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Abstract

For any black-box model, conformal prediction (CP) returns prediction sets guar-
anteed to include the true label with high adjustable probability. Robust CP (RCP)
extends the guarantee to the worst case noise up to a pre-defined magnitude. For
RCP, a well-established approach is to use randomized smoothing since it is appli-
cable to any black-box model and provides smaller sets compared to deterministic
methods. However, smoothing-based robustness requires many model forward
passes per each input which is computationally expensive. We show that conformal
prediction attains some robustness even with a single forward pass on a randomly
perturbed input. Using any binary certificate we propose a single sample robust CP
(RCP1). Our approach returns robust sets with smaller average set size compared to
SOTA methods which use many (e.g. ∼ 100) passes per input. Our key insight is to
certify the conformal procedure itself rather than individual conformity scores. Our
approach is agnostic to the task (classification and regression). We further extend
our approach to smoothing-based robust conformal risk control.

1 Introduction

Modern neural networks return uncalibrated probability estimates [14], and other uncertainty quan-
tification methods (like Bayesian and ensemble models, Monte-Carlo dropout) are computationally
expensive. Additionally, these methods do not usually provide formal statistical guarantees. Instead,
conformal prediction (CP) is a post-processing method returning prediction sets with a distribution-
free and model-agnostic coverage guarantee, ensuring that the true answer is in the set with an
adjustable high probability. To apply CP, we need a conformity1 score function s(x, y) capturing the
agreement between x, and y (e.g. softmax). We compute a conformal threshold over a holdout set
of calibration points, and for the test points, we form the set as all labels with scores exceeding that
threshold. These sets are guaranteed to include (cover) the true label with 1− α probability [2].

As shown in Fig. 1-left (the red dashed line), this guarantee breaks by an unnoticeably small natural or
adversarial noise to the test points – the empirical coverage drastically decreases by an imperceptible
perturbation. Note that from this point forward, we call adversarial or natural noises as “perturbations”,
not to be confused with the noise we (as the defender) introduce on purpose. Robust CP (RCP) extends
this guarantee to worst case bounded perturbations, ensuring that the perturbed input x̃ is covered
with the same or higher probability as the clean x, if x is perturbed up to a known magnitude r (e.g.
∥x̃−x∥2 ≤ r). Previous RCP approaches find the highest/lowest possible conformity score within the
perturbation ball, and replace the score with the worst-case bound[12, 16, 26, 27]. These bounds can
be computed either analytically (Lipschitz bound or verifiers) or through randomized smoothing. Here,
the trade-off is between the computational cost and the guaranteed robust radius – analytical methods
are robust to very smaller magnitudes of perturbation, while they only require a single forward pass

1Many works define CP via a non-conformity (disagreement) score. The setups are equivalent with a change
in the score’s sign. Our robustness results are invariant to this definition.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).



0.0 0.2 0.4
r

0.0

0.5

1.0

C
ov

er
ag

e
Vanilla
C0

Cr

10
−1 10

0
10

1

Unit Time (ms)

10
1

10
2

10
3

A
ve

ra
ge

Se
tS

iz
e

ResNet
ViT

/∈ Cr

/∈ C0

∈ Cr

∈ C0

y

RCP1 BinCP

Figure 1: [Left] Coverage of vanilla CP, our robust RCP1, and the SOTA BinCP under adversarial
attack (§ B). Cr denotes sets with robustness guarantee up to radius r, and C0 is guaranteed only for
clean points – but still using same process only with r = 0. Even sets from C0 show significantly
higher coverage compared to vanilla due to randomization. [Middle] The average time to compute,
and the average set size for both RCP1 and BinCP, with ResNet and ViT models on the ImageNet
dataset; both axis are log-scaled and pareto-optimal points are at the lower-left. RCP1 is more efficient.
Both plots are with σ = 0.5. [Right] Smoothing-based robust conformal risk control. We show the
coverage and miscoverage of the RCP1 mask for the class "car" in the segmentation task. Here risk is
set to false negative rate.

per input. In contrast, while randomized smoothing needs many model forwards per single input, it
provides robustness to significantly larger radii, and it applies over any black-box model.

Smoothing is to augment the input with random noise and inference from the distribution of the
model’s output over smooth inputs instead. For example, consider adding isotropic Gaussian noise
ϵ ∼ N (0, σ2I) to the input x, and defining the smooth score as the mean of the distribution
Eϵ[s(x+ ϵ, y)]. Regardless of the original model, the smooth model changes slowly near x, as the
two distribution x+ ϵ, and x̃+ ϵ have a large overlap. This leads to model-agnostic upper bounds
on the score, around x. The upper bound is then used to decide whether a label is added to the
prediction set. An important drawback here is the computational overhead. The score function (e.g.
the expectation of the smooth scores) must be estimated via Monte-Carlo sampling. By reducing the
number of samples, the confidence intervals for the mean widen, and the size of the prediction sets
quickly increases.

We answer this question: Can we design smoothing-based RCP without introducing computational
overhead? Interestingly, we show the vanilla CP combined with noise-augmented inference already
has robust behavior (green dashed line in Fig. 1-left). With that, we define RCP1 (robust conformal
prediction with one sample) that returns robust sets using a single inference per point. In practice, the
resulting sets have the same guarantee, and similar size, to the previous SOTA which needs around
100 samples per input instead. By nullifying the need for sampling, we can use even larger models
(like vision transformers) to return even smaller sets (see Fig. 1-middle). Importantly, we do not
compete with the SOTA equipped with unlimited sampling (compute) budget. Instead, we propose
a compute-friendly alternative that still produces small prediction sets in regimes infeasible for the
other smoothing-based RCP methods (large models and limited computational power).

RCP1 is similar to vanilla CP only with two changes: (i) we use noise-augmented input (from the
smoothing) to compute the scores, and (ii) we calibrate with a conservative 1− α′ nominal coverage
chosen such that our certified lower bound (in § 3) remains above 1 − α. RCP1 works with any
binary certificate (see § 3.1), is agnostic to the model, the distribution of inputs, and score function,
and interestingly, it is task independent – same binary certificate works for both classification, or
regression. We use a similar process to define a smoothing-based conformal risk control (Fig. 1-right).

2 Background

CP requires a holdout set of labeled calibration points Dn = {xi, yi}ni=1 that are exchangeable with
the future test point xn+1. From the model’s output, we define a score function s : X × Y → R
where it quantifies the agreement between x, and y, e.g. softmax; see § C for other scores. Vovk et al.
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[22] show that under exchangeability (vanilla setup) the set C0(xn+1) = {y : s(xn+1, y) ≥ q} for
q = Q (α; {s(xi, yi) : (xi, yi) ∈ Dn}) contains the true label yn+1 at least with 1− α probability.

Pr
Dn+1

[yn+1 ∈ C0(xn+1)] = Pr
Dn+1

[s(xn+1, yn+1) ≥ q] ≥ 1− α (1)

Here Dn+1 = Dn∪{(xn+1, yn+1)}, and Q (α;A) is the ⌊α·(1− 1
n )⌋ quantile of the set A. While the

coverage guarantee is agnostic to the model (and the score), better model or score functions reflects
in properties like the prediction set size ( a.k.a efficiency). While methods like [27] require bounded
score, our results are also agnostic to the choice of the score function (bounded or unbounded).

Threat model. We consider the worst case (or adversarial) perturbation, which yields a more
powerful guarantee compared to probabilistic robustness e.g. from Ghosh et al. [13]. In our threat
model, the adversary aims to decrease the empirical coverage below the guaranteed 1−α by adding an
imperceptible noise to the test points (evasion). The set of all possible perturbations is defined as a ball
B : X → 2X around the clean input. We define an inverted ball B−1 as the smallest set that contains
the original (clean) point from any possible perturbation; i.e. ∀x̃ ∈ B(x) ⇒ x ∈ B−1(x̃). For images,
a common threat model is ℓ2-norm: Br(x) = {x̃ : ∥x̃ − x∥2 ≤ r} where r is the radius of the
perturbation. For symmetric balls like ℓ2 we have B = B−1, but this does not hold in general (e.g. [5]).

