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ABSTRACT

There is a rising interest in further exploring the zero-shot learning potential of
large pre-trained language models (PLMs). A new paradigm called data-generation-
based zero-shot learning has achieved impressive success. In this paradigm, the
synthesized data from the PLM acts as the carrier of knowledge, which is used
to train a task-specific model with orders of magnitude fewer parameters than
the PLM, achieving both higher performance and efficiency than prompt-based
zero-shot learning methods on PLMs. The main hurdle of this approach is that the
synthesized data from PLM usually contains a significant portion of low-quality
samples. Fitting on such data will greatly hamper the performance of the task-
specific model, making it unreliable for deployment. Previous methods remedy
this issue mainly by filtering synthetic data using heuristic metrics(e.g., output
confidence), or refining the data with the help of a human expert, which comes
with excessive manual tuning or expensive costs. In this paper, we propose a
novel noise-robust re-weighting framework SUNGEN to automatically construct
high-quality data for zero-shot classification problems. Our framework features the
ability to learn the sample weights indicating data quality without requiring any
human annotation. We theoretically and empirically verify the ability of our method
to help construct good-quality synthetic datasets. Notably, SUNGEN-LSTM yields
a 9.8% relative improvement than the baseline on average accuracy across eight
different established text classification tasks.

1 INTRODUCTION

Owing to the superior generative capacity of large-scale pre-trained language models (PLMs), there
has been an emerging trend of using these powerful models (e.g., GPT) to generate training data for
downstream tasks (Anaby-Tavor et al., 2020; Puri et al., 2020; Kumar et al., 2020; Lee et al., 2021,
inter alia). Among them, a new line of generation-based zero-shot learning using the unfinetuned
PLM pushes the envelope further (Schick & Schütze, 2021; Ye et al., 2022a; Meng et al., 2022),
featuring total annotation-free training for downstream tasks. Ye et al. (2022a) (ZEROGEN) further
boosts the efficiency by using the generated data to train tiny task models (TAM), which have orders-
of-magnitude fewer parameters than the PLM. Specifically, they first design prompts incorporating
the task description and label information, then use them to guide the data generation from the PLM.
Subsequently, the synthesized dataset is used to train the tiny task-specific models. Compared with the
classic prompt-based zero-shot learning on PLM, this new paradigm enjoys two favorable properties:
(1) since the task model has orders-of-magnitude fewer parameters than the PLM, it demonstrates
much lower inference latency; (2) with the large amount of PLM-generated training data, the task
model often shows better performance than prompt-based zero-shot PLM counterparts.

In the above paradigm, the amount and the quality of the generated data are crucial factors for the
task model’s performance. Unfortunately, despite the unlimited training data that one can generate
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in theory, the data quality is not always guaranteed. Our experimental observation across many
downstream tasks verifies the existence of this issue: in ZEROGEN, after a few training epochs on the
PLM-generated dataset, although the training accuracy steadily improves, the actual test accuracy
of the model starts declining rapidly (e.g., IMDb in Figure 1) – a clear indication of the model
overfitting to low-quality data (noisy data) (Arpit et al., 2017). More specifically, we identify two
major cases of noisy samples in the synthetic dataset: corrupted labels and task-irrelevant samples
(Table 6 in Appendix). Without any task-related fine-tuning, it is challenging for PLM to follow a
user’s instruction (task-specific prompt including label information) to generate accurate samples
in the target domain (Ouyang et al., 2022). To alleviate the data quality issue, recent work adopts
human-active labeling to correct the corrupted label or revise the example (Wang et al., 2021a; Liu
et al., 2022). However, such methods introduce considerable costs and may be unrealistic.
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Figure 1: Training and testing accuracy of LSTM
model trained on synthetic dataset. After training
for more epochs, the testing performance of ZERO-
GEN starts to deteriorate significantly, indicating
that the model starts to fit the erroneous data.

To avoid human intervention, the classic ap-
proach to eliminate the effect of noisy data is
to re-weight the samples. The core idea is to
design a weighting function w, such that the cor-
rect samples are associated with larger weights
and the noisy ones with smaller weights. Com-
pared with heuristic design of w (e.g., according
to output confidence, loss value) (Liu & Tao,
2015; Wang et al., 2021b), which requires task-
specific knowledge and excessive manual tun-
ing, the adaptive methods that learn the sample
weights in an end-to-end manner demonstrate
better performances in practice (Ren et al., 2018;
Shu et al., 2019; Zheng et al., 2021). Those
methods typically formulate the learning of sam-
ple weights into a bi-level optimization problem,
with a clean validation set in the outer loop to
guide the learning of w. Despite remarkable success was achieved, their dependence on a clean
validation set becomes a major limitation, which is especially impractical in zero-shot setting.

Our solution comes from rethinking the choice of the outer objective in the bi-level framework: can
we design an objective such that the sample weights can be optimized with only access to the noisy
synthetic data? To this end, we resort to a family of noise-robust loss functions (ℓrobust) (Ghosh
et al., 2017; Zhang & Sabuncu, 2018). These functions were adopted by previous work to train the
neural network under label noise due to their theoretically noise-tolerant property (Ghosh et al., 2017;
Zhang & Sabuncu, 2018; Wang et al., 2019). However, from the optimization point of view, such loss
functions suffer from instability and difficulty when training the neural networks (Zhang & Sabuncu,
2018), which limits their effectiveness. Remarkably, our approach leverages the noise-tolerant
property of these losses, while avoiding their pathology. We propose a novel bi-level re-weighting
framework SUNGEN: in the inner loop, we train the task model using weighted training loss based
on current sample weights; in the outer loop, the noise-robust loss is adopted to guide the learning
of the sample weights. The two procedures are performed alternatively to generate a set of weights
indicating the importance of samples. Notably, our method focuses on enhancing the quality of
generated data, while improving the generator (e.g., modify PLM parameter, prompt engineering) is
an orthogonal direction and can be applied jointly with our method.

Our main contributions are threefold. First, we propose a novel end-to-end framework to construct
high-quality noise-free synthetic dataset, without the aid of any human annotation (§3). Second, we
offer theoretical justification (§4) and empirical verification (§5.2) for SUNGEN’s ability of recovering
a noise-free dataset reliably with synthetic data only. Third, we conduct experiments on eight text
classification datasets and show our method outperforms the current baseline by large margins (§5.2).

2 BACKGROUND

2.1 PROMPT-BASED ZERO-SHOT LEARNING

We first introduce prompt-based zero-shot prediction (named PROMPTING). Given a manually-
designed prompt T (·) and a query example xi ∈ X , PROMPTING constructs a sentence T (xi) (e.g.,
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Figure 2: The framework of SUNGEN. Our bi-level framework learns sample weights w measuring
data quality without relying on any human-annotated data. In the inner loop, we train a tiny task
model (TAM) with weighted CE loss based on current sample weights, and produce trained TAM
parameters θ̂(w); in the outer loop, we adopt a noise-robust loss to guide the learning of w by
evaluating θ̂(w) on a synthetic validation set.

“The movie review in <yi> sentiment is: <xi> ”). The PLM P is expected to model the probability
distribution of a set of label words yi ∈ Y (e.g., “positive”, “negative”) and select the class with
highest probability for xi. Even though PROMPTING has achieved remarkable success in zero-shot
learning (Radford et al., 2019; Brown et al., 2020), it is difficult for PROMPTING to fully leverage
the task-specific knowledge from PLMs. Besides, PROMPTING still needs to conduct inference on a
cumbersome PLM.

2.2 EFFICIENT ZERO-SHOT LEARNING VIA DATA GENERATION

A new line of research (Ye et al., 2022a; Meng et al., 2022; Ye et al., 2022b) endeavors to make zero-
shot learning more practical and efficient, among which the generative efficient zero-shot learning
paradigm proposed by ZEROGEN (Ye et al., 2022a) is as follows:

Synthetic Data Generation. Given a task, the paradigm first generates a synthetic dataset Ssyn =
(Xsyn,Ysyn) with the help of large-scale PLM P and task-related prompts. The idea is to use model
P to generate the input xsyn based on a pseudo label ysyn. For example, in text classification task,
a class label ysyn is uniformly sampled: ysyn ∼ U(y1, y2, . . . , yK), where K is the number of
classes. The pseudo label ysyn is transformed into a label-descriptive prompt T (ysyn) to generate
xsyn: xsyn ∼ P(·|T (ysyn)). The generated xsyn and pseudo label ysyn are paired to construct a pseudo
training dataset Ssyn.

