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ABSTRACT

Generative models for speech synthesis face a fundamental trade-off: discrete
tokens ensure stability but sacrifice expressivity, while continuous signals retain
acoustic richness but suffer from error accumulation due to task entanglement.
This challenge has driven the field towards multi-stage pipelines that rely on pre-
trained discrete speech tokenizers, but these create a semantic-acoustic divide,
limiting holistic and expressive speech generation. We resolve these dilemma
through hierarchical semantic-acoustic modeling with semi-discrete residual rep-
resentations. Our framework introduces a differentiable quantization bottleneck
that induces natural specialization: a Text-Semantic Language Model (TSLM)
generates semantic-prosodic plans, while a Residual Acoustic Model (RALM)
recovers fine-grained acoustic details. This hierarchical semantic-acoustic repre-
sentation guides a local diffusion-based decoder to generate high-fidelity speech
latents. Critically, the entire architecture is trained end-to-end under a simple dif-
fusion objective, eliminating dependency on external discrete speech tokenizers.
Trained on over 1 million hours of speech, our 0.5B-parameter model achieves
state-of-the-art zero-shot TTS performance among open-source systems, demon-
strating that our approach delivers expressive and stable synthesis. Audio samples
are available at: https://voxcpm.github.io/VoxCPM-demopage/.

1 INTRODUCTION

The pursuit of modern text-to-speech (TTS) systems has evolved beyond intelligibility toward the
synthesis of genuinely human-like audio, capable of conveying subtle emotions, speaker identity,
and contextual nuances (Shen et al., [2018; [Ping et al.| 2017} |Ren et al.| 2020 [L1 et al.| 2019). This
leap is critical for applications like empathetic virtual assistants and immersive digital avatars, and
hinges on a core technical challenge: simultaneously capturing the fine-grained acoustic details that
define vocal richness and the long-range semantic structures governing intelligibility and natural
prosody.

Inspired by the success of large language models (LLMs), a dominant paradigm frames TTS as a
sequence modeling task over discrete tokens from pre-trained neural audio codecs (e.g., EnCodec
(Défossez et al.|, [2022))). Autoregressively or Non-autoregressively predicting these tokens from text
or phonemes (Borsos et al., [2023a; Kharitonov et al., 2023} |Chen et al., 2025; Wang et al., 2025c;
Peng et al.| |2024) offers excellent scalability and in-context learning capabilities. However, this
approach faces a fundamental ”quantization ceiling”, as the compression process irreversibly dis-
cards subtle acoustic details. To mitigate this quality loss, state-of-the-art TTS systems (Du et al.,
2024alb; |2025; Zhou et al.|, 2025} |Casanova et al.| 2024) adopt multi-stage hybrid pipelines. Here, an
LLM generates discrete tokens which condition a separate diffusion-based decoder. While improv-
ing fidelity, this solution creates a stark semantic-acoustic divide: the LLM operates in an abstract,
discrete space unaware of acoustic reality, while the diffusion model performs local refinement with-
out high-level context. This fragmentation prevents end-to-end optimization and limits holistic and
expressive speech synthesis.

Alternatively, other approaches directly model continuous speech representations to avoid quan-
tization loss. Early systems like Tacotron 2 (Shen et al., [2018) and more recent models such as
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MELLE (Meng et al.,[2024) generate mel-spectrograms autoregressively. However, predicting con-
tinuous targets under standard regression losses often yields over-smoothed and low-diversity out-
puts. To address this, recent innovations have explored replacing the regression objective with a
denoising process to model the distribution of the next continuous representations, spanning both
non-autoregressive paradigms (Shen et al., 2023} [Le et al., [2023}; |Chen et al., 2024) and autore-
gressive methods(L1 et al.l 2024} Jia et al., 2025} |Peng et al., 2025). Among these, autoregres-
sive approaches have often demonstrated superior performance in capturing natural prosody and
expressive variation. This innovation successfully enhances the detail and diversity of generated
continuous representations. However, a more fundamental issue persists: in a fully continuous au-
toregressive model, the tasks of high-level semantic-prosodic planning and fine-grained acoustic
rendering are conflated within a single learning objective. The model is forced to simultaneously
solve two disparate tasks—requiring different inductive biases—in a continuous output space. This
entanglement presents a significant challenge to the modeling capacity of a single LLM, as it must
learn to be both a global planner and a local renderer without an inherent architectural bias to sepa-
rate these functions. We argue that this conflation is a root cause of instability. The model’s focus is
inevitably pulled towards fitting low-level acoustic textures, which compromises its ability to main-
tain high-level semantic coherence, leading to the well-known problem of error accumulation over
long sequences (Pasini et al.| 2024).

In this work, we introduce a unified, end-to-end framework that resolves this trade-off through hi-
erarchical semantic-acoustic modeling with semi-discrete residual representations. Our key insight
is that holistic and expressive speech synthesis requires explicit architectural separation between
semantic-prosodic planning and acoustic rendering, yet should remain within a cohesive, end-to-
end trainable system. The core innovation is a differentiable Finite Scalar Quantization (FSQ)
(Mentzer et al., 2024) bottleneck that induces natural specialization: (1) a Text-Semantic Language
Model (TSLM) generates semantic-prosodic plans stabilized through quantization, focusing on lin-
guistically meaningful patterns; and (2) a Residual Acoustic Language Model (RALM) recovers
fine-grained details lost during quantization, specializing in acoustic refinement. This hierarchical
design enables each component to excel at its respective role while maintaining differentiability,
and both of them will be used to guide a local diffusion decoder to generate high-fidelity speech
latents. Critically, the entire hierarchical model is trained end-to-end under a simple diffusion ob-
jective, seamlessly integrating planning and rendering without pre-trained tokenizers. Our main
contributions are as follows.

* We propose an end-to-end hierarchical architecture that introduces an internal semi-discrete
bottleneck to resolve the expressivity-stability trade-off. This mechanism implicitly addresses
task entanglement in continuous models by inducing a beneficial separation between semantic-
prosodic planning and fine-grained acoustic modeling within a single, unified framework.

We introduce a residual learning strategy that, in conjunction with the bottleneck, enables
a holistic yet specialized modeling process. Unlike fragmented multi-stage pipelines, our
approach achieves functional separation without architectural fragmentation, simplifying the
training pipeline and eliminating dependency on external discrete speech tokenizers.

* We demonstrate the efficacy of our approach through large-scale training on over 1 million
hours of bilingual speech. The resulting model, VoxCPM-0.5B, achieves state-of-the-art zero-
shot TTS performance among open-source systems, validating its practical strength.

* We provide extensive ablation studies that conclusively validate the semi-discrete residual rep-
resentations as the crucial component for robust, expressive, and long-form synthesis. We will
release code and models to support future research.

2 RELATED WORK

2.1 DISCRETE TOKEN-BASED TTS

The discrete token paradigm has emerged as a dominant approach in modern TTS, leveraging the
success of large language models. This method converts speech into discrete representations using
neural audio codecs such as EnCodec (Défossez et al.,[2022) and DAC (Kumar et al.|, [2023)) through
residual vector quantization (RVQ). AudioLM (Borsos et al.,[2023a)) and VALL-E (Chen et al., 2025)
pioneered this direction by framing TTS as an autoregressive sequence prediction task over discrete
acoustic tokens. Subsequent developments include SoundStorm (Borsos et al., 2023b), which in-
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troduced non-autoregressive generation for improved efficiency, and Spear-TTS (Kharitonov et al.,
2023)), which focused on multilingual capabilities with minimum supervision.

Recent advancements have focused on enhancing the scalability, controllability and zero-shot adap-
tation. CosyVoice (Du et al |2024a) proposed supervised semantic tokens for improved zero-shot
performance, while its successors, CosyVoice 2 and 3 (Du et al., 2024b; [2025) incorporated text-
based LLM initialization and streaming synthesis for human-parity quality and low latency. In-
dexTTS (Deng et al.l 2025) and IndexTTS2 (Zhou et al., 2025) introduced precise duration and
emotion control in autoregressive token generation, enabling applications with strict timing and ex-
pressivity requirements. SparkTTS (Wang et al.| [ 2025b) utilized single-stream decoupled speech to-
kens for modeling efficiency, and FireRedTTS (Guo et al.,[2024) along with its update FireRedTTS-2
(Xie et al.| 2025) established frameworks for industry-level generative speech, including long-form
multi-speaker dialogue. Despite these progresses, discrete approaches suffer from inherent quanti-
zation artifacts, limiting acoustic fidelity and prompting hybrid solutions.

