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Abstract

This paper focuses on the fundamental challenge
of partitioning input variables in attribution meth-
ods for Explainable AI, particularly in Shapley
value-based approaches. Previous methods al-
ways compute attributions given a predefined par-
tition but lack theoretical guidance on how to form
meaningful variable partitions. We identify that
attribution conflicts arise when the attribution of
a coalition differs from the sum of its individ-
ual variables’ attributions. To address this, we
analyze the numerical effects of AND-OR interac-
tions in AI models and extend the Shapley value
to a new attribution metric for variable coalitions.
Our theoretical findings reveal that specific inter-
actions cause attribution conflicts, and we pro-
pose three metrics to evaluate coalition faithful-
ness. Experiments on synthetic data, NLP, image
classification, and the game of Go validate our
approach, demonstrating consistency with human
intuition and practical applicability.

1. Introduction
Estimating the attribution/importance/saliency of input vari-
ables (Selvaraju et al., 2017; Sundararajan et al., 2017; Lund-
berg & Lee, 2017) for an AI model represents one of the
most typical direction in explainable AI. In particular, the
Shapley value (Weber, 1988) is widely considered as a stan-
dard attribution method, because it is the unique attribution
metric that satisfies the axioms of anonymity, symmetry,
dummy, additivity, and efficiency.

However, many studies (Ren et al., 2023a; Li & Zhang,
2023) have pointed out that one major challenge in this area
is how to define the partition of input variables. For example,
there is no theory to determine whether to take pixels or
local regions as input variables for image classification and
take words or tokens as input variables for natural language
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Figure 1. (a)AND-OR interaction: Let the AI model encode three
interactions S1 = {x1, x2}, S2 = {x1, x2, x3, x4, x5, x6} and
S3 = {x5, x6}, respectively. In this way, the Shapley value of
x1 can be decomposed as ϕ(x1) = 1/2 · I(S1) + 1/6 · I(S2).
(b) Conflict of attributions: Let us consider another example with
three interactions, w.r.t., S1 = {x1, x2, x3, x4}, S2 = {x1, x2},
and S3 = {x2, x3, x4}. The attribution of the coalition {x1, x2}
is not equal to the sum of attributions of input variable x1 and x2,
i.e., φ(S = {x1, x2}) ̸= ϕ(x1) + ϕ(x2).

processing. In other words, evaluating whether grouped
variables in a partition can form a faithful basic unit or
coalition, remains a challenge.

Essentially, this problem of the partition of input variables
is rooted in the conflict of attributions computed under dif-
ferent partitions of input variables. Consider the full set
of input variables N = {x1, x2, x3, x4}, as Figure 1(b)
shows, we can directly compute the attribution of each
i-th input variable, denoted by ϕ(i), under the partition
{{x1}, {x2}, {x3}, {x4}}. Alternatively, we can also apply
a new partition {{x1, x2}, {x3}, {x4}} by grouping a set
of input variables {x1, x2}, and we consider the entire set
{x1, x2} as a singleton variable, S, called a coalition of
input variables. In this way, the attribution method may
estimate the attribution of the coalition S, φ(S). Thus, the
conflict of attributions means that the attribution of the
coalition S is not necessarily equal to the sum of attribu-
tions of the input variables in S, i.e., φ(S) ̸=

∑
i∈S ϕ(i).

Therefore, the core task of this research is to derive the
fundamental mechanism for such a conflict and to provide
clearer guidance on whether variables grouped together can
form a faithful basic unit or coalition.
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First, we discover the breakthrough point for proving the
conflict is to disentangle all numerical effects in comput-
ing attributions. We prove that the Shapley and Banzhaf
values can be computed by reallocating the numerical ef-
fects of AND-OR interactions in the AI model to different
input variables. The AND-OR interaction (Li & Zhang,
2023) measures the non-linear relationship between input
variables, as shown in the toy example in Figure 1(a).

Second, considering the interaction explains the internal
mechanisms for the Shapley value, we extend the defini-
tion of the Shapley value and design a new attribution
metric φ(S) for a coalition S of multiple variables. More
importantly, we find that AND-OR interactions clarify
the essential mechanism that causes the conflict between
individual variables’ attributions ϕ(i) and the coalition
S’s attribution φ(S). Essentially, for each coalition S, the
attribution of the coalition is computed using two types of
interactions: (1) the interaction T1 containing all variables
in S (i.e., T1 ⊇ S), and (2) the interaction T2 containing
partial variables in S (i.e., T2∩S ̸= ∅ and T2∩S ̸= S). The
interaction T1 is used to compute both Shapley values ϕ(i),
i ∈ S, and the coalition attribution φ(S). Whereas, the
interaction T2 is exclusively used to compute the Shapley
value ϕ(i), i ∈ S. Specifically, the interaction T2 is only
used to compute the Shapley value ϕ(i), i ∈ S, but is not
used to compute the attribution of the coalition φ(S). Thus,
the second type of interaction, i.e., T2 is the direct reason
for the conflict of attributions.

Third, we further propose three metrics to evaluate the
faithfulness of the coalition and construct experiments
under different scenarios. Specifically, we evaluated our
criteria on both synthetically generated function data and
real-world tasks, including NLP and image classification,
demonstrating consistency with human intuition. Further-
more, we applied our approach to the game of Go, where
we found that it aligns with the understanding of Go players
and can assist them in discovering new interpretations of
standard opening patterns.

Contributions. (1) We clarify the internal mechanism for
the common conflict between individual variables’ attribu-
tions and a coalition’s attribution by using interactions to
reformulate the attribution. (2) We propose a new coalition
attribution metric with a clear explanation for such a conflict.
(3) We further propose three metrics to assess coalition faith-
fulness and conduct experiments across various scenarios.