Robust Conformal Prediction (RCP). Robust CP extends the guarantee in Eq. 1 to the worst case
noise. For B, prior works define a robust (conservative) prediction set CB satisfying the following

Pr
Dn+1

[yn+1 ∈ CB(x̃n+1),∀x̃n+1 ∈ B(xn+1)] ≥ 1− α (2)

Eq. 2 is only meaningful for deterministic sets. We discuss this subtle point in § 3 and § D.1.
Earlier smoothing-based RCP methods implicitly remove all inherent randomness, which makes the
definition applicable to them. These methods can be summarized with the following two arguments:
(i) for the exchangeable xn+1 CP covers the true label with 1− α probability, (ii) if the clean xn+1

was originally covered by (vanilla) CP, robust CP also covers x̃n+1, because if a clean score is above
q its upper bound (over any perturbed input) is also above q [26]. Thus, the vanilla set for xn+1 is a
subset of the robust set for x̃n+1. This results in robust coverage of at least 1− α. To account for the
inherent randomness in CP, in § 3, we redefine the threat model, and replace the argument (ii) by the
following: “the perturbed x̃n+1 has a higher probability to be in the robust prediction set compared
to xn+1 being in the vanilla set”. The new formulation still addresses the worst-case perturbation.

Certified bounds. For any function f and ball B(x) define the certified lower bound as c↓[f,x,B] ≤
inf{f(z) : z ∈ B(x)}, and similarly c↑[·, ·, ·] as the upper bound (with sup). With this definition,
for each x we have ∀x̃ ∈ B(x), c↓[s(·, y),x;B] ≤ s(x̃, y) ≤ c↑[s(·, y),x,B] where we plug in the
score function for f . Zargarbashi et al. [27] show that given these certified bounds within B, the
conservative sets defined either as CB(xn+1) = {y : c↑[s(·, yn+1),xn+1;B−1] ≥ q} (test-time RCP),
or similarly, CB(xn+1) = {y : s(xn+1, y) ≥ q̄} for q̄ = Q

(
α; {c↓[s(·, yi),xi;B] : (xi, yi) ∈ Dn}

)
(calibration-time RCP) attain 1− α robust coverage.

Randomized smoothing. One approach to compute these upper/lower bounds for any black-box
model, or score is randomized smoothing. A smoothing scheme ξ : X → X adds a random noise to the
input – maps it to a random point close to it. A common smoothing for continuous data (e.g. images)
is the Gaussian smoothing ξ(x) = x + ϵ where ϵ is an isotropic Gaussian noise ϵ ∼ N (0, σ2I).
While our method works for any smoothing, for easier notation we further use x+ ϵ instead of ξ(x).

For any score function s, the distribution of the smooth scores s(x+ϵ, y) changes slowly. This enables
us to compute tight bounds on the smooth statistics (mean, quantile, etc.) within B, or B−1. RSCP
[12, 24], and CAS [27] set the score function directly to the mean of the distribution. BinCP [26],
uses the p-quantile instead. These statistics are often intractable to compute and therefore estimated
using Monte-Carlo sampling, followed by a finite sample correction. RCP1 however nullifies the
need to estimate these statistics. We discuss the related work further in § A.

3 RCP1: Robust CP with One Sample

High level view. We prove that when the scores are computed on noise-augmented inputs, i.e. using
s(x+ϵ, y) instead of s(x, y) for both calibration and prediction (see Alg. 1), vanilla CP already yields
robust prediction sets - and its coverage under perturbation can be bounded. We provide a sketch of
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Figure 2: Illustration of the theory behind RCP1.
The probabilities βi never need to be computed,
since due to the convexity of c↓ we can directly
work with 1− α. Further description in § 3.

Algorithm 1. RCP1; the colored part shows the
difference with vanilla CP.

Require: Calibration setDn = {(xi, yi)}ni=1; nomi-
nal coverage 1− α ∈ (0, 1); score s : X ×Y →
R; potentially perturbed test point x̃n+1

1: Compute si ← s(xi+ϵ, yi) : (xi, yi) ∈ D.
2: Set 1− α′ ← c↑[1− α,B−1] ▷ e.g., Gaussian

smoothing with Br: Φσ(Φ
−1
σ (1− α) + r).

3: Set q̄α = Q (α′, {si}ni=1).
4: For input x̃n+1 return

Cr(x̃n+1) = {y : s(x̃n+1+ϵ, y) ≥ q̄α}

our arguments. To prove it we first assume an abstract value βn+1 as the coverage probability of a
specific clean point xn+1, which is over the random noise and the inherent randomness in the score.
With β̃n+1 as the coverage probability for x̃n+1 (again over augmented input) we show that β̃n+1

can be lower bounded using the randomized smoothing certificates. By showing the convexity of the
certificate w.r.t. βn+1, we can directly lower bound the expected coverage over all inputs which is
1− α. We never need to compute the abstract βn+1 or β̃n+1. This sketch is illustrated in Fig. 2.

Limitation of Eq. 2. The universal quantifier in Eq. 2 implies that for ≥ 1− α fraction of test points,
all x̃n+1 must be deterministically covered, including the clean xn+1. However, many CP methods
(like APS [2]) incorporate internal stochasticity (e.g. to break ties), making the coverage event a
random variable rather than a binary indicator. This is true even before we add our noise on top.
Hence, Eq. 2 does not reduce to Eq. 1 for r = 0. For random sets, adversary can reduce the coverage
probability for each xn+1. With u encoding all the (inherent) randomness in the sets, C0 as the vanilla
set, and Cr as the robust set for a ball Br, we rewrite the guarantee as:

Pr
Dn+1

[ min
x̃n+1∈Br(xn+1)

Pr
u
[yn+1 ∈ Cr(x̃n+1;u)]] ≥ Pr

Dn+1,u
[yn+1 ∈ C0(xn+1;u)] ≥ 1− α (3)

General worst-case guarantee. We prove the lower bound coverage guarantee in RCP1, as imple-
mented in Alg. 1. We state the result in terms of random variables, which have a specific realization
in practice. Let Zi : i ∈ [n+ 1] be n+ 1 exchangeable random variables, where Zi = (Xi, Yi) for
Xi ∈ X (e.g. X = Rd), and Yi ∈ Y (e.g. Y = [K]). Let s : X × Y → R be any measurable score
function. Let Ei : i ∈ [n+1] be i.i.d. random variables from a distribution supported on X (e.g. Ei ∼
N (0, σ2I)). We define Ŝi = s(Xi, Yi), and Si = s(Xi +Ei, Yi). Let δ ∈ Br be any arbitrary pertur-
bation up to radius r, define X̃n+1 = Xn+1 + δ, and S̃n+1 = s(X̃n+1 + En+1, Yn+1) accordingly.
Proposition 1. Let q = Q (α; s(Xi + Ei, Yi) : (Xi, Yi) ∈ Dn}). Given a certified lower bound
c↓[·,B] as later defined in Eq. 4, and En+1 = {Ei}n+1

i=1 , for any perturbation δ ∈ Br we have

Pr
Dn+1,En+1

[s(X̃n+1 + En+1, Yn+1) ≥ q] ≥ c↓[1− α,B]

Proof. Adding i.i.d. noiseEi is permutation equivariant, thus using Si’s doesn’t break exchangeability
[2]. From Vovk et al. [22] we have Pr[Sn+1 ≥ q] ≥ 1 − α for q = Q (α; {Si}ni=1), where the
probability is over Dn+1, and En+1. We can rewrite this as

Pr
Dn+1,En+1

[Sn+1 ≥ q] = EDn+1,En

[
Pr

En+1

[Sn+1 ≥ q] | Dn+1, En
]
= EDn+1,En

[βn+1] ≥ 1− α

where we define βn+1 := PrEn+1 [Sn+1 ≥ q | Dn+1, En]. Here, βn+1 is only a probability over the
last noise En+1 (and any other internal randomness in the score) for a fixed Dn+1 and En. We call
βn+1 the clean instance-wise coverage. Similarly for X̃n+1 we define β̃n+1.