2.2 CONTINUOUS REPRESENTATION TTS

To circumvent quantization losses in discrete models, continuous representation approaches directly
model speech features such as mel-spectrograms or audio latents. Early systems like Tacotron 2
(Shen et al.,|2018)) established the encoder-decoder framework for text-to-mel mapping, while Fast-
Speech (Ren et al.| 2020) introduced explicit duration modeling for alignment stability. Recent de-
velopments have integrated diffusion processes to enhance detail and diversity. Non-autoregressive
models like NaturalSpeech 2 (Shen et al.l 2023)) and VoiceBox (Le et al., [2023) apply diffusion
directly on continuous representations. F5-TTS (Chen et al.,|2024) advanced flow-matching for effi-
cient synthesis. Autoregressive paradigms, often superior in prosody and variation, include MELLE
(Meng et al.| 2024)) for mel-spectrogram generation. Innovations like ARDIT (Li et al.l [2024) use
an autogressive diffusion transformer for TTS, unifying semantic coherence and acoustic natural-
ness via parameter sharing. DiTAR (Jia et al., 2025) extended this with a patch-based design: a
causal LM for inter-patch stability and a bidirectional local diffusion transformer for intra-patch re-
finement. VibeVoice (Peng et al.,2025)) employed next-token diffusion for long-form multi-speaker
synthesis. More recent models such as CLEAR (Wu et al., 2025) and FELLE (Wang et al.| [2025a)
focus on latent autoregressive modeling with token-wise coarse-to-fine hierarchies, while MELA-
TTS (An et al.l 2025) and KALL-E (Zhu et al., 2024) combine joint transformer-diffusion with
next-distribution prediction for improved efficiency and quality. Despite these advances, continuous
models often entangle high-level semantic planning with low-level acoustic rendering, leading to
instability in long sequences without explicit separation.

2.3 HIERARCHICAL AND RESIDUAL MODELING IN TTS

Hierarchical and residual approaches decompose TTS into layered tasks to balance stability and ex-
pressivity. HierSpeech++ (Lee et al., [2025) employed variational inference for semantic-acoustic
mapping. HALL-E (Nishimura et al.| 2025) uses hierarchical neural codecs with LLMs for minute-
long synthesis. MARS6 (Baas et al.,[2025) builds robust encoder-decoder transformers with hierar-
chical tokens. DiffStyleTTS (Liu et al., [2024) applies diffusion for hierarchical prosody modeling.
HAM-TTS (Wang et al., [2024) introduces hierarchical acoustic modeling with data augmentation
for zero-shot TTS. QTTS (Han et al.l |2025) features hierarchical parallel architectures for residu-
ally quantized codes. These methods address flaws in prior paradigms: implicit designs lack regu-
lated bottlenecks, tokenizer-dependent models suffer discrete losses, and fragmented stages hinder
end-to-end optimization. However, few fully integrate explicit residual designs with semi-discrete
bottlenecks in a unified framework, as proposed in our work, to achieve implicit disentanglement
without external dependencies.

3 METHODOLOGY

3.1 CORE DESIGN MOTIVATION

Generative speech synthesis faces a fundamental tension between expressivity and stability. Dis-
crete tokenization methods (e.g., discrete speech tokenizers with language models) ensure stable
autoregressive generation but irreversibly discard fine-grained acoustic details through quantization.
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Figure 1: Overall architecture of VoxCPM. The model hierarchically generates speech by first pro-
cessing audio latents through a LocEnc, then producing a semi-discrete speech skeleton with the
TSLM and FSQ, refining acoustic details with the RALM, and finally generating high-fidelity latent
output with the LocDiT.

Continuous approaches preserve full fidelity but suffer from error accumulation in long sequences
due to information entanglement, often leading to catastrophic failure in intelligibility.

Critically, we identify a key limitation in existing discrete tokenization approaches: methods that
directly use FSQ or VQ to obtain discrete codebooks for language modeling face an inherent scal-
ability challenge. As the dimensionality increases to capture richer acoustic information, the code-
book size grows exponentially, creating an unmanageably large and sparse vocabulary that language
models struggle to predict accurately.

We hypothesize that an effective solution should structurally separate the modeling of stable
semantic-prosodic content from fine-grained acoustic details while maintaining differentiability for
end-to-end training. Our key insight is to introduce a differentiable quantization bottleneck that
naturally induces this separation through scalar quantization, splitting information into a discrete-
like skeleton for content stability and continuous residual components for detail expressivity.

Unlike multi-stage TTS systems composed of seperate LM and diffusion that treat quantization as a
means to obtain discrete prediction targets, our approach uses quantization solely as a regularization
mechanism to constrain the hidden state space. This distinction allows us to avoid the vocabulary
explosion problem while still benefiting from the stabilizing effects of discrete representations.

3.2 MODEL OVERVIEW

VoxCPM employs a hierarchical autoregressive architecture that generates sequences of continuous
speech latents Z = {z1, ...,z } conditioned on input text tokens T = {t1,...,tx}, where each
z; € RP*D represents a patch of P frames with D-dimensional VAE latent vectors. The generation
process follows:
M
p(Z|T) = [ p(2|T, Z:) 1)

i=1

The core innovation lies in our hierarchical conditioning mechanism with residual representation
learning. It is made up of a local audio encoder (LocEnc), a text-semantic language model (TSLM),
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a residual acoustic language model (RALM) and a local diffusion transformer decoder (LocDiT). A
stop predictor is attached to the output of the TSLM to determine the endpoint of generation. As
shown in Figure[I] each patch generation involves:

z; ~ LocDiT(hf"™)  himl — FSQ(TSLM(T, E;)) + RALM(:) (2)
——
stable skeleton residual details

where E; = LocEnc(Z ;) represents historical audio context aggregated by a lightweight LocEnc
that compresses VAE latent patches into compact acoustic embeddings. The hierarchical backbone
produces a conditioning signal hf"! that encapsulates both semantic content from TSLM (with FSQ)
and acoustic details from RALM. This signal guides the LocDiT to generate the current latent patch
z; through a denoising diffusion process. The entire model is trained end-to-end with gradients flow-
ing through all components, including the FSQ bottleneck via straight-through estimation, ensuring
coordinated optimization toward holistic speech synthesis.

3.3 HIERARCHICAL SEMANTIC-ACOUSTIC MODELING

Our hierarchical modeling approach is designed to implicitly separate semantic-prosodic planning
from fine-grained acoustic synthesis, addressing the fundamental stability-expressivity trade-off
through structured representation learning.

3.3.1 TEXT-SEMANTIC LANGUAGE MODEL (TSLM)

The Text-Semantic Language Model forms the main part of our hierarchical architecture, responsi-
ble for capturing high-level linguistic structure and generating contextually appropriate speech pat-
terns. Unlike conventional TTS systems that typically operate on phoneme sequences, our approach
leverages a pre-trained text language model (MiniCPM-4 (Team et al) 2025))) as its initial back-
bone, enabling richer contextual understanding and more natural prosody prediction directly from
raw text. By processing both text tokens and historical audio context, the TSLM learns to gener-
ate semantic content and prosodic structure that evolve naturally throughout an utterance, reflecting
the underlying linguistic meaning rather than simply mapping phonemes to acoustic features. The
TSLM produces continuous semantic-prosodic representations that encode both the content to be
spoken and how it should be prosodically realized, serving as input to the subsequent quantization
stage.

3.3.2 SEMI-DISCRETE REPRESENTATION LEARNING VIA FSQ

At the core of our approach lies the Finite Scalar Quantization (FSQ) layer, which projects the con-
tinuous hidden states from the TSLM onto a structured lattice to create a semi-discrete representa-
tion. The FSQ operation transforms each dimension of the continuous vector through a deterministic

scalar quantization:
FSQ h5HM
o . 1,7
h; %" = A clip (round (A) ,—L, L) 3)

where A is the quantization step size, L is the clipping range, and round maps values to discrete
levels. This transformation creates a structured discrete representation while maintaining differen-
tiability through the straight-through estimator during backward passes.

