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Abstract

Accurate epidemic forecasting is critical for mitigating the global burden of in-
fectious diseases, enabling timely interventions and optimal resource allocation.
While conventional forecasting approaches can effectively model the temporal
trajectory of epidemic dynamics, they rely on task-specific learning from historical
observations, which are often scarce and limited. Recently, pre-trained Large Lan-
guage Models (LLMs) have emerged as powerful foundation tools for zero-shot
time series forecasting across diverse domains, eliminating the need for retraining
on task-specific data. In this study, we conduct a comprehensive evaluation of
LLM-based foundation models to capture the complex dynamics of epidemic inci-
dences across multiple temporal horizons. Our analysis not only benchmarks these
models against statistical and deep learning frameworks, but also identifies which
architectural designs of LLM models are suitable for epidemic forecasting. The em-
pirical results conducted on eleven epidemic datasets spanning three diseases from
distinct geographical locations highlight that TimeGPT and TiRex models exhibit
superior generalization capabilities. These findings underscore the potential of
zero-shot LLM-based epidemic forecasting to support effective decision-making.

1 Introduction

Epidemic forecasting plays a vital role in providing situational awareness and guiding policy makers
during public health crises [20]. Accurate short-term predictions of disease outcomes are particularly
critical, as they enable effective allocation of resources and the design of timely intervention strategies,
thereby mitigating risks and reducing the overall disease burden [22]]. Epidemic forecasting models
are broadly divided into mechanistic (e.g., SIR-type) and statistical approaches (including machine
learning models), with the former suited for long-term scenario analysis and the latter for short-term
trend adaptation [16]]. Traditionally, epidemic forecasting tasks have been approached using statistical
methods like Autoregressive Integrated Moving Average (ARIMA), Exponential Smoothing (ETS),
and Theta, which offer interpretability but often struggle with non-linear patterns and long-range
dependencies [2]. In recent years, deep learning models, particularly Long Short-Term Memory
(LSTM) networks, Neural Hierarchical Interpolation for Time Series (N-HiTS), and Transformer-
based architectures, have demonstrated improved performance by capturing complex temporal
structures and nonstationarities in data [13]]. However, machine learning models require task-specific
training, such as using historical disease incidence data from Hong Kong to forecast its future disease
dynamics. In contrast, generative pre-trained models utilize probabilistic methods and large-scale
datasets to serve as foundation models, capable of handling diverse tasks without requiring retraining
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[24]. This shift has spurred efforts to develop general-purpose pre-trained models for zero-shot
time-series forecasting in various applied domains [15].

Amid this evolving landscape, Large Language Models (LLMs), originally designed for natural
language processing tasks, have emerged as promising tools for a broader range of sequence modeling
applications [15]]. These models, trained on vast corpora of sequential data, possess strong represen-
tational capacity and an inherent ability to model long-range dependencies. Recent advancements
have shown that LLMs can be repurposed for time series forecasting of chaotic systems [24], treating
time series as sequences of tokens. This perspective opens the door to zero-shot forecasting, where
pre-trained models are used directly for prediction without requiring additional fine-tuning on the
target dataset. Such models have seen some initial success in forecasting real-world time series,
including pandemic time series [10} 8]]. However, their effectiveness on epidemiological forecasting
of other infectious diseases such as dengue, malaria, and influenza, particularly across short- and
long-term horizons, remains largely unexplored.

Motivated by the above, this study conducts a comprehensive evaluation of pre-trained LLM-based
models in the context of (infectious) epidemic time series forecasting. By examining the performance
of LLMs in a zero-shot setting, our main contributions are as follows:

1. We present a large-scale evaluation of pre-trained LLM-based foundation models for various
epidemic time series forecasting, benchmarking them against statistical and deep learning
baselines.

2. We design an evaluation framework that reflects real-world forecasting demands by par-
titioning the task into short-, medium-, and long-horizon forecasts, and implementing a
rolling-window strategy to ensure temporal robustness and fair comparisons.

3. We investigate the zero-shot forecasting ability of pre-trained LLMs, addressing whether they
can be effectively adapted without task-specific training, how they compare with established
approaches across horizons, and which architectural designs are best suited for epidemic
forecasting.

Our findings highlight both the strengths and limitations of LLM-based approaches, revealing their
capacity to generalize and capture long-term temporal dependencies, while providing practical
guidance for integrating them into epidemic forecasting pipelines.

2 Material and Methods

This section provides a brief overview of the real-world epidemic datasets used in our analysis, along
with a description of the baseline models and LLM-based forecasting approaches evaluated in this
study.

2.1 Epidemic Datasets

We analyze eleven real-world epidemic datasets collected from publicly available sources [16]]. These
datasets capture the number of reported infections for a diverse range of diseases, including dengue,
malaria, and influenza, across different geographical locations. Each dataset varies in both historical
length and temporal granularity. Specifically, nine datasets provide weekly counts of infected
individuals for a given disease, whereas the remaining two contain aggregated monthly case counts.
For example, the dengue dataset from Hong Kong represents the total number of infections reported
in every month across the country, while the Ahmedabad dengue dataset records weekly incidence
rates per 10* population. To characterize the structural properties of these epidemic time series, we
examine several statistical features, including stationarity, long-term dependency (LTD), linearity,
and seasonality. Stationarity is assessed using the Kwiatkowski—Phillips—Schmidt—Shin (KPSS)
test, while long-range dependence is quantified via the Hurst exponent. Linearity is examined using
Teraesvirta’s neural network test, and recurring seasonal patterns are detected using the combined
Ollech and Webel seasonality test. The results of these statistical tests, summarized in Table [1} reveal
that most epidemic time series are non-stationary, exhibit non-linear dynamics, with significant long-
term dependencies, and contain seasonal fluctuations of varying frequencies. This comprehensive
understanding forms the foundation for selecting and evaluating appropriate forecasting models in
the subsequent sections.



