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ABSTRACT

Symbolic regression is a challenging task in machine learning that aims to automati-
cally discover highly interpretable mathematical equations from limited data. Keen
efforts have been devoted to addressing this issue, yielding promising results. How-
ever, there are still bottlenecks that current methods struggle with, especially when
dealing with complex problems containing various noises or with intricate underly-
ing mathematical formulas. In this work, we propose a novel Geometric Evolution
Symbolic Regression(GESR) algorithm. Leveraging geometric semantics, the
process of symbolic regression in GESR is transformed into an approximation to
an unimodal target in n-dimensional topological space. Then, three key modules
are proposed to enhance the approximation: (1) a new semantic gradient concept,
proposed to assist the exploration, which aims to improve the accuracy of approxi-
mation; (2) a new geometric search operator, tailored for approximating the target
formula directly in topological space; (3) the Levenberg-Marquardt algorithm with
L2 regularization, used for the adjustment of expression structures and the balance
of global subtree weights to assist the proposed geometric semantic search operator.
With the proposal of these modules, GESR achieves state-of-the-art accuracy per-
formance on multiple authoritative benchmark datasets and demonstrates a certain
level of robustness against noise interference. The implementation is available at
https://anonymous.4open.science/r/12331211321-014D.

1 INTRODUCTION

Symbolic regression(SR) is a supervised machine learning method that learns interpretable mathemat-
ical expressions directly from a given dataset. SR provides us with the opportunity to automatically
extract highly interpretable mathematical expressions that depict the underlying objective patterns in
complex data from a mathematical perspective, rather than heavily relying on expert intuition and
sensitivity to data. Compared to the numerical solutions generated through neural networks, quan-
titative mathematical expressions can provide more interpretability and generalization. Nowadays,
SR has been widely applied in a variety of tasks, from scientific discovery (Makke & Chawla, 2024;
Wang et al., 2023) to engineering applications (Angelis et al., 2023), including governing equations
(Sun et al., 2022), finding fundamental physical laws (Udrescu & Tegmark, 2020), fault detection
(Hale et al., 2022), and TCP congestion control (Sharan et al., 2022).

Genetic programming(GP) serves as the primary algorithm for SR. In GP, symbolic regression is
addressed by evolving the expression trees within a population. With the iterative variation of the
population and the guidance of fitness, the accuracy of expression trees gradually improves until a
satisfactory level is achieved. GP has been proven to be very useful in many tasks, such as inferring
physical laws. However, when the underlying formula is complex, its effectiveness still falls short of
expectations due to the quite large search space.

With the exploration of symbolic regression and machine learning, numerous approaches are proposed
to seek breakthroughs in terms of inference time, solution rate, accuracy, and model size. Deep
Learning methods emerge due to their avoidance of the hyperparameter sensitivity problem in GP
and their rapid inference time. SymbolicGPT (Valipour et al., 2021) uses deep language models
like GPT to generate mathematical expressions for SR. AIFeynman (Udrescu et al., 2020) trains
a neural network to estimate functional modularities. NGGP (Mundhenk et al., 2021) utilizes a
hybrid approach to assist GP in generating a start population with neural networks. The end-to-end
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transformer model for SR (Kamienny et al., 2022) also shows its capability on exploration and
inference time. Reinforcement Learning is then employed to explore and discover expressions,
whereas the Monte Carlo tree search method is utilized. DSR (Petersen et al., 2019) is a representative
reinforcement learning method, which uses a learn policy to add notations to parse tree in turn while
a neural network is utilized to generate symbolic distribution. Then, uDSR (Landajuela et al., 2022)
is proposed as a comprehensive framework that hybridizes GP, AIFeynman, linear models, DSR, and
large-scale pre-training into a single module and achieves state-of-the-art performance.

However, these methods still face challenges in effectively generating formulas from data charac-
terized by intricate mathematical representations. Recently, the development of semantic genetic
programming(SGP) (Pawlak et al., 2014; Chen et al., 2019; Huang et al., 2022) provides us with a
fresh perspective. As we all know, the core idea of GP lies in the concept of iterative evolution, and the
benefits of the ”evolution” have been widely demonstrated. Nevertheless, the lack of explicitly guided
cross-mutation processes severely hinders the improvement of the accuracy of formula evolution.
Semantic genetic programming presents the unimodal landscape of symbolic regression, enabling the
exploration of approximate unimodal solutions directly in the underlying topological space(named
semantic space). Compared to the random exploration of traditional genetic programming, the
approximation in the topological space exhibits significantly stronger guidance and superior search
efficiency. However, suffering from dimension curse and sparse characteristics in semantic space, the
search performance in the underlying semantic space rapidly slows down after several generations
and the approximation process becomes convoluted. Severe tree bloating is also a bottleneck problem
since SGP directly maps each step of semantic approximation to the modifications of expression trees
without the tree structure information in the semantic space.

To address these issues, we propose a geometric evolution symbolic regression(GESR) algorithm.
The proposed algorithm significantly improves the fitting performance of symbolic expression while
effectively tackling concerns associated with tree bloating. Utilizing SRbench benchmark and SRSD
benchmark for both black-box and scientific discovery symbolic regression, our method achieves
state-of-the-art accuracy results across both benchmarks.

In summary, our work introduces several key contributions: (1) We introduce the concept of semantic
gradients based on discovering the inconsistency of the approximation process in sub-semantic space
and target semantic space, enabling accurate approximation of mappings between sub-objective spaces
and objective spaces, thereby enhancing semantic fitting accuracy. (2) We develop a novel geometric
semantic method capable of efficiently approximating target semantics in the sparse semantic space.
(3) We also present a mechanism to assist the geometric semantic method in adjusting the generated
expression structure and capturing the potential solution by zero-ing the weights of uninformative
subtrees (via the LM algorithm). (4) Our proposed GESR consistently demonstrates promising
performance across a diverse array of SRbench and SRSD benchmark datasets, as validated through
rigorous ablation experiments. When compared to the baseline, GESR exhibits notably superior
accuracy in scientific discovery tasks and showcases robust noise resistance capabilities.

2 RELATED WORK

Genetic Programming: genetic programming refers to an evolutionary algorithm instance applied to
SR, in which a set of expression trees evolve iteratively under the guidance of fitness. Modules such
as crossover, mutation, and selection are employed to evolve the population towards minimizing the
distance from the optimal expression. Many popular frameworks use GP for symbolic regression
(Cranmer, 2023; Burlacu et al., 2020; La Cava et al., 2018; de Franca & Aldeia, 2021b; Zhang et al.,
2023) and a survey (Mei et al., 2022) is recommended for an overview of GP for SR. In this work,
we inherited the concept of population evolution from GP, combining it with geometric semantic
methods (Virgolin et al., 2019; Chen et al., 2019) and constant optimization.

Geometric Semantic Evolution: geometric semantic genetic programming(GSGP) (Vanneschi,
2016) is a type of algorithm that evolves the mathematical formula directly in n-dimensional topo-
logical space. With the semantic information, GSGP converts the traditional mutations into the
operations with geometric properties in the underlying semantic space to approximate the unimodal
target semantics and directly map this geometric operation to syntactic modifications of expression
trees. Many works have been proposed to improve the performance (Pietropolli et al., 2022; Chen
et al., 2019; Nguyen & Chu, 2020; Virgolin et al., 2019; Huang et al., 2024). However, due to the
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Figure 1: Schematic of the proposed method. For each symbolic tree in the population, the GESR
first selects the mutated subtree from a symbolic tree based on the calculated probabilities. The
chosen subtree is then replaced by the generated combined tree through the semantics approximation
in the topological space. Periodically, each tree in the population will be adjusted by the Weight
Optimization module. The generated offspring is then executed to get the fitness value and the
assisted information needed in the next iteration. After the execution, the evaluation and selection
are performed and the selected symbolic trees form the new population for the next round iteration.
These procedures are detailedly described in Section 3.

high-dimensional nature of semantic space, these methods still struggle in the complex intermediate
processes to reach the target semantics. Moreover, the direct mapping of geometric operations to
syntax modifications also leads to severe tree bloating issues. Searching for target semantics in
high-dimensional semantic space is still a challenging task.