Efficient Training and Inference. To achieve efficiently training and inference, the paradigm then
trains a tiny task model (TAM) (e.g., 1-layer Bi-LSTM) on the synthetic dataset Ssyn. TAMs typically
have much fewer parameters, which is thus easy to train and more efficient during inference.

Although ZEROGEN achieved promising results by training a TAM with Ssyn, we find that model’s
performance rapidly declines after several training epochs, indicating overfitting to noisy samples
(Figure 1). A classic approach to improve the quality of a dataset containing low-quality data is
to re-weight the samples using some function w. Intuitively, if we assign large weights to correct
samples and small weights to noisy ones, the negative influence of noisy samples during training
can be reduced. However, the heuristic design of w (e.g., according to output confidence, loss value)
suffers unstable performances and requires task-specific knowledge (Shu et al., 2019). Therefore, our
paper seeks to optimize w automatically.

3 METHOD

To automatically learn sample weights, the bi-level optimization approaches (Ren et al., 2018; Shu
et al., 2019) have been proven to be effective. However, such methods are impractical in our zero-shot
scenario, since they depend on a clean validation set to guide the optimization of sample weights. To
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circumvent the absence of human-labeled data, we propose a Self-gUided Noise-free data GENeration
framework, named SUNGEN (Figure 2). Concretely, we propose a sample reweighting framework
via bilevel optimization using a noise-robust loss (Ghosh et al., 2017; Wang et al., 2019; Zhang &
Sabuncu, 2018) as the outer objective. Due to the appealing property of such loss functions, our
method is able to learn meaningful sample weights with only a synthetic (noisy) validation dataset.

Notations. As elaborated in Section 2.2, we first generate a synthetic dataset using a left-to-right
PLM and task-related prompts for the given task. Let Ssyn,Sclean ⊂ X ×Y = Rd×{1, ...,K} denote
distribution of synthetic (noisy) and clean (gold) data, respective. Here d is the dimension of the
input space and K is the number of classes. We draw a training dataset S t

syn := {(x, y)(i)}Ni=1 and
a validation dataset Sv

syn := {(x, y)(j)}Mj=1 from Ssyn. Denote f(x,θ) as the classifier (TAM) with
θ as its parameters. w ∈ W := {w(·, ·) : X × Y −→ [0, 1]} is a re-weighting function that assign a
weight to each sample. The bold w is a sample weight vector of length N indicating training samples’
importance, which contains per-sample weight wi := w(xi, yi).

Overall Framework. Without the presence of clean validation set, our proposed bi-level optimiza-
tion framework SUNGEN (as shown in Figure 2) can be outlined as follows:

w∗ ∈ argmin
w

Lrobust(θ̂(w),Sv
syn) = argmin

w

1

M

∑
{x,y}∈Sv

syn

ℓrobust(f(x, θ̂(w)), y) (1)

s.t. θ̂(w) ∈ argmin
θ

Lce(θ,S t
syn(w)) = argmin

θ

1

N

∑
{x,y}∈S t

syn

w(x, y)ℓce(f(x,θ), y) (2)

where w∗ denotes the optimal sample weights, which is obtained from the outer loop (Eqn. 1);
θ̂(w) denotes the classifier’s parameters after weighted training with w, which is obtained from the
inner loop (Eqn. 2); ℓrobust denotes the noise-robust loss calculated on validation set; ℓce denotes the
cross-entropy(CE) loss calculated on training set. The whole process is: (1) in the inner loop(Eqn. 2),
we fix w and optimize the classifier f(x,θ) using the weighted loss Lce over a synthetic training set
S t

syn, and derive the trained classifier θ̂(w); (2) in the outer loop(Eqn. 1), we calculate noise-robust
loss Lrobust on the synthetic validation set Sv

syn at the optimized θ̂(w). The outer loss is minimized
to guide the optimization of w, and the outer gradient ∇wLrobust is calculated via truncated back-
propagation(Appendix H). The two procedures are performed alternatively for T iterations.

Notably, our framework prevents the need for a clean validation set, which is the main ob-
stacle for the previous bi-level re-weighting approaches under zero-shot scenario (Ren et al.,
2018; Shu et al., 2019). The magic of this appealing feature lies in the choice of the outer
objective Lrobust in Eqn. (1). Recall that the goal of sample reweighting is to find w∗, with
which the model f(x;θ) can be trained using weighted loss over the synthetic training set,
such that the model performs well on the clean data (from the same distribution as test data).

Algorithm 1 Bilevel Robust Sample Reweighting
Require: a TAM with parameters θ, synthetic

training dataset S t
syn and validation dataset

Sv
syn, outer step size λ, outer iterations T.

1: Initialize sample weightings w with each wi

to be 0.5.
2: for training iteration t = 1, 2 . . . T do
3: Conduct weighted training (Lce) on TAM

using wt,S t
syn and obtain θ̂(wt)

4: Evaluate θ̂(wt) on Sv
syn, then obtain meta

gradient ∇wLrobust via Eqn. (11).
5: Update w using ∇wLrobust by gradient de-

scent wt+1 ← wt − λ∇wLrobust
6: end forOutput: Optimized sample weights

w∗.

In Sec. 4, under the condition that the majority
of data are correctly labelled (Ghosh et al., 2017;
Wang et al., 2019), we theoretically show that
using Lrobust as the outer objective, our method
can find a set of sample weights w∗ with just the
synthetic validation set, such that w∗ maximizes
the model performance on the clean data. The
whole procedure is illustrated in Algorithm 1.

Noise-robust Loss Functions. In the noisy
label learning literature, there is a family of loss
functions that possess the following property:

K∑
j=1

ℓrobust(f(x,θ), j) = C, ∀θ,x, (3)

where f(·,θ) denotes a classifier, x is the input,
K is the number of classes, and C is a con-
stant. Previous work (Wang et al., 2019; Zhang
& Sabuncu, 2018; Ghosh et al., 2017) has shown that these loss functions have consistent global
minimum under label noise. More formally, when the majority of the training samples are correctly
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labelled, the global minimizer (θ∗) of ℓrobust is the same regardless of whether the training data is
clean or noisy. This noise-robust property enables these losses to optimize the sample weights given
only a noisy validation dataset. Detailed proof will be given in Sec. 4.

In particular, we consider the reversed cross-entropy loss ℓrce with the following form for sample
(x, y):

ℓrce(f(x,θ), y) = −
K∑

k=1

fk(x,θ) log q(k|x),

where fk(x,θ) =
ezk∑K
i=1 ezi

denotes the predicted probability for each label k ∈ {1, ...,K} , and zi

are the logits. We denote the ground-truth distribution over labels by q(k|x), and
∑K

k=1 q(k|x) = 1.
Given the ground-truth label is y, then q(y|x) = 1 and q(k|x) = 0 for all k ̸= y. log(0) is
approximated to a constant A. One can easily check that ℓrce satisfies Property (3), and C =
−(K − 1)A in this case.

Remark. Even though ℓrobust is theoretically noise-tolerant, it has been shown that using them
to train the network parameters θ leads to difficulty in optimization and hampers the network’s
performance (Wang et al., 2019; Zhang & Sabuncu, 2018). Remarkably, adopting ℓrobust as the
objective in the outer loop of Eqn. (1) implicitly overcomes the side effects of ℓrobust. Since ℓrobust is
now used to optimize the sample weights w, which is in a much smaller search space and has simpler
structure than θ, thus is easier to optimize. This "decouples" noise removal from network training,
and thereby prevents hampering the TAM’s performance.

