA Avg

Qwen2.5-7B-Instruct — 81.41 82.33 53.91 52.56 67.55 58.00 75.10
Inf7M 2406 55.35 84.67 46.29 47.59 58.48 48.51 64.13
InfGen 1022.4 74.29 82.33 55.96 51.18 65.94 57.43 71.95
openorca_gpt4 361.8 66.21 83.00 54.39 49.56 63.29 54.46 69.50
openorca_gpt3_5 1101 55.91 83.00 54.69 48.47 60.52 48.51 66.74
Evol_Instruct_Code 28.3 52.32 81.33 52.64 44.24 57.63 52.48 67.39
Evol_Instruct 69.2 56.62 81.67 53.81 47.15 59.81 53.47 67.44
magpie_pro_llama3_1_300k 213.9 76.16 83.67 57.91 55.02 68.19 53.96 70.46
magpie_pro_mt_llama3_1_300k 323.2 75.35 83.00 54.00 54.53 66.72 57.43 69.38
numinamath_cot 463.2 64.04 80.67 54.88 50.64 62.56 50.00 66.81
OpenHermes_v2_5 375.9 58.54 83.67 54.49 49.85 61.64 54.46 66.55
Synthia_v1_3 59 61.67 83.67 53.81 47.88 61.76 55.45 69.28
tulu_3_sft 570.2 55.91 84.33 53.52 49.41 60.79 55.94 68.62
magpie_pro_llama3_3_500k_filtered 314.6 78.64 79.00 57.32 54.18 67.29 51.49 72.53

forgetting despite their size. Quality and filtering matter more than scale: openorca_gpt4 forgets less
than openorca_gpt3_5 with fewer tokens, and the magpie_pro family maintains instruction-following
and factual QA best per token. Forgetting is selective: some submetrics improve (e.g., LlamaQ
rises for Inf7M/tulu_3_sft; AdvBench reaches 100 for tulu_3_sft), but these gains often trade off
against instruction and QA scores. Overall, compact, well-filtered, model-proximal data minimizes
destructive drift at 1e-5, whereas bulk token count tends to amplify forgetting, so the most stable
recipes preserve the base model while making targeted adjustments.

D LIMITATIONS AND FUTURE WORK

Our future work will address limitations of this work and advance three key areas: (1)
Enhancing Speech Generation Quality: The model currently exhibits weaker alignment between text
and speech in speech-to-speech generation when compared to Qwen2.5-Omni. This performance gap
can be attributed to a key architectural difference in the final speech generation stage. The Qwen2.5-
Omni method directly feeds text into its talker module to ensure high textual fidelity. In contrast,
DRVOICE only inputs hidden states into its speech refined head (SRH). Therefore, a promising
direction for future work is to incorporate text as an additional input to the SRH. It is hypothesized
that this modification will provide more explicit textual guidance, further enhancing speech-text
alignment and leading to a significant reduction in ASR-WER. (2) Enabling Full-Duplex Interaction:
A crucial direction is to enable full-duplex interaction for more natural conversations. Inspired
by recent advancements like Parrot (Wang et al., 2025), future work will investigate the use of
a time-division multiplexing (TDM) input stream. This would permit DRVOICE to accept user
speech inputs during its own speech generation phase, thereby efficiently utilizing idle time slots and
allowing for responsive, interruptible dialogue. (3) Expanding to General Audio and Multimodality:
Finally, a promising avenue is to extend the model’s capabilities beyond speech-centric tasks to
broader audio comprehension and synthesis, including the recognition and generation of music
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and environmental sounds. The subsequent integration of the visual modality will be a critical step
toward developing a more comprehensive, multimodal conversational AI.

E THE USE OF LARGE LANGUAGE MODELS

During the preparation of this work, the authors used Large Language Models (LLMs) to improve
grammar, clarity, and overall readability. The LLM was used as a writing aid and for language
polishing purposes. The authors reviewed, edited, and take full responsibility for the final content
and all claims presented in this manuscript.
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