3 METHODOLOGY

3.1 PRELIMINARY

Given a dataset D = {(xi,yi)}i≤N , (xi,yi) ∈ Rd × R, the main goal of symbolic regression (SR)
methods is to find a symbolic expression f∗ that minimizes the theoretical risk of the input-output
mapping of the dataset D:

f∗ = argmax
f∈F

ED∼Ω(D)[L(f,D)] (1)

Semantic genetic programming (SGP) vectorizes the output of the symbolic expression related to the
dataset D as a semantic vector, with which the iterative improvement of the symbolic expression can
be achieved through semantic target approximation in topological space. The semantic vectors of
possible solutions constitute semantic space, where each symbolic expression is mapped to a semantic
vector point. In this paper, we propose a geometric semantic genetic programming algorithm, which
utilizes geometric properties describing spatial relationships between symbolic expressions in the
n-dimensional semantic space, where n is equivalent to the size of the training set. By directly
approximating the target semantic with a geometric method in the semantic space and mapping the
corresponding geometric operations to the syntactic modifications of symbolic expression, newly
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obtained symbolic expression can be closer to the target. For example, the midpoint of the two
semantic points s1 and s2 that represent two symbolic expression trees tr1 and tr2 respectively
in the semantic space can be mapped to a new expression tree: s′ : 1/2s1 + 1/2s2 → tr′ :
1/2 ∗ tr1 + 1/2 ∗ tr2.

In our method, geometric semantics is used to guide the mutation, as shown in Figure 1. However,
although geometric semantic mutation improves search efficiency and accuracy, frequent linear
combinations of expressions often lead to severe tree bloating. Therefore, we backpropagate the
target semantics to sub-expression, combined with semantic gradients and strict limitations, to guide
the mutation process in the sub-semantic space. The linear combination of sub-expressions also
leads to a significant increase in the proportion of constants. While geometric semantic mutation
based on backpropagation is restricted to only adjusting local constants, it is difficult to balance
the optimization of global constants. Thus, we incorporate the Levenberg-Marquardt optimization
algorithm with L2 regularization to periodically adjust global constants, which also enables the
smoothing of formula curves. By the way, since we assign a constant (weight) to each combination
subtree, there is a natural characteristic for our method to use a continuous optimization algorithm to
further adjust the overall tree structures.

3.2 SEMANTIC GRADIENT

Semantic backpropagation is achieved by inversely calculating the expression tree (Krawiec &
Pawlak, 2013). As the target semantics are reversed into sub-target semantics, the semantic space
is also mapped to a sub-semantic space. Thus the solution in the semantic space can be found by
searching within the sub-semantic space. In this section, a semantic gradient concept is further
proposed to assist the exploration in semantic space, which comes from the following observation:
The approximation process of the sub-semantic space cannot be equivalently propagated to the
root semantic space. Figure 2 is an example for better understanding. While the target semantics can
be backpropagated to the sub-semantic space, the approximation process will be seriously affected by
the calculation path of the mutation node, where the calculation path serves as the mapping function
f(y). With f(y), the evaluation based on the Euclidean distance between the semantics s of subtree

tr and the sub-target semantics st in the sub-semantic space:
√∑n

i=0 (si − sti)
2, is transformed

into
√∑n

i=0 (f(si)− f(sti))2 ⇒
√∑n

i=0 (w · 2xi)2 · (si − sti)2. The uncertain vector x makes
each dimension of the approximation result from the sub-semantic space deviate in the target semantic
space, which significantly reduces the accuracy of semantic approximation based on backpropagation.
To address this issue, we introduce the concept of semantic gradients to approximate the mapping

Figure 2: Spatial transformation under nonlinear mapping function f(y). With f(y), the Euclidean
distance between semantic points in the sub-semantic space changes when mapped to the target
semantic space.

relationship between the sub-semantic space and the target semantic space. As illustrated in Figure 3,
starting from the root node of the expression tree, the semantic gradients of the mutated node are
computed along the semantic backpropagation path, thereby obtaining the gradient vector∇T for the
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Figure 3: The process of semantic gradient computation. The semantic vectors si on the backpropa-
gation path are replaced by the corresponding sub-target semantic sti.

jth node. The representation of∇T is as follows:

∇T =<
∂f0

∂sj0
, . . . ,

∂fn

∂sjn
>=<

∂f0
∂s00
· ∂s

0
0

∂s10
. . .

∂sj−1
0

∂sj0
, . . . ,

∂fn
∂s0n
· ∂s

0
n

∂s1n
. . .

∂sj−1
n

∂sjn
> (2)

Where sji denotes the ith dimension of the semantics of the jth subtree. The partial derivative values
across various semantic dimensions indicate the changing rate of the nonlinear mapping function
f(trj) with respect to the semantics of the subtree trj . Specifically, the absolute partial derivative
values across each semantic dimension serve as an indicator of the degree of influence that deviations
of trj within the corresponding sub-semantic space have on the deviations of f(trj) within the
corresponding dimension of the target semantic space. Thus, the normalized value |∇T |jN serves as
the weight of each dimension in the sub-semantic space. As the gradient vector is affected by the
semantics of the mutated node which is unfixed, we use the sub-target semantics st instead of the
current mutated node semantics s when computing the semantic gradient:

∇T =<
∂f0

∂stj0
,
∂f1

∂stj1
, . . . ,

∂fn

∂stjn
> (3)

Where stji refers to the sub-target semantics of the ith dimension of the jth subtree.

3.3 GEOMETRIC SEMANTIC METHOD

Due to the high-dimensional nature of the semantic space, in which the dimensions equal to the
training set size, the sparsity of semantic points resulting from high-dimensional features makes it
difficult for geometric semantic mutation strategies to search for target semantics in the semantic
space. To quickly approximate the target semantics in the semantic space, two steps are conducted as
follows. First, as the distribution of candidates in the semantic space is sparse, we scale each candidate
semantics s to the perpendicular projection of the sub-target semantics onto the line connecting the
semantics point and the origin point. This step aims to migrate the distribution of candidate semantics
s to the sub-target semantics st around the semantic space, as shown below:

s′ = αs (4)

where, α:

α =
s · st
s · s

=

∑n
i si · sti∑n
i si · si

(5)

Subsequently, we adopt var(st − α · s) =
∑n

i=1 ((sti − α · si)− E(sti − α · si))2 to rank the
candidate set, instead of utilizing the Euclidean distance metric, aiming to get the subexpressions
that are more similar in functional form rather than a smaller scalar distance. The possible constant
deviation can be eliminated with the constant node in the candidate set, as detailed in Appendix B.
The approximated candidate set then is sorted based on the Euclidean distance dis (s′i, st) between
the semantics of candidates and the sub-target semantics. After that, we select multiple pair of
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candidates in order and use the least squares method to combine them pairwise to find the linear
combination of candidates that best approximates the target semantics. For the selection of tr1, we
select the top-t subtrees within the sorted set as candidates. For the selection of tr2, the following
m subtrees for each tr1 are chosen to form the candidate set. Then, the obtained candidate subtrees
from tr1 set and tr2 set are linearly combined to minimize the distance L(st, f(str1, str2)), which
can be represented as below with Eq 4:

s = α1 · (1− k) · str1 + α2 · k · str2 (6)

Here, by utilizing the least squares method to minimize the loss function L(st, f(str1, str2)) =∑
(sti − f(str1i , str2i ))2 · |∇T |N ,i =

∑
(sti −α1 · (1− k) · str1i − k ·α2 · str1i )2 · |∇T |N ,i, we can

obtain k as follows:

k =
|∇T |N ⊙ (α2s

tr2 − α1s
tr1) · (st− α1s

tr1)

|∇T |N ⊙ (α2str2 − α1str1) · (α2str2 − α1str1)
(7)

In the Eq 7, |∇T |N represents the normalized vector of the absolute semantic gradient. With Eq 4, 5,
6, 7, a new combined tree can be generated: tr′ = α1 · (1− k) · tr1 + α2 · k · tr2. For the generated
candidates {tr′1, tr′2, ..., tr′n} after pairwise linear combinations, we first filter the candidate set
based on the Euclidean distance L(st, s′) between the semantics s′ of each combined candidate
subtree tr′ and the sub-target semantics st in the root semantic space. Considering that the Euclidean
distance used as the evaluation criterion is a scalar value, which loses the vector information in the
semantic space. Simply pursuing a decrease in distance may lead to a loss of diversity and trap into
local optima. Therefore, an additional parameter λ is used to fully explore the solution space:

L(st, s′) ≤ L(st, sc) · (1 + λ)

⇒
∑(

(sti − s′i)
2 · |∇T |N ,i

)
· (1 + λ) ≤

∑(
(sti − sci )

2 · |∇T |N ,i

) (8)

Where sc refers to the semantics of the original subtree, and the candidates that do not satisfy
the Eq 8 are filtered out. Moreover, we incorporate a variance-based constraint method to ensure
smoother function fitting, thereby avoiding potential issues of local overfitting caused by uneven data
distribution or significant differences of output values within the dataset. The constraint is formulated
as follows:

var(st− sc)

var(st− s′)
=

n∑
i=1

((sti − sci )− E(st− sc))
2

((sti − s′i)− E(st− s′))
2 ≥ 1 + λ (9)

The remaining candidate set that satisfies both Eq 8 and Eq 9 is evaluated in the final step. Since the
semantics is solely constituted by output vectors, lacking tree structure information, which results in
a severe expansion problem when translating the semantic space approximation to expression trees.
Inspired by the SPL approach (Sun et al., 2022), the final evaluation function is calculated using the
following formula:

R =
ηl

1 +
√∑n

i=1(sti − s′i)
2 · |∇T |N ,i

(10)

Where η is the discount factor promoting concise trees, l represents the mutated subtree size. We
only replace the mutated subtrees where R is smaller than the original Rc. It is worth noting that
the mutated subtree size is calculated by the inner node size instead of the tree size to ensure the
fairness of each function symbol. By employing this evaluation function, our method encourages
finding more concise expressions while minimizing the Euclidean distance.