Clean Subset Sampling. Our framework enables us to derive a set of continuous weights w,
which encodes the data quality and can well separate the noisy samples from clean ones, as shown
in Figure 3. With those weights, we can sample subsets with arbitrary budgets and use them to
train the task models with unweighted CE loss. More specifically, suppose the budget is D, we
first normalize wi to w′

i (i.e.
∑n

i=1 w
′
i = D), based on which we then sample a Bernoulli random

variable Ii ∼ Ber(w′
i) for each sample to indicate whether they should be included. Denote the

size of sampled subset as D̂. Because EI∼p(I|w)∥I∥0 =
∑n

i=1 w
′
i = D, it is clear that D̂

D

P−→ 1

when n −→∞, meaning that D̂ is close to D. Notably, because the important and noise-free data are
associated with larger weights, training on the sampled subset can perform on par with weighted
training over the entire dataset, while being much more efficient.

4 THEORETICAL ANALYSIS

Though we have no clean data as validation set, our method still enjoys favorable theoretical properties.
Recall that Sclean and Ssyn are as the clean and synthetic (noisy) distribution, respectively. We further
denote L(θ,S) = E(x,y)∼S [ℓ(f(x;θ), y)] given a data distribution S. Let the optimal network
parameters obtained with CE loss over clean dataset be θ∗ := argminθ Lce(θ,Sclean). We assume
the θ∗ is unique, or we focus on the θ∗ with minimum norm.

Property 1. We call a loss function ℓ a robust loss, if under mild conditions as in (Ghosh et al., 2017),
its minimizer on the noisy dataset collides with the one on the clean dataset, i.e.,

argmin
θ

Lrobust(θ,Sclean) = argmin
θ

Lrobust(θ,Ssyn),

Previous work on noise-robust loss functions (Ghosh et al., 2017; Wang et al., 2019; Zhang &
Sabuncu, 2018; Xu et al., 2019) have shown that the losses satisfying Eqn. (3) have the above
noise-tolerant property. We give the detailed assumptions and complete proof in Appendix A.2.

Assumption 1. Let Pclean and Psyn denote the probability density function of Sclean and Ssyn, respec-
tively. There exists a weighting function w∗ such that Pclean(x, y) = w∗(x, y)Psyn(x, y).

Assumption 1 is reasonable because synthetic data generated by the PLM has a wide coverage.
Therefore, with a proper weight function w, we may recover the clean distribution by reweighting the
synthetic data.
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Assumption 2. The optimal θ∗ uniquely minimizes Lrobust(θ,Sclean), i.e., Lrobust(θ
∗,Sclean) <

Lrobust(θ,Sclean) for all θ ̸= θ∗.

Assumption 2 is natural since the robust losses are originally designed to train the model. Thus
minimizing Lrobust(θ,Sclean) is expected to achieve promising performance, as justified by Ghosh et al.
(2017) (though the optimization difficulty mentioned in the Remark of Section 3 poses challenges
for model training). We also experimentally show that when training a model with Lce(θ,Stclean),
Lrobust(θ,Stclean) also decreases, and reaches the plateau at a similar point (Appendix A.1). This
indicates that Lce(θ,Sclean) and Lrobust(θ,Sclean) have close optimal solutions. Note that even if θ
and θ∗ differ by a small quantity, i.e., Lrobust(θ

∗,Sclean) < Lrobust(θ,Sclean) + ε holds with a small ε,
the following proof holds with just minor modifications.

Theorem 1. If Assumption 1 holds, there exists a w∗ such that θ̂(w∗) = θ∗. Further with Assumption
2 and Property 1, our method can uniquely return w∗ and the resulting θ∗ with only synthetic (noisy)
data Snoisy.

Given Assumption 2 holds, Lce(θ,Sclean) and Lrobust(θ,Sclean) have consistent optimal solution θ∗.
Furthermore, Property 1 of Lrobust indicates that θ∗ can be found with just the noisy synthetic data
Ssyn. Therefore, we can optimize Lrobust(θ,Ssyn) to find θ∗. Finally, since θ∗ can be parameterized by
w∗ (Theorem 1), which is achieved by the inner loop (Eqn. (2)), we can optimize Lrobust(θ̂(w),Ssyn)
over w in the outer loop (Eqn. (1)) to find the optimal corresponding w∗ as well as the θ∗. See
Appendix A.3 for detailed proof.

The above analysis theoretically shows our SUNGEN is able to learn the optimal sample weights w∗

and the resulting optimal model parameters θ∗ with just synthetic data. Notably, Theorem 1 is based
on population losses with infinite samples. We further characterize the generalization bound when
there is finite samples:
Theorem 2 (Finite Sample Generalization). Suppose we have access to synthetic datasets Svsyn and
Stsyn both with finite samples N . Let θ̂∗(w) be the deterministic mapping from w to θ defined in the
inner of Eqn.2 given Ŝtsyn. Assuming the output of loss function ℓrobust is upper bounded by M , the
carnality ofW is |W|, the outer loop of Eqn.1 is solved within ϵ-approximately, and the solution ŵ
satisfies the following condition:

Lrobust(θ̂
∗(ŵ);Svsyn) ≤ min

w
Lrobust(θ̂

∗(w);Svsyn) + ϵ,

we then have with probability at least 1− δ,

Lrobust(θ̂
∗(ŵ),Ssyn) ≤min

w
Lrobust(θ̂

∗(w);Ssyn) + ϵ+ κ

√
2 ln(|W|/δ)

M
(4)

Refer to Appendix A.4 for full proof. Theorem 2 characterizes the generalization ability of SUNGEN.
If we obtain an approximate solution of the bilevel problem Eqn.(1)-(2) given finite samples, Eqn. (4)
shows that such solution has a test performance close to the oracle model.

5 EXPERIMENTS

5.1 SETUP

Datasets & Baselines. We evaluate SUNGEN on eight text classification tasks, including IMDb (Maas
et al., 2011), SST-2 (Socher et al., 2013), Rotten Tomatoes (Pang & Lee, 2005), Amazon (McAuley
& Leskovec, 2013), Yelp (Zhang et al., 2015), Subj (Pang & Lee, 2004), AGNews (Zhang et al.,
2015) and DBpedia (Zhang et al., 2015). These tasks have various number of classes, ranging from 2
to 14. Other details about datasets are in Appendix F. We compare our proposed method with the
following baselines: (1) PROMPTING. The prompt-based zero-shot classification method based on
PLMs (Brown et al., 2020; Gao et al., 2021b). (2) ZEROGEN. A recent zero-shot learning work via
dataset generation (Ye et al., 2022a).

Implementation Details. We compare the baselines using GPT2-XL (Radford et al., 2019) as PLM.
For text generation, we use Nucleus Sampling (Holtzman et al., 2020) with p = 0.9 as the decoding
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Table 1: Evaluation results for SUNGEN framework on two different scales of TAM. The scale
of synthetic dataset is 200k for both ZEROGEN and SUNGEN. The scales of labeled data in
supervised setting are listed under task names. “Gold Data” refers to the standard dataset with human
annotations.

TAM #Param Setting IMDb SST-2 Rotten Amazon Yelp Subj AGNews DBpedia Avg
#Gold Data 25k 6.9k 8.3k 25k 560k 8k 120k 560k -
DistilBERT 66M SUPERVISED

87.24 89.68 83.67 92.63 95.42 95.95 94.51 99.14 92.28
LSTM ∼7M 84.60 76.30 77.49 86.36 91.30 90.20 90.61 98.28 86.89
- 1.5B PROMPTING 80.64 89.22 81.89 83.63 82.72 68.00 68.81 67.88 77.85

DistilBERT 66M ZEROGEN 84.28 87.27 83.02 87.19 87.58 80.45 76.48 79.32 83.20
SUNGEN 89.38 89.45 84.52 89.01 89.19 83.25 80.49 82.67 86.00

LSTM ∼7M ZEROGEN 71.52 74.89 73.45 80.48 84.95 69.15 73.34 67.02 74.35
SUNGEN 84.10 84.58 83.21 84.22 89.06 75.85 79.75 72.07 81.61

Table 2: Evaluation results using different vali-
dation sets (Sv) in the outer loop. LSTM is used
as TAM.