Table 1: Epidemic data characteristics. The green circles represent the presence of the feature, while
the red ones represent its absence.

. . . Time Observ- Statistical properties
Disease Location Granularity span ations Stationary ~ LTD ’ Li[ilear Seasonal
Venezuela 1 week 2002-2014 660 [
Singapore 1 week 2000-2015 838 [ ] [ J
Dengue Ahmedabad 1 week 2005-2012 424 [ ] [ [ J
Bangkok 1 month 2003-2017 180 [ ] [ ]
Colombia 1 week 2005-2016 626 [ ] [ ]
Hong Kong 1 month 2002-2017 192 o
Australia 1 week 1947-2015 974 () ()
Influenza Mexico 1 week 2000 - 2015 830 [ [ ] [ ]
Japan 1 week 1998 - 2015 964 [ ]
Malaria Colombia 1 week 2005 - 2016 626 ()
Venezuela 1 week 2002 - 2014 669 [ ] [ ]

2.2 Foundation Models for Forecasting

In this study, we choose Chronos, TimeGPT, Lag-Llama, and TiRex frameworks to represent the
class of pre-trained foundation models owing to their state-of-the-art performance in diverse time
series forecasting tasks [24} [15]].

Chronos is a pre-trained model that leverages text-to-text T5 Transformers, augmented with a scaling
and quantization layer to convert time-dependent continuous-valued observations into a discrete set
of tokens [[1]]. This LLM-based framework is trained on a diverse set of real-world and synthetic time
series datasets. We evaluate four variants of the Chronos architecture, categorized based on the T5
model size as Chronos-Tiny (8M), Chronos-Mini (20M), Chronos-Small (46M), and Chronos-Base
(200M).

TimeGPT is a Transformer-based foundation model designed specifically for time series forecasting
[O]. The framework utilizes a self-attention mechanism to capture temporal patterns in historical
observations. It incorporates local positional encoding, processes inputs through a multi-layer
encoder-decoder with residual connections and normalization, and maps the output to the desired
forecast window via a linear layer.

Lag-Llama is a decoder-only Transformer architecture that employs lag-based features as inputs [[19].
The model processes these input tokens through masked Transformer decoder layers enhanced with
RMSNorm and Rotary Positional Encoding (RoPE), effectively capturing temporal dependencies in
sequential data.

TiRex is a decoder-only time series model built on an XLSTM architecture [3l]. This framework
tokenizes the input sequence via scaling and patching operations, which are processed with stacked
xLSTM blocks to generate accurate forecasts for the time series.

2.3 Baseline Forecasting Models

To comprehensively evaluate the epidemic forecasting capabilities of pre-trained foundation models,
we benchmark their performance against a suite of classical statistical approaches and advanced deep
learning frameworks. Among the statistical baselines, we include the Naive or persistence model [17]],
the linear ARIMA model [4], and the ETS method [12]. The machine learning baselines comprise
ensemble models, such as extreme gradient boosting (XGBoost) [7], light gradient-boosting machine
(LightGBM) [14]], and categorical boosting (CatBoost) [[18], along with decomposition-based linear
models such as DLinear [23]. For deep learning architectures, we consider LSTM networks [[L1],
N-HiTS [5], attention-based Transformer models [21]], and multilayer perceptron-based frameworks
such as TSMixer [6].

3 Experimental Setup and Results

In our analysis, we evaluate the forecasting capabilities of the foundation models and baseline
architectures by adopting a rolling window approach across three distinct temporal horizons. For the
long-term forecasting task, we partition the epidemic dataset into 75% training, 15% validation, and
10% testing observations, allowing the models to focus on capturing long-range trends and seasonal
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Figure 1: Boxplots comparing the long-term (left panel), medium-term (middle panel), and short-term
(right panel) forecasting performance of foundation models and baseline architectures in terms of
SMAPE metric. In the plot, the dashed brown line corresponds to the lowest median value among all
the models.

patterns. The medium-term forecasting task employs a temporal split of 80% training, 15% validation,
and 5% testing, where the objective is to predict semi-long-term trends in the epidemic data. For the
short-term horizon, we utilize 90% observations for training, 8% observations for validation, and
2% observations for testing and assess the performance of the models in predicting the short-term
fluctuations in epidemic incidence cases. This multi-horizon evaluation provides a comprehensive
assessment of model robustness and adaptability across varying forecast durations. Furthermore, we
employ four key performance metrics, namely symmetric Mean Absolute Percentage Error (sSMAPE),
Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), and Mean Absolute Scaled Error
(MASE), to evaluate the point forecasting performance of the models. The mathematical formulation
of these metrics is discussed in Appendix[A.T] By definition, the minimum value of these performance
measures suggests the ‘best” model.