We can bound any smooth binary function with an existing certified lower bound c↓[·,B]. Formally,

Pr
En+1

[Sn+1 ≥ q | Dn+1, En] = βn+1 ⇒ Pr
En+1

[S̃n+1 ≥ q | Dn+1, En] ≥ c↓[βn+1,B]
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Note that here both βn+1 and β̃n+1 share the same Dn+1, and En and both are over the random
variable En+1 and the inherent randomness of the score. Later in Lemma 1, we show that the function
c↓[β,B] is convex and increasing in β. This helps us to bound the adversarial coverage guarantee as

Pr[Yn+1 ∈ C(X̃n+1)] = Pr[S̃n+1 ≥ q] = EDn+1,En
[ Pr
En+1

[β̃n+1]]

(from certificate) ≥ EDn+1,En
[c↓[βn+1,B]]

(from convexity (Lemma 1),E[c↓[β, ·]] ≥ c↓[E[β], ·]]) ≥ c↓[EDn+1,En
[βn+1],B] ≥ c↓[1− α,B]

where the last inequity holds due to vanilla CP and monotonicity.

Just like with any other CP with any kind of randomness in the score (e.g. APS), the guarantee only
holds marginally over En+1 and the internal randomness. In other words, the coverage probability is
higher than c↓[βn+1,B] for specific X̃n+1, and c↓[1− α,B] on average, if we draw a random En+1.
If we instead fixed En+1 and the adversary knows the noise, the guarantee can easily break. Note
that βn+1 is an abstract quantity, the probability that Xn+1 +En+1 is covered. In principle we can
not estimate βn+1, since the label is not known. Nonetheless, due to the convexity, we can lower
bound the coverage guarantee directly without that information.

Instance-wise worst case coverage. Prop. 1 relies on lower bounding the worst-case (adversarial)
β̃n+1 = Prϵn+1 [s(x̃n+1 + ϵn+1, yn+1) ≥ q], for the perturbed x̃n+1 = xn+1 + δ ∈ B(xn+1)
given βn+1 := Prϵn+1 [s(xn+1 + ϵn+1, yn+1) ≥ q]. Here, (xn+1, yn+1) and ϵn+1 are realiza-
tions of (Xn+1, Yn+1) and En+1. This is conditional to q, and hence to Dn and En. Formally,
we define a binary classifier, f(z) = I[s(z, yn+1) ≥ q] and g(z) = Eϵn+1

[f(z + ϵn+1)]

for which we have βn+1 := g(xn+1). Note that X is a convex subset of Rd and the score
s(·, y) is continuous everywhere, therefore our classifier is measurable [19]. We can lower bound
β̃n+1 = minx̃n+1∈B(xn+1) g(x̃n+1) and therefore g(x̃n+1) for the given xn+1 using the existing
(binary) classification certificates, e.g. Cohen et al. [7].

Certified lower bound β̃. A smoothing binary certificate computes the bound c↓[g(·),xn+1,B] re-
gardless of the original definition of f – mechanics of the score function or model – and only as a func-
tion of the value β = g(xn+1). We use the c↓[β,B] notation, following Zargarbashi and Bojchevski
[26]. For the known xn+1, a (pointwise) certified lower bound on g(x̃n+1) : x̃n+1 ∈ B(xn+1) is
obtained by searching for the worst measurable binary function h : X → {0, 1} in H (set of all
measurable functions) such that h has the same smooth output as f at xn+1. Formally:

c↓[β,Br] = min
h∈H

Pr
ϵ
[h(t̃+ ϵ) = 1] s.t. Pr

ϵ
[h(t+ ϵ) = 1] = Eϵ[g(xn+1)] = β (4)

The pair (t, t̃) are called canonical points. Cohen et al. [7], Yang et al. [25] discuss this in detail.
Intuitively, the optimization in Eq. 4 is translation (and in some cases rotation) invariant, and with
the symmetries in the ball and the smoothing scheme, for any x, and x̃ we can use a fixed set of
canonical points. For ℓp balls, and symmetric additive smoothing (including isotropic Gaussian noise)
these points are one at the center, and the other at the edge (or vertex) of the ball; i.e. t = [0, 0, . . . , 0],
and t̃ = [r, 0, . . . , 0]. For a detailed discussion also see section D.1 from Zargarbashi and Bojchevski
[26]. Since the function f itself is a feasible solution to Eq. 4, it is a valid lower bound for g(xn+1).

The mean-constrained binary certificate in Eq. 4 is a common problem in the randomized smoothing
literature. It is efficiently solvable and in many cases has a closed form solution. For the isotopic
Gaussian smoothing with ℓ2 (and ℓ1) ball the lower bound is β̃ = Φσ(Φ

−1
σ (β)− r) where Φσ is the

CDF of the Gaussian distribution N (0, σ) [17]. Using the recipe from Yang et al. [25], in § 3.1, we
discuss how to compute c↓[p,B] for other smoothing schemes.
Lemma 1. c↓[β,B] as the solution to Eq. 4 is convex and monotonically increasing w.r.t. β.

We defer the proofs to § D.2. There we rigorously prove Lemma 1 directly from the definition of Eq. 4
via duality. Here we provide a sketch of an alternative proof that is insightful. Lee et al. [18] show that
to solve Eq. 4, the space X can be divided to (finite or infinite) regions of constant likelihood ratio
Rt = {z : Pr[z=t̃+ϵ]

Pr[z=t+ϵ] = ct}. If we can sort these regions in descending order w.r.t ct, the problem
reduces to the following linear program which is a fractional knapsack problem:

c↓[β,B] = min
h∈[0,1]T

h⊤ · q s.t. h⊤ · p = β
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where T is number or regions, ht is the average value of h(z) inside the region Rt, pt = Pr[t+ ϵ ∈
Rt], qt = Pr[t̃ + ϵ ∈ Rt], and the vectors h,p, q gather all ht, pt, qt’s (see Lee et al. [18] for the
derivation). W.l.o.g assume that the p, and q are sorted decreasingly w.r.t. ct. The optimal solution is
h⋆ = [1, 1, . . . ,m, 0, . . . , 0], for some m ∈ (0, 1) which is to fill regions in order up to when h · p
reaches β. Each index of h⋆ is one region being filled and by setting h∗t = 1 the h · q, and h · p
increase by qt, and pt. Therefore c↓[β,B] = h⋆ · q is a continuous piecewise linear function with
slope of qt/pt which is increasing across regions. A piecewise linear function with an increasing
slope in each piece is convex. This convexity directly helps us to bound E[c↓[β,B]] ≥ c↓[E[β],B].
Note that in Prop. 1 the guarantee is over the coverage probability and independent of the setup;
therefore, without any change, one can use it to make conformal regression robust. Regardless of
the downstream task the certificate is always for binary classification. Furthermore, the result is not
restricted to a specific scheme and can be used for any smoothing and perturbation ball (see § 3.1).

Coverage distribution. The expected coverage probability is itself a random variable with expectation
higher than 1−α. Under mild assumptions, Pr[Sn+1 ≥ q | Dn] ∼ Beta((1−α)·(n+1), α(n+1)) [2].
That is, for any given fixed calibration set, the coverage fluctuates around 1−α, with variance inversely
proportional to the size of the calibration set. Since in practice we only have one calibration set,
understanding this distribution, and its variance, is important. While we do not know the distribution
of the robust coverage, we can compute a conservative estimate by convolving the CDF of Beta
and the function c↓[·,B] (see Fig. 3-left). Similarly, convexity helps to bound the mean of this new
distribution as shown in Prop. 1. Note, our method does not take into account the distribution of the
scores or inputs (unlike BinCP [26]) and as a result it is very conservative. In Fig. 3-middle we show
comparison of our guaranteed lower-bound coverage and the empirical coverage under adversarial
attack, highlighting that our guarantee accounts for significantly more damage.

Maintaining 1 − α coverage. Prop. 1 says that under perturbation, the coverage guarantee of
CP calibrated with 1 − α over augmented inference decreases at most by c↓[1 − α,B]. A simple
solution to attain 1− α robust coverage is to set the nominal coverage to a value 1− α′ such that
c↓[1− α′,B] ≥ 1− α. In general, we can find 1− α′ using binary search, however, from [26] we
know that in smoothing schemes like Gaussian, we have c↑[c↓[p,B],B−1] = p (see § D.3, Lemma 2).
Therefore, to attain 1− α robust coverage, we only need to set the threshold as the c↑[1− α,B−1]
quantile of the calibration scores (see Fig. 3-right).

