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ABSTRACT

Large Multimodal Models (LMMs) have recently enabled considerable advances
in the realm of image and video quality assessment, but this progress has yet to
be translated to the domain of 3D assets. We are interested in using these models
to conduct No-Reference Point Cloud Quality Assessment (NR-PCQA), where
the aim is to automatically evaluate the perceptual quality of a point cloud in
absence of a reference. We begin with the observation that different modalities
of data – text descriptions, 2D projections, and 3D point cloud views – provide
uniquely useful insights into point cloud quality. We leverage this to devise a mul-
timodal dataset construction strategy providing a holistic combination of multiple
types and levels of information. We then construct PIT-QMM, a novel LMM for
NR-PCQA that is capable of consuming text, images and point clouds to predict
quality scores. Extensive experimentation shows that our proposed method out-
performs the state-of-the-art by significant margins on popular benchmarks with
fewer training iterations, and thorough ablations validate our dataset construction
strategy. Code and datasets are available at https://anonymous.4open.science/r/pit-
qmm-BD1F/.

1 INTRODUCTION

Point clouds are collections of 3D points with color, opacity, and other features representing ob-
jects or environments. Recent advances have cemented point clouds as pivotal data structures for
3D representation, particularly in applications such as autonomous driving, immersive gaming and
digital twin systems (Qi et al., 2017; Afham et al., 2022; Zhang et al., 2022a). These simple yet
information-rich representations allow detailed spatial analysis with minimal assumptions about un-
derlying geometry. However, this also means that they are highly susceptible to corruption at all
stages of their operation cycle, from acquisition due to sensor inaccuracies, to compression losses
and transmission errors. Not only do these impairments affect perceptual quality for humans, but
they also directly impact downstream applications.

As a result of this corruption, assessing the quality of point clouds automatically and at scale has
emerged has a key research question. Traditional metrics like PSNR or SSIM (Wang, 2004), widely
used for image and video quality assessment, have been adapted for point clouds, but these often fail
to capture the intricacies of 3D data. Learning-based methods have improved upon these metrics,
but suffer from a lack of generalizability due to a scarcity of labeled training data. Most PCQA
(point cloud quality assessment) datasets are only of the order of hundreds of distorted samples
with labels (i.e. mean opinion scores, or MOS) due to the highly laborious data collection process.
This is particularly disadvantageous in the No-Reference (NR) setup, where there are no pristine
point clouds available to serve as a reference for quality assessment, leading to further scarcity of
information.

The foremost solution that has emerged to attain generalizability in the face of label scarcity has
been unsupervised pretraining on large datasets. In particular, approaches based on contrastive
learning have risen to the top of many benchmarks, such as CONTRIQUE (Madhusudana et al.,
2022), ReIQA (Saha et al., 2023) and recently in the point cloud domain, CoPA (Shan et al., 2024).
However, these require large numbers of positive and negative paired samples and extensive aug-
mentation schemes, which make them computationally intense to train even though the base datasets
may be relatively small. Moreover, the design of such samples requires great thought and care, es-
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pecially in the quality domain, where the fine visual low-level details of media are paramount. This
leads to it being relatively difficult to apply the benefits of scaling, as observed in CONTRIQUE and
ReIQA, which are trained on million-scale base datasets.

Elsewhere, foundation models trained on billion-size datasets with billions of parameters have de-
livered impressive performance on several benchmarks. In particular, large image-text multimodal
models (LMMs) have recently been applied to image and video quality assessment with great suc-
cess, as in Q-Align (Wu et al., 2023b). While these models have delivered state-of-the-art perfor-
mance and generalizability in the 2D space, they do not straightforwardly extend to the 3D space.
One approach is to simply take 2D projections of the 3D content and apply the model, but as we
demonstrate in Section 4.5, this tends to yield sub-optimal results. This is likely because of the
loss of information in the projection process due to factors such as occlusion, depth ambiguity and
viewpoint dependency. There have been efforts to recover the lost information by supplementing
predictions from 2D quality foundation models with traditional point cloud quality statistics, as in
LMM-PCQA (Zhang et al., 2024). However, since they rely on handcrafted features to extract infor-
mation from the point cloud, they cannot leverage the benefits of training to learn more sophisticated
quality features, and crucially, cannot learn the interactions between different modalities of data.