Our empirical results present a comprehensive evaluation of baseline and foundation models, with
a particular focus on identifying which foundation models are best suited for epidemic forecasting.
The SMAPE metric values, as summarized in Fig. [T} demonstrate that pre-trained foundation models
consistently achieve superior performance over statistical and deep learning architectures across all
temporal horizons. Among the LLM-based frameworks, TimeGPT and TiRex achieve the lowest
median SMAPE values, outperforming all other models. A similar pattern emerges across other
performance indicators (Appendix [A.2)), with TiRex demonstrating a strong ability to capture long-
range epidemic dynamics, particularly in terms of RMSE and MAE, while Chronos SMALL and
TimeGPT achieve the best results for MASE. In the medium-term horizon, TimeGPT delivers the most
accurate forecasts across all metrics, whereas TiRex and Chronos variants show notable performance
in short-term forecasting. Despite the superior performance of most of the foundation models, the
Lag-Llama architecture exhibits greater dispersion and higher median error values, reflecting an
architectural design that is less suited to capture temporal dependencies of epidemic incidence data.
In comparison, the self-attention mechanism of TimeGPT and the stacked xLSTM blocks of TiRex
enable these models to more effectively learn and predict the complex temporal patterns inherent in
epidemic incidence cases. Overall, our empirical evaluation demonstrates that, while statistical and
deep learning baselines remain competitive in certain horizons, the architectural innovations of the
pre-trained TimeGPT and TiRex models make them especially valuable for policymakers, as they
offer robust real-world epidemic forecasts that enable the design of effective intervention strategies.

4 Conclusion

In this study, we evaluate pre-trained foundation models for forecasting real-world epidemic incidence,
comparing LLM-based architectures with statistical and machine learning approaches in capturing
complex epidemic dynamics. Extensive empirical results demonstrate the superior performance of
the attention-based TimeGPT framework and the xLSTM-based TiRex model in zero-shot forecasting
of epidemic cases across multiple temporal horizons. Despite their strong modeling capabilities,
LLM-based architectures struggle to accurately capture sudden disease outbreaks and peak incidence
cases, highlighting a key limitation of time series foundation models. Future research will focus
on addressing this challenge and extending the evaluation to spatiotemporal epidemic forecasting,
assessing the potential of foundation models to capture both temporal and spatial dependencies in
disease spread.
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A Appendix

A.1 Forecasting Performance Measures

Symmetric Mean Absolute Percentage Error (SMAPE): Provides percentage-based error normal-
ization.
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Mean Absolute Error (MAE): Measures average absolute difference between predicted and actual
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Mean Absolute Scaled Error (MASE): Allows comparison across datasets by scaling MAE with a
naive forecast baseline. ,
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where h denotes the forecast horizon, ¢ is the forecast corresponding to ground-truth observation y;,
and n represent the size of training observations.

A.2  Forecasting Performance Evaluation

This section summarizes the performance of different foundation models and baseline architectures
in forecasting the epidemic dynamics for long-term (Table [2), medium-term (Table[3), and short-term
(Table [) horizons. Furthermore, Fig. 2] visually depicts the median forecasting performance of
different models across diverse accuracy measures.



Long-term Medium-term Short-term

il b

HRGGGGUT ARG GGG GG

(a) MAE

B o |

G GIPPGGLGAIE LI LIGGIGLT GG

(b) MASE

gm ' EMl | :'Emz..u
m"l““'i“hh“l m I “.Iﬁllhhlh _.liillllh‘lnnl -
f?‘g}yffﬁ’f&{?g{ﬁ»@ff syi;gfffffgfﬁgé,@w fff}?fﬁ%%ﬁgﬁ@f?

(c) RMSE

Figure 2: Boxplots comparing the long-term (left panel), medium-term (middle panel), and short-term
(right panel) forecasting performance of foundation models and baseline architectures in terms of
(a) MAE, (b) MASE, and (c) RMSE metrics. In the plots, the dashed brown line corresponds to the
lowest median value among all the models.



Table 2: Long-term forecasting performance comparison (best results are highlighted).