3.1 Robust Conformal Sets with Randomized Smoothing of All Shapes and Sizes

Both RCP1, and BinCP work with any smoothing and ball B. However, some binary certificates
are given as a robust radius r∗ – the radius up to which the prediction remains the same, i.e.
c↓[p,Br∗ ] = 0.5. Yang et al. [25] provide a recipe to compute the r∗ for general ℓp certificate under
additive randomized smoothing. We tweak their “differential” method to derive probability bounds.
We phrase Prop. 2 in a notation close to [25] and far from our own, however the takeaway is simple: in
short we define Ω(p) such that 1/Ω(p) encodes the minimum perturbation to make an infinitesimal in-
crease in the worst case classifier with expected value β. We use line integral to find the c↑ for the worst
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case classifier at radius r; formally sup{β :
∫ β

β
1

Ω(p)dp ≤ r}. We can find this supremum either ana-
lytically (see § D.4) or via binary search using the existing closed forms provided by Yang et al. [25].
Proposition 2. For a binary classifier f(x), and an additive smoothing function ξ, Let U = {x :
f(x) = 1} be the decision boundary and U −z as the same set translated by −z, such that z goes to
the origin. Let ξ(U) = Prϵ∼ξ[ϵ ∈ U ] be the expectation of the decision boundary under smoothing,
and β = ξ(U − x) = E[f(x+ ϵ)]. Define:

Ω(p) := sup
δ:∥δ∥=1

sup
U∈Rd:ξ(U)=p

lim
r→0+

ξ(U − rδ)− p

r

Assuming Ω(p) is strictly positive for p ∈ [c↓[β,Br], c
↑[β,Br]], and defining F (γ) =

∫ 1/2

γ
1

Ω(p)dp:

c↑[β,Br] = sup {β′ : F (β′) ≥ F (β)− r} (5)

Similarly, we have c↓[β,Br] = inf {β′ : F (β′) ≤ F (β) + r}.

3.2 Extension to Conformal Risk Control

We use robustness certificates to define smoothing-based robust risk control for the first time. Let Cλ(·)
be a conformal set, where λ ≤ λmax controls the set size. For a risk function L(xi, yi;λ) ∈ [a, b] that
is right-continuous and non-increasing w.r.t. λ, if L(xi, yi;λmax) ≤ α, Angelopoulos et al. [1] show:

EDn+1
[L(xn+1, yn+1;λ

∗)] ≤ α for λ∗ = inf{λ :

∑n
i=1 L(xi, yi;λ) + b

n+ 1
≤ α}

Here α ∈ [a, b] is any user adjusted risk level. Similar to conformal prediction, we can also define a
randomly augmented risk function L(xi + ϵi, yi;λ). The noise does not break the exchangeability
and therefore E[L(xn+1 + ϵn+1, yn+1;λ

∗)] ≤ α for the λ∗ computed on the randomly augmented
calibration set. Due to the continuous nature of the risk function, we now use confidence certificates:

c↑c [β,B] = max
h∈H

E[h(x̃n+1)] s.t. E[h(xn+1)] ≤ β (6)

Here h : X → [0, 1]. Similarly, Eq. 6 can be efficiently solved, and for the Gaussian distribution it has
a closed form solution of b · Φσ(Φ

−1
σ (β−a

b−a ) + r)− a(1− Φσ(Φ
−1
σ (β−a

b−a ) + r)). With [a, b] = [0, 1]
(e.g. for the false negative rate risk) the closed form is identical to the classification certificate [17].

4 Experiments

Metrics and Baseline. We evaluate average set size (lower is better), and empirical coverage (exceed-
ing 1− α on average). Note that in RCPs the empirical coverage conservatively exceeds 1− α by in-
creasing r. Under perturbation this decreases at worst to 1−α. As BinCP [26] outperforms other robust
CP approaches [24, 27], we set it as our main comparison baseline. All recent smoothing-based RCPs
return non-informative sets (C(x) = Y) for low number of samples (e.g. ≤ 32). Note that our main
contribution is to return efficient sets with one inference per input; therefore we do not expect RCP1 to
outperform BinCP for a large sample-rate. Our reported results are over 100 iterations with calibration
set randomly sampled from the data. Further details are in § E, and the code is in our GitHub.

Since we certify the coverage guarantee (instead of scores), we can use the same binary certificate for
both classification and regression tasks. We discuss the classification here, and defer the regression
task to § E. The algorithm remains the same, only for the regression we use the absolute distance
from the ground truth as the score. To the best of our knowledge, this is the first conformal regression
certificate based on randomized smoothing.

Classification. We compare methods for the CIFAR10, and ImageNet datasets. We have two inference
pipelines The original pipeline from BinCP, and CAS (computationally cheap setup): we use the
ResNet models trained with noise augmentation from Cohen et al. [7]. Because of the model size,
large sample-rates, although inefficient, are not unrealistic. We also evaluate on an alternative more
expensive pipeline outlined by Carlini et al. [6]: the input is first denoised by a diffusion model
and then classified by a vision transformer. For CIFAR-10 we combine a 50M-parameter diffusion
model from Dhariwal and Nichol [9], with a ViT-B/16 from Dosovitskiy et al. [10], pretrained
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on ImageNet at 224 × 224 resolution and finetuned on CIFAR10 with 97.9% accuracy for the
HuggingFace implementation. For ImageNet we use a 552M-parameter class-unconditional diffusion
model followed by BEiT-L model (305M parameters) from Bao et al. [3] achieving 88.6% top-1
validation accuracy. We use the implementation provided by the timm library [23].

Smaller set sizes. Increasing the sample-rate (number of model forwards) in BinCP decreases the set
size. Fig. 1-middle compares the set size and computation time for BinCP and RCP1 on the ImageNet
dataset. Here, RCP1 shows similar set size to BinCP with 64 to 128 inferences per point. We also
compare set size per radii for CIFAR-10 in Fig. 7, and for ImageNet in Fig. 5. A single inference
over the larger pipeline (diffusion and ViT) for RCP1 takes significantly less time compared to the
cheaper pipeline with enough samples for BinCP. Therefore we can easily achieve a considerably
better set size with an unnoticeably more computation only by using a better model. In Fig. 4-middle,
and right we compare BinCP and RCP1 in set size per sample rate (for BinCP) and radius for the
CIFAR-10 and ImageNet datasets. Our complete comparison on this experiment is in § E. Note that it
is significantly inefficient to run ≥ 100 forwards passes per image on the ViT models. Additionally,
we use the results in § 3.1 to show that the method works similarly for any smoothing scheme and
threat model. For that we show the performance of BinCP (under two sample rates) and RCP1 for the
ℓ1 ball under uniform smoothing distribution in Fig. 6-right.

For a dataset like ImageNet (with 1000 classes), the average set size alone is not a measure of
usability. Consider a CP returning 50% singleton sets and |Y| for the rest, compared to a CP returning
sets of size 100 for all inputs. Surely, the latter option is not usable even though it has smaller average
set size. Hence, we also report the proportion of the prediction sets with less than 5 elements in
Fig. 5-right (also see § E). This metric is only trustworthy if the we don’t sacrifice the coverage in
smaller sets. In Fig. 4-left we show that these sets have coverage larger than 1− α.

Small radii. Jeary et al. [16], and Massena et al. [19] propose RCP using verifiers and Lipschitz
constant of the network. Although their result is for one order of magnitude smaller radii (e.g. 0.02
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instead of 0.25), their methods are efficient by using one forward per input. With RCP1 being the
same in that metric, we compare with them in Fig. 6-left and middle reporting performance on smaller
radii. Aside better performance, RCP1 has a black-box access and works for any model. Intuitively,
as shown in Fig. 1-left, smooth (or augmented) inference is significantly more robust to perturbations.

Time-comparison. With tcert, and tf as the time for computing bounds, and for the model’s inference
time, other smoothing based RCPs at best require O(nmc×Dn×tf +tcert) for calibration where nmc

is the number of MC samples. For each test point they also require O(nmc× tf ) time. RCP1 takes the
same time as the normal model’s inference plus an additional O(tcert) for calibration. Similarly, RCP1
takes nmc less memory compared to other smoothing RCPs. We show the runtime of the ViT pipeline
for the used datasets in Table 1. Note that this is only the time to compute logits as the other processes
(including certificates) are negligiable compared to it. The runtime of BinCP with a sample rate com-
parable to RCP1 is significantly high for large models like ViT; for instance, RCP1 and a comparable
BinCP (with 128 samples on ImageNet) need ∼2’,46", and ∼5h 55’ to process 5000 images.