2. Related works
Attribution methods. Estimating the attribution of input
variables for inference is a classic direction in the field of
Explainable AI. Some studies explained AI models using
local decision boundaries (Ribeiro et al., 2016; Plumb et al.,

2019), while others integrated gradients w.r.t. inputs (Sun-
dararajan et al., 2017) or used gradient strength for feature
attribution (Selvaraju et al., 2019). MUSE (Lakkaraju et al.,
2019) analyzed decisions in lower-dimensional subspaces,
and LRP (Bach et al., 2015) propagated model outputs to
assign feature importance. DeepLIFT (Shrikumar et al.,
2017) estimated input impacts by propagating differences
from baseline predictions. Many works (Lundberg & Lee,
2017; Alshebli et al., 2019; Sundararajan & Najmi, 2020;
Mitchell et al., 2022) used the Shapley value (Shapley et al.,
1953), a standard attribution metric satisfying key axioms.
(Covert et al., 2020) modified it for global efficiency, and
(Mitchell et al., 2022) introduced efficient sampling meth-
ods. (Lundstrom & Razaviyayn, 2023) also proposed a
unified framework for game-theoretic attribution methods,
including the Shapley value, based on the Möbius transform.
However, the above attribution methods do not focus on ex-
plaining the partition of input variables but rather compute
the attribution value given a predefined partition.

Interaction. Unlike attribution methods estimating the im-
portance of each input variable, the interaction usually pro-
vides a more fine-grained explanation, i.e., the importance of
each specific collaboration between a set of input variables.
Some studies (Tsang et al., 2017) measured feature inter-
actions in neural networks by considering salient weights
between features. (Singh et al., 2019) created hierarchical
explanations in feed-forward networks, while (Cui et al.,
2019; Janizek et al., 2021) focused on pairwise interactions
in Bayesian and second-order derivative neural networks.
Inspired by the Shapley value, recent research measured fea-
ture group interactions by calculating marginal importance
(v(S) − v(∅)). (Sundararajan et al., 2020) introduced the
Shapley Taylor interaction index, while (Lundberg et al.,
2020) applied the Shapley interaction index (Grabisch &
Roubens, 1999) to tree-based models. Archipelago (Tsang
et al., 2020) provided a post-hoc explanation method, evalu-
ating feature groups as a whole. (Tsai et al., 2023) proposed
the Faithful Shapley Interaction index, extending the four
standard Shapley axioms. (Harris et al., 2021) proposed
the Joint Shapley value to assess feature sets’ average con-
tributions across different explanation orders. However,
previous methods face the conflict between a coalition’s
attribution and the attributions of its individual variables (or
sub-coalitions), in an engineering manner, without offering
a theoretical explanation. Further explanation on coalitions
and interactions can be found in Appendix A.

3. Algorithm
3.1. Preliminaries: AND-OR interactions

Given an AI model and an input sample x = [x1, x2, ..., xn]
with n input variables, N = {1, ..., n} represents the index
set of all input variables and the model output on the input
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sample x is represented as v(x) ∈ R. There are various
settings for v(x) when the model has multiple output dimen-
sions. In multi-category classification tasks, v(x) is usually
defined below, following (Deng et al., 2022).

v(x) = log
p(y = y∗|x)

1− p(y = y∗|x)
(1)

where y∗ denotes the ground-truth label of the input x.

Shapley value (Shapley et al., 1953) is a well-known game-
theoretic metric to measure the attribution/importance of
each input variable to the output of the AI model. The
Shapley value has been considered as the unique attribution
method that satisfies the axioms of anonymity, symmetry,
dummy, additivity, and efficiency. In this way, the Shapley
value of the i-th variable is computed as follows:

ϕ(i) =
∑

S⊆N\{i}

|S|!(n− |S| − 1)!

n!
·
[
v(S∪{i})−v(S)

]
(2)

where | · | denotes the cardinality of the set. Here, we use
v(S) to simplify the notation of v(xS), and v(xS) denotes
the model output on a masked sample xS . In the masked
sample xS , variables in S are present, and variables in N \S
are masked. In this way, v(∅) represents the model output
when all input variables are masked, and v(N) denotes the
model output on the original input sample x.

AND-OR interactions. Given an AI model v(·) and a set
S ⊆ N (S ̸= ∅), the AND interaction effect Iand(S) and
the OR interaction effect Ior(S), between input variables in
S can be computed, as follows.

Iand(S) =
∑

L⊆S
(−1)|S|−|L|vand(L) (3)

Ior(S) = −
∑

L⊆S
(−1)|S|−|L|vor(N \ L) (4)

where vand(L) = 0.5v(L)+γL and vor(L) = 0.5v(L)−γL
represent output components exclusively for AND interac-
tions and OR interactions, respectively, subject to v(L) =
vand(L) + vor(L). In this way, the extraction of all AND-
OR interactions is determined by learning optimal param-
eters {γL}. (Li & Zhang, 2023) have proposed to learn
parameters {γL} via a LASSO-like loss to achieve sparsest
interactions, i.e.,

∑
S⊆N |Iand(S)|+ |Ior(S)|.

How to understand AND-OR interactions. Iand(S) mea-
sures the non-linear relationship (AND relationship) be-
tween input variables in S ⊆ N . The presence of all vari-
ables in S contributes an effect Iand(S) to the model’s out-
put. For example, we consider the slang term S = {x1 =
raining, x2 = cats, x3 = and, x4 = dogs} in the input sen-
tence “It was raining cats and dogs outside.” An AI model
may encode the AND relationship between the variables in
S as an inference pattern of “heavy rain.” If all four words
exist in the input sentence, the DNN will detect this infer-
ence pattern and make a numerical effect Iand(S) to push the
output towards the meaning of “heavy rain.” The masking
of any word in S will disrupt the AND relationship and
remove the effect Iand(S).

Ior(S) represents the OR relationship among input vari-
ables in S. The presence of any variable in S contributes
an effect of Ior(S) to the model’s output. Given the sen-
tence “This movie is boring and disappointing” for senti-
ment classification, the OR interaction between variables
in T = {x1 = boring, x2 = disappointing} represents a
negative sentiment with Ior(T ) < 0. If any words in T are
present, then this pattern is activated and contributes Ior(T )
to the model output v(N). Only masking all words in T can
deactivate the interaction and remove the effect Ior(T ).