Ahmed-

Hong

Metric Models abad Bangkok Columbia Kong Singapore Venezuela Japan Mexico Australia Venezuela Colombia
Dengue Dengue Dengue Dengue Dengue Dengue Influenza Influenza Influenza Malaria Malaria
Naive 12.41 451.11 717.55 3.62 234.41 640.64 228.66 33.14 54.01 222.40 480.13
ARIMA 14.08 631.08 723.01 3.55 250.78 490.82 691.58 47.26 51.89 188.63 478.19
ETS 12.75 313.60 710.48 6.61 131.54 485.55 376.69 29.71 51.89 701.29 548.80
XGBoost 11.44 213.83 694.57 4.11 191.28 483.63 739.39 46.42 54.47 290.02 497.80
LightGBM 11.61 413.54 692.51 3.56 350.47 518.35 685.25 31.70 51.95 245.67 481.14
CatBoost 11.97 295.74 677.19 4.90 241.41 460.98 166.85 1445.30 52.19 219.03 483.96
Dlinear 10.01 287.67 708.15 4.37 116.28 550.65 160.32 81.51 51.30 533.46 472.46
LSTM 9.46 237.55 928.56 3.52 398.32 569.99 207.13 352.70 101.70 407.79 481.67
MAE NHIiTS 10.60 352.85 741.66 4.32 130.15 526.09 149.69 3213 87.20 487.24 476.28
Transformer 11.53 265.62 674.71 3.69 237.36 643.66 51171 56.30 69.07 209.17 482.19
TSMixer 12.69 301.67 981.99 4.23 120.32 509.41 472.58 38.47 68.60 229.00 509.73
Chronos TINY 10.47 278.52 721.84 4.69 132.63 425.47 54.96 28.13 45.64 348.15 464.08
Chronos MINI 6.14 277.89 720.51 330 250.68 457.06 52.09 30.01 50.03 370.09 463.17
Chronos SMALL 7.55 363.72 741.90 3.87 174.54 513.95 47.55 21.88 3553 334.61 415.01
Chronos BASE 8.08 416.86 724.24 3.39 151.15 555.54 57.09 31.12 49.57 379.60 442.55
TimeGPT 4.52 237.23 742.04 3.92 143.28 393.37 78.87 5520 2841 308.07 486.13
Lag-Llama 12.69 361.03 771.21 5.40 243.01 747.08 239.71 42.54 78.11 692.52 657.49
TiRex 5.28 271.12 687.91 2.82 96.14 481.70 54.94 31.10 41.53 501.69 350.94
Naive 2.07 2.28 4.51 0.86 5.45 4.62 5.52 235 338 1.34 2.76
ARIMA 2.33 3.24 4.55 0.80 5.83 3.52 17.74 335 322 114 2.75
ETS 2.12 1.59 4.47 1.57 3.06 3.50 9.11 2.11 325 4.22 3.15
XGBoost 1.89 110 4.37 0.93 4.45 347 18.97 3.30 338 1.75 2.86
LightGBM 1.92 2.12 4.36 0.80 8.15 3.71 17.58 2.25 322 1.48 2.76
CatBoost 1.98 1.52 4.26 111 5.62 330 4.28 102.62 3.24 1.32 2.78
Dlinear 1.67 1.46 4.46 1.04 2.70 3.97 3.88 5.79 321 321 2.71
LSTM 1.56 1.22 5.84 0.80 9.27 4.08 531 25.04 6.31 246 2.77
MASE NHITS 1.77 1.79 4.67 1.03 3.03 3.80 3.62 2.28 5.46 2.93 2.74
Transformer 1.91 1.36 4.26 0.83 5.64 4.61 13.13 3.96 4.29 1.25 2.75
TSMixer 2.12 1.53 6.18 1.01 2.80 3.67 11.43 2.73 4.30 1.38 2.93
Chronos TINY 1.73 1.43 4.54 1.06 3.08 3.05 1.41 2.00 2.83 2.10 2.67
Chronos MINI 1.01 1.43 4.53 0.75 5.83 328 1.34 2.13 3.10 2.23 2.66
Chronos SMALL 1.25 1.87 4.67 0.88 4.06 3.68 122 155 220 2.01 2.38
Chronos BASE 1.34 2.14 4.56 0.77 3.52 3.98 1.46 2.21 3.08 2.29 2.54
TimeGPT 0.75 1.22 4.68 0.89 3.41 282 2.02 3.88 176 1.84 2.77
Lag Llama 2.10 1.85 4.87 1.22 5.78 5.35 6.15 2.99 4.85 4.13 3.75
TiRex 0.87 1.39 4.34 0.64 229 3.45 1.41 2.19 2.58 3.00 2.00
Naive 18.72 598.58 810.53 5.63 251.95 797.09 296.87 46.70 91.27 265.13 590.97
ARIMA 20.02 729.38 818.73 4.73 269.00 646.86 716.72 5297 87.06 233.41 603.11
ETS 19.01 386.17 811.82 8.02 186.05 586.13 401.79 48.01 89.03 772.10 668.00
XGBoost 17.39 270.46 777.96 543 210.10 610.74 764.92 69.75 91.99 349.30 658.21
LightGBM 17.35 488.38 774.89 4.60 376.75 678.87 712.46 54.97 88.14 307.37 601.97
CatBoost 18.36 351.42 766.73 573 259.65 602.09 236.27 1637.82 85.15 264.33 614.80
Dlinear 14.81 341.36 818.34 5.78 155.79 697.21 185.06 89.21 87.22 598.11 611.95
LSTM 14.07 336.71 1077.57 4.56 428.64 743.90 264.72 370.60 129.82 495.95 610.38
RMSE NHiTS 16.34 407.97 843.85 4.97 168.41 629.80 166.65 46.06 119.29 535.83 596.75
Transformer 17.51 311.55 759.01 5.01 311.91 809.14 533.85 61.00 102.84 259.34 575.28
TSMixer 18.98 362.38 1282.62 5.62 149.81 652.15 497.74 46.79 102.45 288.18 610.46
Chronos TINY 16.19 325.20 885.36 6.13 176.93 547.27 96.98 37.99 74.20 424.47 605.99
Chronos MINI 8.96 322.50 801.20 4.33 271.01 554.34 93.73 50.90 84.46 461.34 552.70
Chronos SMALL 12.08 459.74 860.86 5.12 195.60 644.07 91.27 39.46 57.42 420.01 535.59
Chronos BASE 12.52 512.20 901.74 5.03 187.26 699.51 110.51 53.10 79.63 459.08 565.51
TimeGPT 6.58 338.25 836.23 4.37 176.59 484.36 116.88 96.25 48.62 364.31 591.22
Lag-Llama 16.85 451.80 873.60 6.28 297.73 974.60 299.94 61.62 108.69 863.45 824.37
TiRex 8.08 339.27 779.92 3.78 145.97 643.63 102.21 52.88 62.65 565.71 466.11
Naive 141.27 83.45 38.08 38.38 66.54 56.10 139.04 86.83 80.02 15.26 30.78
ARIMA 200.00 70.64 38.40 37.53 69.33 38.91 158.56 102.19 73.62 13.07 30.60
ETS 150.80 49.00 37.70 91.20 56.57 38.81 144.20 78.87 72.40 63.95 33.52
XGBoost 105.25 31.63 36.81 43.61 58.47 39.04 160.02 75.85 79.11 19.07 31.99
LightGBM 103.26 54.60 36.67 38.14 83.08 41.72 158.13 87.58 7278 16.52 30.83
CatBoost 104.98 43.31 35.87 48.00 67.80 36.09 123.02 172.54 75.94 15.42 30.99
Dlinear 92.28 46.96 37.55 48.29 39.78 45.73 130.07 118.24 72.08 44.22 30.17
LSTM 82.67 32.56 55.58 37.62 87.59 47.25 142.15 194.08 191.98 32.11 30.84
SMAPE NHiTS 95.34 58.76 38.45 44.56 43.61 41.29 125.70 85.39 165.12 39.04 30.47
Transformer 100.19 44.97 35.64 39.10 58.26 56.05 152.48 108.30 186.38 14.37 30.84
TSMixer 145.37 48.59 43.43 46.31 40.97 41.27 149.07 94.33 187.05 15.54 31.87
Chronos TINY 93.95 46.85 37.80 60.61 5217 32.98 70.48 7172 78.63 26.32 29.58
Chronos MINI 61.61 4533 38.24 38.92 69.12 35.51 59.46 95.78 70.16 28.42 29.66
Chronos SMALL 67.56 58.37 39.50 4721 54.85 4043 58.09 61.66 57.13 2521 26.34
Chronos BASE 7173 71.20 37.70 36.01 59.46 46.48 58.27 9797 86.44 29.11 2824
TimeGPT 55.17 32.16 39.59 41.20 46.70 30.46 106.38 87.35 43.13 20.05 30.98
Lag-Llama 95.92 60.65 40.11 89.72 138.53 71.65 190.77 159.84 173.34 59.41 46.77
TiRex 52.87 40.84 36.44 29.95 36.63 37.95 67.14 86.32 92.30 41.08 21.99