Efforts have been made to develop point-text LMMs, particularly for semantic tasks such as object
classification and question-answering. However, the fixed context length and quadratically-scaling
computational costs of transformers have limited their application to point clouds of relatively small
size and complexity i.e. on the order of tens of thousands of points. PCQA datasets usually contain
point clouds with hundreds of thousands to millions of points, as fine-grained details about quality
are often not perceptible at lower resolutions. As a result, when these models are fine-tuned on
PCQA datasets, there is either a tremendous loss of information due to downsampling, or a large
domain shift in terms of the nature of the point clouds they were pretrained to handle. This leads to
sub-optimal performance on PCQA, as we demonstrate in Section 4.5.

In essence, image-text quality foundation models are able to understand quality, but not 3D content,
whereas point-text multimodal models are able to understand 3D content but not at the granularity
required for quality. This paper seeks to bridge this gap. To do so, we propose the Point-Image-
Text Quality Multimodal Model, or PIT-QMM, which is a first-of-its-kind point-image-text LMM
for PCQA. The key insight behind the construction of the model is that different modalities can
provide complementary information about quality. Point cloud patches can provide information
about local variations which are typically lost in the projection process. Image projections can
supply a global picture about the point cloud which cannot currently be delivered by off-the-shelf
point cloud encoders for large clouds. Finally, text inputs can used to describe the psychometric
setup for rating collection, the details of which often change how the point cloud is perceived, and
thus can affect the final quality scores. PIT-QMM is trained end-to-end and is fully differentiable,
which means it may also be used as a training loss in applications where quality is a key factor for
performance, such as content generation, editing or enhancement.

Our main contributions may be summarized as follows:

• We bridge the algorithmic gap between 2D and 3D quality assessment with our proposed
PIT-QMM, which is the first end-to-end point-image-text multimodal model optimized for
PCQA.

• We propose a carefully-designed dataset construction recipe for NR-PCQA, where each
piece aims to leverage a complementary source of information relevant to PCQA.

• We perform thorough performance benchmarking, and show that our model beats state-
of-the-art methods by a large margin despite requiring fewer training iterations. We also
perform a thorough ablation study to validate the importance of each step in our dataset
construction recipe.

2 RELATED WORK

Quality assessment is a key component of media processing pipelines, from images to 3D content.
Traditionally, point cloud quality metrics have evaluated the distortion based on geometric discrep-
ancies compared to a pristine reference. For example, p2point (Mekuria et al., 2016) measures the
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Figure 1: An overview of the proposed Point-Image-Text Quality Multimodal Model (PIT-
QMM). PIT-QMM takes a raw point cloud and extracts both 2D and 3D views that provide different
kinds of information for quality assessment. Rich feature representations of these views are encoded
by pretrained foundation models. These representations are then passed into a large multimodal
model along with a textual description of the task and experimental setup, which is trained to predict
quality scores.

distance between corresponding points to quantify distortions. P2plane (Tian et al., 2017) improves
over p2point by projecting p2point distances along the surface normal, thus taking the distance of
each point from the nearest point on the cloud. Both p2point and p2plane have been included in the
MPEG PCC standard (Chen et al., 2023).

However, these metrics do not adequately account for the fact that the human visual system (HVS)
is highly sensitive to local structural distortions, as measured by SSIM, and is also affected by color
discrepancies. Thus, several metrics that consider both geometric structure and color have been
considered, such as PCQM (Meynet et al., 2020), GraphSIM (Zhang et al., 2021) and MPED (Yang
et al., 2022b). For example, PCQM computes local curvature discrepancies and color inconsistencies
and pools them with an optimally-weighted linear combination. On the other hand, GraphSIM also
considers projections, where it renders the point cloud onto six perpendicular image planes of a
cube and computes image-based quality features along with point cloud-based features. Finally,
these features are aggregated via linear combinations to produce a final score.

The preceding metrics are all full-reference (FR), which means they assume that a pristine source
point cloud is available. However, this may not be the case in many practical scenarios. For the no-
reference (NR) case, traditional methods typically compute various handcrafted features and then
train a regressor to obtain a predicted MOS score. For example, Zhang et al. (2022b) propose an
NR-PCQA metric that projects point clouds into feature domains based on geometry and color and
regresses the predicted MOS using a support vector machine (SVM). While hand-crafted features
have the advantage of explicit semantic meaning, our understanding of point cloud distortions itself
is still quite limited, which handicaps the development of features that can handle more complex
distortion settings.