Robust conformal risk control. We use the model from Fischer et al. [11] on the CityScapes dataset
[8] which is a scene segmentation task. We mask the regions where a target class (e.g. car) might
be present. The error function is the false negative ratio (FNR) – the portion of the pixels from the

Table 1: Estimated runtimes (in HH:MM:SS) for 1000 inputs using an H-100 GPU. Results are scaled
from a full experimental run assuming a linear cost in both the number of inputs and samples.

Pipeline Dataset 1 Sample 64 Samples 128 Samples 256 Samples

ViT CIFAR-10 0:00:01 0:01:09 0:02:19 0:04:39
ImageNet 0:00:33 0:35:30 1:11:00 2:22:01
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target class that is not masked. We take the exp(f(x))y as the score of the class y, and we set the
mask as I[exp(f(x))y ≥ 1 − λ]. Note that here the classes could possibly overlap. We calibrate
by finding a λ that results in a FNR loss less than the user adjusted tolerable risk. So far, this is the
first result for smoothing-based robust conformal risk control. Similar to RCP1, we first smooth
the image data (one sample), then we compute the λ that results in c↓c [α,B] risk. We report the results
in Table 2, and show an example in Fig. 8.

Limitation: Increased variance. In Fig. 9, RCP1 shows considerably more randomness in the
prediction sets compared to BinCP. This is essentially due to the random definition of the prediction
set and the score function – the prediction set in RCP1 is a function of the random variable ϵ. This
randomness does not affect the final robust / vanilla coverage.

5 Conclusion

While offering small sets for larger radii, smoothing-based RCP methods need many forward passes
per input. Instead, we show that noise-augmented inference combined with CP is inherently robust,
and with that, we propose RCP1 which needs only one forward pass per input. Our approach returns
sets with size similar to state of the art while nullifying the need of many MC samples. Prior smoothing
RCPs provide their guarantee by lower bounding the scores, hence they need to estimate (some
statistic about) the distribution of score for each individual input. Alternatively we only apply the
lower bound on the coverage guarantee which is known in prior to be 1− α.

Table 2: Risk and mask size for the Cityscapes dataset. Risk level is 0.15, with 100 calibration points.
The variance is not over calibration sampling but over the images and r = 0.06.

Class Risk Robust Risk (True) Class Prop. Mask Prop. Robust Mask Prop.
Pedestrian 0.1474 ± 0.2797 0.1111 ± 0.2588 0.0160 ± 0.0279 0.1891 ± 0.1257 0.2522 ± 0.1312
Car 0.1466 ± 0.2582 0.0833 ± 0.2032 0.0539 ± 0.0545 0.0832 ± 0.0733 0.1101 ± 0.0807
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A Related Work

Gendler et al. [12] initially proposed robust CP resilient to adversarial examples (worst-case noise)
without accounting for finite samples (asymptotically valid setup). Yan et al. [24] added finite sample
correction and proposed a new score to return (set size) efficiency. Both mentioned works were using
randomized smoothing and the mean of the smooth score to bound the worst case perturbations.
Zargarbashi et al. [27] (CAS) proposed to use the CDF information of the smooth score – a more
restrictive constraint and therefore returned smaller prediction sets. All of these methods required
unrealistically expensive setup with 104 MC samples to be able to return acceptably small sets.
Zargarbashi and Bojchevski [26] (BinCP) defined a quantile-based score over the distribution of the
smooth scores, that allowed same set size as CAS with orders of magnitude less samples (e.g. 200
would be sufficient). In contrast with all of the methods RCP1 works with a single augmented sample
and without involving finite sample correction, which lies at the computation efficiency side of this
trade-off.

Orthogonal to randomized smoothing, Jeary et al. [16], and Massena et al. [19] use verifiers and
Lipschitz continuity of the networks to bound the score function. Their robust radii are one order
of magnitude smaller than smoothing RCP, but instead they do not require many forward passes
per input. In Fig. 6 we show that our approach (with the same computational efficiency) provides
smaller prediction sets outperforming their results; plus, our approaches works for any black-box
model. Notably all mentioned works provide robustness to the worst-case noise which is orthogonal
to probabilistically robust CP Ghosh et al. [13].

B Additional Description of Figures

Fig. 1-left. We report how the empirical coverage of C0 (dashed lines) breaks for smooth prediction in
BinCP and randomized augmented score in RCP1, compared to the vanilla conformal prediction (red
dashed line). In all cases, we calibrate over clean calibration set and for radii r we return the prediction
set of x̃n+1 which is xn+1 perturbed with adversarial attacks. Specifically we use the PGDSmooth
attack from [21] for smooth methods and conventional PGD attack for vanilla CP. Compared to PGD,
the PGDSmooth attack performs stronger for smooth scores. The solid lines are shows the empirical
coverage of Cr from BinCP and RCP1 on the same adversarial data. The main takeaway of the figure
is to show the robustness of Cr, and the inherent resilience of smooth and augmented inference to the
adversarial (worst-case) noise. The result is for CIFAR-10 dataset, ResNet model and σ = 0.5.

Fig. 1-middle. We compared the robust set size of BinCP and RCP1; we plotted |Cr,BinCP|−|Cr,RCP1|
for which lower is better. The plot is for CIFAR-10 dataset, ResNet model and σ = 0.5.

Fig. 1-right. Each point is a computation of Cr shown both in time and set size. All times are divided
by a single inference of the ResNet model. Here we evaluated two forward pipelines of cheaper
ResNet model, and more time costly diffusion + vision transformer (as discussed in § 4). Both axis
are log-scale and the plot is for the ImageNet dataset. Here σ = 0.5.

Fig. 3-left. We took samples from the Beta distribution of the coverage – each sample is then a number
β. We computed the c↓[β,B] and draw a distribution of the new values. For the Beta distribution, we
have n = 200, and 1− α = 0.9. For the c↓ function we used σ = 0.5, and r = 0.25

Fig. 3-middle. We show the empirical coverage value under the PGDSmooth attack with σ = 0.5
over various radii. We use the same sigma to show the theoretical lower bound coverage.

Fig. 3-right. We reported the c↓ function for Gaussian and Laplace smoothing both with σ = 0.5.
The plots are not empirical.

Fig. 6-right. Here we use the ℓ1 certificate from Yang et al. [25]. Here the smoothing scheme is
ϵ = Uniform[−σ/

√
3, σ/

√
3]

C More on Conformal Prediction

Our default score function in the manuscript is TPS (threshold prediction sets) where the score function
is directly set to the softmax; s(x, y) = Softmaxy(f(x)) for the prediction model f . Another choice
is to use the logits of the model as the conformity score s(x, y) = f(x)y. Similar to BinCP we are
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Figure 10: Comparison of BinCP and RCP1 for [Left] TPS, and [Right] APS score function on
CIFAR-10 dataset with σ = 0.9.

Table 3: Set size of RCP1 for TPS and APS score across radii (r) and target coverage guarantees.

r Coverage TPS APS
Avg Set Size Emp. Cov. Avg Set Size Emp. Cov.