3.4 SEMANTIC POINT TOURNAMENT SELECTION

In selecting a subtree in a symbolic tree to mutate, the traditional random selection strategy without
any prior information reduces search efficiency. We integrate semantic information with the semantic
gradient into the mutated subtree selection strategy to guide the selection of mutated subtrees, where
the Euclidean distance is chosen as the basic metric for assessing the optimization potential of
candidate mutated subtrees. By computing the Euclidean distance between the semantics of the
candidate mutated subtree and the sub-target semantics, and mapping it through the semantic gradient
to the root semantic space, we obtain a scalar expression of the potential for each candidate mutated
subtree. Then, we utilize softmax to convert the mapped Euclidean distance of each candidate mutated
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subtree into probabilities and use a tournament selection strategy to choose the final mutated subtree
from the candidate subtrees. The selected probability p(tri) of each candidate tri is computed by:

p
(
tri

)
= softmax

(
ri
)
=

e(st
i−si)2·|∇T |iN−M∑

e(st
j−sj)2·|∇T |jN−M

(11)

Where ri = (sti− si)2 · |∇T |iN and M = max0≤i≤n r
i = max0≤i≤n((st

i− si)2 · |∇T |iN ) is used
to prevent data overflow. It is worth noting that we only randomly select a few subtrees as candidates
in the expression tree in each generation to make full exploration while ensuring randomness, since
the mismatched parts of an expression may be scattered across multiple branches of the expression
tree.

3.5 WEIGHT OPTIMIZATION

The optimization of geometric semantic mutation lies solely in the adjustment of local tree structures,
and it is worth noting that our geometric semantics method provides weight coefficients for each
subtree(Equation 6). Differs from the traditional methods that use a continuous optimization algorithm
to optimize the constants (Kommenda et al., 2020; De Melo et al., 2015), the presence of these
weight coefficients allows us not only to adjust each subtree module at any time but also, more
importantly, to automatically adjust the overall structure by optimizing constants and removing
unsuitable subtrees (by setting the corresponding subtree’s weight coefficient to 0.0, when the
weight coefficient is approximated to nearly zero(<1e-6 in our method)). Therefore, we employ
the Levenberg-Marquardt(LM) (Moré, 2006) algorithm to perform constant optimization on the
expressions at regular intervals. The LM algorithm utilizes Euclidean distance as the loss function.
Additionally, considering that expressions generated based on geometric semantics often contain
numerous constants, we have added L2 regularization to smooth the function curve, as shown below:

Loss = L (y, f (x;w)) + β/2
∑
j

|wj |2 (12)

Following with LM algorithm, we can optimize the constants w through the formula:

wn+1 = wn −
(
JT
r Jr + µI

)−1
(JT

r r + β|w|) (13)

Where Jr is the Jacobian matrix of constants, I is the identity matrix, µ is the penalty factor, β is the
hyperparameter, and w represents constants within the expression.

4 EXPERIMENTS

4.1 BASIC BENCHMARKS

We assess GESR on two mainstream large-scale datasets: the SRBench benchmark (La Cava et al.,
2021) which includes both real-world and ground-truth problems, and the SRSD benchmark (Matsub-
ara et al., 2022) for scientific discovery. A total of 25 baseline methods are used for performance
comparison in the experiment. It is worth noting that these baseline methods use multiple parameter
sets and find the most suitable parameter settings through a half-grid search. However, considering
the significant impact of parameters on algorithm performance, to demonstrate the superiority of our
method and reduce the influence of parameter selection, the hyper-parameters of our method remain
the same on all datasets to control the influencing factors. The detailed hyper-parameter setting
and the brief introductions to the baseline methods are provided in Appendix A and C respectively.
The PMLB dataset includes 46 real-world black-box datasets, including physics, home price, etc.,
76 synthetic datasets including Friedman datasets, 130 Strogatz datasets, and Feynman datasets.
Among them, real-world datasets and Friedman datasets(form the black-box datasets) are used for
overall evaluations, Friedman datasets are used for ablation analysis, Strogatz and Feynman datasets
with different levels of Gaussian noise are used for robustness verification. In addition, the SRSD
benchmark with 120 scientific discovery datasets that contain dummy variables is also used to test
the effectiveness of GESR, in which the properties of the formula and the variables are carefully
reviewed to ensure a realistic sampling value range. Our method is assessed with a popular metrics:
R2-score (La Cava et al., 2021).
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Table 1: SRSD+ Dummy Variables: Accuracy solution rate(R2 > 0.999) on scientific discovery
datasets with different complexity.

Group gplearn AFP AIF DSR E2E uDSR PySR GESR
Easy 0.00% 20.0% 6.67% 76.7% 16.7% 53.3% 20.0% 100.0%

Medium 0.00% 5.00% 0.00% 45.0% 12.5% 37.5% 10.0% 87.5%

Hard 0.00% 4.00% 0.00% 22.0% 10.0% 12.0% 2.0% 58.0%

4.2 EFFECTIVENESS OF GESR

We evaluated our method on the SRSD benchmark that contains 120 scientific discovery datasets
with dummy variables, to assess the performance in tackling scientific discovery problems. As shown
in Table 1, our method achieved accuracy solution rates(R2 > 0.999) of 100.0%, 87.5%, and 58% on
the easy, medium, and hard datasets, which means that our method gets the improvements of 23.3%,
42.5%, 36% over the second-ranked baseline method respectively. The experimental result shows
the powerful search ability of our geometric semantic method in approximating target semantics,
especially in addressing complex scientific discovery problems.The further experimental results on
the SRSD benchmark are presented in Appendix D.3, and the qualitative analysis of the GESR has
been discussed in Appendix D.4.
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Figure 4: SRBench-generated comparisons of R2 test(left) and model size(right) on 120 black-box
datasets.

Figure 4 presents the performance of GESR on the SRBench benchmark. In terms of overall accuracy,
our method outperforms all other algorithms. Additionally, our method also exhibits advantages in
model size and shows substantial improvements compared to previous semantics-based approaches
(SBP-GP).

In addition to conducting large-scale evaluations on the scientific discovery problems within the
SRSD benchmark and real-world datasets from the SRBench benchmark, we have also tested our
method on several common datasets (Nguyen, Livermore). Further experimental details have been
provided in Appendix C.

4.3 FURTHER ANALYSIS

In our method, symbolic expression is generated through the direct data fitting at the semantic level.
This may give the impression that the GESR is weak in noise robustness ability. To further explore
the adaptability of the GESR to noise and the capability to solve the scientific discovery datasets, we
conducted additional experiments on the synthetic dataset Strogatz with different levels of Gaussian
noise.
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Figure 5: Accuracy solution rate(R2 > 0.999) on Feynman datasets(left) and Strogatz datasets(right)
of SRBench benchmark with different noise levels.

As depicted in Figure 5, our method gets state-of-the-art performance. Compared to the black-box
datasets with the unknown underlying data generated function containing substantial irregular noise
and dummy variables, there a more pronounced distinctions among the baseline methods for the
capability to solve the scientific discovery datasets. It can be observed that the Gaussian noise has a
negative impact on the accuracy solution rate of most methods. The stable accuracy solution rate
of GESR than other methods for different levels of Gaussian noise demonstrates the certain degree
of the noise-resistant capabilities of our method. The specific performance of our method on each
dataset is provided in Appendix D.6, in which it can be observed that our method outperforms others
on most datasets in terms of median R2, mean R2, and solution rate.