Table 3: Medium-term forecasting performance comparison (best results are highlighted).

Ahmed-

Hong

Metric Models abad Bangkok Columbia Kong Singapore Venezuela Japan Mexico Australia Venezuela Colombia
Dengue Dengue Dengue Dengue Dengue Dengue Influenza Influenza Influenza Malaria Malaria
Naive 17.52 535.20 1163.91 345 163.93 667.53 249.04 138.30 58.44 299.69 869.55
ARIMA 15.41 563.71 1204.17 322 161.37 444.54 447.56 150.87 51.11 435.03 937.16
ETS 18.46 318.41 114321 5.12 195.12 588.57 308.45 92.24 62.50 759.04 840.02
XGBoost 13.19 399.49 1423.67 3.35 172.16 750.28 164.33 118.30 69.54 652.70 1061.73
LightGBM 14.94 305.42 1359.13 3.71 172.92 434.28 728.23 112.14 55.50 655.95 835.34
CatBoost 12.53 234.09 1346.48 3.79 187.46 516.28 228.82 194.30 57.21 644.68 921.82
Dlinear 16.91 392.06 1201.21 349 142.84 458.42 147.12 115.38 49.03 579.39 595.13
LSTM 7.21 272.24 795.86 329 122.04 1414.21 210.44 989.88 60.12 292.19 479.12
MAE NHIiTS 20.81 24331 1037.64 3.55 184.87 561.63 160.73 79.58 58.34 556.50 386.22
Transformer 15.10 463.61 920.49 3.19 271.83 1220.96 988.21 36.14 66.57 776.37 288.03
TSMixer 16.75 368.71 1099.26 3.71 271.91 693.84 432.15 101.57 78.63 728.94 621.19
Chronos TINY 13.10 503.81 920.57 4.36 178.06 438.34 40.09 13.37 39.00 721.93 689.83
Chronos MINI 14.31 523.03 1180.25 2.84 194.66 422.73 33.16 16.66 50.41 561.83 171.21
Chronos SMALL 14.29 596.11 885.13 2.89 168.78 526.81 35.62 31.71 30.60 649.77 436.54
Chronos BASE 15.44 520.77 959.48 2.73 157.86 475.02 52.16 4.94 43.46 607.08 650.62
TimeGPT 6.94 381.70 1252.99 2.58 88.82 466.57 43.54 58.90 22.68 269.13 1138.30
Lag-Llama 21.99 701.47 981.68 5.44 340.21 450.01 244.49 41.27 73.35 228.56 358.98
TiRex 9.90 415.94 1374.11 3.00 133.42 435.11 90.47 24.00 36.47 505.56 453.96
Naive 1.82 2.07 10.71 0.91 4.64 391 6.14 20.53 3.60 1.77 7.64
ARIMA 1.55 1.94 11.08 0.85 4.57 3.04 11.68 24.07 3.13 2.50 8.23
ETS 1.92 1.23 10.52 1.35 5.53 3.44 7.60 13.69 3.85 4.49 7.38
XGBoost 1.32 1.38 13.09 0.88 4.88 5.13 4.29 18.87 4.26 3.75 9.33
LightGBM 1.50 1.05 12.50 0.98 4.90 2.97 19.01 17.89 3.40 3.77 7.34
CatBoost 1.26 0.81 12.39 1.00 531 353 5.97 31.00 3.50 3.70 8.10
Dlinear 1.75 1.52 11.05 0.92 4.05 2.68 3.63 17.12 3.02 343 5.23
LSTM 1.19 1.40 5.01 0.74 2.84 10.13 5.40 70.28 373 1.76 2.75
MASE NHiTS 2.16 0.94 9.54 0.93 5.24 329 3.96 11.81 3.60 329 3.39
Transformer 1.52 1.96 8.93 0.84 7.69 8.34 25.79 5.77 4.08 4.46 2.73
TSMixer 1.74 1.42 10.11 0.98 7.70 4.06 10.65 15.07 4.85 4.31 5.46
Chronos TINY 1.32 1.73 8.47 115 5.04 3.00 1.05 2.13 2.39 4.14 6.06
Chronos MINI 1.44 1.80 10.86 0.75 5.51 2.89 0.87 2.66 3.09 3.23 150
Chronos SMALL 1.44 2.05 8.14 0.76 4.78 3.60 0.93 5.06 1.87 3.73 3.83
Chronos BASE 1.55 1.79 8.83 0.72 4.47 325 1.36 0.79 2.66 3.49 5.72
TimeGPT 0.70 1.31 12.16 0.63 251 3.19 1.14 9.40 139 1.55 10.80
Lag-Llama 221 2.41 9.52 1.32 9.62 3.08 6.38 6.58 4.49 131 3.41
TiRex 0.99 1.43 13.33 0.73 3.77 2.97 2.36 3.83 2.23 2.90 4.31