With the advent of deep learning, learning-based methods have instead become the leaders in
NR-PCQA. PQA-Net (Liu et al., 2021) takes cubic projections and extracts multi-view features,
which it then uses to jointly predict quality and distortion type. ResSCNN (Liu et al., 2023b) em-
ploys a voxel-based sparse 3D-CNN to process point clouds and regress on quality scores. MM-
PCQA (Zhang et al., 2022c) utilizes a multi-modal learning approach on point cloud patches and
image projections, where cross-modal attention is used to fuse image and point cloud features, upon
which a quality score is regressed. Nevertheless, all these approaches are highly dependent on the
availability of labeled data, and thus have poor generalization once tuned.
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Several approaches have been tried to reduce the dependence on labeled data. IT-PCQA (Yang
et al., 2022a) uses unsupervised domain adaptation to transfer the power of deep quality evaluators
designed for the 2D case to the 3D setting, but the significant domain gap leads to unsatisfactory per-
formance. Recently, the release of LS-PCQA (Liu et al., 2023b), a relatively large-scale dataset for
point cloud quality assessment, has opened up avenues for pretraining, similar to the 2D case. As dis-
cussed earlier, contrastive learning has been employed with great success in image and video quality
assessment. CONTRIQUE (Madhusudana et al., 2022) trains similarity under quality-preserving
augmentations to obtain robust features useful for quality assessment. In the 3D space, CoPA (Shan
et al., 2024) takes image projections of point clouds and mixes patches from them to create positive
pairs. As mentioned earlier, while contrastive approaches produce robust and useful features, they
require a complex and expensive positive and negative pair generation process, which limits their
application on even larger datasets.

Outside the quality space, multimodal large language models have shown impressive performance
in multimodal understanding, be it text-image (Liu et al., 2023a), text-audio (Huang et al., 2023),
text-motion (Jiang et al., 2023) etc. A key idea behind progress has been that of visual instruction
fine-tuning as proposed in LLaVA (Liu et al., 2023a), which shows that LLMs can be made to under-
stand visual content with a relatively simple two-stage fine-tuning scheme. Point-LLM (Xu et al.,
2023) proposes LLaVA-style instruction fine-tuning for point clouds, where it leverages a pretrained
point cloud encoder and projector to inject point cloud features and perform multimodal instruction
fine-tuning. PointBind (Guo et al., 2023) uses a contrastive learning approach to align point cloud
features with other modality features, allowing their downstream use in other applications. However,
all of these methods are designed with high-level semantic tasks like object classification in mind,
so cannot handle the large-scale point clouds in PCQA well.

In the 2D space, Q-Bench (Wu et al., 2023a) demonstrated that LMMs not only understand high-
level semantics, but also low-level details relevant for quality assessment. Wu et al. (2024) perform
an evaluation of LMMs for quality assessment, conducting ablations to figure out which setting
performs the best. Building on this, Q-Align finetunes an off-the-shelf vision-language LMM on
discretized quality scores and converts predicted logits to MOSs using softmax pooling. However,
we show that naively applying Q-Align to the 3D case results in a significant domain gap, likely due
to the information loss involved in moving from the 3D to the 2D case. Our proposed method there-
fore introduces the point cloud modality to the mix, and demonstrates that the advantages obtained
by LMM-based quality models also hold for the 3D case when the relevant information is available.

LMM-PCQA (Zhang et al., 2024) builds on Q-Align by first fine-tuning it on cubic image projec-
tions, and then training a regressor on predicted logits from the fine-tuned image-text model along
with classical point cloud structural features such as linearity and planarity. As discussed earlier,
this approach is limited in the way it extracts information from the point cloud, and cannot leverage
the unique power of multimodal training to learn interactions between the different data modali-
ties. On the other hand, our approach seamlessly integrates deep point cloud encoders with existing
image-text foundation models, thus enabling true end-to-end multimodal training.

3 METHOD

In this section, we first describe the construction of our instruction-following dataset, where we
compose inputs of multiple modalities to produce an input prompt. We then delve into the architec-
ture of PIT-QMM, which takes in text, images and point clouds to produce a quality score. Finally,
we detail the label discretization and smoothing strategy and our two-stage training recipe.