Method Sv IMDb Amazon Yelp Rotten
SUPERVISED - 84.60 86.36 91.30 77.49

ZEROGEN - 71.52 80.48 84.95 73.45

SUNGEN
Gold 82.34 84.71 88.83 80.05
Syn. 84.10 84.22 89.06 83.21

Table 3: Experimental comparison with other
de-noise methods using LSTM as TAM.

Method IMDb Amazon Yelp
Confidence 79.97 70.44 76.91

Co-Teaching 72.64 73.53 75.50
Meta-Weight-Net 71.23 79.25 83.41

SUNGEN 84.10 84.22 89.06

strategy and use GPT2-XL as the generator. To make a fair comparison, we use the best prompts
designed by (Ye et al., 2022a) in both PROMPTING and data-generation settings (Appendix Table 10 ).
For task model training, we use 1-layer Bi-LSTM and DistilBERT-base as the lightweight classifiers.
The bilevel procedure is iterated 50 times for each task. For more details(e.g., full prompts, training
details), please refer to Appendix F.

5.2 EXPERIMENTAL RESULTS

Main Experiments. We present our main experiment results in Table 1. We observe that our
SUNGEN achieves considerable performance gain over the ZEROGEN baseline across all the tasks.
Interestingly, the improvement is more prominent for LSTM compared with DistilBERT, which
shows relative improvement over ZEROGEN by 9.8% on average across all tasks. We conjecture the
reason is that the pre-trained models such as DistilBERT are inherently more robust to noisy training
data, which is also pointed out in (Hendrycks et al., 2019). Surprisingly, on Rotten Tomatoes and
Yelp, SUNGEN-LSTM even outperforms ZEROGEN-DistilBERT, which requires no pre-training and
has much fewer parameters.

Effectiveness of SUNGEN on Constructing Noise-Free Data. Figure 1 shows that while ZeroGen
suffers from overfitting on noisy data, the problem disappears when training with the subset selected
by SUNGEN. With longer training epochs, the data of SUNGEN consistently helps improve the
performance of TAM on test set and significantly surpasses the result of ZeroGen, which proves that
SUNGEN can effectively construct noise-free high-quality data.

Synthetic Data vs. Gold Data Supervision. A key advantage of our proposed framework is
that we do not require gold data to optimize sample weights. Here, we compare our SUNGEN to
the bilevel reweighting method which uses gold data for calculating the outer objective in Table 2.
Specifically, our SUNGEN calculates the robust outer objective ℓrce on the noisy synthetic data, while
the counterpart calculates the normal outer objective ℓce on gold data. Table 2 shows that our method
achieves similar performances as the counterpart, which verifies that our method using the noise
validation set can equivalently supervise the optimization of sample weights as the clean validation
set does.

SUNGEN vs. Popular Denoise Baselines. We compare with other de-noise methods, which
are (1) directly removing data with low predicted confidence (Swayamdipta et al., 2020), (2) Co-
Teaching (Han et al., 2018), which distinguishes noisy data by large loss value, and (3) Meta-Weight-
Net (Shu et al., 2019), which relies on meta samples and a loss-based proxy model to learn the
sample weights. Since in zero-shot setting we have no access to gold data, we use the synthetic
data as validation set for Co-Teaching and Meta-Weight-Net. Results in Table 3 prove our method’s
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Table 4: Results of SUNGEN-LSTM on different
data sizes. Given subsets of SUNGEN, models
are trained with ℓce. For the 1,000k set of SUN-
GEN, the model is trained using weighted ℓce.
Subsets that surpass the original full set (1,000k)
are marked by bold. Performance of original full
set is marked by underline.

Size IMDb Amazon Yelp
ZERO SUN ZERO SUN ZERO SUN

1,000k 78.29 86.56 82.47 84.63 86.28 90.38
10k 62.40 72.05 74.46 75.84 75.22 80.67
20k 65.12 79.96 75.78 77.52 79.55 82.88
50k 68.12 81.14 78.14 81.97 80.81 85.82

100k 71.28 82.09 80.25 83.68 82.97 88.41
200k 71.52 84.10 80.48 84.22 84.95 89.06

Table 5: Diversity and Correctness. We mea-
sure the diversity by Self-BLEU4 and correct-
ness by accuracy of an oracle model (finetuned
RoBERTa-Large). Lower Self-BLEU4 score in-
dicates higher diversity. “SUNGEN-Top” and
“SUNGEN-Bottom” represent 10k samples with
highest and lowest weights respectively.

Method IMDb Amazon Yelp
Diversity ↓

Gold 0.30 0.29 0.29
ZEROGEN 0.15 0.12 0.14
SUNGEN 0.14 0.10 0.11

Correctness(%) ↑
Gold 96.22 96.60 98.35
ZEROGEN 75.86 93.58 94.47
SUNGEN 82.27 88.87 90.78
SUNGEN-Top 86.00 84.20 85.33
SUNGEN-Bottom 4.57 61.50 44.66

superiority in zero-shot setting. We further analyze why the loss-value-based methods are not able to
distinguish noisy data in our situation in Appendix L.

5.3 ABLATION STUDY AND ANALYSIS

Performance of Different Data Sizes. Table 4 shows that even with much less data, model trained
by SUNGEN achieves better performance than ZEROGEN. For example, in IMDb, by removing
low-quality data, subset with 2% data achieves better performance than the original data (20k vs.
1,000k), which shows superior data quality of SUNGEN. Besides, from Figure 3(d), we find the
percentage of erroneous data is small. However, those erroneous data significantly degrades the
model performance: without weighted training to remove the effect of noisy data, the IMDB accuracy
of full set is decreased from 86.56 to 78.29.

Analysis of Data Diversity and Correctness. Table 5 shows that our selected noise-free dataset is
more diverse than data generated by ZEROGEN. One interesting thing to note is that in Amazon and
Yelp, average correctness of SUNGEN is slightly lower than ZEROGEN. In addition, the top samples
(with highest weights) have slightly lower correctness than average. This is expected as the data with
highest correctness may be redundant or too simple, while the challenging and informative samples
are often harder to classify and thus have lower correctness. The results further verify that SUNGEN
effectively separates the informative samples from the ones that are redundant or erroneous. This
can not be done with the heuristic methods that manually sets a threshold to separate clean and noisy
data, which may keep redundant samples and remove hard ones.

Analysis of Removed and Selected Examples. We take IMDb (sentiment classification task of
movie review) as the example task and find that the majority of samples associated with small
weights are wrongly labeled, as shown in Table 6. Besides, there is a small part of erroneous data
which contains task-irrelevant text, meaning the generated text is not a movie review and has no
obvious emotional tendency. For samples with large weights, we actually find them to be well-written
transitional complex sentences (bottom part of Table 6), which verifies that SUNGEN tends to select
correct and important samples.
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Figure 3: Histogram of learnt weights in IMDb synthetic dataset (1,000k). The weights are gradually
separated as optimization proceeds, indicating SUNGEN can differentiate high-quality data from
erroneous ones.

8



Published as a conference paper at ICLR 2023

Table 6: Examples of removed data and selected data in IMDb synthetic dataset.
Text<X> Label<Y> Noisy Type
Removed Data (Data with Small Weights)
The film does a great job of capturing the fear and battle that so many U.S. troops have
experienced during the seven-year war in Afghanistan. Neg. Noisy Y

This long, pompous, chain-smoking movie makes a big hit out of not very much at all. Pos. Noisy Y
One of the worst cult films ever made. 2D CGI animations of zombies and comic-book
characters. Some bad acting, technical problems, cheap gimmicks and script that is. Pos. Noisy Y

The four-hour look at family dysfunction brings forth a richer character study. Neg Unrelated X
A fresh and visceral portrait of a man trying to make sense of his life. Neg Unrelated X

Selected Data (Data with Large Weights)
Despite its oddball structure and topsy-turvy interactions between characters, this
surprisingly zany animated film succeeds where so many animated films fail. Pos. No Noise

Not worth the time for the main actors, but for the almost movie has a very good story
that puts many sci-fi movies of the past to shame. Pos. No Noise

An outrageously stupid movie that has been thoroughly disproved by fact and logic. Neg. No Noise
Wonder Woman is a big-budget superhero blockbuster that turns the spotlight on the
potential of a woman leader. . . but the movie is ultimately unfulfilling and laden with
female stereotypes.