Naive 21.45 670.79 1308.16 4.88 211.06 797.79 268.04 144.34 86.21 354.26 972.30
ARIMA 18.86 635.33 1347.50 4.01 207.56 544.70 469.91 152.22 79.82 468.82 1033.67
ETS 22.46 380.02 1270.22 6.57 240.67 661.74 325.32 95.22 89.10 817.09 929.68
XGBoost 16.42 485.73 1558.67 4.66 216.08 892.18 212.15 121.15 94.65 682.56 1166.83
LightGBM 17.75 330.75 1489.57 4.24 217.41 535.12 752.40 114.05 83.99 688.70 908.52
CatBoost 15.14 316.61 1476.76 4.55 227.70 664.04 281.47 272.62 85.33 670.41 1013.31
Dlinear 20.57 452.38 1341.94 4.39 187.99 512.80 155.93 119.03 77.11 626.41 662.53
LSTM 10.75 351.13 918.84 4.13 172.99 1876.52 263.37 1078.43 97.42 353.68 601.72
RMSE NHiTS 2442 295.74 1172.35 4.12 229.33 765.22 172.59 82.36 8593 609.84 438.82
Transformer 17.95 543.17 971.27 391 304.69 1336.55 1002.87 37.42 92.16 807.85 370.38
TSMixer 20.19 435.95 1235.03 4.63 310.87 791.60 457.02 104.36 101.22 788.66 683.26
Chronos TINY 16.63 582.65 1041.84 5.95 219.26 557.55 86.41 23.75 62.64 758.38 751.26
Chronos MINI 17.72 616.92 1335.83 4.44 237.65 560.88 90.53 19.90 74.11 598.34 256.27
Chronos SMALL 17.91 692.33 1011.62 4.30 213.26 668.37 89.02 41.45 40.53 696.26 485.97
Chronos BASE 19.14 616.73 1083.68 4.05 201.53 603.65 107.37 6.09 63.73 644.64 700.37
TimeGPT 8.58 449.72 1442.08 3.46 144.24 512.20 80.62 61.48 3533 309.65 1217.77
Lag-Llama 26.24 798.74 1078.41 6.27 369.55 566.32 290.67 64.79 108.77 271.15 427.88
TiRex 12.34 495.90 1484.55 3.82 193.15 566.87 174.38 25.74 46.97 548.25 494.05
Naive 104.41 74.81 60.57 41.88 77.66 49.48 145.02 158.25 110.27 21.04 5254
ARIMA 8225 76.04 61.94 39.08 74.99 37.87 156.18 165.18 75.73 31.80 55.37
ETS 111.52 42.56 60.13 74.15 102.62 46.56 146.95 148.04 134.46 65.03 51.57
XGBoost 67.20 48.94 68.52 38.13 83.65 81.96 124.28 157.78 184.51 52.49 59.86
LightGBM 78.34 39.05 66.72 42.59 84.11 36.98 165.91 156.70 91.28 52.77 51.46
CatBoost 63.20 27.54 66.35 40.71 97.49 47.94 131.49 148.98 98.82 51.99 54.81
Dlinear 97.57 54.24 61.87 4276 62.49 38.99 133.09 154.11 73.31 45.47 40.72
LSTM 68.26 40.02 46.37 3524 48.50 61.61 133.66 188.77 104.55 19.19 30.67
SMAPE NHiTS 162.54 37.31 56.52 40.30 93.88 56.73 132.33 143.52 109.35 43.40 29.32
Transformer 77.95 67.27 52.90 38.62 188.05 73.20 173.00 117.75 158.34 65.87 23.83
TSMixer 95.59 50.02 58.61 46.08 176.07 5178 153.00 200.00 200.00 61.61 41.99
Chronos TINY 65.88 65.24 5238 58.54 89.08 37.60 63.27 60.27 69.37 59.83 45.06
Chronos MINI 80.20 66.12 61.06 33.17 102.85 35.44 54.59 81.59 101.01 43.57 15.39
Chronos SMALL 82.67 80.79 51.02 35.49 81.21 47.62 51.81 101.88 65.10 5229 3213
Chronos BASE 88.76 65.96 53.81 31.65 73.74 41.15 53.56 41.75 72.95 47.86 4337
TimeGPT 37.11 47.47 63.39 28.93 30.73 39.66 76.44 135.73 34.31 18.33 63.51
Lag-Llama 145.39 118.01 55.98 81.88 191.31 38.17 149.35 173.83 136.40 15.34 28.55
TiRex 49.50 49.54 68.00 34.76 54.62 36.71 74.23 98.31 84.46 38.15 33.39