3.1 POINT-PROJECTION-TEXT INSTRUCTION-FOLLOWING QUALITY DATA

3.1.1 POINT CLOUDS

As discussed, the most challenging aspect of including point clouds in the input for this task is
the relatively large point cloud size in standard quality assessment datasets. Popular point cloud
encoders such as Point-BERT (Yu et al., 2022), Point-MAE (Pang et al., 2022) and I2P-MAE (Zhang
et al., 2023) are usually pretrained on ShapeNet (Chang et al., 2015) or Objaverse (Deitke et al.,
2023), which contains point clouds containing thousands of points, whereas quality assessment
datasets such as LS-PCQA and WPC contain point clouds with hundreds of thousands to millions of
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Figure 2: The same underlying point cloud can have highly different quality characteristics depend-
ing on rendering parameters and the radius of interaction, especially in the NR setting. Point cloud
taken from LS-PCQA.

points. This is to be expected, as high-frequency quality impairments can only become apparent in
point clouds with sufficient granularity. However, this means that we cannot simply feed the entire
point cloud into the input, as pretrained point cloud encoders are not optimized to process inputs of
this size, even if they are even able to consume them. Moreover, we are also limited by the finite
context length of the LMM, so cannot naively break the larger point cloud into smaller chunks and
pass them all in sequentially.

As a result of this, we sample the point cloud in three ways to provide three different levels of infor-
mation. First, we apply furthest point sampling to the cloud to obtain an overall sparse view. This
view represents the broad shape of the cloud to provide content-level information, which can guide
the final quality score, as in ReIQA. Next, we randomly sample a small set of local patches from the
point cloud to provide information about local variations, such as high-frequency distortions. These
two views together form our point cloud inputs to the model. We also explore a variant where we
take patches at two different scales, analogous to the two-scale inputs typically observed in 2D qual-
ity assessment. Here, we have patches from the original point cloud and a uniformly downsampled
version of the point cloud, where we downsample by a factor of 2. We report the performance of
this variant in the ablation study. Note that these views comprise a small fraction of the total number
of points in the cloud (typically 3-5%). While processing such a small number of points makes our
method much more efficient as compared to processing the entire cloud, it also means that we need
complementary global information to capture a more holistic picture of the point cloud.

3.1.2 IMAGE PROJECTIONS

As discussed in Section 3.1.1, since we can only provide a limited set of local views with point
clouds due to model constraints, we also add image projections of the point cloud to our input.
For a point cloud P , we normalize it to zero-mean and unit-maximum distance with N (·), then
render N (P ) into multi-view images {xi ∈ RH×W×C |6i=1} from six perpendicular viewpoints
(i.e., along the positive and negative directions of x, y, z-axes) with fixed viewing distance. These
projections not only provide a global view of the point cloud, but also allow us to leverage the power
of pretrained large image quality models. We set the projection parameters as used by the original
dataset authors wherever available, else apply best effort settings as appropriate.

3.1.3 TEXT

In the text portion of the prompt, we first prime the LMM for quality assessment. Specifically,
we state the task as no-reference quality assessment with single-stimulus absolute category ratings.
Besides priming, this also provides information about the psychometric aspect of the dataset which
we show to be useful guidance for the LMM. Moreover, we observe that quality assessment for
point clouds is highly dependent on the settings used to render the point cloud and how the user was
allowed to interact with it. For example, Figure 2 shows the same point cloud rendered with different
point sizes and viewing distances, all of which have significantly different quality characteristics.
This is a complexity typically not observed in 2D quality datasets. Accordingly, we also include
rendering parameters in our prompt as described in the corresponding datasets when available or a
best effort reproduction when not.
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Table 1: Instruction following prompt. {System Prompt} is the system prompt used by the
pre-trained LLM, {Experimental Setup} is a description of the psychometric experimental setup,
{im tokens} are image tokens and {p tokens} are point tokens.

{System Prompt}
USER: This is a point cloud rated for quality. It was displayed to a human

in a single stimulus setup with absolute category ratings. {Experimental
Setup}{im tokens}<p start>{p tokens}<p end> Can you rate the quality of the
point cloud?

ASSISTANT: The quality of the point cloud is excellent.

3.1.4 FINAL INSTRUCTION-FOLLOWING PROMPT

An example final question-answer input pair is in Table 1. Similar to Point-LLM, we also add the
special tokens <p_start> and <p_end> to demarcate the start and end of the point cloud. Note
that we use discrete quality levels in our output, as discussed in more detail in Section 3.3.1.