0.06 0.85 2.17 ± 0.02 0.88 ± 0.00 2.52 ± 0.03 0.88 ± 0.00
0.90 2.70 ± 0.03 0.92 ± 0.00 2.98 ± 0.02 0.92 ± 0.00
0.95 3.74 ± 0.01 0.97 ± 0.00 3.91 ± 0.04 0.97 ± 0.00

0.12 0.85 2.44 ± 0.03 0.90 ± 0.00 2.76 ± 0.02 0.90 ± 0.00
0.90 2.93 ± 0.04 0.94 ± 0.00 3.23 ± 0.01 0.94 ± 0.00
0.95 3.96 ± 0.06 0.97 ± 0.00 4.07 ± 0.04 0.97 ± 0.00

0.18 0.85 2.70 ± 0.04 0.92 ± 0.00 2.99 ± 0.01 0.92 ± 0.00
0.90 3.25 ± 0.05 0.95 ± 0.00 3.44 ± 0.03 0.95 ± 0.00
0.95 4.48 ± 0.09 0.98 ± 0.00 4.48 ± 0.02 0.98 ± 0.00

0.25 0.85 3.03 ± 0.01 0.94 ± 0.00 3.33 ± 0.04 0.94 ± 0.00
0.90 3.70 ± 0.02 0.97 ± 0.00 3.89 ± 0.03 0.97 ± 0.00
0.95 4.81 ± 0.01 0.99 ± 0.00 4.82 ± 0.04 0.99 ± 0.00

0.37 0.85 3.62 ± 0.06 0.96 ± 0.00 3.91 ± 0.01 0.97 ± 0.00
0.90 4.48 ± 0.03 0.98 ± 0.00 4.55 ± 0.09 0.98 ± 0.00
0.95 6.24 ± 0.14 0.99 ± 0.00 6.49 ± 0.04 1.00 ± 0.00

0.50 0.85 4.51 ± 0.03 0.98 ± 0.00 4.55 ± 0.11 0.98 ± 0.00
0.90 5.32 ± 0.04 0.99 ± 0.00 5.34 ± 0.03 0.99 ± 0.00
0.95 10.00 ± 0.00 1.00 ± 0.00 10.00 ± 0.00 1.00 ± 0.00

0.75 0.85 6.28 ± 0.19 0.99 ± 0.00 6.31 ± 0.11 0.99 ± 0.00
0.90 10.00 ± 0.00 1.00 ± 0.00 10.00 ± 0.00 1.00 ± 0.00
0.95 10.00 ± 0.00 1.00 ± 0.00 10.00 ± 0.00 1.00 ± 0.00

using a single binary certificate which do not rely on bounded score function. Another conformal
prediction method called as adaptive prediction sets (APS) uses the accumulated softmax up to label
y as the conformity score; formally s(x, y) = −[π(x, y) ·u+

∑|Y|
k=1 π(x, y) · I[π(x, yk) > π(x, y)]]

where π(x, y) = Softmaxy(f(x)) and u ∼ Uniform[0, 1]. While this score results in larger sets, it
increases adaptivity – approximate conditional coverage.

We report the result using these score functions in Fig. 10 (comparison of BinCP and RCP1 for each
score) and Table 3 (the set size of RCP1 for both score functions). As expected, similar trend as TPS
is observed for APS as well.

Same as BinCP we also do not need the score function to be bounded. However in the end, using an
unbounded score function (like using logits directly) did not show to improve over the existing APS
and TPS.
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D Supplementary to Theory

D.1 Robust Conformal Prediction Guarantee

The guarantee in Eq. 2 doesn’t take the randomness in score function and prediction set into account.
This is while many conformal scores have a random variable inside, for instance APS [20] multiplies
the probability of each class by a uniform random value to break the ties (and enable the exact 1− α
coverage). The original guarantee taken from [13, 27] is:

Pr
Dn,xn+1∼D

[yn+1 ∈ CB(x̃n+1),∀x̃n+1 ∈ B(xn+1)] ≥ 1− α

≡ Pr
Dn,xn+1∼D

[ inf
∀x̃n+1∈B(xn+1)

I[yn+1 ∈ CB(x̃n+1)] = 1] ≥ 1− α

This formulation fails to capture the stochasticity in the score function (and hence in the prediction
set). Since with a very small probability to miscover a point (which is non-zero in methods like APS)
the indicator evaluates to false. The worst-case indicator inf∀x̃n+1∈B(xn+1) I[yn+1 ∈ CB(x̃n+1) = 1]
becomes zero whenever there exists any probability that xn+1 is not covered. Consider the non-robust
case where no perturbations are applied; i.e., evaluating the coverage guarantee of standard conformal
prediction. Using the APS score function and shrinking the perturbation space to an infinitesimal ball
Br as r → 0+ (and therefore x̃n+1 → xn+1), the coverage probability should exceed 1− α, since
APS already satisfies this guarantee. However many of the datapoints that have a small probability
to exclude the true class from the prediction set will not pass the worst-case indicator. Consider a
datapoint with one hot conditional probability, still the top label will be in the prediction set with
probability −q where q is the threshold.

While the shortcoming in Eq. 2 excludes any CP with randomness in the score, still previous
smoothing-based RCP methods (at least in assymptotically valid setup) satisfy its conditions inde-
pendent of the score function used. This is since all previous methods systematically remove all the
randomness from the score and return a deterministic prediction set. Given any base score function,
these methods defined their own score as a statistic (e.g. mean, or quantile) over the distribution of
the base score on x + ϵ. As the distribution already includes the inherent randomness in the base
score itself, the statistics like mean [12, 27] and the quantile [26] are deterministic (excluding any
randomness). This is an orthogonal to the probabilistic nature of estimating these statistics from
Monte Carlo samples (the validity of confidence intervals). As a result the final set based on these
scores exclude the inherent randomness of the base score function.

D.2 Proofs

Proof of Lemma 1. The Lagrangian form of Eq. 4 is:

L(β, λ) = min
h∈{0,1}|X|

Pr
ϵ
[h(t̃+ ϵ) = 1]− λ

(
Pr
ϵ
[h(t+ ϵ) = 1]− β

)
= min

h∈{0,1}|X|
Ez∼q[h(z)]− λ · Ez∼p[h(z)− β] = λ · β + min

h∈{0,1}|X|
Ez∼q[h(z)]− Ez∼p[h(z)]

= λ · β + min
h∈{0,1}|X|

∫
X
(q(z)− λ · p(z)) · h(z)dz

where p and q are smoothing distributions centered at t and t̃ respectively. The worst classifier (the
minimizer of the problem) can be derived as follows

h(z) =

{
0 if q(z)− λ · p(z) ≥ 0

1 otherwise

Intuitively, to minimize the term
∫
X (q(z)− λ · p(z)) · h(z)dz we look at each point independently.

For each point if the term (q(z)− λ · p(z)) is positive we cancel it by h = 0 and if negative we keep
it to decrease the total integral value. The resulting dual with the dual variable λ ≥ 0 is then:

L(β, λ) = λ · β +

∫
min{0, p(z)− λ · q(z)dz} = λ · β + l(λ)
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Here l(λ) :=
∫
min{0, p(z)− λ · q(z)dz} is only a function of λ. Maximizing over λ we get the

optimal dual soltuion which equals the optimal primal since it was shown that strong duality holds
[28]:

c↓[β,B] = max
λ

λ · β + l(λ)

Which is pointwise maximum of affine functions and therefore convex in β.

The monotonicity w.r.t. β directly follows from the definition. By increasing β the feasible space
reduces to a nested subset of the previous problem which means that the solution will be greater than
or equal to the original solution.

D.3 Choosing the conservative 1− α′

In general to obtain 1 − α robust coverage guarantee, we should choose the nominal 1 − α′ in
Alg. 1 such that c↓[1− α,B] ≥ 1− α. This nominal probability can be found via binary search due
to the non-decreasing nature of c↓. But in many cases including the Gaussian distribution, where
the canonical points can be used interchangeably (choosing (t, t̃) as the pair of clean, and noisy
canonical points doesn’t differ from the opposite (t̃, t), the following lemma allows us to set the
1− α′ = c↑[1− α,B−1].

Lemma 2. If for a smoothing scheme, and a perturbation ball B, canonical points t, and t̃ can be used
interchangeably; then we have c↑[c↓[p,B],B−1] = p. Using the canonical points interchangeably
means that for c↑, and (similarly c↓) both of the optimizations

max
h∈H

Pr
ϵ
[h(t̃+ ϵ) = 1] s.t. Pr

ϵ
[h(t+ ϵ) = 1] = p

and
max
h∈H

Pr
ϵ
[h(t+ ϵ) = 1] s.t. Pr

ϵ
[h(t̃+ ϵ) = 1] = p

yield the same solution.