4.4 ABLATION ANALYSIS

In GESR, several components have been integrated. To validate the necessity of each component,
we conduct ablation experiments on the Friedman dataset to individually examine the effects of
the semantic gradient strategy, semantic mutation point selection strategy, geometric semantic
approximation strategy, and constant optimization. Additionally, the full GESR method is used as a
baseline. Table 2 shows the average R2 score, average R2 rank, and average model size on Friedman

Table 2: The experimental results on Friedman datasets with the removal or replacement of each
component. GESR-opt, GESR-slt, and GESR-gradient correspond to the removal of the constant
optimization module, the semantic mutation point selection module, and the semantic gradient
module. GESR-mutation refers to the replacement of the geometric semantic approximation module
to linear scale strategy in (Virgolin et al., 2019). The GESR-baseline refers to the complete GESR
method.

GESR-opt GESR-slt GESR-gradient GESR-mutation GESR-baseline
Avg rk 2.62 1.39 2.53 2.32 1.11
Avg R2 0.929 0.939 0.901 0.929 0.947
Avg size 185 161 123 120 134

datasets with the lack or replacement of each component. Generally from the experimental results,
the removal or replacement of any component shows a negative impact on our method, no matter
the average R2 or the average rank, which highlights the necessity of the proposed components. To
further test whether there are statistically significant difference in performance with the removal of
replacement of each component, a Wilcoxon signed-rank test (Wilcoxon, 1992) is performed on
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the median experiment results. Compared with the GESR-baseline, GESR-opt, GESR-slt, GESR-
gradient, and GESR-mutation yields p values below 1e-6, 1e-2, 1e-7, and 1e-6, respectively, indicating
significant differences (p < 0.01) with and without the inclusion of the proposed weight optimization
module, semantic point tournament selection module, geometric semantic method, and semantic
gradient module respectively.

Due to the nonlinear mapping of semantic space, the importance of each dimension in the sub-
semantic space is not equivalent. The absence of semantic gradients impairs the accuracy and
effectiveness of the semantic variation module. Therefore, compared to the GESR-baseline, the
GESR-gradient without the semantic gradient module exhibits a significant drop in the average R2

metric. Another significant drop in accuracy performance is observed for GESR-mutation, which
demonstrates the superiority of the geometric semantic approximation module. In terms of average
ranking, GSR-Baseline also shows the better stability over performance across different datasets.The
details and roles of each module have been further discussed in Appendix B.

5 CONCLUSION

In this work, a novel geometric evolution model is proposed for SR to try to improve the spatial
approximation accuracy while ensuring the interpretability. In GESR, a geometric semantic mutation
method is introduced as a geometric approximation strategy to search for expressions with optimal
accuracy in the semantic space, using a semantic gradient vector as an auxiliary tool for addressing
semantic space mapping issues. A semantic-based mutation point selection method is further
introduced to efficiently identify sub-expressions that need improvement. Taking into account the
inherent advantage of linear combinations within the semantic space, we further incorporate the
Levenberg-Marquardt algorithm as a key module for globally adjusting and optimizing expressions
constants. The state-of-the-art accuracy performance achieved on both the SRSD and SRBench
benchmark datasets demonstrates the effectiveness of our approach in real-world and scientific
discovery tasks.
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APPENDIX

A BRIEF DESCRIPTIONS OF THE BASELINE METHODS

In this section, for the convenience of reference and comparison, we provide the short descriptions
of the baseline methods, including the 14 original SRBench baseline methods and 5 SRSD baseline
methods that used in Section 4. The original papers are refered for the additional details.

• Unified Framework for Deep Symbolic Regression(uDSR): uDSR Landajuela et al.
(2022) is a modular framework which integrate multiple different SR solution strategies in
an attempt to complement each other so as to maximize the advantages of each strategy.

• Deep symbolic regression(DSR): DSR Petersen et al. (2019) leverages the deep reinforce-
ment learning to search solution for symbolic regression, which employs a neural network
to represent token distribution and a reinforcement learning strategy to train the netowrk.

• AIFeynman(AIF): AIFeynman Udrescu et al. (2020) is a symbolic regression method that
leverages neural network, graph modularity, hypothesis testing and normalizing flows to
improve the accuracy towards harder problems and the robust towards noise.

• SR with Non-linear least squares(Operon): OperonBurlacu et al. (2020) is a GP framework
that aims to achieve efficient implement and provide a completely out-of-the-box solution
for symbolic regression.

• Semantic backpropagation genetic programming(SBP-GP): SBP-GPVirgolin et al.
(2019) is a semantic genetic programming method. SBP-GP utilizes linear-scaling technol-
ogy to shrink the candidate subtree to approximate the output of variation subtree to the
sub-target semantics.

• End-to-end Symbolic Regression with Transformers(E2E): E2E Kamienny et al. (2022)
is an end-to-end symbolic regression method based on transformer to generate the full
mathematical expression, which is in advantage of inference time.

• PySR: PySR Cranmer (2023) is an open-source library, in which the multi-population
evolution strategy with the evolve-simplify-optimize loop is the kernel search algorithm.

• Multiple regression genetic programming(MRGP): MRGP Arnaldo et al. (2014) is a
genetic programming method which decouples and linearly combines the subexpressions of
a program by multiple regression on the target variables.

• ϵ-lexicase selection(EPLEX): EPLEX La Cava et al. (2019) is a genetic programming
method with ϵ-lexicase selection strategy that improves the parent selection process, in
which the training cases are used as evaluation value individually instead of aggregate all of
the cases.

• Feature engineering automation tool(FEAT): FEAT Cava et al. (2019) is a method that
for learning and optimizing the interpretable representations, in which neural networks
used as features are represented as syntax trees and an archive of representations that
characterize the accuracy-complexity trade-offs are maintained to assist in the generalization
and interpretation.

• Fast function extraction(FFX): FFX McConaghy (2011) is a non-evolutionary technique
leveraging pathwise regularized learning to generate a set of solutions that trade off error
versus complexity, which improves the speed, scalability, and deterministic behavior.

• GP version of the gene-pool optimal mixing evolutionary algorithm(GP-GOMEA):
GP-GOMEA Virgolin et al. (2021) is a genetic programming method with improved linkage
learning approach imposing a strict limitation size, which focuses on accuracy and small
solutions.

• Age-fitness Pareto optimization(AFP): AFP Schmidt & Lipson (2010) is a multi-objective
genetic programming method, which evolves population on age-fitness pareto front to avoid
premature convergence.

• AFP with co-evolved fitness estimates(AFP-FE): AFP-FE Schmidt & Lipson (2009) is an
improved AFP method with a new co-evolved fitness estimation method.
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• Bayesian symbolic regression(BSR): BSR Jin et al. (2019) is a Bayesian framework that
employs Markov chain Monte Carlo method to incorporate prior knowledge and sample
symbolic trees from posterior distribution, which shows advantages in interpretability,
utilization to prior knowledge, and effective memory usage.

• ITEA: ITEA de Franca & Aldeia (2021a) is a mutation only evolutionary algorithm with a
new individual representation way, in which each mutation process is achieved by randomly
selecting among six heuristic mutation operators.

B GENERALIZE FRAMEWORK OF GESR

In Algorithm 1, we provide the detailed pseudocode for describing the framework of GESR. The popu-
lation and semantic library are initialized in Lines 1-2, and the detailed parameter settings are provided
in Appendix C.1. In GESR, Two mutation strategies are employed: geometric semantic approxi-
mation as the primary variation method(Line 9), and a random replacement strategy for population
exploration(Line 10), both performed probabilistically in each generation. The Levenberg-Marquardt
algorithm is periodically executed to adjust the global weight parameters of the expression(Line 5).
Subsequently, mutated expressions are executed, and selected of nodes for the next mutation(Line
14). Additionally, at regular intervals, several subtrees from top-t expression trees in the population
are randomly selected to supplement the semantic library for transfer learning the useful features
(Lines 16-19).

Algorithm 1: Geometric evolution symbolic regression.
Input :Symbolic regression problem P , consists of tabular data(X, y)
Output :Best fitting expression

1 Initialize population P;
2 Initialize semantic library Ds;
3 for each iteration i do
4 if i is equal to the interval of constant optimization then
5 C ← optimize population P with Levenberg-Marquardt algorithm
6 else
7 s ∼ U(0, 1);
8 if s < 0.95 then
9 C ← approximate the target semantics of P with geometric semantic mutation

method.
10 else
11 C ← population variation with random mutation method.
12 end
13 end
14 Execute the symbolic tree in C;
15 Select P with tournament strategy to form the new populationP ′;
16 if i is equal to the interval of semantic library update then
17 T ← select tok-n symbolic tree from P;
18 update Ds with sub-trees from T ;
19 end
20 end

In the geometric semantic mutation strategy, for each expression tree in the population, we first select
a subtree to be mutated from several candidate nodes based on Eq 11. Subsequently, a specified
number of candidates are randomly selected from the semantic library, and linear combination and
filter through Eq 4 - 10 are performed to replace the mutated subtree. It is worth noting that the
representation of the subtree obtained by our geometric semantic method typically takes on the form
k1p1+k2p2, When k1 or k2 is 0.0, it yields k ·p or 0. However, this resulting subtree lacks a combined
representation of constants and features, i.e., k1p1 + c. Therefore, for each expression tree in the
population, we insert an additional constant node ”1” into the candidate so that this combinatorial
subtree can generate such a representation.