Neg. No Noise

While a satire on class and power, the film’s dismissal of human misery is shallow and
the actors’ portrayal of the weak and needy are gratingly self-pitying. Neg. No Noise

6 RELATED WORK

Zero-shot Learning via PLM. The popular prompt-based zero-shot prediction is proposed by
GPT (Radford et al., 2019). With well-designed prompts, large-scale PLMs have shown its notable
zero-shot learning ability in various tasks (Jiang et al., 2020; Shin et al., 2020; Reynolds & McDonell,
2021). More recently, data-generation-based work via PLM has gained popularity and shown superior
ability on synthesizing task-specific data (Anaby-Tavor et al., 2020; Puri et al., 2020; Kumar et al.,
2020; Lee et al., 2021; Wang et al., 2021b; Yoo et al., 2021; Bonifacio et al., 2022). Apart from work
that still relies on task-related human-annotated data to instruct or fine-tune the generative PLM, a
recent line of research explores this direction in zero-shot scenario: Schick & Schütze (2021); Meng
et al. (2022) use PLM with task-dependent prompts to generate data, and finetune another PLM
on such data for task prediction. To further investigate PLM’s zero-shot ability and alleviate the
computation cost of PLM, Ye et al. (2022a) study an extreme scenario, which trains a tiny model
from scratch using the synthetic data.

Noise Robust Learning. Previous methods of tackling data noise can be categorized into two
groups: (1) heuristic approaches based on loss values that rely on the assumption that the network
learns easy samples first, which adopt either resampling (Han et al., 2018; Jiang et al., 2018; Yu et al.,
2019), loss reweighting (Thulasidasan et al., 2019; Konstantinov & Lampert, 2019; Ren et al., 2018;
Shu et al., 2019), or label correction (Ma et al., 2018; Kremer et al., 2018; Reed et al., 2014). These
methods require either manually set a threshold for the loss value or a clean validation set, which
makes their performance questionable in zero-shot scenario. (2) methods in another line train the
network with noise-robust loss (Ghosh et al., 2017; Ma et al., 2020; Liu & Guo, 2020; Xu et al.,
2019; Wang et al., 2019). Despite they learn a robust classifier in theory, they are typically difficult
to train the DNNs and result require more hyper-parameter tuning (Zhang & Sabuncu, 2018; Wang
et al., 2019). To this end, we take advantages from both lines of research and design an end-to-end
framework which can reliably filter out harmful data without requiring a clean validation set.

7 CONCLUSION

This paper focuses on high-quality data generation in efficient zero-shot learning. To address the
noise in data, we design an end-to-end framework to construct a clean synthetic dataset without
relying on any human-labeled data or human intervention. Our method can be jointly applied to
other data generation pipelines to automatically select high-quality data. We hope this paper can
provide insights for improving the quality of synthetic datasets, and inspire more exploration in
data-generation-based zero-shot learning via PLM.
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APPENDIX

A PROOFS

A.1 EMPIRICAL VERIFICATION FOR ASSUMPTION 2 AND 3

Summary and Discussion. In the sections below, we first show that (1) the poor performance of
training the neural network with robust losses is due to the optimization difficulty, rather than the lack
of good solution. We verify this by showing that the loss value of RCE is able to steadily decrease
when the network is trained with CE loss. However, when training the network with RCE, the loss
value fails to decrease. Then, we show that (2) the optimal solutions of CE and RCE losses are close
by plotting the loss surface for both losses around the optimal solution obtained with CE loss. We are
able to observe that the RCE loss is also close to the minimum around the optimal solution of CE
loss. We believe the above two experiments can verify that the Assumption 2 and 3 are reasonable.

(a) 3D visualization from the first angel. (b) 3D visualization from the second angel.

(c) 3D visualization from the third angel. (d) 2D visualization.

Figure 4: Loss surface visualization of RCE and CE losses. We parameterize the surface with α,
β parameters to vary model parameters and calculate its loss values alongside a 2D grid. In each
subplot, the left one visualizes the loss surface of RCE loss; and the right one visualizes the CE loss
surface. (a)-(c) are the visualization from different angles; (d) is the loss contour of CE and RCE.
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A.1.1 OPTIMIZATION DIFFICULTY OF NOISE-ROBUST LOSS.

First, we analyze the cause of difficulty in the optimization of robust loss: (1) (Zhang & Sabuncu,
2018) show that the gradients of the cross-entropy loss have an implicit weighting term(as shown in
Equation 5), which prioritizes the harder samples during training. On the other hand, this weighting
does not exist in noise robust loss functions, which means these functions treat all samples equally.
The lack of implicit weighting is claimed by (Zhang & Sabuncu, 2018) to be the cause of difficulty in
training.

n∑
i=1

∂L(f(xi;θ), yi)

∂θ
=

{∑n
i=1 −

1
fyi (xi;θ)

∇θfyi(xi;θ) for CE∑n
i=1 −∇θfyi(xi;θ) for MAE/RCE.

(5)

(2) Our experiment shows that the surface of the robust loss has a wide flat region, so when the
parameters are not close to the optimal solution, the gradients could vanish, which leads to difficulty
in optimization. The 3D visualization of the loss surface is shown in Figure 4. More details about
drawing the figure are shown in A.1.2.

Second, we verify the performance degradation when training the network with robust loss is caused
by optimization difficulty, rather than the lack of good solution. Without loss of generality, we
compare the robust-loss ℓrce to ℓce. More specifically, we train the model with one loss, and use
another loss to evaluate the model trajectory. From the results in Figure 5(a), we can clearly see
that when optimizing the network with CE, both CE and RCE continue to decline throughout the
training, and reach the plateau at the same time, which means that the RCE loss does indeed have
a good solution. On the other hand, from the results in Figure 5(b), when training with RCE, both
CE, and RCE hardly decrease, this further verifies that RCE is difficult to optimize when training the
network.
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Figure 5: Loss curves of model training. Experiments run on the IMDb standard training set. The
loss used to train the network is in red, and the other loss used to evaluate the network is in grey. We
have run experiments using various learning rates from {1e-2, 1e-3, 1e-4, 1e-5} and the curves show
similar trends.

A.1.2 THE OPTIMAL SOLUTIONS OF CE AND RCE ARE CLOSE.

Despite the optimization difficulty of RCE loss, the loss surfaces of CE and RCE losses indicate that
the two loss functions have close optimal solutions. More specifically, we plot the loss surfaces of CE
and RCE losses centered around the solution of CE loss following (Li et al., 2018), which visualizes
the loss surfaces by modifying the model weights in two random directions:

f(α, β) = L(θ∗ + αδ + βη)

where θ∗ is the model parameters optimized by CE, δ and η are the random directions in the vector
space of model parameters. α and β are the scaling coefficients of the two directions, which control
how far the parameters are perturbed. We parameterize the surface w.r.t the values of α, β ranging
from [-1, 1], and calculate the loss values at different positions alongside a 2D grid. We show the
visualization in Figure 4.

From sub-figure 4 (d), we can see that the optimal solution of CE is also close to the optimal
solution of RCE (also has the lowest value near zero), which is direct experimental support for the
Assumption 3. In addition, when the solution is not close to the optimal position, the rce loss surface
is flat and wide, which is the cause of optimization difficulty.
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A.2 PROOF FOR PROPERTY 1

The noise-robust property of robust loss functions have been proven in previous work (Ghosh et al.,
2017; Wang et al., 2019), we add them here for completeness. Specifically, we consider three cases
of label noise: uniform noise, simple non-uniform noise and class-dependent noise following (Ghosh
et al., 2017).