Proof. The term c↑[c↓[p,B],B−1] is expressed as the following optimization problem:

p∗high = max
h∈H

Pr
ϵ
[h(t̃+ ϵ) = 1] s.t. Pr

ϵ
[h(t+ ϵ) = 1] = p∗low (7)

p∗low = min
h′∈H

Pr
ϵ
[h′(t̃+ ϵ) = 1] s.t. Pr

ϵ
[h′(t+ ϵ) = 1] = Pr

ϵ
[f(t+ ϵ)] = p

We swap t̃, and t since we can use the canonical points interchangeably. We have

p∗high = max
h∈H

Pr
ϵ
[h(t+ ϵ) = 1] s.t. Pr

ϵ
[h(t̃+ ϵ) = 1] = p∗low

h∗low as the solution to the inner problem in Eq. 7 (defining p∗low) is a feasible solution to the outer
optimization (the first line); therefore

p∗high = max
h∈H

Pr
ϵ
[h(t+ ϵ) = 1] ≥ Pr

ϵ
[h∗low(t+ ϵ) = 1] = Pr

ϵ
[f(t+ ϵ)] = p

Both functions c↑, and c↓ (and therefore both minimization and maximization) are non-decreasing
to the value in their constraint. Assuming p∗high > p (p∗high ̸= p), we have p = c↑[p′low,B−1] that
p′low < p∗low (due to non-decreasing nature of c↑). We have

p = max
h∈H

Pr
ϵ
[h(t+ ϵ) = 1] s.t. Pr

ϵ
[h(t̃+ ϵ) = 1] = p′low

with a maximizer function h′high; i.e. p = Prϵ[h
′
high(t+ ϵ) = 1]. We rewrite inner problem in Eq. 7

p∗low = min
h′∈H

Pr
ϵ
[h′(t̃+ ϵ) = 1] s.t. Pr

ϵ
[h′(x+ ϵ) = 1] = Pr

ϵ
[f(t+ ϵ)] = p

The maximizer function h′high satisfies the constraint, and therefore p∗low < p′low which is a contradic-
tion. Therefore p∗high = p.
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D.4 Lower and Upper Bounds for All Shapes and Sizes

Lemma 3. For a binary classifier f(x), let g(x) = Prϵ[f(x+ ϵ) = 1] and

g(x̃) ≥ c↓g[p,B] := min
h∈H

Pr
ϵ
[h(x̃+ ϵ) = 1] s.t.Pr

ϵ
[h(x+ ϵ) = 1] = g(x) = p

Similarly let

g(x̃) ≤ c↑g[p,B] := max
h∈H

Pr
ϵ
[h(x̃+ ϵ) = 1] s.t.Pr

ϵ
[h(x+ ϵ) = 1] = g(x) = p

Both be obtainable at the same canonical points. We have c↑g[p,B] = 1− c↓g[1− p,B].

Proof. For simpler notation let g(x) = c↑g[g(x),B], g(x) = c↓g[g(x),B], then we have

1− g(x) = 1−max
h∈H

Pr
ϵ
[h(x̃+ ϵ) = 1]

Let h′(x) = 1− h(x) then

= 1− max
h′∈H

Pr
ϵ
[1− h′(x̃+ ϵ) = 1] = min

h′∈H
Pr
ϵ
[h′(x̃+ ϵ) = 1]

The constraint also translates similarly

Pr
ϵ
[h(x+ ϵ) = 1] = Pr

ϵ
[1− h′(x+ ϵ) = 1] = 1− Pr

ϵ
[h′(x+ ϵ) = 1] = 1− p

And the new problem is by definition same as 1− c↓[1− p,B].

Certified Upper and Lower bounds for all Shapes and Sizes. In Prop. 2 we rephrased the Theorem
4.1 from Yang et al. [25] to return the upper bound probability instead of the robust radius. Here we
prove Prop. 2, using the original proof from Yang et al. [25].

Let g(x) := Eϵ[f(x + ϵ)] for any binary decision function f and any ϵ ∼ ξ where ξ(x) ∝
exp(−ψ(x)). If g(·) is continuous in X , for any point x̃ = x + δ one can compute the g(x + δ̃)
through line integral as

g(x̃) = g(x+ δ) = g(x) +

∫ r

0

d

dt
[g(x+ t · δ′)]dt

where δ′ = δ
∥δ∥ is the unit vector in the same direction as δ and r := ∥δ∥. In other words, we add all

the infinitisimal changes on the path from x to x̃ to compute the value of g(x̃) given g(x).

With the decision boundary U = {x : f(x) = 1}, and U − z as the decision boundary translated by
−z, consider the following function

Ω(p) := sup
δ:∥δ∥=1

sup
U∈Rd:ξ(U)=p

lim
r→0+

ξ(U − rδ)− p

r

Proposition F.8 from Yang et al. [25] show that anywhere in X , we have d
dt [g(z)] ≤ Ω(g(z)). This

means that one can upper bound the growth of g(x) while shifted by δ by integrating over Ω(g(z))
instead. For easier notation let h(t) = g(x+t ·δ′) which implies h′(t) = d

dth(t) ≤ Ω(h(t)). Notably,
the function Ω(p) is always non-negative. See the equivalent Definition H.12 from Yang et al. [25]
where the function is denoted as Φ(p) and it is written as an expectation of a maximum over a value
that is always non-negative. For positive (non zero) Ω(h(t)), including but not limited to h(t) ≤ 1/2
(see the definition of the function in Appendix F from Yang et al. [25]) It follows:

h′(t)

Ω(h(t))
≤ 1 ⇒

∫ r

0

h′(t)

Ω(h(t))
dt ≤

∫ r

0

1dt = r

We set u = h(t) ⇒ du = h′(t)dt which implies

Π(u) =

∫ r

0

h′(t)

Ω(h(t))
dt =

∫ u=h(r)

u=h(0)

1

Ω(u)
du ≤ r
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Here h(0) = g(x+ 0 · δ′) = g(x) = β, and h(0) = g(x+ r · δ′) = g(x̃) = β̄. With the reference
function F (γ) =

∫ 1/2

γ
1

Ω(p)dp we have

r ≥
∫ β̄

β

1

Ω(p)
dp =

∫ 1/2

β

1

Ω(p)
dp−

∫ 1/2

β̄

1

Ω(p)
dp = F (β)− F (β̄) ⇒ F (β)− F (β̄) ≤ r

which is F (β̄) ≥ F (β)− r.

The authors already computed Ω(p) (in their paper it is called as Φ) for following several distributions,
including:

• Isotropic Gaussian smoothing against ℓ2 ball (σ = 1): Ω(u) = Φ′(Φ−1(1 − u)) which
implies:

ΠGaussian(u) =

∫ β

β

1

Ω(u)
du =

∫ β

β

1

Φ′(Φ−1(1− u))
du

With c = Φ−1(1− u) we have dp = −Φ′(c)dc, and Φ′(c) = Φ′(Φ−1(1− u)). Therefore∫ β

β

1

Φ′(Φ−1(1− u))
du =

∫ Φ−1(1−β)

Φ−1(1−β)

−du = Φ−1(1− β)− Φ−1(1− β) ≤ r

⇒ Φ−1(1− β) ≥ Φ−1(1− β)− r ⇒ 1− Φ−1(β) ≥ 1− Φ−1(β)− r

⇒ Φ−1(β) ≤ Φ−1(β) + r → β ≤ Φ(Φ−1(β) + r)

Which completely aligns with the aforementioned closed form ℓ2 certificate.

• Laplace smoothing against ℓ1 ball (σ =
√
2λ): Ω(u) = u

λ which implies:

ΠLaplace(u) =

∫ β

β

1

Ω(u)
du =

∫ β

β

λ
1

u
du = λ log

β

β
≤ r

⇒ β

β
≤ 2r/λ ⇒ β ≤ 2r/λ · β

Note that in both cases, the function Ω(p) is positive in (0, 1).

E Supplementary Experiments

Compute resources. We ran our experiment using Nividia A-100 and H-100 Tensor Core GPUs. For
each experiment only one GPU was used. We use the A-100 GPU for the CIFAR-10 dataset under
ResNet setup, and the conformal risk control experiment. The rest of the results use H-100 as the
compute resource.

Experimental setup. For the CIFAR-10 datasets we evaluate the results over 2048 test samples for
ResNet model and 10000 images for the ViT models. For the ImageNet since the number of classes
are 1000, we report our results over 5000 images for ViT models and 50000 images on ResNet
models. Ultimately the number of samples does not influence the empirical results. The number of
Monte Carlo samples are initially set to 500 for CIFAR and 300 for ImageNet. For each experiment,
and for the reported sample rate we cut the precomputed samples, from the reported number.