In the random replacement strategy, two traditional GP methods are employed: random subtree
replacement and random node replacement. With a tournament selection strategy in small size, this
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strategy can provide diversity in the evolution. Furthermore, to reduce the tree size, the limited
subtree depth generated by the random subtree replacement strategy is less than or equal to the
original subtree.

C EXPERIMENTAL SETUP

C.1 HYPERPARAMETER SELECTION

Table 3: Hyperparameter setting
hyper-parameter Value

Population size 500
Generations 200

Initial tree depth 1-3
Depth limitation 8

Weight optimization interval 20
Semantic library size 5000

Geometric semantic mutation rate 0.5
Tournament size 2

Library update interval 10
Semantic candidate size 200

Top-t for the candidate selection 1
Top-m for the candidate selection 200

Functions < +, -, *, %protected, sin, cos, log, exp >

The hyperparameters for GESR are listed in Table 4. In this work, our method aims to directly
approximate the output of the target expression numerically and then map the operation to the formula
in the population. To mitigate the impact of poor initial expression structure, we employ a parameter
setting with a large population and small depth, allowing for broader coverage of initial expression
structures and increased fault tolerance. A smaller tournament size also facilitates group exploration.
For variation rate, we primarily utilize geometric semantic search methods while maintaining a certain
probability of random variation. The significance of random variation lies in its facilitation of early-
stage population exploration, prevention of local optimization due to the solidification of population
expressions in later stages, and selection of new expression structures into the semantic library. The
updated pattern for the semantic database involves high-frequency sampling with small amounts to
sample elite individuals’ expression structures at each stage of evolution. Each semantic database
samples 20 subtrees from the top 10 individuals’ semantics and randomly replaces these subtrees
within the database. During evolution, our function set consists of 8 tuples <+, -, *, %protected, sin,
cos, log, exp> protected by interval arithmeticKeijzer (2003).

In addition, the diversity of the expression tree structure is important. we think employing a large
population with fewer generations outperforms the alternative of a small population with numerous
generations. That is because of the gradual loss of population diversity as the number of iterations
increases, in which the localized mutation is not enough to alter the overall structure. Therefore,
we use a large population size with relatively small generations to promote exploration within the
population.

C.2 COMPUTER RESOURCE

The experiments are carried out on a physical machine equipped with an Intel Core(TM) i7-8700
CPU @ 3.20GHz and a single NVIDIA RTX 3090 GPU with 24268-MB global memory.
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C.3 THE NOTATIONS USED IN THE PAPER

Table 4: Notations
Symbol Description

s The semantics of a tree
str(sj) The semantics of the tree tr (the jth tree)
sc The semantics of the original subtree before mutated
s′ The semantics of the generated new subtree after mutated
si The ith dimension semantic of the semantics s
st The sub-target semantics in the sub-semantic space

sttr(stj) The sub-target semantics of the subtree tr (the jth subtree)
sti The ith dimension semantic of the sub-target semantics st
tri The ith symbolic expression subtree

|∇T |N ,i The ith dimension of the normalized semantic gradient vector
|∇T |jN The normalized semantic gradient vector of the jth subtree

α The scalar factor proposed in Eq 5
αi The scalar factor for the ith semantics
k The scalar value proposed in Eq 7
η The discount factor promoting concise trees
l the mutated subtree size
Jr The Jacobian matrix of the constants
I The identity matrix
µ The penalty factor in Eq 13
β A hyperparameter in Eq 12 and Eq 13
wj The jth constant within an expression
w General reference to a constant
λ A tolerance factor in Eq 8 and Eq 9
D A dataset of symbolic regression

f(x;w) The output of a symbolic expression with input x and the constants w
L(∗) A loss function with the input
R An evaluation value of the generated subtree, which is calculated by Eq 10
Rc An evaluation value of the original subtree

p(tri) The probability of selecting the ith subtree tri as the mutated subtree

D SUPPLEMENTAL BENCHMARK RESULTS

In addition to SRBench and SRSD benchmark datasets, our method have also been evaluated on
several widely used datasets.

D.1 EXPERIMENTAL RESULTS ON LIVERMORE DATASET

The range of the Livermore dataset for both training and test sets is uniformly limited to [-10, 10],
with a total of 1000 sets. The training set is randomly generated within this range, while the test set
adopts equal interval sampling. It should be noted that only datasets within the function set’s range
are selected for evaluation, given that our function set includes <+,-,*,%,sin, cos, log, exp>. Each
dataset is evaluated 10 times with different seeds.

Table 5 shows the median R2 performance of our method on each dataset over 10 runs, as well as
the success rate under two precision settings. The Accτ refers to the accuracy solution rate and
τ indicates the precision. It refers to successfully finding a solution when 1 − R2 < 1.0e−(τ+1).
The experimental results exhibit a high accuracy across most of the datasets. However, the GESR
on datasets containing protection operators (Livermore-4, Livermore-12), particularly higher-order
ones (Livermore-5, Livermore-12), exhibit decreased performance. The decline in fitting ability
may be attributed to the interval operation protection strategy. Nevertheless, compared to traditional
protection operators, this strategy can better prevent overfitting in expressions featuring numerous
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constants such as geometric semantics GP. As a result, we have decided to retain the interval operation
strategy.

Table 5: The median 1 - R2 value and the accuracy solution rate with different tolerance on Livermore
datasets.

Dataset Symbolic expression 1−R2 Acc3 Acc12
Livermore-1 1/3 + x1 + sin(x1) 0 100% 100%
Livermore-2 sin(x2

1)cos(x1)− 2 0 100% 100%
Livermore-3 sin(x3

1)cos(x
2
1)− 1 0 100% 100%

Livermore-4 log(x1 + 1) + log(x2
1 + x1) + log(x1) 6.47e-3 20% 0%

Livermore-5 x4
1 − x3

1 + x2
1 − x2 2.70e-12 100% 30%

Livermore-6 4x4
1 + 3x3

1 + 2x2
1 + x1 1.21e-14 100% 100%

Livermore-9
∑9

i=1 x
i
1 1.99e-15 100% 100%

Livermore-10 6sin(x1)cos(x2) 0 100% 100%
Livermore-11 (x2

1x
2
2)/(x1 + x2) 0 100% 100%

Livermore-12 x5
1/x

3
2 1.23 0% 0%

Livermore-14 x3
1 + x2

1 + x1 + sin(x1) + sin(x2
1) 0 100% 100%

Livermore-17 4sin(x1)cos(x2) 1.87e-8 100% 30%
Livermore-18 sin(x2

1)cos(x1)− 5 0 100% 100%
Livermore-19 x5

1 + x4
1 + x2

1 + x1 0 100% 100%
Livermore-21

∑8
i=1 x

i
1 0 100% 100%

D.2 EXPERIMENTAL RESULTS ON NGUYEN DATASET

The range and number of training and test datasets for the Nguyen dataset are consistent with those
of the Livermore dataset settings. As shown in Table 6, our method shows a good fitting effect in
terms of accuracy when applied to the Nguyen dataset.

Table 6: The median 1 - R2 value and the accuracy solution rate under different precision on Nguyen
datasets.

Dataset Symbolic expression 1−R2 Acc3 Acc12
Nguyen-1 x3

1 + x2
1 + x1 0 100% 100%

Nguyen-2 x4
1 + x3

1 + x2
1 + x1 0 100% 100%

Nguyen-3 x5
1 + x4

1 + x3
1 + x2

1 + x1 0 100% 100%
Nguyen-4 x6

1 + x5
1 + x4

1 + x3
1 + x2

1 + x1 0 100% 80%
Nguyen-5 sin(x2

1)cos(x1)− 1 0 100% 100%
Nguyen-6 sin(x1) + sin(x1 + x2

1) 0 100% 100%
Nguyen-7 log(x1 + 1) + log(x2

1 + 1) 3.29e-7 100% 20%
Nguyen-9 sin(x1) + sin(x2

2) 0 100% 100%
Nguyen-10 sin(x1)cos(x2) 0 100% 100%
Nguyen-12 x4

1 − x3
1 − 0.5x2

2 + x2 0 100% 100%

D.3 FURTHER EXPERIMENTAL RESULTS ON SRSD BENCHMARK

In this section, the accuracy solution rate and symbolic solution rate of the GESR on the SRSD
benchmark(with and without dummy variables) are presented.