Universal-matching property. The output of an AI model
can always be explained as numerical effects of AND-OR in-
teractions. In particular, the faithfulness of interaction-based
explanation is ensured by the universal-matching property
(Li & Zhang, 2023). Given each randomly masked sample
xS (S ⊆ N), we can always use AND-OR interactions to
mimic the network output v(S) on xS . No matter how we
randomly mask the input and obtain a masked sample xS s.t.
S ⊆ N , the masking operation deactivates some AND-OR
interactions, but it is proven that the network output on each
randomly masked sample v(S) can be always accurately
estimated as the sum of numerical effects of the remaining
AND-OR interactions. Please see Appendix B for details.

3.2. Revisiting attributions from interactions

In this section, we will revisit the conflict problem in the
attribution method and reformulate classical attribution met-
rics from the perspective of interactions.

What is a coalition? Given an AI model v with n in-
put variables in N , the estimation of the numerical attribu-
tion of each i-th input variable ϕ(i) depends on the parti-
tion of input variables. For example, given an input sen-
tence “raining cats and dogs”, some people choose to take
each token as an input variable and compute the attribu-
tions of different tokens, N = {rain, -ing, cats, and, dogs},
while other people use words as input variables, P =
{{rain, -ing}, cats, and, dogs}.Thus, the combination of
input variables can be considered as a coalition, just like
the coalition of S = {rain, -ing} in the second case. As
Figure 1 shows, people may manually select a set of input
variables with actual semantics to construct a coalition.

Compared to estimating a scalar attribution of a coalition S,
the interaction usually represents more disentangled effects.
For example, for a coalition S = {a, b, c}, different inter-
action effects I({a}), I({b}), I({c}), I({a, b}), I({a, c}),
I({b, c}), I({a, b, c}) may affect the attribution of the coali-
tion S. Please see Appendix A for a detailed comparison
between coalition attribution and interaction effect.

Conflict of attributions. Definition 3.1 introduces the con-
flict of attributions between a coalition and variables.

Definition 3.1. Given two partitions of n input variables
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N = {1, 2, ...., n} and P = {S1, S2, ..., Sm}, subject to
N =

⋃m
i=1 Si, ∀i ̸= j, Si ∩ Sj = ∅, the conflict of

attributions means that there exists a coalition Sk such
that the attribution of the coalition Sk is not equal to
the sum of attributions of its compositional variables, i.e.
ϕP (Sk) ̸=

∑
i∈Sk

ϕN (i).

The above conflict is common in practical applications. In
particular, there does not exist a universally accepted par-
tition of input variables. To this end, neither the Shapley
value nor the Banzhaf value can eliminate the conflict of the
attributions calculated under different partitions of variables.

Reformulating attributions. As the theoretical foundation
to explain the conflict of attributions, let us first revisit
classical game-theoretic attributions, such as the Shapley
value (Shapley et al., 1953) and the Banzhaf value (Lehrer,
1988). We find that both two attribution metrics can be
explained as an allocation of AND-OR interaction effects.

Theorem 3.2. (Reformulation of the Shapley value,
proved in Appendix C) The Shapley value ϕ(i) of
each input variable xi can be explained as ϕ(i) =∑

S⊆N,i∈S
1
|S| [Iand(S) + Ior(S)].

Theorem 3.2 explains the internal mechanism of the Shapley
value, i.e., the Shapley value is computed by evenly allocat-
ing each interaction effect to all its compositional input vari-
ables. For example, in the sentence “It was raining cats and
dogs outside.”, the DNN may encode the AND interaction
S1 = {x1 = raining, x2 = cats, x3 = and, x4 = dogs}
to represent a heavy rain. Because these four variables
x1, x2, x3, x4 play the same role in the interaction S1, it is
supposed to allocate the numerical effect Iand(S1) uniformly
to each variable, i.e., allocating 1

4Iand(S1) to the variable
x2 = cats. Besides, the variable x2 = cats may also be
involved in other interactions, such as Iand(S2 = {x1, x2})
and Ior(S3 = {x2, x3, x4}). Then the Shapley value of
x2 = cats can be computed as the accumulation of all allo-
cated effect ϕ(x1) =

1
4
Iand(S1) +

1
2
Iand(S2) +

1
3
Ior(S3).

The Banzhaf value (Penrose, 1946) is another classical
attribution metric, and we find that the mechanism of the
Banzhaf value can also be explained as a specific allocation
of interaction effects. Specifically, the Banzhaf value of i-th
variable is formulated as follows.

B(i) =
∑

S⊆N\{i}

1

2|N|−1
·
[
v(S ∪ {i})− v(S)

]
(5)

Theorem 3.3. (Reformulation of the Banzhaf value,
proved in Appendix D) The Banzhaf value B(i) of
each input variable xi can be reformulated as B(i) =∑

S⊆N,i∈S
1

2|S|−1 [Iand(S) + Ior(S)].

Theorem 3.3 shows that when we compute the Banzhaf
value of the i-th variable, the effects of the interactions

Iand(S) and Ior(S) subject to i ∈ S are allocated to B(i)
with a constant weight 1

2|S|−1 .

3.3. Attribution value for a coalition

The Shapley value is widely recognized as a standard attri-
bution method with a relatively solid theoretical foundation,
and Section 3.2 has explained the internal mechanism for
the Shapley value from the perspective of AND-OR interac-
tions. Based on this, in this subsection, we further extend
the Shapley value of each individual input variable to define
the attribution of a coalition.

As mentioned in Definition 3.1, the core problem is that
different partitions of input variables may lead to conflicts
of attributions. To this end, previous studies usually apply
an additional loss to force the method to extract attributions
without suffering much from the conflict. For example, the
Faith-Shap (Tsai et al., 2023) used the minimum squared
loss to push attribution of a coalition S towards the sum of
attribution of individual variables in S, i.e., pushing v(S)
towards

∑
i∈S ϕ(i). Please see Table 1 for a detailed com-

parison of previous methods.