3.2 MODEL ARCHITECTURE

As shown in Figure 1, our PIT-QMM is a generative model that aims to complete multi-modal
sentences containing point clouds, images and text. The model consists of four main components -
an image encoder fim, a point cloud encoder fpoint, a point cloud embedding projector fpoint proj ,
and a large language model (LLM) backbone fllm.

The point cloud encoder fpoint takes in a point cloud P ∈ Rs×n×d, where s is the number of
sampled views, n is the number of points and d is the feature dimension. The output is a sequence
of patched point features X ∈ Rs×m×c, where m is the number of patch features and c is the feature
dimension. The projector fproj is a multi-layer perceptron (MLP) that maps the point features X to
point tokens Y ∈ Rs×m×c′ , where c′ is the dimension of the point tokens, which is the same as the
text and image tokens. Finally we flatten this into a sequence Z ∈ Rsm×c′ , which we feed into fllm.

The LLM fllm takes in a sequence of the form Rn′×c′ , where n′ is the length of the mixed image, text
and point cloud input token sequence. As a decoder-only LLM, it produces a probability distribution
of predictions for the next token of size RV for a given input sequence, where V is the vocabulary
size of the LLM, and autoregressively produces the output sequence.

The image encoder fim and LLM backbone fllm in our implementation are architecturally similar
to the open source LMM mPLUG-Owl-2 (Ye et al., 2024). In addition to its base image encoder,
mPLUG-Owl-2 also has a visual abstractor that greatly reduces the number of tokens needed to
represent an image, thus allowing us to process all six cubic views efficiently. Moreover, it features
modality-aware modules that allow learning the interactions between different modalities effectively.
However, note that the overall architecture is agnostic to the kind of image encoder, point cloud
encoder and LLM used, and these may be easily replaced with any off-the-shelf variant as desired.

3.3 TRAINING AND INFERENCE

The model is trained end-to-end by minimizing the negative log-likelihood of the token at each
position. We ignore the image tokens, point cloud tokens, user prompt, and instruction tokens for
computing the loss, so that the model can focus on producing relevant and coherent responses.

3.3.1 LABEL SMOOTHING AND DISCRETIZATION

As observed in Q-Align, LMMs optimized for quality perform better when they are asked to produce
discrete text labels, largely due to their bias to produce text as opposed to numeric values. As a result,
we follow a similar discretization strategy during training, where we convert continuous quality
scores to five-point Likert scale levels in our input prompts. The labels are equally spaced based on
the score ranges in the respective quality datasets. During inference, we convert the discrete labels
into continuous quality scores by first assigning them discrete numeric levels (e.g. 1 to 5) and then
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taking a weighted average of the numeric levels based on the corresponding token probabilities in
the output of the LLM.

3.3.2 TWO-STAGE TRAINING

As in LLaVA (Liu et al., 2023a), we also employ a two stage training strategy. In the first feature
alignment stage, we freeze all parameters except for the point cloud projector, and train on brief-
description instructions from the Cap3D (Luo et al., 2023) dataset, which is for 3D captioning. As
all the point clouds in this dataset are relatively small, we do not apply our point cloud sampling
strategy at this step. This stage involves aligning the point cloud features with the image and text
features.

In the second instruction-tuning stage, we unfreeze the image abstractor and add LoRA adapters to
the LLM and the point cloud encoder. We then finetune the weights end-to-end using the constructed
quality dataset. In this stage, all the modules are tuned specifically for point cloud quality assess-
ment. For the image abstractor, this involves adapting to the distribution shift of synthetic point
cloud projections as opposed to the general space of images, whereas the point cloud encoder has to
adapt to the distribution of local patches with high-frequency variations instead of object-level point
clouds.

4 EXPERIMENTS

4.1 DATASETS

Our experiments are based on three popular point cloud quality assessment datasets, namely LS-
PCQA (Liu et al., 2023b), SJTU-PCQA (Yang et al., 2021), and WPC (Liu et al., 2022). LS-PCQA
is a large-scale point cloud quality assessment dataset with 104 pristine and 24,024 distorted point
clouds. Each pristine point cloud is impaired with 33 types of distortions under 7 levels. The la-
bels in LS-PCQA are mostly synthetically generated pseudo-MOSs, with only 930 samples having
psychometrically-collected true MOSs. We term this subset LSPCQA-small and report results of
ablations on it, along with WPC. SJTU-PCQA contains 9 reference and 378 distorted samples im-
paired with 7 types of distortions under 6 levels, while WPC contains 20 reference point clouds and
740 distorted sampled disturbed by 5 types of distortions.