The results show that the GESR achieves significantly better performance in terms of accuracy
solution rate on both types of SRSD datasets, while is also competitive in terms of symbolic solution
rate. However, It must be pointed out that, compared to the symbolic solution rate, the proposed
GESR is better at numerical fitting under a limited model complexity.
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Table 7: SRSD: Accuracy solution rate(R2 > 0.999) on scientific discovery datasets with different
complexity.

Group gplearn AFP AIF DSR E2E uDSR PySR GESR
Easy 6.67% 20.0% 33.3% 63.3% 26.7% 100.0% 66.7% 100.0%

Medium 7.50% 2.50% 5.0% 45.0% 17.5% 75.0% 45.0% 92.5%

Hard 2.00% 4.00% 6.00% 28.0% 14.0% 20.0% 38.0% 64.0%

Table 8: SRSD: Symbolic solution rate on scientific discovery datasets with different complexity.
Group gplearn AFP AIF DSR E2E uDSR PySR GESR
Easy 6.67% 20.0% 30.0% 46.7% 0.00% 50.0% 60.0% 53.3%

Medium 0.00% 2.50% 2.50% 10.0% 0.00% 17.5% 30.0% 40.0%

Hard 0.00% 0.00% 2.00% 2.00% 0.00% 4.00% 4.00% 6.0%

Table 9: SRSD +Dummy Variables: Symbolic solution rate on scientific discovery datasets with
different complexity.

Group gplearn AFP AIF DSR E2E uDSR PySR GESR
Easy 0.00% 16.7% 0.00% 10.0% 0.00% 10.0% 20.0% 3.3%

Medium 0.00% 0.00% 0.00% 0.00% 0.00% 7.50% 5.00% 10.0%

Hard 0.00% 0.00% 0.00% 2.00% 0.00% 0.00% 0.00% 2.00%

Figure 6: Qualitative analysis of the equation mutation process.
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D.4 QUALITATIVE ANALYSIS OF THE GESR

The process of searching for symbolic solutions and accuracy solutions are further investigated
respectively. The R2-Iteration convergence curve and the final formulas are illustrated in the Figure
6. We can find that, the idea of providing weights for each combined subtree and optimizing using
the LM algorithm to adjust the global tree structure works well(Many redundant subtree weights are
optimized to 0, like Feynman-I.13.4). Another interesting phenomenon is that, although our method
tends to perform the numerical fitting when the formula is complicated, R2 can also be reduced to
nearly 0 even if the symbolic solution is not found.

Table 10: Examples of the evolution formulas.

Dataset Target formula Simplied formula Generated formula 1-R2

Accuracy Solution(1-R2 < 1e-15)
i.30.5 x0/(x1∗sin(x2)) 1.0 ∗ x0 ∗ (−x0 +

x1)/(x1 ∗ ∗2 ∗
sin(x2))

((x1 − x0) ∗ 1.002764 ∗
1.017231)/sin(x2)/((x1/x0 ∗
−0.0 + (x1 + x2) ∗ 0.0 +
x1)/(x0/x1/(x1/x1) ∗
1.0 + x0 ∗ x2 ∗ −0.0)) ∗
0.980352 + ((x0/x1/(x2 −
x0) ∗ −143652773275.769 +
x0/x1/(x2 ∗ x0) ∗
4.213271) ∗ −0.003478 +
log(log(x0))/(x1/x2 ∗ 2.6e −
05 ∗ x2 ∗ x2) ∗ 0.0) ∗ −0.0

0

ii.34.11 x0 ∗ x1 ∗ x2/(2 ∗
x3)

0.5∗x0∗x1∗x2/x3+
1.31 ∗ x0 ∗ x2 ∗ ∗2 +
x0 ∗ x2 − x2 ∗ ∗2 ∗
x3+0.346∗x2∗∗2+
0.346 ∗ x2

x2 ∗ x2 ∗ (x0 − x3) + x0 ∗
x2 + x2 ∗ (((x1/x1 + x1 +
x2) − (x3 − x0)/(x3/x1)) ∗
0.345614+(x1/x3+x2+x2)∗
x0 ∗ 0.154386)

0

ii.2.42 x0 ∗ x3 ∗ (x1 −
x2)/x4

−1.01∗x0∗x3∗(x1−
x2) ∗ (0.002 ∗ x4 −
1)/x4

x3∗(((x2/x4∗−0.030838+x2∗
x2∗−0.0)−((x1−x2)∗−5.5e−
05 + x1/x4 ∗ −0.030838)) ∗
((x0∗0.001796+x1∗0.0)∗x4−
x0)∗−32.427845+((x4+x3)∗
(x2 − x1) + cos((x4 + x4))) ∗
((x3−x0)∗2e−06+(x0∗x1−
x4/x3) ∗ −0.0) + (x2 − x3) ∗
(x4+x4)∗x0∗−1e−06+(x3−
x4+x0) ∗ (x4 ∗ 57732.18215+
x1 ∗ 52.941879) ∗ 0.0)

0

iii.17.37 x0∗(x1∗cos(x2)+
1)

x0− x1 ∗ (x0− x1 ∗
∗2)

x0− (x0− x1 ∗ x1) ∗ x1 0

Symbolic Solution
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i.27.6 1/(x1/x2+1/x0) 1.0 ∗ x0 ∗ x2/(x0 ∗
x1 + x2)

(x2 + (x2 ∗ x1 − (x0 − x2)) ∗
0.0 + x2 ∗ x0 ∗ −61.494388 ∗
−0.0)/(x2/x0 ∗ 1.213848 +
(x2 + x0 ∗ x2) ∗ 0.0 + x1 ∗
0.002891∗419.809517+(x1−
x2)∗0.0)∗(sin(cos((0.882887∗
0.882103))) ∗ 1.858405 + 1.0 ∗
0.0) + ((x0 ∗ −389.595871 +
x2∗−300.836646+(x0−x2)∗
−3.8092 + 1.0 ∗ −0.70011 +
x0/x1∗−7.939006)∗0.0+x0∗
x2 ∗ log(x1) ∗ log((x1 ∗ x2)) ∗
(x0∗x0∗0.0+(x2−x0)∗−0.0)+
log(x1)/log(x1)/(x1/x0 −
(x1 + x2)) ∗ 0.0) ∗ 2.889718

0

i.14.3 9.81 ∗ x0 ∗ x1 9.81 ∗ x0 ∗ x1 (x1 ∗ x0)/(x1/x1) ∗
x1/x0/(x1/x0) ∗ 9.80665 +
log((x0/x0∗ log(x1)))∗ ((x1+
x0) − (x0 − x0))/(x1 − x0 −
log(x1)) ∗ 0.0

0

ii.3.24 0.08 ∗ x0/x1 ∗ ∗2 0.08 ∗ x0/x1 ∗ ∗2 x0/(x1 ∗ x1 ∗ x0/x0) ∗
0.079577 + ((x0 ∗ x0 +
x0/x0)/((x1+x0)∗x0∗x1)−
(x0/x1 + x0/x0) ∗ (x0 ∗ x0 +
x0/x1)) ∗ −0.0

0

i.14.4 0.5 ∗ x0 ∗ x1 ∗ ∗2 0.5 ∗ x0 ∗ x1 ∗ ∗2 x0 ∗ x0 − x0 ∗ x0 + x1 ∗ x1 ∗
x0∗ (0.5+(x1−x0+x0∗x1+
x0/x0− (x0− x0)) ∗ 0.0)

0

i.26.2 sin(x0)/sin(x1) 1.0 ∗
sin(x0)/sin(x1))

x0/x0 ∗ (x1 +
x0) ∗ x0/((x0/x0 ∗
sin(x1))/(sin(x0)/(x0 +
x0))∗0.5+log((log(x0)/(x0−
x0))) ∗ −0.0)/(x0 + x1)

0

Approximate Solution(1-R2 < 1e-3)
bonus.18 (x0 ∗ ∗2 ∗ x2 ∗

∗2∗x3∗∗2∗ (x3∗
x4/x5+1)+x1∗
∗2)/(2 ∗ x0)

−0.25∗x3∗x4∗(x0−
x5)+0.5∗x1∗∗2/x0

(x3∗x4∗(x0−x5)−(x1+x1)∗
x1/x0) ∗−0.25+((x3+x4)−
x3 ∗ x3 + x5/x0/(x0 ∗ x2)) ∗
(x5/x0/(x5−x2)−(x0+x2)∗
(x1− x5)) ∗ −0.0