Table 4: Short-term forecasting performance comparison (best results are highlighted).

Ahmed-

Hong

Metric Models abad Bangkok Columbia Kong Singapore Venezuela Japan Mexico Australia Venezuela Colombia
Dengue Dengue Dengue Dengue Dengue Dengue Influenza Influenza Influenza Malaria Malaria
Naive 18.80 599.00 245.57 5.60 13272 693.73 443 3.89 67.14 141.67 199.93
ARIMA 19.64 33343 195.64 5.18 126.48 707.25 15.20 4.09 6523 101.18 193.79
ETS 12.48 349.91 197.19 4.67 164.30 603.71 5.10 3.78 65.14 513.78 403.04
XGBoost 4.34 310.22 212.17 2.14 123.97 723.93 212.85 6.64 57.21 105.24 207.94
LightGBM 17.85 270.20 272.56 248 116.28 685.76 16.88 3.74 69.25 156.03 249.80
CatBoost 11.81 279.32 357.49 2.84 115.28 673.60 5.23 6.23 49.64 196.74 265.58
Dlinear 12.07 278.84 235.34 1.86 140.71 634.70 98.66 46.97 56.18 293.70 205.79
LSTM 6.95 269.94 741.26 3.60 313.14 625.35 659.01 1280.52 54.18 269.54 478.34
MAE NHiTS 12.82 210.06 260.90 2.82 120.57 541.66 113.65 18.89 43.16 520.63 243.11
Transformer 7.31 546.33 468.22 3.56 118.00 811.33 342.06 74.78 90.72 143.21 185.05
TSMixer 22.37 229.24 398.25 1.93 164.71 432.88 5.51 72.54 468.27 91.77 124.44
Chronos TINY 6.52 206.92 195.97 2.40 173.81 658.50 16.78 6.78 52.32 157.52 241.10
Chronos MINI 5.90 170.06 96.74 141 159.68 751.84 18.45 6.13 61.44 160.32 252.93
Chronos SMALL 8.54 216.14 116.89 2.90 148.37 710.69 20.71 18.37 30.50 201.24 184.91
Chronos BASE 7.50 205.50 90.22 1.80 149.52 696.67 10.67 4.37 20.06 144.92 166.78
TimeGPT 8.28 250.00 462.80 2.02 155.06 569.66 33.11 18.74 31.08 145.58 215.90
Lag-Llama 6.51 245.92 1075.98 3.11 258.60 454.58 272.27 38.66 98.94 938.40 1382.67
TiRex 4.01 148.16 109.13 2.04 164.76 651.61 5.72 3.76 17.13 116.88 175.58
Naive 3.02 2.21 2.52 224 329 4.72 0.67 0.68 2.63 118 1.71
ARIMA 3.16 1.34 2.15 2.07 3.05 4.63 2.26 0.74 2.55 0.82 1.60
ETS 2.01 1.29 2.02 1.87 4.08 4.11 0.77 0.66 2.55 4.27 3.44
XGBoost 0.70 1.25 233 0.86 2.99 4.74 31.59 1.21 224 0.85 1.72
LightGBM 2.87 1.09 2.99 0.99 2.81 4.49 251 0.68 271 1.27 2.06
CatBoost 1.90 1.13 3.92 1.14 278 4.41 0.78 1.13 1.94 1.60 2.19
Dlinear 1.94 1.03 241 0.74 3.49 4.32 14.95 8.23 220 244 1.76
LST™M 115 1.39 4.66 0.81 7.28 4.48 16.91 90.92 3.36 1.62 2.75
MASE NHiTS 2.06 0.77 2.67 1.13 2.99 3.69 17.22 3.31 1.69 4.33 2.08
Transformer 1.07 2.31 5.14 0.94 2.85 532 50.78 13.60 3.58 1.16 1.53
TSMixer 3.59 0.84 4.08 0.77 4.09 295 0.83 12.71 18.33 0.76 1.06
Chronos TINY 1.05 0.83 2.15 0.96 4.19 4.31 249 1.23 2.05 1.28 1.99
Chronos MINI 0.95 0.69 1.06 0.56 3.85 4.93 2.74 1.12 2.40 1.30 2.09
Chronos SMALL 1.37 0.87 1.28 1.16 3.58 4.66 3.07 3.34 1.19 1.63 1.53
Chronos BASE 1.21 0.83 0.99 0.72 3.61 4.56 1.58 0.79 0.79 1.18 1.38
TimeGPT 1.27 1.01 5.08 1.01 3.74 3.73 4.91 3.41 1.23 1.18 1.78
Lag-Llama 1.00 0.99 11.81 1.56 6.24 298 40.42 7.03 3.90 7.62 11.41
TiRex 0.62 0.60 1.20 1.02 3.98 4.27 0.85 0.68 0.68 0.95 1.45