4.2 EVALUATION PROTOCOL

We tested our PIT-QMM model against other state-of-the-art models on all of the datasets described
in Section 4.1. We first constructed instruction-tuning data from the raw datasets as described in
Section 3.1. Each sample is then a set of point cloud samples, cubic image projections and user-
agent instruction text. We split each dataset into content-separated train-test sets in the ratio of
4:1. We then minimized loss on the training set and obtained metrics on the test set. Due to the
stochasticity involved in sampling from the point cloud, we computed metrics on the test set with 10
different seeds and took the mean. Finally, the test metrics were averaged over 5 different train-test
splits to obtain the final reported metrics. Two widely adopted evaluation metrics were employed to
quantify the level of agreement between predicted quality scores and MOSs: Spearman rank order
correlation coefficient (SROCC) and Pearson linear correlation coefficient (PLCC).

4.3 IMPLEMENTATION DETAILS

The point cloud projections were rendered with PyTorch3D (Ravi et al., 2020) at a resolution of
512 × 512. All point cloud samples are n = 8192 dimensional with 3 spatial coordinates and 3
RGB color coordinates, which makes d = 6. The furthest point sampling was done with the Python
package fpsample with the bucket-based FPS algorithm (Han et al., 2023). To sample local patches,
we constructed a search tree using the Python package FAISS, sampled a single point randomly and
then looked up the closest points near it to construct the final sample. We sampled three patches in
total including the furthest point sample of the point cloud.

Our experiments were performed with Huggingface and PyTorch (Paszke et al., 2019) using 3× 40
GB NVIDIA A100 GPUs. For the point cloud encoder, we used Point-BERT pretrained with ULIP-
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2 (Xue et al., 2024) on the Objaverse (Deitke et al., 2023) dataset. The point encoder outputs
m = 513 point features, each with c = 384 dimensions. The point cloud projector is taken as
a randomly initialized MLP. The projector contains three linear layers with the GeLU (Hendrycks
& Gimpel, 2016) activation, which maps point features to tokens with c′ = 5120 dimensions. The
image encoder is taken as a Vit-L/14 (Ilharco et al., 2021) and the LLM is taken from mPLUG-Owl2,
which is a modified LLaMA-2-7B (Touvron et al., 2023) model. Since we added two additional
special tokens, the vocabulary size of PIT-QMM is V = 32003. The weights of the image encoder
and LLM were initialized from Q-Align.

For the alignment stage, we pretrained on the instruction-following variant of Cap3D as released in
Point-LLM (Xu et al., 2023) for 3 epochs with a batch size of 12. We used a learning rate of 2×10−3

with cosine annealing and a warmup rate of 0.3. All other hyperparameters were the same as those
used in Point-LLM. In the finetuning stage, we trained on LS-PCQA for 5 epochs, SJTU-PCQA
for 90 epochs and WPC for 30 epochs. We used a learning rate of 2 × 10−4 with cosine annealing
and a warmup rate of 0.3. For the LoRA (Hu et al., 2021) modules, we used r = 128, α = 256,
and dropout of 0.05 on the multiway Vproj and Qproj layers in mPLUG-Owl2, and the V and Q
matrices in Point-BERT.

4.4 COMPARISON WITH STATE-OF-THE-ART METHODS

We selected 16 state-of-the-art PCQA methods for comparison, including 10 FR-PCQA and 6 NR-
PCQA methods. The FR-PCQA methods include MSE-p2point (Mekuria et al., 2016), Hausdorff-
p2point (Mekuria et al., 2016), MSE-p2plane (Tian et al., 2017), Hausdorff-p2plane (Tian et al.,
2017), PSNR-yuv (Torlig et al., 2018), PointSSIM (Alexiou & Ebrahimi, 2020), PCQM (Meynet
et al., 2020), GraphSIM (Yang et al., 2020), MS-GraphSIM (Zhang et al., 2021), and MPED (Yang
et al., 2022b). The NR-PCQA methods include PQA-Net (Liu et al., 2021), IT-PCQA (Yang et al.,
2022a), GPA-Net (Shan et al., 2023), ResSCNN (Liu et al., 2023b), MM-PCQA (Zhang et al.,
2022c), and CoPA+FT (Shan et al., 2024). We did not compare against 3DTA (Zhu et al., 2024)
since their evaluation protocol differs significantly from ours, as they use only a single test-train
split for computing their metrics. We also did not include LMM-PCQA as they do not provide all of
their code and the test-train splits used for evaluation, and hence their scores are not reproducible.
Moreover, they do not report scores on LS-PCQA, the largest and most challenging of popular
PCQA databases.