4.88e-
14
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i.15.3x x0− x1 ∗ x2 1.0∗x0−x2∗(0.998∗
x1 + 5.29)

((x2 − x0 − x1 ∗ x2) ∗
−7.420798730311672e + 17 +
x2∗x1∗6462889543579853.0+
x1/x2 ∗ 471097.535999) ∗
(x1/x0∗−0.0+x0/x2∗−0.0+
cos(log(x1)) ∗ −0.035472) ∗
−0.0 + ((x2 + x2 + x1 ∗ x2) ∗
6.008895307088127e + 17 +
x2 ∗ x1 ∗ log(x1) ∗ 0.129268 ∗
−2.2813953662454227e+17)∗
(cos(cos(log(x1))) ∗ −0.0 +
(x1/x2 ∗ 0.0 + 0.09026) ∗
0.0) + x2 ∗ ((x1 ∗−0.999754+
−5.295591+x2−x2+x0/x2)∗
0.998293 + (x1 ∗ 1.417872 +
x2 ∗ 346065318.206917) ∗
(x1 ∗ x1 − x2/x0) ∗ −0.0) +
(−3.76412 + x0 ∗ 1.250469) ∗
(x1+x1)∗(x2+x1)∗0.0+(x1∗
−0.0+94.293878)∗x0∗1.6e−
05 + ((x0 ∗ 0.628168 + x1 ∗
−0.0 + sin(x1) ∗ sin(x2)) −
cos((x0 ∗ x0))/(x1/x1 ∗ (x2 +
x0))) ∗ 0.000848

3.14e-
8

i.34.10 x0/(1–0.333e −
8 ∗ x1)

1.0 ∗ x0 + 0.00101 ∗
x0/x1 + 0.499 ∗
log(x1)

(((x1 ∗ −13653.999224 + x0 ∗
1.258642) − ((x1 + x0) −
x1 ∗ x0)) ∗ −0.999914 +
(x0 ∗ −164713.383376 +
118328192256260.03 +
log(x1)∗x1∗x0)∗−5e−06)∗
−0.0 + (log(x1) ∗ x1 ∗ x0 ∗
0.156508+(x1∗x0−x1∗x1)∗
−1.331564) ∗ ((x1 ∗ x1 + x0 +
x0) ∗ 1.012645+x0 ∗x1 ∗ 2e−
06+(x1−x0)∗−16.983238)∗
0.0 + (((x0 + x0 + log(x1)) ∗
−0.998994 + (x0/x1 + x0) ∗
−0.002012) ∗ −0.499967 +
(x0/x1 + x0 − x1) ∗ 6.5e −
05 + (log(x1) − (x0 + x0)) ∗
(log(x1) + x1/x1) ∗ 0.0) −
x0/((x0/x1 + x0 + x1) ∗
1.000529 + x1 ∗ x1 ∗ (x0 +
x1) ∗ −0.0) ∗ (x1 ∗ x1 ∗ (x0 +
x1)∗ (−0.0+x1∗−0.0)+x1∗
x0 ∗ (x1+x1) ∗ 0.0+x0 ∗x1 ∗
0.0 + x1 ∗ x1 ∗ 0.0 + x1 ∗ x1 ∗
(x0 + x1) ∗ 1.0 ∗ −0.0)

3e-
16

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

i.39.11 x1 ∗ x2/(x0− 1) x2∗(−1.06∗x0∗x1∗
(0.058 ∗ x0 − 1.0) +
(−0.457 ∗ x0 ∗ x1 −
0.961 ∗ x1 − 48.3 ∗
x2) ∗ sin(log(x0)) ∗
cos(2 ∗
x0/x1))/sin(log(x0))

(x2∗x1∗((x0∗x0∗0.057574+
1.000004 ∗ 4e − 06) − (x0 ∗
1.0034 ∗ 0.996614 + x0 ∗ x0 ∗
5e − 06)))/sin(log(x0)) ∗
−1.061088 + ((x2 ∗
−1.000007 + x0 ∗ −0.0) ∗
−96.710375 + x2 ∗ 7.701144 ∗
−12.428074)/(−0.026219 +
x0 ∗ 0.000476 + 5e − 06 +
cos(x2) ∗ 8e − 06 + log(x0) ∗
2e−06)∗ (x1∗x0∗0.456581+
(x0 + x1) ∗ −0.000264 +
x1 ∗ −0.039793 + x2 ∗
47.286156 + x1/x2 ∗ −0.0 +
x1 + x2) ∗ (cos((x0/x1 +
x0/x1)) ∗ 0.025936 +
(cos(log(sin(x0))) +
cos((0.99726 + x0 ∗
0.001665))) ∗ (7.4e − 05 +
(cos(x0) + x0) ∗ 3e− 05))

4e-
16

Special Condition
iii.7.38 1.9ed+34∗x0∗x1 zoo ∗ x0 ∗ x1 + 1 (x0∗x1∗(x1−x0))/((x1−x0)∗

x0∗x1)−(x1/x1∗(x0−x0)−
(x0 ∗x1)/(cos((x1 ∗x0 ∗ (x0−
x0))) ∗ 0.0 + (x0 − x1) ∗ x1 ∗
x0∗(x1/x1−(x1+x1))∗0.0))

0

i.48.2 8.99e+ 16 ∗ x0 zoo ∗ x0 ∗ (2.28e +
21 ∗ x0 − 0.036 ∗
log(x0))∗(zoo∗x0+
1)

(((x1 ∗ −1.0 + x0 ∗
6.2866856149886544e + 22) ∗
1.0+x1−log(x0))∗(0.036195+
cos(log(x1)) ∗ −0.0) +
(log((x1 + x1))/(log(x1) −
(x0+x0))+log((x1/x0))+x1∗
x0∗(x1+x0))∗−2e−06+(x1∗
x1 ∗ 1643323978166933.5 +
x1 ∗ −0.005684 ∗
7.673404519338928e +
24 + x1 ∗ 0.998321 ∗
−2.4933595845987697e+22+
x1/x0 ∗ −0.0 + x0/x1/(x0 +
x1)∗−1.7018808659799349e+
68 + x1/x0/(x1 + x0) ∗
11.321839) ∗ 0.0) ∗ (x0 + x0 ∗
−3.10136811332914e + 38 ∗
−0.0 + (x0 ∗ x0)/(x1 − x1) ∗
−1.060634018085812e +
22)/(x1 ∗ (x1 ∗ 0.0 ∗
5558069507319.527 + x1/x0 ∗
0.0 + (x0 + x1) ∗ x1/x0 ∗
−0.0))/(x1/x1/(x1∗x1)∗1.0∗
0.0+cos((log(x1)−cos(x0)))∗
x1 ∗ −1.005799 ∗ 0.0 +
(−1.007637+x1/x1/(x1∗x1)∗
−430533244100.9507) ∗ 0.0)

7.14e-
11

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

ii.21.32 8.99e+9 ∗ x0/x1 −8.99e+9∗x0/(x1∗
(0.454 ∗ cos((x1 +
x2)/x2) + zoo))

x0/((x1 ∗ −0.633341 ∗
−3.281687 + x1 ∗ x2 ∗ −0.0) ∗
(0.999981 + x1 ∗ −0.0) ∗
0.506802+(x1∗x2+log(x0))∗
0.0+(x1∗1.95036+x2∗0.0)∗
0.00026)/(log((log(x2)∗(x1−
x1)))∗−0.045066+cos(((x2+
x1)/x2)) ∗ −0.453885 +
(x1/x1 ∗ (x2 − x1) + x1 +
x0 + x1 − x2) ∗ (1.0 ∗ 0.0 +
(x1 − x0) ∗ −0.0)) ∗ 1.0 ∗
9471418140.76377

5.06e-
14

i.37.4 x0 + x1 + 2 ∗
sqrt(x0 ∗ x1) ∗
cos(x2)

0.224 ∗ (0.303 ∗
x0 ∗ x1 + 4.42 ∗
x0 + 4.42 ∗ x1 +
0.00598 ∗ cos(x2)) ∗
(−0.00598∗x0∗∗2+
0.169 ∗ cos(x0) −
0.00598 ∗ cos(x1) +
0.00598 ∗ cos(x1 −
x2) + 0.848) +
(0.00598 ∗ x0/x1 +
(−1.13 ∗ x0 + 1.13 ∗
x1+31.9) ∗ (0.187 ∗
x0 + 0.187 ∗ x1 +
0.00101) + 0.381 ∗
log(x0 ∗ x1) −
0.013 ∗ log(x0 ∗
∗2 − x0 + x1) +
3.05 ∗ log(log(x0 +
x1)) + 0.00598 ∗
x1/x0) ∗ sin((x0 +
x1) ∗ cos(x0 ∗ ∗2) ∗
cos(x2))