Our results are reports over 100 runs (except the conformal risk control which is over one run. In
each run we sample the 10% of the points as the calibration set. For conformal risk control we report
the result on 300 images where 100 random images from it is taken for the calibration. Ultimately the
size of the calibration set does not effect the final performance. As the calibration set gets larger the
distribution of the coverage probability concentrates around 1− α.

The time to compute the logits for the CIFAR-10 dataset is 1:30:56 (ViT with 10000 datapoints and
500 samples), and for the ImageNet dataset it is 13:52:11 (ViT with 5000 datapoints and 300 MC
samples). For the ImageNet, and the ResNet model this number is 2:52:11 (for 50000 datapoints and
1000 samples).
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Table 4: Empirical coverage and average set size
for different radii (r), for CIFAR-10 dataset with
ResNet model and σ = 0.25.

r Empirical Coverage Avg Set Size
0.06 0.936 ± 0.018 2.156 ± 0.241
0.12 0.961 ± 0.014 2.646 ± 0.306
0.18 0.981 ± 0.010 3.315 ± 0.478
0.25 0.990 ± 0.008 4.178 ± 0.798
0.37 1.000 ± 0.000 10.000 ± 0.000
0.50 1.000 ± 0.000 10.000 ± 0.000
0.75 1.000 ± 0.000 10.000 ± 0.000

Table 5: Empirical coverage and average set size
for different radii (r), for CIFAR-10 dataset with
ResNet model and σ = 0.5.

r Empirical Coverage Avg Set Size
0.06 0.921 ± 0.020 2.684 ± 0.244
0.12 0.937 ± 0.018 2.937 ± 0.285
0.18 0.951 ± 0.016 3.236 ± 0.356
0.25 0.966 ± 0.014 3.741 ± 0.530
0.37 0.980 ± 0.010 4.500 ± 0.560
0.50 0.990 ± 0.007 5.300 ± 0.712
0.75 1.000 ± 0.000 10.000 ± 0.000
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Figure 11: Comparison of BinCP and RCP1 in terms of |Cr,BinCP| − |Cr,RCP1| (higher (green) shows
better performance for RCP1) across various radii and sample rates. Results are on the ResNet model
and for the CIFAR-10 dataset. [Left] σ = 0.25, and [Right] σ = 0.5. Note that the numbers are in
terms of difference and to compute the absolute number Table 4, and Table 5 can be used as reference.

Set size experiment. Tables Table 4 and Table 5 report the empirical coverage and average prediction
set size of RCP1 for different radii r on the CIFAR-10 dataset using a ResNet model under two
noise levels, σ = 0.25 and σ = 0.5, respectively. We also report the result of the ImageNet dataset
(for the ResNet model) in Table 6. Specifically for this dataset, because of the large number of
classes we also reported the proportion of the sets below specific sizes (1, 3, 5, and 10). As expected,
increasing the radius r results in a more conservative setup and hence higher coverage on the clean
points. For CIFAR-10 dataset Fig. 11, and for the ImageNet dataset Fig. 12 visualize the comparative
performance between BinCP and RCP1 across various radii and sampling budgets. These results
are on the ResNet model. The heatmaps show the difference in set sizes |Cr,BinCP| − |Cr,RCP1|, where
positive (green) values indicate that RCP1 provides smaller or more efficient sets. RCP1 generally
outperforms BinCP across low sample rates, especially for smaller radii and moderate sampling
budgets. The reference tables (Tables Table 4 and Table 5, Table 6) can be used to interpret these
differences in absolute terms.

Proportion of small sets. As also discussed in § 4 although the proportion of sets with size less
than a threshold shows how applicable a CP algorithm is, it can be misleading – a CP framework
can return many false prediction sets with very small set size. Therefore alongside the proportion of
these sets we should also report their coverage. We show these results in Fig. 13. Our observation
is that all setups result in sets with coverage higher than the determined level. Note that in terms of
proportion RCP1 stands somewhere between BinCP with 64 and 128 samples which aligns with our
aforementioned intuition.
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Figure 12: [Left] Comparison of the average set size |Cr,BinCP|−|Cr,RCP1| and [Right] the proportion
of the sets with size ≤ 10 expressed in BinCP - RCP1. In both plots green shows that RCP1 is
performing better. To convert the relative difference to absolute number Table 6 can be used as the
reference.
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Figure 13: [Up] The proportion and [Bottom] the coverage of the prediction sets with size [From left
to right] |C| ≤ 1, |C| ≤ 3, |C| ≤ 5, |C| ≤ 10.
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Table 6: Statistics from RCP1 across various radii. The results are for ImageNet dataset and the
ResNet model.

r Avg Set Size Emp. Coverage C ≤ 1 C ≤ 3 C ≤ 5 C ≤ 10

0.06 14.013 ± 1.787 0.921 ± 0.008 0.139 ± 0.010 0.311 ± 0.018 0.430 ± 0.025 0.626 ± 0.035
0.12 18.246 ± 2.606 0.936 ± 0.009 0.120 ± 0.010 0.274 ± 0.019 0.383 ± 0.024 0.560 ± 0.032
0.18 24.095 ± 3.645 0.951 ± 0.008 0.101 ± 0.010 0.239 ± 0.018 0.336 ± 0.023 0.501 ± 0.031
0.25 33.953 ± 5.744 0.964 ± 0.007 0.082 ± 0.008 0.201 ± 0.017 0.288 ± 0.022 0.432 ± 0.033
0.37 57.802 ± 10.753 0.979 ± 0.005 0.058 ± 0.008 0.151 ± 0.017 0.219 ± 0.022 0.337 ± 0.031
0.50 98.464 ± 19.136 0.989 ± 0.003 0.036 ± 0.006 0.104 ± 0.016 0.160 ± 0.021 0.252 ± 0.029
0.75 275.222 ± 88.968 0.998 ± 0.002 0.012 ± 0.006 0.036 ± 0.016 0.063 ± 0.025 0.115 ± 0.039
1.00 1000.000 ± 0.000 1.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000

Table 7: RCP1 for conformal regression. We report the empirical coverage and the interval length
across varius radii.

r Empirical Coverage Interval Width
0.00 0.900 ± 0.005 0.371 ± 0.012
0.12 0.920 ± 0.005 0.426 ± 0.014
0.25 0.938 ± 0.004 0.494 ± 0.018
0.50 0.963 ± 0.003 0.667 ± 0.026

Regression Experiment For robust conformal regression with RCP1 we use the Udacity and
originates from Nvidia’s DAVE-2 system[4]. The input of this task is an scene, and the task is to
estimate the steering angle of the car. The output range is from -1 (completely steering right) to 1
(left). For this task we finetune a ResNet18 model [15] on images augmented with isotopic Gaussian
noise with σ = 0.5. We run finetuning for 200 epochs. We use the same σ for augmenting the input
in RCP1. We set 1−α = 0.9, and evalute on r ∈ {0.12, 0.25, 0.5}. To the best of our knowledge our
result is the first robust conformal prediction with randomized smoothing for regression task. Table 7
compares the interval length and empirical coverage across various radii.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Other claims that are already proven in prior works we prove every new claim.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We discussed the limitation of our work at the end of § 4.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: We dedicated § D.2, and § D.4 for our proofs and referenced them in the
manuscript.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Both in the last paragraph of the introduction (§ 1) and § 3 the procedure is
explained. Datasets, models, and evaluation criteria are also discussed in § 4

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Our code is uploaded as a zip file in the supplementary materials. After
acceptance we also share the code in GitHub. All datasets are well-known in the literature,
and all models are pretrained and open source. We also cited the original work introducing
that dataset or model.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We discussed the parameters in § B, and in the caption of the figures.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We show the confidence intervals as error bars in the plots. Later in Table 3 we
represent the results in form of mean ± std.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the
experiments?
Answer: [Yes]
Justification: We discussed the compute resources in § E. For the wall-clock time report in
Table 1 we explicitly reported the resource in the caption.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We did not involve any human participation in the experiments. All datasets
and models are open source and known to the literature.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: The work is a fundamental reseach and does not have potential societal impacts.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
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• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The work is a fundamental AI research and poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We have cited all the datasets and models used in the work.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: We do not release any new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: the paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: We only used LLMs in some parts to improve the quality of the text.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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