The FSQ layer acts as a bottleneck, analogous to the first layer of Residual Vector Quantization
(RVQ), which captures a coarse semantic-prosodic skeleton (e.g., content, intonation patterns). We
term this representation “semi-discrete” as it employs a significantly larger dimensionality than stan-
dard FSQ to ensure sufficient informational capacity. Unlike RVQ, where the first layer is a predic-
tion target and subsequent layers model finer details, our FSQ bottleneck serves as an intermediate,
differentiable inductive bias within the continuous data flow. It encourages the model to priori-
tize modeling stable, high-level components (the semantic-prosodic skeleton) by providing a clear
learning signal for what information should be preserved through the bottleneck. This structured
approach mitigates error accumulation by reducing the modeling burden on the TSLM, allowing it
to focus on the major components of the speech.
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3.3.3 RESIDUAL ACOUSTIC MODELING

To recover the fine-grained acoustic information attenuated by quantization, we introduce the Resid-
ual Acoustic Language Model (RALM). This module specializes in reconstructing those subtle vocal
characteristics that conventional discrete methods sacrifice for stability. It processes the quantization
residuals along with contextual information to recover speaker identity, spectral fine structure, and
micro-prosodic variations:

text

h;esidual — RAL]\/[(HTSLM7 HF<SiQ ©® E<i) (4)

Here, the RALM conditions its predictions on both the TSLM hidden states of the text part HISLM

text
the semi-discrete representation of speech part HF<SiQ, and the historical acoustic embeddings E ;.
This residual learning approach creates a natural division of labor: the TSLM+FSQ pathway fo-
cuses on content stability and prosodic coherence, while the RALM pathway specializes in acoustic

expressivity and speaker characteristics.

The final combined representation hf"™! = W 4 nresidwal thyg encapsulates both semantic stability
and acoustic expressivity, creating a comprehensive signal that guides the subsequent local diffusion
process.

3.3.4 LOCAL DIFFUSION TRANSFORMER DECODER

The Local Diffusion Transformer (LocDiT) serves as our high-fidelity synthesis module, generat-
ing continuous latent patches conditioned on the hierarchical representation h?"a] produced by the
preceding modules. Following DiTAR (Jia et al. 2025), we employ a bidirectional Transformer
architecture that enables full receptive field modeling within each patch. To enhance generation
consistency, we incorporate the previous patch z;_; as additional conditioning context, which has
been empirically validated to significantly improve output quality by framing the task as outpainting
rather than independent patch generation. Besides, we mask the LM guidance in LocDiT condition
with a specific probability ratio, for enabling classifier-free guidance (CFG) during inference.

3.4 TRAINING OBJECTIVE

The entire model is trained end-to-end using a flow-matching objective that directly optimizes the
quality of the generated speech latents. We adopt the conditional flow-matching formulation for its
training stability and sampling efficiency:

) d
Lem = Et, z?, € {|ve(zf,t, h?“‘ﬂ, Zi—1) — a(atzg + ate)|2] 5)

where z§ = atz? + o€ is the noisy latent at time ¢, with € ~ A(0, I), and vy is the velocity field
predicted by the LocDiT.

Simultaneously, a binary classification loss is applied to train the model to predict the end of a speech
sequence:

Lstop = Eirsequence [BCE (sa(hfSQ),H‘[token 1 is the last])} (6)
where sy is a stop-logit projection layer, and BCE denotes the binary cross-entropy loss.

The gradients from this loss are backpropagated through the entire autoregressive hierarchy, includ-
ing the FSQ layer (via straight-through estimation), the TSLM and the LocEnc. This end-to-end
optimization under the combined objective £ = Lgm + ALgiop allows each component to learn its
specialized role—semantic planning, stabilization, and acoustic refinement—in a coordinated man-
ner, guided by the unified objective of accurately modeling the continuous speech latents.

3.5 CAUSAL AuDIO VAE

To enable efficient streaming synthesis, we employ a causal Variational Autoencoder that operates in
a computationally efficient latent space. VAE is pre-trained separately using a composite objective
that combines reconstruction loss in the Mel-spectrogram domain, adversarial training with multi-
period and multi-scale discriminators, and a minimal KL-divergence term to regularize the latent
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space. The use of a latent space rather than raw audio waveforms significantly reduces computational
requirements while preserving perceptual quality. The causal nature of the VAE ensures that both
encoding and decoding operations can be performed in a streaming fashion, making the entire system
suitable for real-time applications where low latency is critical. The detailed implementation of
AudioVAE can be found in Appendix D}

4 EXPERIMENTS AND RESULTS

4.1 EXPERIMENTAL SETUP

Datasets We conducted experiments on two primary datasets: 1) Large-scale Bilingual Corpus:
To explore the best performance, we collected an internal large-scale, bilingual dataset totaling over
1 million hours, mainly comprising of Chinese and English speech. 2) Emilia Dataset: For com-
parisons and ablation studies, we used the publicly available Emilia dataset (He et al.l [2024) (95K
hours). All audio was resampled to 16kHz mono, processed with source separation, voice activity
detection (VAD), and automatic speech recognition (ASR) system to obtain text-audio alignment.

Implementation Details We implemented VoxCPM using the Megatron framework, with a 0.5B-
parameter configuration, comprising a 24-layer Text-Semantic Language Model (TSLM), initial-
ized from the pre-trained MiniCPM-4-0.5B (Team et al.| 2025 and a randomly initialized 6-layer
Residual Acoustic Language Model (RALM). We trained two models for comparisons: 1) VoxCPM
was trained with internal large-scale bilingual corpus for 500K steps using 40 NVIDIA H100 GPUs;
2) VoxCPM-Emilia was trained on the Emilia dataset for 200K steps using 24 H100 GPUs. Both
used the AdamW optimizer with a peak learning rate of 1 x 10~% and a Warmup-Stable-Decay
(WSD) schedule (Hu et al., 2024). All ablation studies followed the same 200K-step training pro-
tocol on 8 HI00 GPUs using the Emilia dataset, employing a fixed learning rate (i.e., without the
WSD schedule) of 1 x 10~ to ensure a consistent comparison.

Evaluation Metrics and Benchmarks We employed comprehensive subjective and objective eval-
uations. Objective metrics included Word / Character Error Rate (WER / CER) for intelligibility,
speaker embedding cosine similarity (SIM) for voice cloning, and DNSMOS for overall quality.
Subjective evaluation involved Mean Opinion Score (MOS) tests rated by 20 native speakers on
naturalness (N-MOS) and speaker similarity (S-MOS) using 5-point scales. Models were assessed
on two challenging benchmarks: 1) SEED-TTS-EVAL, focusing on general TTS intelligibility and
similarity in English and Chinese, including a “Hard” set with complex sentences; 2) CV3-EVAL,
derived from CosyVoice 3 competition, emphasizing expressive and in-the-wild voice cloning.

Baselines We compared VoxCPM against a wide range of state-of-the-art open-source TTS systems,
including CosyVoice series (Du et al., |2024ajb), MaskGCT (Wang et al., [2025c), F5-TTS (Chen
et al.,|2024), SparkTTS (Wang et al.| 2025b), FireRedTTS series (Guo et al.| [2024; [Xie et al.||2025),
IndexTTS 2 (Zhou et al.} 2025), HiggsAudio v2 and so on. All baseline results were obtained using
official implementations with default settings, or as reported in their original papers. Details of
compared models see Appendix [E]

4.2 MAIN RESULTS: COMPARISON WITH STATE-OF-THE-ART TTS

As shown in Table |1} VoxCPM achieves state-of-the-art performance among open-source models
on the SEED-TTS-EVAL benchmark. It attains an English WER of 1.85% and a Chinese CER
of 0.93%, surpassing strong competitors like IndexTTS2 and CosyVoice2. Concurrently, VoxCPM
maintains high speaker similarity, with SIM scores of 72.9% (EN) and 77.2% (ZH). This demon-
strates that the proposed semi-discrete bottleneck effectively balances intelligibility and expressivity
by hierarchical semantic-acoustic modeling, mitigating the instability common in continuous mod-
els while preserving details often lost in discrete models. The VoxCPM-Emilia variant, trained on a
smaller public dataset, delivers competitive results (EN-WER: 2.34%, ZH-CER: 1.11%). When
compared VoxCPM-Emilia against competitive AR models trained on similar data scales (e.g.,
CosyVoice2, SparkTTS, FireRedTTS), our model consistently outperforms them in stability and
similarity. While some NAR models like MaskGCT achieve higher objective metrics, AR models
typically excel in prosodic naturalness and expressiveness in the subjective evaluations (as shown in

'https://huggingface.co/openbmb/MiniCPM4-0.5B
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Table 1: Performance on Seed-TTS-eval Benchmark

Model Params Data/hrs EN ZH Hard
WER| SIM{ CER| SIM{ CER| SIM1?