4.4.1 WITHIN-DATASET PERFORMANCE

The within dataset performance on LS-PCQA, SJTU-PCQA and WPC is reported in Table 2. From
the table, we have the following observations: 1) Our model outperformed all the NR-PCQA meth-
ods on all three datasets. For example, it outperforms the current state-of-the-art by a margin of
22.5% in SROCC and 20.4% in terms of PLCC. 2) Our model also outperformed all the FR PCQA
methods on all the three datasets. Here the improvement is not as dramatic due to FR methods
having the access to the pristine source, but the gap is nevertheless significant, especially due to the
large disparity in available information. 3) Our model delivers robust performance across the three
datasets, despite variations dataset scale, content, and distortion types.

4.4.2 TRAINING COST

As demonstrated in Table 3, PIT-QMM converges to best results when tuning for quality with fewer
epochs as compared to other state-of-the-art learning-based methods. We report these verbatim
from the respective technical reports or the code provided if not available in the reports. We observe
that the savings are most significant on the large LS-PCQA dataset, where merely 5 epochs are
sufficient to obtain state-of-the-art performance. On the other hand, on the much smaller SJTU-
PCQA dataset, we require more iterations, likely due to the larger number of parameters to be tuned.
This downstream training efficiency is a relatively common phenomenon when using foundation
models, which demonstrate impressive zero-shot and few-shot capabilities (Brown, 2020).

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 2: Performance results on the LS-PCQA (Liu et al., 2023b), SJTU-PCQA (Yang et al., 2021)
and WPC (Liu et al., 2022) databases. “P” and “I” stand for the method is based on the point cloud
and image modality, respectively. ↑ indicates that larger is better. The best performance results are
marked in RED and the second results are marked in BLUE for both FR-PCQA and NR-PCQA
methods. “FT” indicates fine-tuning.

Ref Modal Methods LS-PCQA SJTU-PCQA WPC
SROCC ↑ PLCC ↑ SROCC↑ PLCC↑ SROCC↑ PLCC↑

FR

P MSE-p2po 0.325 0.528 0.783 0.845 0.564 0.557
P HD-p2po 0.291 0.488 0.681 0.748 0.106 0.166
P MSE-p2pl 0.311 0.498 0.703 0.779 0.445 0.491
P HD-p2pl 0.291 0.478 0.617 0.661 0.344 0.380
P PSNR-yuv 0.548 0.547 0.704 0.715 0.563 0.579
P PointSSIM 0.180 0.178 0.735 0.747 0.453 0.481
P PCQM 0.439 0.510 0.864 0.883 0.750 0.754
P GraphSIM 0.320 0.281 0.856 0.874 0.679 0.693
P MS-GraphSIM 0.389 0.348 0.888 0.914 0.704 0.718
P MPED 0.659 0.671 0.898 0.915 0.656 0.670

NR

I PQA-Net 0.588 0.592 0.659 0.687 0.547 0.579
I IT-PCQA 0.326 0.347 0.539 0.629 0.422 0.468
P GPA-Net 0.592 0.619 0.878 0.886 0.758 0.76
P ResSCNN 0.594 0.624 0.834 0.863 0.735 0.752

P+I MM-PCQA 0.581 0.597 0.876 0.898 0.761 0.774
P CoPA+FT 0.613 0.636 0.897 0.913 0.779 0.785

P+I PIT-QMM 0.751 0.766 0.911 0.923 0.824 0.793

Table 3: Epochs required to converge to best results across all databases. Bold denotes the best
performing model.

Method Batch size LS-PCQA SJTU-PCQA WPC
PQA-Net 20 160 160 160

MM-PCQA 8 50 50 50
CoPA + FT 16 20 150 150
PIT-QMM 10 5 90 30

4.5 ABLATION STUDY

To study the effectiveness of our proposed dataset construction strategy, we conducted an ablation
study to investigate the individual contribution of different components of each training sample.
Table 4 summarizes the results of this study. We used the WPC and LSPCQA-small databases in
these ablations.