As the same shown in Section 2, methods in Table 1 are
designed to solve the conflict in an engineering manner. In
comparison, we focus on the mathematical factor that causes
the conflict of attributions. To this end, we are inspired
by Theorem 3.2, which explains the Shapley value as a
uniform re-allocation of each interaction effect Iand(S) or
Ior(S) to each input variable i in S. Just like that, we can
similarly define the attribution of a coalition S, φ(S), as the
re-allocation of AND-OR interactions, as follows:

∀S ⊆ N, φ(S) =
∑
T⊇S

|S|
|T |

[Iand(T ) + Ior(T )] (6)

For example, in an input sentence “It was raining cats and
dogs outside.”, we may annotate a coalition S = {x1 =

rain, x2 = -ing}. Let us suppose that the model has en-
coded an AND interaction T = {x1 = rain, x2 = -ing, x3 =

cats, x4 = and, x5 = dogs}. The numerical effect Iand(T ) de-
pends on all the five variables. Thus, 2

5Iand(T ) is supposed
to be assigned with the coalition S containing two input
variables and be added to φ(S). In this way, the attribution
of the coalition S, φ(S), can be explained as an allocation
of all interactions Iand(T ) and Ior(T ) that cover all variables
in S, i.e., T ⊇ S.

3.4. Explaining the conflict of attributions

Instead of forcibly eliminating the conflict in an engineer-
ing manner (Tsai et al., 2023), we find that the conflict
ϕP (Sk) ̸=

∑
i∈Sk

ϕN (i) in Definition 3.1 naturally exists
in different AI models. Thus, we need to face and accept
such a conflict, instead of forcibly eliminating such an ob-
jective existence. The theoretical explanation and clear
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Table 1. Comparison between the solutions of the conflict of attributions in different attribution methods
Attribution methods Solutions for the conflict of attributions

Shapley value (Shapley et al., 1953) Efficiency axiom v(N) =
∑

i∈N ϕ(i), but cannot ensure the efficiency
property, w.r.t. any arbitrary set S ⊆ N , i.e., φ(S) ̸=

∑
i∈S ϕ(i)

Banzhaf value (Penrose, 1946) 2-efficiency axiom: B(i) +B(j) = B({i, j})
but do not satisfy B(S) =

∑
i∈S B(i)

Joint Shapley value (Harris et al., 2021) Joint linearity, dummy, efficiency, anonymity, symmetry axioms, but estimating
the attribution of a set of features/interactions, like (Sundararajan et al., 2020)

Faith-Shap (Tsai et al., 2023) Using a loss ∥v(S)−
∑

i∈S ϕ(i)∥2 to alleviate the conflict

Our method Proving the conflict is naturally unavoidable,
and quantifying the essential cause for the conflict

disentanglement of effects responsible for the conflict
is usually considered as a more faithful solution to the
coalition’s attribution. To this end, Theorem 3.4 disen-
tangles Shapley values of all input variables in S into two
components, i.e., (1) the attribution component ϕshared(S)
shared by both the coalition and the individual variables,
and (2) the conflicting attribution component ϕconflict(S).

Theorem 3.4. (proved in Appendix E) For any coalition
S ⊆ N , we have

∑
i∈S ϕ(i) = ϕshared(S) + ϕconflict(S).

ϕshared(S)
def
= φ(S) is the attribution component exist-

ing in both the coalition’s attribution φ(S) and indi-
vidual input variable’s attribution ϕ(i), thereby being
termed the shared attribution component. ϕconflict(S) =∑

T⊆N,T∩S ̸=∅,T∩S ̸=S
|T∩S|
|T | [Iand(T ) + Ior(T )] represents

the conflict (or difference) between the coalition attribution
and the individual variables’ attribution.

Theorem 3.4 shows that the conflict between individual
variables’ attributions and the attribution of the coali-
tion S comes from numerical effects of all interactions
T that contain just partial but not all variables in S,
subject to ∅ ̸= T ∩ S ̸= S. This well fits the human un-
derstanding of the conflict, i.e., not all interactions take S
as a singleton coalition. In particular, Corollary 3.5 shows
that if the DNN always considers all variables in S as a
coalition without encoding interactions covering partial but
not all variables in S, i.e., ∀T ∈ {T : S ̸⊆ T, T ⊆ N, i ∈
S}, Iand(T ) = Ior(T ) = 0, then there will be no conflict of
attributions, w.r.t. the coalition S.

Corollary 3.5. If a set of input variables in S are always
encoded by the DNN as a coalition without any interactions
containing partial variables in S, i.e., ∀T ∈ {T : S ̸⊆
T, T ⊆ N, i ∈ S}, Iand(T ) = Ior(T ) = 0, then the attribu-
tion of the coalition S can fully determine the Shapley value
ϕ(i), i.e., ϕ(i) = 1

|S|φ(S) and φ(S) =
∑

i∈S ϕ(i).

Explaining Shapley values. Let us use the coalition attri-
bution φ(S) to explain the Shapley value of each variable i
in S, ϕ(i). Specifically, we can simply take the uniform al-
location of φ(S) to its constituent input variables, 1

|S|φ(S),

as the attribution of the i-th variable. Theorem 3.6 explains
the difference between ϕ(i) and 1

|S|φ(S). It shows that the
Shapley value ϕ(i) can be decomposed into two parts. (1)
The first part Ui,S is a component of coalition attribution
1
|S|φ(S), i.e., the uniform allocation of φ(S) to its con-
stituent input variables. (2) The second part Ui,S̄ comes
from all interactions {T}, which cover just partial but not
all variables in S, i.e., {T | T ⊆ N, i ∈ T ∩S, T ∩S ̸= S}.