F5-TTS 0.3B 100K 2.00 67.0 1.53 76.0 8.67 71.3
MaskGCT 1B 100K 2.62 71.7 2.27 77.4 - -
CosyVoice 0.3B 170K 4.29 60.9 3.63 72.3 11.75 70.9
CosyVoice2 0.5B 170K 3.09 65.9 1.38 75.7 6.83 72.4
SparkTTS 0.5B 100K 3.14 57.3 1.54 66.0 - -
FireRedTTS 0.5B 248K 3.82 46.0 1.51 63.5 17.45 62.1
FireRedTTS-2 - 1.4M 1.95 66.5 1.14 73.6 - -
Qwen2.5-Omni 7B - 2.72 63.2 1.70 75.2 7.97 74.7
OpenAudio-s1-mini 0.5B 2M 1.94 55.0 1.18 68.5 23.37 64.3
IndexTTS 2 1.5B 55K 2.23 70.6 1.03 76.5 7.12 75.5
VibeVoice 1.5B - 3.04 68.9 1.16 744 - -
HiggsAudio-v2 3B 10M 2.44 67.7 1.50 74.0 55.07 65.6
VoxCPM-Emilia 0.5B 100K 2.34 68.1 1.11 74.0 12.46 69.8
VoxCPM 0.5B 1.8M 1.85 72.9 0.93 71.2 8.87 73.0

Table 2: Performance on CV3-eval Benchmark. *denotes close-sourced systems.

Model CV3-EVAL CV3-Hard-ZH CV3-Hard-EN
ZH-CER| EN-WER| CER| SIM{ DNSMOST WER| SIM{ DNSMOSt
F5-TTS 547 8.90 - - - - -
SparkTTS 5.15 11.0 . . . . .
GPT-Sovits 7.34 12,5 . - . . - .
CosyVoice2 4.08 6.32 1258 72,6 3.81 1196 667 3.95
OpenAudio-s1-mini 4.00 5.54 181 582 377 124 557 3.89
IndexTTS2 3.58 445 128 746 3.65 878 745 3.80
HiggsAudio-v2 9.54 7.89 410 602 339 103 618 3.68
CosyVoice3-0.5B* 3.89 524 1415 786 375 904 759 3.92
CosyVoice3-1.5B* 391 4.99 977 785 3.79 1055  76.1 3.95
VoxCPM-Emilia 447 523 22 626 347 1000 626 3.68
VoxCPM 3.40 4.04 129 661 359 789 643 3.74

Table ). This highlights the data efficiency and architectural robustness of our approach, as the
FSQ bottleneck stabilizes the learning of semantic-acoustic representations even with less training
data. Notably, while DiTAR’s phoneme-based approach shows slightly better stability, VoxCPM’s
use of BPE tokens with pre-trained LLM initialization provides superior text understanding capa-
bilities and eliminates dependency on external phonemizers. Besides, our hierarchical design with
residual acoustic modeling reduces the fundamental limitation of direct continuous token modeling,
as evidenced in ablation studies.

On the CV3-EVAL benchmark (Table [2)), designed to evaluate expressive and in-the-wild perfor-
mance, VoxCPM excels with a ZH-CER of 3.40% and an EN-WER of 4.04%. Its robustness is
further confirmed on the challenging CV3 Hard-Test set, where it achieves an EN-WER of 7.89%,
outperforming even close-sourced CosyVoice 3. However, VoxCPM achieves a relatively lower
DNSMOS score compared to others, as the prompt audios used in CV3-Hard inherently have a low
DNSMOS (around 3.5), which demonstrates its faithful cloning of the recording environment and
vibe. These results underscore the model’s capability to handle complex, realistic inputs, a strength
attributed to the RALM’s role in recovering fine-grained acoustic details subsequent to the TSLM-
FSQ-based semantic-prosodic modeling.

Subjective evaluations (Table [3) further validate the objective findings, with VoxCPM achieving
competitive performance across both languages. On English tests, VoxCPM obtains the highest
scores in speaker similarity and good results in naturalness. For Chinese, while VoxCPM trails In-
dexTTS 2 in naturalness, it achieves slightly superior speaker similarity. We found that many prompt
audios from the Seed-TTS-Eval test set contain disfluencies or exhibit a monotonous tone, which
inherently constrains the naturalness of our cloned outputs. This pattern suggests that VoxCPM ex-
cels at voice cloning consistency, while IndexTTS 2 may have advantages in prosodic naturalness
for Chinese. VoxCPM-Emilia shows competitive speaker similarity but relatively lower naturalness,
highlighting the impact of training data scale.
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Table 3: Subjective Evaluations in terms of Naturalness and Speaker Similarity. Note: We select the
competitive baseline models for subjective comparison based on objective results.

7ZH EN
Model
N-MOS S-MOS N-MOS S-MOS

MaskGCT 3.20+0.11 3.77+0.11 3.84+0.11 4.00+0.10
CosyVoice 2 3.384+0.12 4.01+0.10 4.14+0.09 3.97+£0.10
IndexTTS 2 4.254+0.09 4.054+0.09 4.03+0.10 4.16 +0.09
VoxCPM-Emilia 3.79+0.12 3.99+0.11 3.91+0.10 4.104+0.09
VoxCPM 4.104+0.10 4.114+0.10 4.11+0.09 4.18+0.09

4.3 ABLATION STUDY: EFFECT OF THE SEMI-DISCRETE BOTTLENECK

As shown in TableE[, the ablation studies on the FSQ bottleneck dimensionality (More details can be
found in Appendix Table[9) provide critical insights. The catastrophic performance degradation of
the purely continuous model (w/o FSQ), especially on hard cases (ZH-CER: 24.92%), validates our
core hypothesis: entangling semantic planning and acoustic rendering in a continuous space leads to
instability. Without the inductive bias imposed by FSQ, the model struggles to separate these tasks,
resulting in error accumulation on complex utterances.

The optimal performance observed at FSQ levels (FSQ-d128/d256) reveals a key trade-off. Lower
dimensions (e.g., FSQ-d4) over-constrain the representation, limiting prosodic capacity. Higher di-
mensions (e.g., FSQ-d1024) provide insufficient discretization strength, allowing task entanglement
to persist. The peak at FSQ-d256 indicates the bottleneck creates an effective “summary space’:
discrete enough to stabilize long-range semantic planning yet continuous enough to retain crucial
prosodic and speaker information, thereby enforcing a beneficial division of labor within the model.

4.4 ABLATION STUDY: EFFECT OF RESIDUAL ACOUSTIC MODELING

As shown in Table[d] the ablation studies about the residual language modeling validate our core ar-
chitectural innovations. Notably, the purely continuous variant (w/o RALM: TSLM — LocDiT)
—analogous to DiTAR’s approach—shows significantly degraded performance, particularly on
challenging cases. The performance gap persists across different TSLM configurations, confirm-
ing that the challenge is fundamental to the learning objective rather than parameter allocation. This
conclusively demonstrates the advantage of our explicit separation between semantic and acous-
tic modeling. To isolate the benefits of our hierarchical architecture from simple capacity effects,
we compared single-stream models with identical initialization foundation but varying depths: [w/o
RALM: TSLM(24 layers, LM init.)] vs. [w/o RALM: TSLM(30 layers, partial LM init.)]. The gains
from increasing capacity is marginal (e.g., EN-WER from 4.34 to 4.12), while the gains from in-
troducing hierarchical structure is larger in default setting (e.g., EN-WER 2.98). This confirms that
the hierarchical TSLM/RALM separation is the dominant factor for stability and expressiveness,
significantly outweighing the benefit of merely increased capacity. Furthermore, the hierarchical
design exhibits superior performance compared to its single-stream counterpart, even under fully
random initialization ([Hierarchical, w/o LM init. in TSLM] vs. [w/o RALM: TSLM(30 layers,
random init.)]). This simultaneous improvement demonstrates that the hierarchical residual design
provides intrinsic benefit for a specialized division of labor, which is effective even without the
strong semantic grounding from pre-trained parameters.