Uniform Noise. Given a classification problem with K classes, for a loss function ℓrobust satisfying
Eqn.( 3). Then ℓrobust is noise-tolerant under uniform label noise if the noise rate η < K−1

K . Let ỹ
denote the noisy label from Ssyn, the proof is as follows:

Lrobust(θ,Ssyn) =Ex,ỹ[ℓrobust(fs(x;θ), ỹ)]

=Ex,yEỹ|y,x[ℓrobust(f(x;θ), ỹ)]

=Ex,y[(1− η)ℓrobust(f(x;θ), y) +
η

K − 1

K∑
j ̸=y

ℓrobust(f(x;θ), j)]

=Ex,y[
K − 1−Kη

K − 1
ℓrobust(f(x;θ), y)] +

ηC

K − 1

=
K − 1−Kη

K − 1
L(θ,Sclean) +

ηC

K − 1

where C is a constant due to the property of symmetric loss functions. Suppose θ∗ is the opti-
mal solution for the clean dataset Sclean. Therefore, we have the following inequality for any θ:
L(θ∗,Ssyn) − L(θ,Ssyn) =

K−1−Kη
K−1 (L(θ∗,Sclean) − L(θ,Sclean)) ≤ 0. Therefore, θ∗ is also the

optimal solution for Ssyn.

Class Dependent Noise. For a loss function ℓrobust satisfying Eq 3, and 0 ≤ ℓrobust(f(x;θ), i) ≤
C

K−1 ,∀i ∈ [K], and suppose minθ L(θ,Sclean) = 0. Then ℓrobust is noise-tolerant under classs
dependent label noise if ηij < 1 − ηi,∀j ̸= i,∀i, j ∈ [K], ηij represents the probability of class i
mislabelled into class j. The proof is as follows:

Lrobust(θ,Ssyn) =Ex,ỹ[ℓrobust(f(x;θ), ỹ)]

=Ex,yEỹ|y,x[ℓrobust(f(x;θ), ỹ)]

=Ex,y[(1− ηy)ℓrobust(f(x;θ), y) +

K∑
j ̸=y

ηyjℓrobust(f(x;θ), j)]

=Ex,y[(1− ηy)(C −
K∑
j ̸=y

ℓrobust(f(x;θ), j)) +

K∑
j ̸=y

ηyjℓrobust(f(x;θ), j)]

=CEx,y(1− ηy)− Ex,y

K∑
j ̸=y

(1− ηy − ηyj)ℓrobust(f(x;θ), j)

Denote θ∗ and θ̂∗ as argminθ Lrobust(θ,Sclean) and argminθ Lrobust(θ,Ssyn), respectively. Given
the above result, we have the following inequality for θ̂∗ and θ∗:

Lrobust(θ̂
∗,Ssyn)−Lrobust(θ

∗,Ssyn) = Ex,y[

K∑
j ̸=y

(1−ηy−ηyj)(ℓrobust(f(x;θ
∗), j)−ℓrobust(f(x; θ̂

∗), j))] ≤ 0

Since ℓrobust is always non-negative and Lrobust(θ
∗,Sclean) = 0, we have that ℓrobust(f(x;θ

∗), y) =
0,∀x. Thus, we have that ℓrobust(f(x;θ

∗), i) = C
K−1 ,∀i ̸= y by the symmetric property of ℓrobust.

Given the assumption on the label noise, (1 − ηy − ηyj) > 0. Therefore, for the equality to hold,
we musts have ℓrobust(f(x; θ̂∗, i) = C

K−1 ,∀i ̸= y. According to the symmetric property of ℓrobust, we
know that ℓrobust(f(x; θ̂

∗), y) = 0,∀x. Which means that θ̂∗ achieve zero losss on all clean samples
as well. Therefore, θ̂∗ is also the minimizer for Lrobust(θ,Sclean).

16



Published as a conference paper at ICLR 2023

Non-Uniform Noise. For a loss function ℓrobust satisfying Eq 3, and suppose minθ L(θ,Sclean) = 0.
Then ℓrobust is noise-tolrant under non-uniform label noise if ηx < K−1

K ,∀x. The proof is as follows:

Lrobust(θ,Ssyn) =Ex,ỹ[ℓrobust(f(x;θ), ỹ)]

=Ex,yEỹ|y,x[ℓrobust(f(x;θ), ỹ)]

=Ex,y[(1− ηx)ℓrobust(f(x;θ), y) +

K∑
j ̸=y

ηx
K − 1

ℓrobust(f(x;θ), j)]

=Ex,y(1− ηx)ℓrobust(f(x;θ), y) + Ex,y
ηx

K − 1
(C − ℓrobust(f(x;θ), y))

=Ex,y
C

K − 1
+ Ex,y[(1−

Kηx
K − 1

)ℓrobust(f(x;θ), y)]

Therefore, we have the following inequality for any θ: Lrobust(θ
∗,Ssyn) − Lrobust(θ,Ssyn) =

Ex,y[(1− Kηx

K−1 )(ℓrobust(f(x;θ
∗), y)− ℓrobust(f(x;θ), y))]. Since ℓrobust is always non-negative and

Lrobust(θ
∗,Sclean) = 0, we have that ℓrobust(f(x;θ

∗), y) = 0,∀x. Therefore, θ∗ is also the optimal
solution for Ssyn.

A.3 PROOF FOR THEOREM 1

Proof. We first show θ∗ exists in the space induced by θ̂(w). Then we show our framework uniquely
return θ∗.

Step 1: Existence. By Assumption 1, we know that Psyn(x, y)w
∗(x, y) = Pclean(x, y) in distribu-

tion. So

θ̂(w∗) = argmin
θ

Lrobust(θ,Ssyn(w
∗))

= argmin
θ

∫ ∫
w∗(x, y)ℓ((f(θ,x), y)Psyn(x, y)dxdy

=argmin
θ

EPsyn(x,y)w∗(x,y)ℓ((f(θ,x), y)

= argmin
θ

EPclean(x,y)ℓ(f(θ,x), y)

=θ∗.

Step 2: Uniqueness. By Assumption 2, we have for all θ ̸= θ∗, we have Lrobust(θ
∗,Sclean) <

Lrobust(θ,Sclean). So θ∗ = argminθ Lrobust(θ,Sclean). Since argminθ Lrobust(θ,Ssyn) =
argminθ Lrobust(θ,Sclean). So we have

θ∗ = argmin
θ

Lrobust(θ,Ssyn).

Putting the existence and uniqueness parts together, we finish the proof.

The above theorem shows that there is an explicit mapping between the optimal weighting function
w∗ and the optimal θ∗. This mapping is achieved by the inner loop in formulation 2. We can then
optimize Lce(θ(w),Sclean) over w to find the optimal w∗. Given that Assumption 2 holds, we can
switch Lce(θ(w),Sclean) to Lrobust(θ(w),Sclean). Finally, thanks to Property 1 of ℓrobust, we may
simply optimize Lrobust(θ(w),Ssyn) over w instead. This gives rise to the outer loop in formulation
1.

A.4 PROOF FOR THEOREM 2

Proof. Let Ŝv,−1
syn denotes the dataset that replaces any one element of Ŝvsyn with arbitrary x, it is

easy to know that

|Lrobust(θ̂
∗(w);Svsyn)− Lrobust(θ̂

∗(w);Sv,−1
syn )| ≤ κ

M
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holds for any w. Then by the bounded difference inequality (Corollary 2.21 of Wainwright (2019)),
given w, we have with probability 1− δ,

Lrobust(θ̂
∗(w);Ssyn) ≤ Lrobust(θ̂

∗(w);Svsyn) + κ

√
ln(1/δ)

2M
, (6)

Then we have
Lrobust(θ̂

∗(ŵ);Ssyn)

≤Lrobust(θ̂
∗(ŵ);Svsyn) + κ

√
2 ln(|W|/δ)

M

≤Lrobust(θ̂
∗(w);Svsyn) + κ

√
ln(|W|/δ)

2M
+ ϵ

≤Lrobust(θ̂
∗(w);Svsyn) + κ

√
ln(1/δ)

2M

+ κ

√
ln(|W|/δ)

2M
+ ϵ

≤Lrobust(θ̂
∗(w);Ssyn) + κ

√
2 ln(|W|/δ)

M
+ ϵ,

The first inequality because we require inequality equation 6 to hold uniformly for all |W| functions.
The second inequality is because ŵ is the ϵ-approximated solution. The third inequality is applying
inequality equation 6. The forth inequality is because |W| > 1. Taking infimum over w on the right
hand side, we obtain the desired bound.