Theorem 3.6. (proved in Appendix F) ∀i ∈ S,
ϕ(i) =

∑
T⊆N,T⊇S

1
|T | [Iand(T ) + Ior(T )]

+
∑

T⊆N,T ̸⊇S,T∋i
1

|T | [Iand(T ) + Ior(T )]

=
1

|S|φ(S)︸ ︷︷ ︸
Ui,S

+
∑

T⊆N,T ̸⊇S,T∋i

1

|T | [Iand(T ) + Ior(T )]︸ ︷︷ ︸
Ui,S̄

Corollary 3.7 further shows that if S = {i} only contains a
single variable xi, then the attribution of the coalition S is
equal to the Shapley value ϕ(i).

Corollary 3.7. φ(S = {i}) = ϕ(i)

Verifying whether we can use coalition attributions to
compute the Shapley value. We conducted experiments to
examine Theorem 3.6, i.e., whether we could use the coali-
tion S’s attribution to calculate the Shapley value of the i-th
input variable, i ∈ S. We used ∆ϕ(i)S = ϕ(i) − ϕ̂(i) to
measure the approximation error between the true Shapley
value computed based on Equation (2), ϕ(i), and the Shap-
ley value estimated by Theorem 3.6, ϕ̂(i). We conducted
experiments on the DNNs introduced in Section 4.1. Table 2
reports the average estimation error Ex,|S|=m[E|∆ϕ(i)S |]
over all samples through all potential combinations of (i, S)
s.t., i ∈ S of a specific order |S| = m. The small errors
proved the correctness of our theory.

3.5. Properties/axioms for the attribution of a coalition

Just like in the Shapley value, the following five axioms
have been widely considered as standard requirements for
reliable attributions (Lundberg & Lee, 2017). Although
there are slight differences in axioms for the Shapley value,
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the coalition attribution also satisfies these axioms, which
are proven in Appendix G. Appendix H introduces a more
detailed understanding of these axioms.

1. Anonymity axiom: Let us consider a permutation
operation σ on all input varaibles in N . σv denotes the
permutated function subject to σv(σ(S)) = v(S), for
all S ⊆ N and σ(S) = {σ(i) : i ∈ S}. Then, it has
φv(S) = φσv(σ(S)).

2. Symmetry axiom-α: If two input variables i and j
have the same effect, i.e. ∀S ⊆ N\{i, j}, v(S∪{i}) =
v(S ∪ {j}), then ∀S ⊆ N \ {i, j}, φ(S ∪ {i}) =
φ(S ∪ {j}).

3. Symmetry axiom-β: If two coalitions S and T (|S| =
|T |) have the same effect, i.e. ∀T ′ ⊆ T, ∀S′ ⊆ S,
|S′| = |T ′|,∀L ⊆ N\(S′∪T ′), v(L∪S′) = v(L∪T ′),
then it has ∀L ⊆ N \ (S ∪ T ), φ(L∪ S) = φ(L∪ T ).

4. Additivity axiom: If the output of DNN can be divided
into two independent parts, i.e. ∀S ⊆ N, v(S) =
v1(S) + v2(S), then the attribution of any coalition
S can also be decomposed to two parts, i.e. ∀S ⊆
N, φv(S) = φv1(S) + φv2(S).

5. Dummy axiom: If a coalition S is a dummy coalition,
i.e. ∃i ∈ S,∀T ⊆ N \ {i}, v(T ∪ {i}) = v(T ), then
it has no attribution to the DNN output, i.e. φ(S) = 0.

Efficiency axiom. The overall model output can be de-
composed into attributions of coalitions and attributions
of individual variables. Theorem 3.6 can directly derive
the following corollary.

Corollary 3.8. (Efficiency) For any coalition S ⊆ N ,
the output score of a model can be decomposed into
the attribution of the coalition S and the attribution
of each input variable in N \ S and the utilities of
the interactions covering partial variables in S, i.e.,
∀S ⊆ N, v(N) − v(∅) = φ(S) +

∑
i∈N\S ϕ(i) +∑

T⊆N,T∩S ̸=∅,T∩S ̸=S
|T∩S|
|T | [Iand(T ) + Ior(T )]

Corollary 3.8 shows another type of efficiency property.
I.e., an AI model’s output on the input x can be accurately
mimicked by the sum of the coalition S’s attribution, the
Shapley value of each variable in N \ S, and the numerical
effects of the interaction covering partial variables in S.

Verifying whether we can use coalition attributions to ex-
plain the network output. According to Corollary 3.8, we
can use the coalition attribution to mimic the output v(N) of
neural networks on any arbitrary sample. Therefore, given a
coalition S, we followed Corollary 3.8 to compute v̂(N |S)
to represent the model output mimicked by the coalition
attribution. We computed ∆vS = v(N)− v̂(N |S) to mea-
sure the approximation error. Table 3 reports the average

Table 2. Approximate error Ex,|S|=m[E|∆ϕ(i)S |] of using coali-
tion attribution to mimic the Shapley value ϕ(i)

m = 1 m = 2 m = 3 m = 4 m = 5

3.6× 10−8 1.1× 10−7 2.2× 10−7 4.2× 10−7 7.6× 10−7

m = 6 m = 7 m = 8 m = 9 m = 10

9.1× 10−7 4.4× 10−7 6.3× 10−7 8.8× 10−7 2.8× 10−7

Table 3. Approximate error Ex,|S|=m[E|∆vS |] of using coalition
attribution to mimic the model output v(N)

m = 1 m = 2 m = 3 m = 4 m = 5

2.3× 10−7 5.8× 10−7 9.1× 10−7 1.8× 10−7 6.3× 10−7

m = 6 m = 7 m = 8 m = 9 m = 10

2.1× 10−7 5.1× 10−7 3.6× 10−7 3.1× 10−7 4.7× 10−7

estimation error Ex,|S|=m[E|∆vS |] over all samples. The
settings of neural networks and datasets was introduced in
Section 4.1. We found that no matter how the coalition S
was selected, the model output v(N) could be well mim-
icked by the coalition attribution φ(S) and the effect of
interactions T covering partial but not all variables in S.