Secondly, the critical role of residual acoustic input is further evidenced by the substantial degrada-
tion when ablating original acoustic embeddings (w/o E/; in RALM), highlighting that the RALM
requires fine-grained acoustic information to accurately recover acoustic details. Finally, the best
performance of the default setting demonstrates the effectiveness of the residual connection. By
summing the TSLM and RALM hidden states, the model explicitly delegates semantic-prosodic
planning to the TSLM and acoustic refinement to the RALM, achieving optimal integration.

Finally, the effect of pre-training initialization is intuitive: removing pre-trained text LM initializa-
tion results in a significant degradation in intelligibility (e.g., EN-WER 2.98 vs. 5.24). This confirms
that the pre-trained knowledge is critical for establishing the TSLM’s initial capability and stabil-
ity. We observe that models trained from random initialization shows a marginal increase in SIM,
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suggesting that without the strong linguistic guidance from the pre-trained LLM, the model might
implicitly allocate more capacity to acoustic feature modeling.

Table 4: Ablation Studies about FSQ bottleneck dimensions and core architecture designs.

. EN ZH ZH-hard case

Model Setting
WER| SIM? CER| SIM? CER| SIM?7

default setting (w/ FSQ: d256s9) 2.98 62.6 1.77 70.4 18.19 64.9
w/ FSQ: d4s9 5.18 59.3 4.05 68.0 19.55 62.3
w/ FSQ: d128s9 343 62.2 1.67 70.7 16.76 65.7
w/ FSQ: d1024s9 3.07 62.0 2.38 69.8 20.38 64.7
w/o FSQ: d1024s00 3.67 62.1 2.30 69.6 24.92 63.5
Hierarchical, w/o LM init. in TSLM 5.24 63.4 2.41 70.9 24.66 65.6
w/o RALM: TSLM (24 layers, LM init.) — LocDiT 4.34 61.8 3.05 69.4 25.00 63.8
w/o RALM: TSLM (30 layers, random init.) — LocDiT 5.35 62.6 3.46 69.8 30.40 63.9
w/o RALM: TSLM (30 layers, partial LM init.)— LocDiT 4.12 62.0 3.07 69.6 26.20 63.1
w/o E~; in RALM: TSLM — ALM — LocDiT 491 60.9 4.94 68.1 27.17 61.7
w/o hrsidual in condition: TSLM — FSQ — LocDiT 3.86 58.3 3.05 67.6 23.65 61.7

4.5 ANALYSIS AND DISCUSSION

Analysis of Hierarchical Representations T-SNE visualizations (Appendix Figure2|to[5) confirm
the specialized roles of TSLM and RALM. TSLM-FSQ outputs form semantic-prosodic structures
closely tied to text content, whereas RALM residuals exhibit strong speaker-related variations for
acoustic rendering. This functional specialization validates the efficacy of our hierarchical residual
modeling. More details and analysis can be found in Appendix [F.5]

Expressive Synthesis Capabilities Beyond quantitative metrics and visualizations, VoxCPM shows
good expressive synthesis capabilities directly from text benfiting from the architecture design and
training data. When not using prompt speech, the model tends to express suitable style from con-
textual cues, also shown in[F.5] We strongly recommend readers to listen our demo samples.

Scalability and Efficiency The performance improvement from VoxCPM-Emilia to VoxCPM high-
lights the architecture’s scalability with increased data. The hierarchical design allows larger models
to effectively utilize increased capacity for learning complex patterns. In terms of inference effi-
ciency, VoxCPM-0.5B achieves a real-time factor (RTF) of 0.17 on a single NVIDIA RTX 4090,
confirming practical deployment feasibility.

5 CONCLUSION

In this work, we resolve the fundamental trade-off between expressivity and stability in text-to-
speech synthesis by introducing a unified, end-to-end framework based on hierarchical semantic-
acoustic modeling with semi-discrete residual representations. Our approach leverages a differen-
tiable quantization bottleneck to induce a natural separation of concerns: a text-semantic language
model captures high-level semantic-prosodic structure, while a residual acoustic model recovers
fine-grained details. This eliminates the dependency on external discrete speech tokenizers and mit-
igates the error accumulation that plagues purely continuous autoregressive models. Extensive ex-
periments demonstrate that our model achieves state-of-the-art zero-shot TTS performance among
open-source systems, excelling in both intelligibility and speaker similarity. The success of Vox-
CPM validates that learning structured, regularized latent spaces provides a principled foundation
for expressive generative audio modeling.
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A THE USE OF LARGE LANGUAGE MODELS (LLMS)

In accordance with ICLR policy, we disclose that a large language model (LLM), specifically
Gemini-2.5 and DeepSeek, was used as a general-purpose assistive tool during the writing of this
paper. The LLM was employed solely for the purpose of text polishing and refinement, specifically
to assist with improving grammar, enhancing word choice, and increasing the overall readability
and fluency of the manuscript. However, the model played no role in the intellectual or scientific
contributions of this work, including research ideation, experimental design, result analysis, or con-
clusion drawing. All such core content is solely the product of the human authors, who take full
responsibility for the research presented.

B REPRODUCIBILITY STATEMENT

Inference codes are available at codes.zip. Training was conducted using the Megatron framework
on 40 NVIDIA H100 GPUs for the main VoxCPM model and 24 H100 GPUs for VoxCPM-Emilia.
Ablation studies used 8 H100 GPUs. Full details about hyperparameters are in Section D}

C ETHICS STATEMENT

Since our zero-shot TTS model achieves high-quality speech synthesis with the ability to closely
mimic speaker characteristics, it carries potential risks of misuse. These risks include, but are
not limited to, spoofing voice authentication systems or impersonating a specific speaker without
their consent. Our experiments were conducted under the assumption that the use of any reference
speaker’s voice is authorized and intended for legitimate synthesis purposes. To mitigate these risks,
we strongly advocate for the development of robust synthesized speech detection algorithms. Fur-
thermore, we believe it is crucial to establish clear ethical guidelines and reporting mechanisms for
the responsible deployment of such technology.

D IMPLEMATATION DETAILS OF VOXCPM

D.1 MODEL ARCHITECTURE

VoxCPM consists of a 24-layer TSLM (initialized from MiniCPM-4-0.5B) and a 6-layer RALM.
The FSQ layer uses 256 dimensions with 9 scalar levels. The diffusion decoder has 4 layers, opti-
mized for high-efficacy latent generation, as shown in Table 3]

For Audio VAE, it operates at a 25 Hz frame rate, designed to be compatible with the streaming
nature of VoxCPM. The VAE’s architecture is inspired by DAC, with both its encoder and decoder
implemented using stacked Causal Convolutional Networks (Causal CNNs). For 16 kHz single-
channel audio, the encoder achieves a 640x downsampling factor through a series of strided convo-
lutions with a stride sequence of [2, 5, 8, 8], compressing the audio into a 25 Hz latent representation.
The decoder then reconstructs the original waveform by upsampling from this latent representation.
The training objectives consist of an adversarial (GAN) loss, a Mel-spectrogram loss, and a KL
divergence loss, with the latter’s weight set to Se-5.

D.2 TRAINING CONFIGURATION

Both VoxCPM and VoxCPM-Emilia employed the Warmup-Stable-Decay (WSD) training strategy,
which we found essential for optimal convergence. Specifically, the decay phase with annealing
to a very low learning rate (combined with batch size doubling) significantly enhances model per-
formance, particularly for zero-shot speaker similarity, as demonstrated in Table [I0] All ablation
studies followed the same 200K-step training protocol on 8 H100 GPUs using the Emilia dataset,
employing a fixed learning rate of 1 x 10™* to ensure consistent comparisons.
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Table 5: The model architecture and parameters of VoxCPM-0.5B.

Module Configuration Parameters
LocEnc 4 layers, 1024 hidden dim, 4096 FFN dim 59M

TSLM 24 layers, 1024 hidden dim, 4096 FFN dim 433M

FSQ 256 dimensions, 9 quantization levels 0.5M
RALM 6 layers, 1024 hidden dim, 4096 FFN dim 8OM
LocDiT 4 layers, 1024 hidden dim, 4096 FFN dim 64M

Stop Predictor  3-layer MLP, 1024 hidden dim, 2 output dim M
patch-size 2 (that is, TSLM and RALM work in 12.5Hz token rate) -

AudioVAE 16kHz waveform — 25Hz latents (downsampling at [2, 5, 8, 8]) 75M

Table 6: Training configurations for VoxCPM variants.