B RELAXING ASSUMPTION 2

Here we provide additional results on relaxed assumptions. We relax Assumption 2 as follows:
Assumption 3. The optimal θ∗ achieves ϵ-optimal robust loss Lrobust(θ,Sclean) on the clean dataset,
i.e., Lrobust(θ

∗,Sclean) < Lrobust(θ,Sclean) + ϵ for all θ ̸= θ∗ with ϵ > 0.

Then we have the following results that extend Theorem 1:

Theorem 3. If Assumption 1 holds, there exists a w∗ such that θ̂(w∗) = θ∗. Further with Assumption
3 and Property 1 and assume Lrobust(θ(w),Sclean) is µ-strongly convex and differentiable w.r.t. w ,
our method can return a w that is close to w∗ as follows:

∥w −w∗∥2 ≤
√
2ϵ/µ.

Further, if the minimizer of the robust loss on the clean data collides with θ∗, i.e., ϵ = 0, we have
w = w∗ and θ = θ∗.

Proof. Similar to the first step of the proof of Theorem 1 in Appendix A.3, we know θ̂(w∗) = θ∗.
Further by Property 1 we know the solution of argminθ Lrobust(θ,Ssyn) is the same with that of
argminθ Lrobust(θ,Sclean). We further have

argmin
w

Lrobust(θ̂(w),Ssyn) = argmin
w

Lrobust(θ̂(w),Sclean).

Denote w̄ = argminθ Lrobust(θ̂(w),Sclean), it follows that
∇wLrobust(θ̄(w),Sclean) = 0 (7)

By Assumption 3, we then have

Lrobust(θ
∗,Sclean) ≤ Lrobust(θ̂(w̄),Sclean) + ϵ. (8)

We further have
Lrobust(θ

∗,Sclean) = Lrobust(θ̂(w
∗),Sclean)

≥ Lrobust(θ̂(w̄),Sclean) +∇wLrobust(θ̂(w̄),Sclean)(w
∗ − w̄)

+
µ

2
∥w∗ − w̄∥22 (9)
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The equality in the first line is due to θ̂(w∗) = θ∗. The inequality comes from the strong convexity
assumption. Combining Eqn equation 7, equation 8 and equation 9, we have

µ

2
∥w∗ − w̄∥22 ≤ ϵ.

The result follows immediately by noting that w̄ is the output of our method.

C ABLATION STUDY OF OUTER OBJECTIVES

In the main paper, we directly use RCE as an example of noise-robust loss to verify our framework.
Here we conduct additional experiments using the other noise-robust Mean Absolute Error (MAE)
loss (Ghosh et al., 2017). The results in Table 7 show that SUNGEN framework using RCE and MAE
losses both achieve promising performance, which significantly surpasses baseline methods. Besides,
if we consider the standard cross-entropy(CE) loss as the outer objective, the bi-level framework can
only achieve marginal improvement or even worse than ZEROGEN. The result is reasonable as the
standard CE loss in the outer loop run on synthetic data, which cannot provide accurate guidance to
update the per-sample weights.

Table 7: Experimental comparison using different outer objectives. Since no clean validation set exists
in the zero-shot setting, all the outer objectives are calculated on synthetic data. The experiments run
on 200k synthetic data using LSTM as TAM.

Method Outer Objective IMDb Amazon Yelp
ZEROGEN - 71.52 80.48 84.95

Bi-level CE 74.05 79.81 83.90

SUNGEN
RCE 84.10 84.22 89.06
MAE 84.23 84.05 89.23

D SUNGEN VS. OTHER NOISE-ROBUST TRAINING STRATEGIES

We compare our method with the label smoothing and temporal ensemble noise-training strategies in
Table 8. The experimental results show that our method achieved a significant improvement over
these two counterparts. In addition, label smoothing and temporal ensemble are training strategies to
alleviate the noise issue, which cannot be used to select a high-quality subset.

Table 8: Comparison between SUNGEN with other noise-robust training strategies. Experiments run
on 200k synthetic data using LSTM as TAM.

Method IMDb Amazon Yelp
ZEROGEN 71.52 80.48 84.95

Label Smoothing 73.18 81.91 86.07
Temporal Ensemble 74.10 81.42 85.82

SUNGEN 84.10 84.22 89.06

E EXPERIMENTS ON OTHER CLASSIFICATION TASKS

As suggested, we conduct experiments on more difficult tasks of GLUE in Table 9, including the NLI
tasks (RTE, QNLI) and paraphrase task (MRPC). The experimental results show that SunGen can
consistently surpass the baseline methods. For more challenging tasks that need expert knowledge or
reasoning ability, we leave them as our future work.
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Table 9: Comparison between SUNGEN with other noise-robust training strategies. Experiments run
on 20k synthetic data using DistillBERT as TAM.

Method RTE QNLI MRPC
PROMPTING 54.51 60.60 65.04
ZEROGEN 57.04 65.46 68.71
SUNGEN 62.82 71.82 71.25

F IMPLEMENTATION DETAILS

F.1 DATASET

We evaluate our method on eight widely-used text classification tasks, including IMDb (Maas et al.,
2011), SST-2 Socher et al. (2013), Rotten Tomatoes (Pang & Lee, 2005), Amazon (McAuley &
Leskovec, 2013), Yelp (Zhang et al., 2015), Subj (Pang & Lee, 2004), AGNews (Zhang et al., 2015)
and DBpedia (Zhang et al., 2015). IMDB, SST-2, and Rotten Tomatoes are sentiment classification
benchmarks containing positive/negative movie reviews. Amazon and Yelp are comments classifica-
tion tasks consisting of electronic product reviews and restaurant reviews respectively. We choose
electronics and restaurant reviews as they are very different from movie reviews. Subj is a subjectivity
detection task to justify whether the text contains factual contents or expresses opinions. AGNews
(4-class classification) and DBpedia (14-class classification) are the topic and otologogy classification
tasks respectively. Apart from AGNews and DBpedia, other tasks are binary classification tasks. We
use full test set for evaluation except for DBpedia, for which we randomly sample 5000 test examples
to reduce computational cost. Sample sizes are listed in Table 1. We report accuracy for evaluation.

F.2 FULL IMPLEMENTATION DETAILS

We compare the baselines using GPT2-XL (Radford et al., 2019) as PLM. For text generation, we use
Nucleus Sampling (Holtzman et al., 2020) with p = 0.9 as the decoding strategy and use GPT2-XL
as the generator. For fair comparison, we use the best prompts designed by (Ye et al., 2022a) for data
generation. During the optimization of sample weights, we use Adam optimizer. For selecting the
appropriate value of the outer learning rate, we select from {2.5e-1, 1e-1, 1e-2} by looking at the
value of RCE loss in the outer loop. If the outer loss steadily decreases and reaches a low value, then
it indicates that the optimization is going well. In the inner loop, 1,000k synthetic data are used as the
training data; in the outer loop, 50k synthetic samples are randomly sampled as the training data for
fast iteration. We use 1-layer Bi-LSTM and DistilBERT-base as the tiny task model and run it for 1
epoch each time for fast iteration. The bilevel procedure is iterated for 50 times for each task.

For task model training, we use 1-layer Bi-LSTM and DistilBERT-base as the light-weight classifiers.
For LSTM, we use Adam optimizer(Kingma & Ba, 2015) with learning rate 1e-3. For DistilBERT-
base, we finetune each dataset using Adam optimizer with learning rate 2e-5, and other default
hyper-parameters as suggested by HuggingFace Transformers library(Wolf et al., 2019). We run
LSTM for 5 epochs, and run DistilBERT-base for 3 epochs for prediction. Unless otherwise stated,
we run our experiments on 200k data. We compute the average accuracy on test set over 3 runs using
different random seeds.