Naive 22.00 749.68 294.93 6.81 189.60 832.29 715 4.75 79.45 154.17 301.41
ARIMA 21.95 377.79 254.08 5.85 189.92 832.98 15.98 4.91 74.20 116.93 301.62
ETS 13.62 417.90 254.14 5.11 23531 729.76 8.05 4.45 75.02 553.28 523.88
XGBoost 5.24 349.45 263.80 2.63 173.85 852.81 301.99 7.76 73.77 128.53 305.66
LightGBM 20.64 283.19 317.01 278 161.72 815.52 18.83 4.37 89.94 177.77 361.47
CatBoost 13.08 327.63 402.01 3.68 161.36 801.70 8.15 7.41 67.49 219.78 369.14
Dlinear 13.21 333.91 288.91 2.06 207.56 767.50 105.34 50.59 68.94 328.49 316.20
LSTM 10.73 321.78 853.67 4.45 332.40 806.32 740.13 1390.83 91.94 328.46 600.28
RMSE NHiTS 14.03 248.27 315.69 337 180.04 665.83 129.89 20.12 5539 555.05 359.68
Transformer 8.57 676.69 591.03 4.22 139.25 937.15 419.26 74.90 115.15 170.81 290.41
TSMixer 25.01 286.31 467.52 231 236.92 514.66 8.48 7297 518.08 116.13 174.44
Chronos TINY 8.74 213.09 299.40 2.70 237.26 776.51 34.71 9.93 69.64 190.43 319.43
Chronos MINI 7.81 209.92 170.63 171 218.56 867.71 37.66 7.63 69.88 192.11 309.16
Chronos SMALL 10.98 240.79 188.36 343 212.76 830.23 41.09 21.15 44.08 233.63 238.30
Chronos BASE 9.61 216.11 158.89 2.19 213.59 809.89 18.37 5.89 28.71 165.97 219.00
TimeGPT 9.30 284.65 530.30 233 211.21 700.20 52.85 22.77 39.22 175.78 330.21
Lag-Llama 8.99 274.75 1111.88 3.58 321.06 554.65 299.43 48.56 120.49 1200.35 1474.33
TiRex 5.06 166.61 181.06 227 235.37 769.96 8.92 5.04 25.59 131.16 224.76
Naive 87.65 70.11 23.67 50.79 37.29 67.78 64.36 46.04 71.35 8.56 2237
ARIMA 90.86 27.05 19.91 48.98 33.68 67.00 115.51 47.29 68.82 6.30 2223
ETS 76.08 27.01 19.79 68.93 50.11 55.53 81.18 4433 68.26 38.21 36.54
XGBoost 48.97 27.07 21.29 25.19 3295 69.39 153.41 93.56 109.49 6.57 23.46
LightGBM 86.62 23.67 26.14 27.97 30.63 63.95 118.66 42.75 127.89 9.84 26.57
CatBoost 74.71 25.00 32.31 31.68 30.26 62.35 86.27 84.01 51.08 12.58 27.87
Dlinear 74.85 25.02 22.88 22.29 40.03 59.42 174.38 140.88 64.72 19.83 2276
LSTM 64.56 41.72 38.23 37.83 78.62 54.09 177.71 193.34 71.95 19.45 30.62
SMAPE NHiTS 76.87 17.74 24.85 36.13 32.53 4772 200.00 103.32 55.47 38.63 25.56
Transformer 56.77 80.97 38.15 41.99 31.69 82.30 188.16 159.91 74.69 9.05 21.52
TSMixer 95.28 20.14 34.46 22.86 50.22 36.84 93.88 200.00 127.71 571 15.80
Chronos TINY 41.79 18.27 19.48 27.57 53.38 60.73 76.21 59.84 58.07 9.98 27.07
Chronos MINI 46.32 14.29 11.20 16.21 47.43 73.69 85.79 52.16 67.21 10.15 29.18
Chronos SMALL 60.82 17.69 13.06 29.43 4225 67.71 83.72 95.00 41.22 13.11 22.16
Chronos BASE 52.06 17.82 10.56 20.57 4271 66.01 88.41 46.59 24.16 9.11 20.04
TimeGPT 65.97 20.99 39.03 24.55 45.73 49.18 116.42 93.51 39.96 9.17 23.92
Lag-Llama 52.88 24.98 71.62 46.91 100.68 33.31 187.69 131.33 130.80 76.59 83.03
TiRex 41.88 12.77 12.33 25.44 48.99 59.74 71.63 41.25 23.06 7.27 21.18
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