Model Phase Learning Rate Tokens/Batch  Steps GPUs

VoxCPM Stable 1x10% 4,096 400K 40 x H100
VoxCPM Decay 1x107% —5x107° 8,192 100K 40 x H100
VoxCPM-Emilia Stable 1x 1074 4,096 150K 24 x H100
VoxCPM-Emilia ~ Decay 1x107% — 5 x 107¢ 8,192 50K 24 x H100
VoxCPM-ablation  Stable 1x10% 4,096 200K 8 x H100

E DETAILS OF BASELINES

We compared VoxCPM against several state-of-the-art TTS systems, focusing on open-source mod-

els from

the SEED-TTS-EVAL and CV3-EVAL benchmarks. Below, we describe the key baselines,

their architectures, training data, and how evaluation samples were generated.

CosyVoice Series (Du et al., 2024aib; 2025): A family of TTS models leveraging su-
pervised semantic tokens and multi-stage pipelines. CosyVoice (Du et al.| [2024a) uses a
transformer-based architecture with S3Tokenizer, trained on approximately 170K hours
of multilingual speech data (primarily English and Chinese). CosyVoice2 (Du et al.,
2024b) enhances this with text-based LLM initialization, and introduces streaming syn-
thesis for low-latency synthesis. CosyVoice3 (Du et al.| 2025) further leverages in-the-
wild speech data, and proposes a novel speech tokenizer to capture prosody, with pow-
erful post-training techniques. We used officially released checkpoints from https:
//github.com/FunAudioLLM/CosyVoice|with default settings to generate sam-
ples.

MaskGCT (Wang et al.l 2025c): A non-autoregressive transformer model that employs
masked generative transformers to predict discrete speech tokens derived from a neural
audio codec and SSL tokens. It is trained on the Emilia dataset and achieves a strong
performance on zero-shot TTS. Besides, it can control the duration precisely. Samples
were generated using the official implementation provided at https://github.com/
open—mmlab/Amphion/tree/main/models/tts/maskgct.

F5-TTS (Chen et al., 2024): A non-autoregressive model utilizing flow-matching for effi-
cient speech synthesis. It operates on continuous mel-spectrogram representations, also
trained on Emilia dataset. We used the official codes and checkpoint from https:
//github.com/SWivid/F5-TTS|to generate evaluation samples.

SparkTTS (Wang et al., 2025b)): A languae model-based model using single-stream de-
coupled speech tokens to improve modeling efficiency. It is trained on 100K hours of
bilingual (English and Chinese) dataset VoxBox, enabling it capability to achieve con-
trollable speech synthesis. Samples were generated using the official implementation at
https://github.com/SparkAudio/Spark—-TTS.

FireRedTTS Series (Guo et al., [2024} Xie et al., 2025): FireRedTTS presents a founda-
tion TTS framework for industry-level generative speech application. FireRedTTS2 fur-
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ther employs it for long-form multi-speaker dialogue. FireRedTTS-2 improves scalabil-
ity with a refined transformer architecture, trained on 1.1M hours of monologue speech
data and 300k hours of multi-speaker dialogue data. We used official checkpoints from
https://github.com/FireRedTeam/FireRedTTS|for sample generation.

e IndexTTS2 (Zhou et al.| 2025): An autoregressive large-scale TTS model with precise
duration control. It also achieves disentanglement between emotional expression and
speaker identity, enabling independent control over timbre and emotion. Samples were
generated using the official checkpoint from https://github.com/index-tts/
index-tts.

* Higgs Audio v2: A powerful audio foundation model pretrained on over 10 million hours
of audio data and a diverse set of text data. It proposes a unified audio tokenizer captures
both semantic and acoustic features. We used the official implementation at https://
github.com/boson-ai/higgs—-audio|to generate samples.

* VibeVoice (Peng et al.|2025):A novel framework designed for generating expressive, long-
form, multi-speaker conversational audio, such as podcasts, from text. It presents a contin-
uous speech tokenizers (Acoustic and Semantic) operating at an ultra-low frame rate of 7.5
Hz. Because now the codes are unavailable at https://github.com/microsoft/
VibeVoice, we use the official results reported in the paper.

* OpenAudio-s1-mini: A compact and powerful TTS model (0.5B parameters) using dual-
AR architecture and online Reinforcement Learning from Human Feedback (RLHF).
Samples were generated using the official implementation at https://github.com/

fishaudio/fish-speech.

F ADDITIONAL EXPERIMENTAL RESULTS

F.1 COMPREHENSIVE COMPARISONS ON SEED-TTS-EVAL BENCHMARK

In this section, we present comprehensive comparisons covering both open-source and close-source

TTS systems. As shown in Table |7/} VoxCPM not only outperforms all open-source competitors

but also achieves results comparable to several proprietary systems, despite their significantly larger

parameter counts and training data scales.

Table 7: Performance on Seed-TTS-eval Benchmark, including close-sourced systems

Model Params Open-Source EN ZH Hard
WER| SIM{t CER| SIM{ CER] SIM1?

MegaTTS3 0.5B X 279 771 152 790 - -
DiTAR 0.6B X 1.69 735 .02 753 - -
CosyVoice3 0.5B X 2.02 71.8 116 780  6.08 75.8
CosyVoice3 1.5B X 222 72.0 .12 781 5.83 75.8
Seed-TTS - X 225 76.2 112 796 759 77.6
MiniMax-Speech-02 - X 165 692 083 783 - -
F5-TTS 0.3B v 2.00 67.0 1.53 76.0 8.67 71.3
MaskGCT 1B v 2.62 717 227 77.4 - -
CosyVoice 0.3B v 429 60.9 3.63 723 1175 709
CosyVoice2 0.5B v 3.09 65.9 1.38 75.7 683 724
SparkTTS 0.5B v 3.14 57.3 154  66.0 - -
FireRedTTS 0.5B v 3.82 46.0 1.51 635 1745 621
FireRedTTS-2 v 1.95 66.5 1.14 736 - -
Qwen?2.5-Omni 7B v 272 63.2 170 752 797 747
OpenAudio-sl-mini ~ 0.5B v 1.94 55.0 1.18 68.5 2337 643
IndexTTS 2 1.5B v 223 706  1.03 765 7.12 755
Vibe Voice 1.5B v 3.04 68.9 1.16 744 - -
HiggsAudio-v2 3B v 2.44 67.7 150 740 5507 656
VoxCPM-Emilia 0.5B v 234 68.1 1.11 740 1246 698
VoxCPM 0.5B v 1.85 729 093 772 887 73.0
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F.2 EFFECT OF LM GUIDANCE ON LocDIT

To explore CFG influence and select the best inference setting, we tested different CFG value, that
is, the LM (the sum of TSLM-FSQ hidden and RALM hidden) guidance on LocDiT. We found that
CFG value=2.0 could achieve optimal balance across all metrics. Higher weights (>3.0) degraded
intelligibility significantly.

Table 8: Effect of LM guidance on LocDiT, tested on Seed-TTS-eval Benchmark.

EN ZH ZH-hard case
WER| SIM1T CER| SIMt CER] SIM1
1.0 (w/o CFG) 16.32 55.1 14.47 61.5 56.87 43.0

CFG Value

1.5 1.86 72.1 1.16 71.0 9.60 73.9
2.0 1.85 729 0.93 712 8.87 73.0
3.0 2.16 714 1.12 74.7 13.22 65.0
5.0 12.78 60.7 17.23 59.4 48.46 39.9

F.3 EFFECT OF THE SEMI-DISCRETE BOTTLENECK

This section shows more comprehensive investigation about FSQ bottleneck dimension, as shown
in Table[9] It can be found that when removing scalar quantization in the bottleneck layer, the per-
formance tends to degrade, showing that semi-discrete latent space maybe more stable and robust
than fully continuous space. Besides, we investigated the impact between FSQ and VAE regu-
larization as the bottleneck in VoxCPM. We replaced the FSQ bottleneck with a continuous VAE
bottleneck and trained it under the same setting. We specifically chose a dimension of 16 for the
continuous bottleneck (16d-VAE), as high-dimensional continuous latents (e.g., 256d) empirically
suffer from posterior collapse or inefficient compression due to optimization challenges. Under the
same 16-dimensional setting, the FSQ model achieves significantly better robustness than the VAE.
The VAE bottleneck nearly doubles the error rate on challenging cases (CER=28.17%) compared to
the FSQ counterpart (CER=14.42%). This confirms that the semi-discrete nature of FSQ provides
an indispensable inductive bias for stability that continuous regularization lacks. While the con-
tinuous 16d-VAE achieves slightly higher English speaker similarity than 16d-FSQ (likely because
continuous vectors can encode finer acoustic details), this comes at the cost of intelligibility. Our
default 256d-FSQ strikes the best balance, maintaining high expressivity without the optimization
instability associated with high-dimensional continuous bottlenecks.