For the baseline using gold data in Table 2, to simulate the scenario where gold data is scarce, we
randomly select 1,000 samples from the standard training set as the training data in outer loop. For
comparison with other denoising baselines shown in Table 3, we use the techniques as described in
the original papers. Specifically, for Confidence (Swayamdipta et al., 2020), we use the mean model
probability of the true label across epochs as the confidence value and select top 200k examples; for
Co-teaching (Han et al., 2018), we use two networks, each is trained with samples selected by the
other network based on the loss value; for meta-weight-net (Shu et al., 2019), since we do not have
access to clean data, we use a part of synthetic data as validation. Co-teaching and meta-weight-net
are conducted on 200k synthetic data.
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F.3 PROMPTS

For IMDb, SST-2, and Rotten Tomatoes, we use the best prompts designed by Ye et al. (2022a) in
both PROMPTING and data-generation settings. For tasks that are not investigated by ZEROGEN,
following Ye et al. (2022a), we manually design five prompts for each task and report the result of the
best prompt on PROMPTING, then we use the same prompt(or minor revision version) for ZEROGEN
and SUNGEN to generate data. The details of prompts are shown in Table 10.

Table 10: Prompts used for PROMPTING and data generation. Note that ZEROGEN and SUNGEN use
the same prompt for each task. <c> represents the input movie names/electronic categories/restaurant
names. <MASK> position will be placed with label words. <x> represents the text that we use
PLM to generate. The movie and restaurant names are generated by PLM using prompt “Movie: ”,

“Restaurant: ”. The electronic categories are 41 categories collected from Amazon website.

Setting Task Best Prompt Label Words

PROMPTING

IMDb The movie review in <MASK> sentiment is: "<x> positive/negative

Amazon The electronics product review in <MASK> sentiment is: "<x> positive/negative

Yelp The restaurant review in <MASK> sentiment is: "<x> positive/negative

SST-2 The movie review in <MASK> sentiment is: "<x> positive/negative

Rotten The movie review in <MASK> sentiment is: "<x> positive/negative

Subj The movie review <MASK> is: "<x>
containing factual contents
(objective) / expressing opinions
(subjective)

AGNews The news article is in the category of <MASK>: "<x> World/Sports/Business/
Technology

DBpedia The article classified to the category of <MASK>: "<x>

Company/School/Artist/
Athlete/ Politician/
Transportation/ Building/
Nature/Village/Animal/Plant/
Album/ Film/Book

ZEROGEN
& SUNGEN

IMDb The movie review in <MASK> sentiment for movie "<c>" is: "<x> positive/negative

Amazon The "<c>" product review in <MASK> sentiment is: "<x> positive/negative

Yelp The "<c>" restaurant review in <MASK> sentiment is: "<x> positive/negative

SST-2 The movie review in <MASK> sentiment for movie "<c>" is: "<x> positive/negative

Rotten The movie review in <MASK> sentiment for movie "<c>" is: "<x> positive/negative

Subj The movie review <MASK> is: "<x>
containing factual contents
(objective) / expressing opinions
(subjective)

AGNews The news article is in the category of <MASK>: "<x> World/Sports/Business/
Technology

DBpedia The article classified to the category of <MASK>: "<x>

Company/School/Artist/
Athlete/ Politician/
Transportation/ Building/
Nature/Village/Animal/Plant/
Album/ Film/Book

G BI-LEVEL VS. ONE-LEVEL OPTIMIZATION

We empirically verify the effectiveness of bi-level SUNGEN than one-level optimization using lrce
(One-level, ℓrce). From the results in Table 11, we can observe that our framework with bi-level ℓrce
outperforms both one-level counterparts significantly.

Table 11: Comparison between our method with one-level ℓrce on 1,000k data. LSTM is used as
TAM.

Method IMDb Amazon Yelp
One-level, ℓrce 81.92 81.50 85.36

SUNGEN 86.56 84.63 90.38
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H TRUNCATED BACK-PROPAGATION FOR META GRADIENT.

For solving the bilevel optimization problem, the gradient of w can be calculated as follows:

∇wLrobust

= ∇θRrobust|θ∗ ∇wθ̂(w) (10)

= ∇θLrobust|θT
∑
j≤T

∏
k<j

I − ∂2Lce

∂θ∂θ⊺

∣∣∣∣
θT−k−1

 ∂2Lce

∂θ∂w⊺

∣∣∣∣∣∣
θT−j−1

≈ ∇θLrobust|θT
∂2Lce

∂θ∂w⊺

∣∣∣∣
θT−1

, (11)

where Eqn. (10) follows chain rule. For computational efficiency, we do not unroll the entire T steps,
but perform 1-step truncated backpropagation as in Eqn. (11) (Shaban et al., 2019).

I COMPARISON WITH OTHER NOISE-ROBUST LEARNING METHODS

Our framework has the following advantages against other noise-robust learning methods:

• Compared with heuristic methods (Han et al., 2018; Jiang et al., 2018), our framework is
end-to-end and does not require excessive manual tuning and task-specific knowledge.

• Since both the inner and outer objectives are calculated on the same synthetic training set,
we do not need any in-domain labeled data, which is a must in the previous end-to-end
reweighting methods (Ren et al., 2018; Shu et al., 2019).

• Compared with methods that train the model with ℓrobust (Zhang & Sabuncu, 2018; Wang
et al., 2019), our approach leverages ℓrobust to learn the sample weights, which enables
removing the low-quality data without hurting the model’s performance

J MORE RELATED WORK

Bilevel Optimization Bilevel optimization (BO) Sinha et al. (2017), which is what we rely upon
when building our algorithm, has received much attention recently. This optimization technique
has the ability to tackle problems with hierarchical structures. BO has been successfully adopted in
numerous applications, such as hyper-paramter optimization Lorraine et al. (2020); Maclaurin et al.
(2015); MacKay et al. (2019); Franceschi et al. (2017); Vicol et al. (2021), neural architecture search
Pham et al. (2018); Liu et al. (2018); Pham et al. (2018); Shi et al. (2020); Yao et al. (2021); Gao
et al. (2022; 2021a); Shi et al. (2021), meta learning Finn et al. (2017); Nichol & Schulman (2018),
dataset condensation Wang et al. (2018); Zhao et al. (2020); Cazenavette et al. (2022); Pi et al. (2022)
and sample re-weighting Ren et al. (2018); Shu et al. (2019); Zhou et al. (2022a;b).

K SELECTED AND REMOVED DATA

The selected and removed examples are listed in Table 6. We take IMDb as the example task. The
observation shows that most of the removed data (data with low weights) have noise label, which
indicates the class of text is wrongly labeled by PLM during generation(Noisy Y). Besides, there is a
small part of erroneous data which contains unrelated text to the task, meaning the generated text is
not a movie review showing obvious emotional tendency(Unrelated X). From Figure 3(d), we find the
percentage of the erroneous data is small, but it significantly degrades the model performance(e.g.,
IMDB accuracy is decreased from 86.56 to 78.29 in Table 4). For selected data by SUNGEN, we find
they are actually well-written transitional complex sentences (bottom part of Table 6), which verifies
that SUNGEN tends to select correct and challenging samples.
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(a) Epoch 0(54%). (b) Epoch 1( 61%). (c) Epoch 2(63%). (d) Epoch 3(60%). (e) Epoch 4(62%).

Figure 6: Loss histogram of SST-2 with 30% uniform label noise. Clean data and noisy data are
marked by green and red respectively. The accuracy is listed in the parentheses. We observe that the
loss value can not separate the clean data from the noisy ones. Therefore, the methods loss-value-
based methods may not work well in our case.

L WHY LOSS-VALUE-BASED DE-NOISE METHODS DOES NOT WORK IN OUR
SITUATION?

We further empirically analyze why the popular loss-value-based methods (Shu et al., 2019; Han
et al., 2018) fail to help sample noise-free dataset in our scenario. For this experiment, we manually
construct a dataset with a 30% label noise using the training set of SST-2 by randomly flipping the
class label. As shown in figure 6, the loss values of the correctly labelled data and the mislabelled
data are still clustered together. We conjecture that this is due to the nature of the task: not all tasks
demonstrate the phenomenon that noisy data demonstrate higher loss values, which is also mentioned
in works related to instance dependent noise learning (Cheng et al., 2020). Therefore, selecting subset
based on the loss value is not applicable in our scenario.
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