4. Experiment
4.1. Evaluating faithfulness of a coalition

In this study, we prove the essential mechanism behind the
conflicts of attributions computed on different partitions
of input variables (see Theorem 3.6). The decomposition
of the Shapley value into two terms Ui,S and Ui,S̄ in
Theorem 3.6 also enables us to evaluate the faithfulness
of the coalition. Specifically, (1) the Ui,S term reflects the
confidence of the coalition, because Ui,S measures effects
of all interactions T (T ⊇ S) that take S as a singleton
variable; (2) In comparison, Ui,S̄ reflects the significance of
variables in S that do not act as a singleton variable, because
Ui,S̄ measures the effect of interactions T that cover just
partial but not all variables in S. In this way, we propose
three metrics to evaluate the faithfulness of the coalition.

The first metric R(i) is designed to evaluate for each specific
coalition S ⊆ N , whether the Ui,S term dominates the
major effect of ϕ(i). If so, we consider the set of variables
in S as a faithful coalition.

R(i) =
|Ui,S |

|Ui,S |+ |Ui,S̄ |
, i ∈ S (7)

The second metric R′(i) ∈ [0, 1] is defined to measure the
significance of the variable i participating in the coalition S,
in a more fine-grained manner, as follows.

R′(i) =

∑
T⊇S

1
|T | (|Iand(T )|+ |Ior(T )|)∑

T ′∋i
1

|T ′| (|Iand(T ′)|+ |Ior(T ′)|)
, i ∈ S (8)

where
∑

T⊇S
1
|T | (|Iand(T )|+|Ior(T )|) denotes the strength

of interaction effects that are allocated from the coalition S
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Table 4. Coalition faithfulness metrics on toy functions
Ef,i[R(i)] Ef,i[R

′(i)] Ef [Q(S)]

purely faithful coalitions 0.944 0.936 0.948
partially faithful coalitions 0.471 0.608 0.590
purely unfaithful coalitions 0.031 0.016 0.013

to the variable i, i ∈ S.
∑

T ′∋i
1

|T ′| (|Iand(T
′)|+ |Ior(T

′)|)
denotes the strength of interaction effects allocated to the
variable i, no matter whether or not the variable i collabo-
rates with other variables in S \ {i} as a coalition.

Unlike the first two metrics focusing on the effect of a
single variable i, the third metric Q(S) ∈ [0, 1] is defined
to measure the significance of the entire coalition S.

Q(S) =

∑
T⊇S

|S|
|T | (|Iand(T )|+ |Ior(T )|)∑

T ′⊆N,T ′∩S ̸=∅
|T ′∩S|
|T ′| (|Iand(T ′)|+ |Ior(T ′)|)

(9)

where the numerator measures the overall strength of effects
allocated to the coalition S, and the denominator denotes
the overall strength of effects of all variables in S, no matter
whether these variables construct the entire coalition.

Experiments on toy functions. We conducted two experi-
ments to use three metrics in Equations (7)-(9) to evaluate
the faithfulness of different coalitions encoded by a DNN.
However, the core problem was that it was difficult to ob-
tain ground-truth interactions encoded by a DNN because
true/ideal interactions that were supposed to be learned for a
task were not necessarily equivalent to the real interactions
that a DNN had learned. Thus, we trained DNNs to regress
the following toy function f(x) =

∑m
i=1 wi

∏
j∈Ti

xj with
clear interactions to determine ground-truth interactions,
where x = [x1, x2, ..., xn] ∈ {0, 1}n,∀i ̸= j, Ti ̸= Tj . The
function f(x) was determined by m different true interac-
tions {Ti| i = 1, 2, ...,m}. We designed a set of 20 target
functions f(x) for testing by applying different sets of {Ti}.

Specifically, we evaluated the faithfulness of the following
three types of coalitions. (1) Given the target function f(x),
w.r.t. m true interactions {Ti| i = 1, ...,m}, each of the
first type of coalitions, S, was fully contained by some true
interactions Ti ⊇ S, without being partially covered by any
interactions Ti (Ti ∩ S ̸= ∅, Ti ∩ S ̸= S). Thus, the first
type of coalition was supposed to be the most purely faith-
ful coalitions. (2) In contrast, each of the second type of
coalition, S, was partially covered by some true interactions
Ti (Ti ∩ S ̸= ∅, Ti ∩ S ̸= S) without being fully contained
by any interactions Ti. These coalitions were supposed to
be purely unfaithful coalitions. (3) The third type of coali-
tions were termed partially faithful coalitions, i.e., being
contained by some interactions Ti ⊇ S and partially cov-
ered by other interactions Tj . If the DNN was well trained to
fit the target function f(x), then our metrics were supposed
to identify these purely faithful/purely unfaithful/partially

faithful coalitions.

In practice, we trained the MLP (Ren et al., 2023b) to regress
the functions. Table 4 showed that the regression of a purely
faithful coalition S had Q(S), R′(i), R(i) close to 1, and
the regression of a purely unfaithful coalition S always had
Q(S), R′(i), R(i) close to 0. A partially faithful coalition
S always had 0 < Q(S), R′(i), R(i) < 1 which means that
variable in S existed in the true interactions containing the
whole coalition S, and also existed in other interactions.

Experiments on DNNs trained for NLP tasks. We con-
ducted experiments to evaluate whether the AI model faith-
fully encoded such natural coalitions in human cognition.
We finetuned the pre-trained BERT-large (Devlin et al.,
2018) and LLaMA (Touvron et al., 2023) model on SST-2
dataset (Socher et al., 2013) for sentiment classification. We
divided the input sentence into words and manually selected
10 words as input variables. Given an input sentence x,
we annotated some natural coalitions according to human
cognition. For example, in the sentence “It was raining
cats and dogs outside,” the phrase “raining cats and dogs”
was annotated as a natural coalition. In comparison, we
randomly selected coalitions as false coalitions.

Table 5 shows that in the sentence (a), the coalition S
“mesmerizing performances” represented the positive emo-
tions with high Q(S), R(i), R′(i) values on Bert-large and
LLaMA models, thereby being considered as a faithful coali-
tion. In comparison, in the sentence (b), the selected coali-
tion S “rivaling blair” separated the phrase “blair witch,” so
S was considered as an unfaithful coalition, which was also
reflected by the low Q(S), R(i), R′(i) values. It provides
new insights that if a coalition contains both tokens related
to the generated language and irrelevant tokens, then this
coalition usually represents a representation flaw.