First, we report the performance of using only 2D image projections to predict quality (row 1⃝). We
constructed our datasets exactly as before, except for the point clouds, and tune Q-Align on them,
following the recipe recommended by the authors. For fairness, we trained for the same number of
iterations as we did in PIT-QMM. We observed that a tuned Q-Align model was able to achieve state-
of-the-art performance on LSPCQA-small and WPC, though the margin of outperformance was
lower, especially when compared to the FR algorithms. This validates the inclusion of point cloud
projections and highlights the value of using pretrained vision foundation models in this domain.

Next, we investigated the effectiveness of different types of point cloud sampling. We considered
three schemes. In the first, we sampled only local patches from the point cloud at full scale (row
2⃝). In the second, we added a furthest point sample along with local patches (row 3⃝). In the third,

we added patches at half-scale resolution along with the aforementioned (row 4⃝). The motivation
behind this final experiment is the observation that multi-scale processing in 2D computer vision is
often beneficial, even for quality assessment (Wang et al., 2003). For the half-scale point cloud, we
uniformly downsampled the point cloud by a factor of 2.

Our first observation was that any kind of point cloud sampling improved performance over the
baseline of using 2D projections only, which validates the inclusion of point clouds into the train-
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Table 4: Ablation study on the LSPCQA-small (Liu et al., 2023b) and WPC (Liu et al., 2022)
databases. ↑ indicates that larger is better.

Methods LSPCQA-small WPC
SROCC↑ PLCC↑ SROCC↑ PLCC↑

1⃝ 0.684 0.664 0.781 0.687
2⃝ 0.722 0.681 0.793 0.755
3⃝ 0.734 0.699 0.819 0.774
4⃝ 0.730 0.694 0.812 0.769
5⃝ 0.343 0.322 0.447 0.405
6⃝ 0.733 0.704 0.824 0.793
7⃝ 0.737 0.706 0.822 0.790

ing. Next, we observe that only sampling local patches yielded the worst overall results. This is
somewhat expected, as there is a significant domain gap for our pretrained point cloud encoder to
overcome. The encoder was trained to obtain an overall semantic understanding of object-like point
clouds, not to understand the fine-level details of patches of point clouds. Adding a furthest point
sample improved on the local patch-only case. As discussed earlier, the furthest point sample would
be processed into a content-oriented feature by the point cloud encoder, given that this aligns well
with its pretraining task. This improvement therefore ties in with observations made elsewhere that
content-oriented features provide complementary information for quality assessment. Lastly, we
notice that adding another scale of information did not change the results by much. We note that this
strategy may be more effective if the low resolution and high resolution patches were paired, thus
allowing the model to learn bandpass features, and leave this investigation for future work.

Another test we performed is to use only the point cloud features to predict quality (row 5⃝). In this
case, we simply dropped the image tokens and trained end-to-end as usual. The performance here
dropped significantly, thus providing evidence that the point cloud encoder by itself has to overcome
a large domain gap to provide sufficiently discriminative features for quality assessment. Finally, we
investigated the importance of text conditioning. We trained with three varieties of prompts. In the
first, we trained with minimal context, where we simply asked the question i.e, Q: Can you predict
the quality of the point cloud?. This is the same as row 4⃝. In the second, we provided task priming
as well as psychometric information i.e, Q: This is a point cloud rated for quality. It was displayed
to a human in a single-stimulus setup with absolute category ratings. Can you predict the quality
of the point cloud? (row 6⃝). In the last, we also included rendering parameters in the text prompt,
such as the distance of the cameras and projection type (row 7⃝).

Here, we found that each variety improves slightly on the baseline, but the performance was overall
comparable. Hence, it appears explicitly stating the task and experimental conditions does guide
the LMM towards producing better quality predictions, but the difference might easily be overcome
through other means. We posit that text conditioning will be more useful when the LMM is being
trained for a multi-task or multi-modality quality task, such as FR and NR together, or FR on video
and point clouds jointly. This conditioning would allow it to specialize to the specific sample at
hand. However, since this exploration is beyond the scope of this paper, we leave this investigation
for future work.

5 CONCLUSION

In this paper, we presented a novel end-to-end no-reference point cloud quality assessment algorithm
based on LMMs. By leveraging complementary sources of information from different modalities
and the power of large pretrained modality encoders, the proposed PIT-QMM is able to predict
quality scores across a wide variety of distortion and content types. Extensive experiments show
that PIT-QMM is able to achieve competitive performance across a wide variety of benchmarks with
overall fewer training iterations than state-of-the-art methods. Thorough ablations also validated
each step of our dataset construction strategy.
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