(cos(x0) ∗ −0.169021 +
−1.853386 ∗ 0.457336+ ((x0 ∗
x0 + cos(x1)) − cos((x2 −
x1))) ∗ 0.00576) ∗ (((x2 −
x0) ∗ (x2 − x2) + x2 − x0 −
(x2 + x1)) ∗ −4.422398 +
(cos(x2) ∗ 11.632138 + x1 ∗
x0 ∗ 549.516861) ∗ 0.000551) ∗
−0.223539 + sin((cos((x0 ∗
x0)) ∗ cos(x2) ∗ (x1 + x0))) ∗
((−31.893814 + (x1 − x0) ∗
−1.130586) ∗ (−0.001229 +
(x0 + x1) ∗ −0.186696) +
log((x1 − x0 + x0 ∗ x0)) ∗
−0.012644 + log((x0 ∗
x1)) ∗ 0.380954 + x0/x1 ∗
0.00594 + x1/x0 ∗ 0.005865 +
log(log((x0+x1)))∗3.054007)

1.51e-
4
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bonus.7 3.0e + 8 ∗
sqrt(−x1/x2 ∗
∗2)

(7.83e + 10 ∗ x0 ∗
x1 ∗ x2 + x0 ∗ x2 ∗
(−9.23e+ 33 ∗ x0−
1.21e + 9 ∗ x1 +
2.66e+8)∗log(x2)−
8.18e+9∗x1)/(x2∗
log(x2))

((x2/x1 − (x2 + x2)) ∗
(x1 − x1 + x1 ∗ x0) ∗ 0.0 +
cos(log((x2/x0))) ∗ −0.0 +
(x0 + x1) ∗ sin(x1) ∗ −0.0 +
(cos((log(x2) + x0 ∗ x2)) ∗
1.243243+(x2+x0+x2∗x1)∗
(x0−x1+x0+x1)∗0.049346)∗
0.0) − ((((x1 ∗ x0)/log(x2) ∗
1878.48632 + x1 ∗ x0 ∗
−28.949997+x2∗x1∗−0.0)∗
−41687892.707671+((x0/x1∗
8.906147285880547e +
53 + x1 ∗ x1 ∗
−6.044006062559795e +
27) − x0/x0/(x0 + x1)) ∗
(x0 ∗ x2 ∗ 0.0 + (cos(x1) +
cos(x1)) ∗ (−0.0 + x0 ∗
0.0))) − (x1/x2/log(x2) ∗
−8177765343.762911 +
x1/x2 ∗
1.8666636319898988e + 26 ∗
−0.0+x0∗246026712.333492+
x2 ∗ 0.0 + x0 ∗ x2 ∗ 0.0 + x0 ∗
x0 ∗ −9.232410317538276e +
33 + x0 ∗ 20340985.054632 +
x2 ∗ 0.0 + (1.256028 + x0 ∗
−2.3055888900197576e+25+
x1 ∗ 0.748889 + 0.013151) ∗
(1.0 ∗ 0.0 + cos(x1) ∗ 0.0)))

1.67e-
4

Besides, in Table 10, we also present some of the other generated formulas along with their simplified
forms, including the accuracy solutions, symbolic solutions, approximate solutions, and special
conditions on the SRSD datasets. In most instances, the generated formulas exhibit good inter-
pretability after being simplified using the sympy library. However, when the necessary operators for
obtaining the target formula are lacking (such as ‘sqrt’), the complexity of the simplified formula
may increase to approximate the target formula as closely as possible. Additionally, it is noteworthy
that some generated formulas, after simplification using the sympy library, yield ‘zoo’ values despite
having an R2 value of 1. Such a situation primarily arises due to the protected division operator.
The sub-expression f(x) as a denominator with zero-value is replaced with

√
1 + f(x)2 during the

computation.

D.5 SCALABILITY TO DATA SIZE

Since the semantic dimension is associated with the training set size, there may be a spatial sparsity
problem when dealing with a large-scale dataset. It is also the reason why Eq.4 is used in the
geometric search operator to quickly approximate the semantic vector to the sub-target semantics first.
To further analyze the specific performance of the GESR under different data scales, the black-box
dataset in SRBench according to the data scale is re-partitioned, and the Avg.R2 of the top-ranked
methods is statistically compared in SRBench, in which the results show the competitiveness of the
GESR.

25



1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

Table 11: The Avg.R2 performance on different data scales.
0∼100 100∼500 500∼1000 1000∼5000 5000∼10000 10000∼

GESR 0.665 0.872 0.891 0.618 0.857 0.632
SBP-GP 0.665 0.857 0.876 0.608 0.858 0.630
Operon 0.580 0.870 0.890 0.623 0.861 0.629
FEAT 0.664 0.867 0.886 0.619 0.857 0.632
DSR 0.584 0.605 0.559 0.500 0.699 0.386

D.6 DETAILED RESULTS ON STROGATZ DATASETS

In order to better observe the specific performance of our method dealing with scientific discovery
data sets, we further evaluate our method on the Strogatz datasets. Table 12 shows the median value
(1-R2) for 10 independent runs of our method on the Strogatz datasets, in which 1-R2 is labeled 0
whenR2 achieves the accuracy to tolerance 15. Figure 7 shows the solution rate of our method on the
Strogatz series datasets, in which solution rate means the rate of finding the symbolic solution.

Table 12: The median 1−R2 on Strogatz datasets.
Dataset Operon SBP-GP AIFeynman MRGP DSR GESR

Strogatz bacres1 3.56e-7 3.51e-6 6.19e-3 7.02e-5 1.14e-1 3.66e-6

Strogatz bacres2 2.67e-8 2.19e-9 2.91e-4 2.59e-5 1.17e-1 2.43e-5

Strogatz barmag1 2.76e-6 1.76e-9 0.75 7.33e-5 1.73e-1 0

Strogatz barmag2 1.70e-7 0 0 4.91e-5 1.26e-1 0

Strogatz glider1 1.31e-12 0 4.99e-3 3.68e-5 1.14e-1 0

Strogatz glider2 1.85e-7 1.83e-5 0 4.55e-5 0 0

Strogatz lv1 2.24e-11 0.16 9.73e-1 2.78e-1 1.93e0 0

Strogatz lv2 1.40e-11 1.66e-4 0 2.95e-2 5.55e-1 0

Strogatz predprey1 3.25e-7 1.02e-3 1.01e0 2.83e-4 8.15e-2 1.11e-3

Strogatz predprey2 7.68e-6 2.78e-4 5.11e-3 8.04e-5 1.71e-1 1.08e-4

Strogatz shearflow1 8.75e-3 6.33e-3 0 3.43e-4 0 0

Strogatz shearflow2 5.11e-9 4.18e-11 1.05e0 3.98e-5 3.02e-1 0

Strogatz vdp1 3.58e-9 6e-5 1.03e0 4.91e-5 2.47e-1 0

Strogatz vdp2 4.99e-15 0 0 2.94e-5 1.10e-1 0

As can be seen from Table 12, we can achieve fitting effect on most datasets of Strogatz datasets.
For a few formulas that do not fit perfectly, there are also a good numerical fitting effect. The
underlying formulas for the four data sets that failed to fit are: y = 20 − x1 − x1·x2

(1+0.5·x2
1)

, y =

10−x1 ·x2/(1+0.5 ·x2
1), y = x1 ·(4−x1− x2

1+x1
), y = x2 ·( x1

x1+1 −0.075 ·x2). A common feature
can be found from these formulas, that is, they all have protective division. This may means that
interval operations to some extent prevent the generated formulas from generating extreme values,
but also limit the ability of GESR to search for some formulas. Thus, the exploration of protection
operators is also a possible direction for our future research.

Figure 7 shows the success rate of our method in finding the perfect formula. It can be observed that,
compared with the advantages of accuracy fitting, our method does not show great advantages in
terms of the solution rate. Although the purpose of our method is on numerical fitting, it is undeniable
that the high-intensity numerical fitting ability of geometric semantic variation also limits the ability
to find a perfect formula. When fitting the underlying expression with high complexity, there may be
multiple mismatched parts in an expression that are expected to be replaced. Once the subexpression
tree where all mismatched parts are located cannot be found and replaced correctly in the process of
geometric semantic variation, Then, due to the semantic approximation property, the mismatched but
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Figure 7: Solution rates on Feynman datasets(left) and Strogatz datasets(right) of SRBench bench-
mark.

semantically more similar sub-expression tree may be chosen for replacement. This will cause the
symbolic regression process to be transformed into a numerical fitting process rather than a search
for a perfect formula, which is also an issue worth studying and deepening in the future.
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