Table 9: FSQ dimension selection study on the Emilia dataset. Note: The 256-dim configuration
was selected for the final VoxCPM configuration with the understanding that larger training datasets
needs more powerful modeling capabilities.

. EN ZH ZH-hard case

Model Setting
WER| SIMT CER| SIM{T CER|] SIM?1

w FSQ: d4s9 5.18 59.3 4.05 68.0 19.55 62.3
w FSQ: d16s9 3.22 60.4 1.87 70.5 14.42 66.2
w FSQ: d64s9 3.22 61.1 2.14 69.8 17.48 65.1
w FSQ: d128s9 3.43 62.2 1.67 70.7 16.76 65.7
w FSQ: d256s9 2.98 62.6 1.77 70.4 18.19 64.9
w FSQ: d1024s9 3.07 62.0 2.38 69.8 20.38 64.7
w/o FSQ: d1024sc0 3.67 62.1 2.30 69.6 24.92 63.5
w VAE: d16 3.56 62.1 1.94 69.7 28.17 62.7

F.4 EFFECT OF TRAINING PHASE ON PERFORMANCE
As mentioned in[D.2} the two-phase Warmup-Stable-Decay (WSD) learning rate schedule is critical

for achieving optimal model performance. The initial Stable phase allows the model to converge
reliably to a strong baseline. The subsequent Decay phase is then essential for refining the model,
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particularly for improving its zero-shot voice similarity capabilities. Furthermore, doubling the
batch size (from 4K to 8K tokens) during the Decay phase is a necessary complement to the reduced
learning rate. A larger batch size provides a more accurate and stable estimate of the gradient di-
rection, which is crucial for effective and stable optimization when using very low learning rates.
This strategy prevents the noise from small-batch gradients from destabilizing the fine-tuning pro-
cess, enabling the model to make consistent improvements in both intelligibility (lower WER) and
speaker similarity (higher SIM).

Table 10: Performance across training phases.

EN ZH ZH-Hard Case
WER| SIMt CER|] SIM1T CER| SIM?

Stable 2.05 69.7 0.99 75.1 13.22 68.6
Decay 1.85 72.9 0.93 71.2 8.87 73.0

Phase

F.5 VISUAL ANALYSIS OF HIERARCHICAL REPRESENTATIONS

To validate our core hypothesis of learned implicit semantic-acoustic disentanglement, we conducted
a t-SNE visualization of the internal representations in our hierarchical model. The resulting distri-
butions, shown in Figures [2 and [3] empirically confirm the specialized roles of the TSLM and the
RALM. Figure2]illustrates the model’s behavior in a zero-shot voice cloning task, where each color
corresponds to a distinct utterance from an unseen speaker. The TSLM-FSQ outputs form a stable,
speaker-agnostic semantic-prosodic structure, while the RALM residuals cluster by speaker identity,
confirming their specialized roles in content planning and acoustic refinement.

Figure [3] further demonstrates the VoxCPM’s capability to infer appropriate prosody and style di-
rectly from text, when not using any speech prompt. When processing different text genres (news,
poetry, conversation), TSLM-FSQ representations cluster by semantic category, showing that the
pre-trained language model backbone effectively infers appropriate prosodic patterns directly from
text content. For example, embeddings for “news” group together, separate from “story-telling”
or “rap-lyrics.” The RALM outputs display greater within-category variation, indicating its role in
adding fine-grained acoustic nuances to the semantic-prosodic plan.

To investigate whether the observed semantic-acoustic specialization originates from the hierarchical
structure design or the pre-trained LLM weights, we conducted a controlled experiment. We trained
a VoxCPM variant with fully random TSLM initialization and performed t-SNE visualization of its
latent spaces for both zero-shot cloning (Figure[d)) and text-to-speech (Figure [5) tasks.

The visualizations reveal that even in the absence of pre-trained semantic knowledge, the latent
space exhibits a similar functional division of labor. The TSLM-FSQ hidden states still show rele-
vance to semantic content and weak speaker relevance (as seen in Figure o)), while the RALM hidden
states display strong speaker-dependent clustering (as seen in Figure ). Although this self-learned
specialization is slightly less distinct compared to the LLM initialized model, the consistency con-
firms that the residual semi-discrete bottleneck structure itself is the key inductive bias that enables
the model to self-adapt and learn a specific semantic-acoustic division of labor. The pre-trained lan-
guage model parameters primarily serve to significantly sharpen, stabilize, and enhance this inherent
modeling capacity.

F.6 FUSION STRATEGIES ABLATION

The LocDiT module is responsible for generating the final speech latents by conditioning on the
combined semantic-acoustic representation derived from the TSLM (via FSQ) and the RALM. In
the default VoxCPM configuration, we adopt a simple element-wise summation of the TSLM and
RALM output hidden states as the fusion mechanism, primarily for its intuitively aligning with the
“residual” nature of the design and good performance. To validate this choice, we conducted an
ablation study comparing summation against several other common feature fusion strategies (con-
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Figure 2: The T-SNE visualization of latent space distributions in zero-shot voice cloning task.
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Figure 3: The T-SNE visualization of latent space distributions in text-to-speech task, without

prompt speech.

catenation, gating, and attention-based fusion). The results are presented in Table[TT] It shows that
while concatenation slightly improves speaker similarity, the simple summation strategy achieves
the best balance of intelligibility (lowest WER and CER) and acoustic quality. The significantly
higher error rates observed with attention-based fusion suggest that relying on the model to dynam-
ically learn the fusion weights introduces optimization instability in the continuous latent space.

Table 11: Ablation of different fusion strategies for combining TSLM and RALM outputs in LocDiT.

Fusion Strategy EN-WER () EN-SIM (1) ZH-CER () ZH-SIM (1)
Sum (Default) 2.98 62.6 1.77 70.4
Concatenation 3.16 64.1 2.88 71.3
Gating 3.75 63.6 2.04 70.2
Attention 4.92 59.9 543 66.5
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Figure 4: The T-SNE visualization of latent space distributions (without pretrained LLM parameters
initialization for TSLM) in zero-shot voice cloning task.
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Figure 5: The T-SNE visualization of latent space distributions (without pretrained LLM parameters
initialization for TSLM) in text-to-speech task, without prompt speech.

F.7 PROBING ANALYSIS FOR SEMANTIC-ACOUSTIC MODELING

To verify the core hypothesis that the FSQ bottleneck induces a functional separation of labor be-
tween the TSLM (semantic focus) and RALM (acoustic focus), we conducted Layer-wise Probing
Experiments following the SUPERB (Yang et all 2021)) setting. We trained lightweight linear
classifiers on the frozen internal hidden states extracted from four key locations: LocEnc, TSLM ,
FSQ, and RALM. We assessed the capture of linguistic-content using phoneme recognition (PR)
and automatic speech recognition (ASR), measured by Phoneme Error Rate (PER) and WER, re-
spectively. The lower values indicate better linguistic content preservation (higher intelligibility).
Acoustic-timbre modeling was evaluated via the Automatic Speaker Verification (ASV) task, mea-
sured by Equal Error Rate (EER). The lower values indicate better speaker identity modeling (higher
acoustic/timbre distinguishability).

The probing experiment results offer evidence to our core architectural claims:
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* Acoustic Features Aggregation: The LocEnc is responsible for aggregating the low-level
continuous acoustic latents from AudioVAE. Consequently, it reflects the weak seman-
tic relevance (PER=59.12%, WER=65.79%) and carries fundamental acoustic information
like timbre (EER=15.38%).

* Semantic Specialization: The TSLM representation achieves the lowest PER (45.60%) and
WER (60.43%), validating its role in capturing the stable linguistic and prosodic content.