Experiments on DNNs trained for image classification.
We conducted experiments on VGG-11 (Simonyan & Zis-
serman, 2014) and ResNet-20 (He et al., 2016) on the
MNIST (LeCun et al., 1998) and CIFAR-10 (Krizhevsky,
2012) datasets and verified that these DNNs represented
natural coalitions that fit human cognition. Please see Ap-
pendix I for experimental settings and results.

4.2. Application: explaining the Go game

Computing the attribution value of a coalition is of signifi-
cant value in practice, and our method can be widely used.
A typical application is to explain shape patterns memorized
by a DNN to play the game of Go, which is inspired by
the previous work (Zhou et al., 2023b). The shape patterns
correspond to coalitions between input stones. Specifically,
people usually use a value network to estimate the advantage
score of white stone in Go. The advantage score depends on
complex coalitions (shape patterns) between white stones
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Table 5. Coalition attribution metrics on SST-2 dataset

Sentences Bert-large

(a) the mesmerizing performances of the leads keep
the film grounded and keep the audience riveted.

Q({mesmerizing performances}) = 0.743
R({mesmerizing}) = 0.690, R′({mesmerizing}) = 0.682
R({performances}) = 0.677, R′({performances}) = 0.685

(b) one of creepiest, scariest movies to come along in a long,
long time, easily rivaling blair witch or the others

Q({rivaling blair}) = 0.425
R({rivaling}) = 0.145, R′({rivaling}) = 0.391

R({blair}) = 0.250, R′({blair}) = 0.466

Sentences LLaMA

(a) the mesmerizing performances of the leads keep
the film grounded and keep the audience riveted.

Q({mesmerizing performances}) = 0.746
R({mesmerizing}) = 0.611, R′({mesmerizing}) = 0.652
R({performances}) = 0.726, R′({performances}) = 0.739

(b) one of creepiest, scariest movies to come along in a long,
long time, easily rivaling blair witch or the others

Q({rivaling blair}) = 0.312
R({rivaling}) = 0.238, R′({rivaling}) = 0.429

R({blair}) = 0.277, R′({blair}) = 0.286

Input Go Games
from KataGo

Top-ranked coalitions selected by 
professional Go players

Top-ranked coalitions selected by the 
interaction strength

(1) (2) (3) (4)

(1) (2) (3) (4)

(a)

(b)

Figure 2. Visualization of two approaches for the selection of coalitions in KataGo. For a coalition S, φ(S) > 0 means the coalition S of
stones makes a positive numerical effect for the white, while it makes a negative effect when φ(S) < 0.

and black stones. However, there are no metrics to evaluate
the true attribution of each shape pattern.

Therefore, we conducted experiments to quantify the at-
tribution of each shape pattern encoded by the KataGo
model (Wu, 2020), which was an open-source Go engine,
and was known for its strong performance in playing the
game of Go. The KataGo incorporated the Monte Carlo
Tree Search and a value network to play the game, and we
evaluated shape patterns encoded by the value network.

We had KataGo execute 40 moves against each other. Due to
the significantly high computational cost of interactions, we
only explained a local board state consisting of n = 10
stones (i.e., 5 white stones and 5 black stones). These
10 stones were selected by professional Go players as in-
put variables N , between which interactions were com-
puted. The remaining stones on the board were treated as
a constant background. Then, we followed (Zhou et al.,
2023a) to set v(S) = log( pwhite(xS)

1−pwhite(xS) ) + ak, s.t. ak =

ExET⊆N :k=nwhite(T )−nblack(T )log(
pwhite(xT )

1−pwhite(xT ) ) measures the

advantage score of white stones, where nwhite(T ) is the
number of white stones in T . pwhite(xS) represents the
score of white stones on input xS , where stones in N \ S
were removed from the board. ak, k = −n

2 ,−
n−2
2 , ..., n

2
represents a bias of the network output on a certain input.

Notably, although KataGo’s capabilities surpassed those of
human players, it was not necessary for the coalition/interac-
tions modeled by KataGo to reflect human cognition of the
Go game. Therefore, we used two strategies to select coali-
tion candidates. The first strategy was to let professional
human players annotate classical shape patterns, accord-
ing to human understanding of the Go game. The second
strategy was to select top-k interactions selected by the inter-
action strength (|I(T )| ) as coalition candidates suggested
by the DNN. Then, given each coalition candidate, we cal-
culated the attribution φ(S) of selected coalitions. Figure
2 shows that coalitions that boosted the advantage score
of white stones s.t. φ(S) > 0 and coalitions that reduced
the advantage score of white stones s.t. φ(S) < 0. These
results help expert Go players learn shape patterns to play
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the Go game. Furthermore, we analyze the fitness between
the extracted coalitions and human intuition on many more
game boards. Please refer to Appendix J for details.

5. Conclusion
In this paper, we find and formulate the conflict between
individual variables’ attributions and the attribution of the
coalition S. In order to explain the internal mechanism for
such a conflict, we discover that both the Banzhaf value and
the Shapley value can be formulated as a specific allocation
of AND-OR interactions. Inspired by that, we extend AND-
OR interactions to define the coalition attribution, and we
prove that the conflict of attributions comes from numerical
effects of all interactions T that contain just partial but not
all variables in S. Furthermore, the new coalition attribution
enables us to evaluate the faithfulness of a coalition.