* Acoustic Filtering: The FSQ representation exhibits the highest EER (19.25%). This is a
critical finding: the quantization bottleneck effectively acts as an acoustic filter, actively
reducing correlation with speaker identity and prioritizing content-prosodic stability.

* Residual Recovery: Conversely, the RALM representation achieves the lowest EER
(13.24%). This conclusively proves that the RALM specializes in recovering the fine-
grained acoustic residuals and speaker identity that were filtered by the FSQ.

The slight rise in content error post-FSQ (PER=50.90%, WER=62.37%) confirms the expected lossy
nature of quantization and the subsequent shift in the RALM’s focus from pure semantic modeling
toward acoustic refinement. These findings empirically validate our premise: VoxCPM successfully
enforces a natural division of labor using the FSQ as an inductive bias.

Table 12: Layer-wise probing results on internal hidden states of VoxCPM.

Hidden State Location PR (PER) | ASR(WER)| ASV (EER)|
LocEnc output 59.12 65.79 15.38
TSLM last hidden (Pre-FSQ) 45.60 60.43 18.70
FSQ output 50.90 62.37 19.25
RALM last hidden 53.49 64.85 13.24

F.8 EFFECT OF MODEL SCALABILITY

We conducted a model scalability analysis to empirically demonstrate the robustness of the hier-
archical VoxCPM architecture across varying capacities. We trained larger variants of VoxCPM,
namely 1B and 3B parameters, on the Emilia dataset for 200k iterations.

The specific architectural configurations used for the larger models were as follows:
* VoxCPM-1B: This model consisted of a 28-layer TSLM (h = 2048), a 7-layer RALM
(h = 2048), and 6 layers for both the LocEnc and LocDiT modules (h = 1024).

* VoxCPM-3B: This model was configured with a 32-layer TSLM (h = 2560), an 8-layer
RALM (h = 2560), and 8 layers for both LocEnc and LocDiT (h = 1024).

As shown in Table[T3] increasing the model capacity consistently improved performance across all
core metrics (EN-WER, EN-SIM, ZH-CER, and ZH-SIM). Specifically, the 3B variant achieved
the best intelligibility (2.60% WER) and speaker similarity (66.7% SIM). This validates that the
multi-component, hierarchical design of VoxCPM remains fully scalable and effectively leverages
increased parameter counts.

Table 13: Scalability analysis of VoxCPM variants trained on the Emilia dataset.

Model Size EN ZH
WER| SIM! CER| SIM |
0.5B 208 626 177 704
1B 205 659 182 720
3B 260 667 178 723

21



Under review as a conference paper at ICLR 2026

F.9 THE COMPARISON OF REAL-TIME FACTOR AND STREAMING SYNTHESIS DETAILS

We evaluated the Real-Time Factor (RTF) of VoxCPM in comparison to other TTS models on a sin-
gle NVIDIA RTX 4090 GPU. VoxCPM achieves a remarkably low RTF of 0.17, significantly faster
than Cosy Voice2 (0.52) and SparkTTS (0.80), due to its efficient 12.5 Hz token rate and lightweight
components.The throughput for the LM backbone in VoxCPM is approximately 73 tokens/s.

Table 14: The Real-Time Factor of some TTS systems.

TTS System RTF |
CosyVoice 2 0.52

SparkTTS 0.80
IndexTTS 2 0.85
VoxCPM 0.17

Furthermore, VoxCPM supports true streaming synthesis with a theoretical first-packet latency be-
low 100 ms: the LocDiT generates patches in under 10ms with 10 iterations, owing to its short local
context and lightweight parameters, while the causal AudioVAE enables incremental processing. To
ensure smooth playback, the last three latents are buffered, resulting in 80 ms audio chunks per step.

G FURTHER DISCUSSION

G.1 THEORETICAL GROUNDING: INFORMATION BOTTLENECK PRINCIPLES

To better explain the success use of FSQ bottleneck in VoxCPM, we provide an intuitive theoreti-
cal grounding information bottleneck principles: The FSQ layer functions as a capacity-constrained
bottleneck between the high-capacity TSLM and the downstream RALM. Mathematically, the scalar
quantization inherent in FSQ acts as a lossy compression filter. To minimize the end-to-end diffu-
sion loss, the TSLM is heavily penalized if it attempts to encode high-variance, fine-grained acoustic
details (like timbre or specific residuals), as these would be significantly distorted by the scalar quan-
tization step. Consequently, the TSLM is naturally forced to prioritize encoding low-variance, stable
features—namely, the semantic and global prosodic structure (content, intonation). This mechanism
effectively offloads the task of modeling high-frequency, complex acoustic residuals to the RALM.

Empirical results from our probing experiments (Appendix [F7) validate this induced division of
labor: TSLM representations demonstrate relatively high semantic accuracy (low PER and WER)
but are acoustic-agnostic (high speaker EER), while RALM exhibits the opposite behavior. This
confirms the FSQ’s effectiveness as an internal inductive bias for hierarchical task separation.

G.2 ANALYSIS ON QUANTIZATION CEILING

Continuous Latents vs. Discrete Codebooks: Discrete tokenizers like S3Tokenizer map speech
signals to a fixed, finite codebook of size K,imposing a rigid, finite ceiling on expressive information
(the ’quantization ceiling”’). Our AudioVAE operates in a 64-dimensional continuous latent space,
which retains significantly richer acoustic detail and avoids the critical precision loss inherent in
mapping to a finite, low-dimensional set.

Internal FSQ Bottleneck Capacity: Inside VoxCPM, the FSQ bottleneck serves as a regularizer,
not a prediction target for a small codebook. We use a high-dimensional FSQ (e.g., d256s9), offering
a vast representational space far exceeding traditional VQ/FSQ codebooks. Our FSQ ablation study
(Table[9) shows that when we constrain the FSQ capacity to mimic a traditional small codebook (e.g.,
FSQ d4s9, equivalent to 6561 vocab), the clone similarity (SIM) significantly degrades, proving that
full information preservation is essential for the model’s performance ceiling.

VAE Reconstruction Quality: To quantify the potential information bottleneck imposed by the
VAE, we evaluated its reconstruction quality on the SEED-TTS-Eval dataset. The VAE is designed
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to be reconstruction-oriented with a low KL-penalty, ensuring maximum information retention. As
shown in Table[T5] the VAE-reconstructed audio exhibits high fidelity across objective metrics. The
minor difference between the Ground Truth (GT) and Reconstruction confirms that the continuous
latent space effectively preserves necessary acoustic detail, distinguishing it from the significant
information loss typically associated with low-bitrate discrete tokenizers.

Table 15: AudioVAE reconstruction performance comparison against Ground Truth (GT) on SEED-
TTS-Eval.

Metric Mel Loss (/) STOI(1) WER () SIM (1) DNSMOS (1)

GT 0.000 1.000 1.21 75.5 3.96
Recon 0.924 0.948 1.33 73.6 3.92

H EVALUATION METRICS AND QUESTIONNAIRES

To ensure robust subjective evaluation, we developed an automated interface for assessing gener-
ated speech samples. For each evaluation item, participants interact with three components: the
Evaluation Interface (containing the audio sample to be rated), the Questionnaire, and the Rating
Guidelines. Evaluations were conducted by 20 people for both English and Chinese samples.

H.1 NATURALNESS MOS

Evaluation Interface: A single audio clip accompanied by its corresponding text prompt.

Questionnaire: To what extent does the speech sound natural and human-like? Does it convey en-
gagement with the content, or does it resemble an artificial voice lacking contextual understanding?

Rating Guidelines:

* 5: Indistinguishable from human speech, highly natural and engaging.
* 4: Surpasses expectations for synthetic speech, very human-like.

* 3: Meets expectations for Al-generated speech, reasonably natural.

» 2: Below average, with noticeable artificial qualities.

¢ 1: Clearly synthetic, lacking human-like expression.

H.2 SPEAKER SIMILARITY MOS

Evaluation Interface: A reference audio clip alongside the audio clip to be evaluated.

Questionnaire: Focusing solely on voice characteristics (disregarding content and audio quality),
how closely does the evaluated voice match the reference voice?

Rating Guidelines:

* 5: Nearly identical to the reference voice, as if spoken by the same person.
* 4: Highly similar to the reference voice, with minor differences.

* 3: Moderately similar, sharing some vocal traits.

» 2: Largely dissimilar, with few shared characteristics.

* 1: Completely distinct, bearing no resemblance to the reference voice.
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