Impact Statement
This paper aims to explain the internal mechanism for the
conflict between individual variables’ attributions and the
attribution of the coalition S. We extend AND-OR interac-
tions to define the coalition attribution, and we prove that
the conflict of attributions comes from numerical effects of
all interactions that contain just partial but not all variables
in S. Furthermore, the new coalition attribution could help
researchers evaluate the faithfulness of a coalition.
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A. Coalition attribution vs interaction effect
Unlike the coalition attribution, interaction metrics (Harsanyi, 1959; Grabisch & Roubens, 1999; Sundararajan et al., 2020;
Tsai et al., 2023) usually disentangle explicit effect I(S) of each specific subset S ⊆ N away from the effect I(S′) of its
overlapping neighbor subset S′, instead of considering how to merge effects of overlapping subsets into the attribution of a
coalition T ⊆ S, S′. For example, the Harsanyi interaction (Harsanyi, 1959) separately calculates the interaction effects
I(S1 = {x1, x2}), I(S2 = {x1, x2, x3}), and I(S3 = {x1, x2, x3, x4}). There are no direct connections between these
interaction effects. In contrast, the coalition attribution focuses on how to reasonably summarize these interaction effects
into a single scalar importance score φ(S1) of the coalition S1.

B. Universal-matching property of AND-OR interactions
(Li & Zhang, 2023) have proven that the output of an AI model can always be explained by AND-OR interactions. For
each input sample x, we can randomly mask x and generate 2n different masked samples {xS}, w.r.t. S ⊆ N . Given each
randomly masked sample xS , we can always use AND-OR interactions to mimic the network output v(S) on xS , as follows.

v(S) = v(∅) +
∑

L⊆S,L ̸=∅
Iand(L) +

∑
L∩S ̸=∅,L ̸=∅

Ior(L) (10)

Furthermore, (Ren et al., 2023a) have shown that the effects of interactions in most DNNs are usually very sparse. The
majority of interaction effects are nearly zero, and only a few of the most salient interaction effects are sufficient to
approximate the network’s output v(N).

C. Proof of Theorem 2
Proof. According to the definition of Shapley values, we have: ϕ(i) =

∑
S⊆N\{i}

|S|!(n−|S|−1)!
n! ·

[
v(S ∪ {i})− v(S)

]
=

ES⊆N\{i}
[
v(S ∪ {i})− v(S)

]
.

Then, according to Equation (10) in the paper, we have: ∀S ⊆ N, v(S) = v(∅) +
∑

L⊆S,L ̸=∅ Iand(L) +
∑

L∩S ̸=∅ Ior(L).
Thus, we have:

v(S ∪ {i})− v(S)

=

v(∅) + ∑
L⊆(S∪{i}),L ̸=∅

Iand(L) +
∑

L∩(S∪{i})̸=∅

Ior(L)

−

v(∅) + ∑
L⊆S,L ̸=∅

Iand(L) +
∑

L∩S ̸=∅

Ior(L)


=

 ∑
L⊆(S∪{i}),L ̸=∅

Iand(L)−
∑

L⊆S,L ̸=∅

Iand(L)

+

 ∑
L∩(S∪{i}) ̸=∅

Ior(L)−
∑

L∩S ̸=∅

Ior(L)


=

∑
L⊆S

Iand(L ∪ {i})︸ ︷︷ ︸
A

+
∑

L∩S=∅

Ior(L ∪ {i})︸ ︷︷ ︸
B

This allows us to break down the Shapley value into ϕ(i) = ES⊆N\{i}[A+ B].

12
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In the subsequent proof, we first prove that the sum of AND interactions ES⊆N\{i}[A] is equal to
∑

S⊆N,i∈S
1
|S|Iand(S).

ES⊆N\{i}[A]

=ES⊆N\{i}
∑
L⊆S

Iand(L ∪ {i})

=
1

n

n−1∑
m=0

1(
n−1
m

) ∑
S⊆N\{i},
|S|=m

∑
L⊆S

Iand(L ∪ {i})

=
1

n

∑
L⊆N\{i}

n−1∑
m=0

1(
n−1
m

) ∑
S⊇L,

S⊆N\{i},
|S|=m

Iand(L ∪ {i})

=
1

n

∑
L⊆N\{i}

n−1∑
m=|L|

1(
n−1
m

) ∑
S⊇L,

S⊆N\{i},
|S|=m

Iand(L ∪ {i}) // since S ⊇ L, |S| = m ≥ |L|.

=
1

n

∑
L⊆N\{i}

n−1∑
m=|L|

1(
n−1
m

)(n− 1− |L|
m− |L|

)
Iand(L ∪ {i})

=
1

n

∑
L⊆N\{i}

n−1−|L|∑
k=0

1(
n−1
|L|+k

)(n− 1− |L|
k

)
︸ ︷︷ ︸

αL

Iand(L ∪ {i}) // Let k = m− |L|.

=
∑

L⊆N\{i}

1

|L|+ 1
Iand(L ∪ {i})

=
∑

S⊆N,i∈S

1

|S|
Iand(S) // Let S = L ∪ {i}.

13
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Then, for the sum of OR interactions, we have

ES⊆N\{i}[B]

=ES⊆N\{i}
∑

L∩S ̸=∅

Ior(L ∪ {i})

=
1

n

n−1∑
m=0

1(
n−1
m

) ∑
S⊆N\{i},
|S|=m

∑
L∩S ̸=∅

Ior(L ∪ {i})

=
1

n

∑
L⊆N\{i}

n−1∑
m=0

1(
n−1
m

) ∑
S∩L ̸=∅,

S⊆N\{i},
|S|=m

Ior(L ∪ {i})

=
1

n

∑
L⊆N\{i}

n−1∑
m=0

1(
n−1
m

) ∑
S⊆N\{i}\L,

|S|=m

Ior(L ∪ {i})

=
1

n

∑
L⊆N\{i}

n−1−|L|∑
m=0

1(
n−1
m

) ∑
S⊆N\{i}\L,

|S|=m

Ior(L ∪ {i}) // Since S ⊆ N \ {i} \ L, |S| ≤ n− 1− |L|.

=
1

n

∑
L⊆N\{i}

n−1−|L|∑
m=0

1(
n−1
m

)(n− 1− |L|
m

)
Ior(L ∪ {i})

=
1

n

∑
L⊆N\{i}

n−1−|L|∑
k=0

1(
n−1

n−1−|L|−k

)( n− 1− |L|
n− 1− |L| − k

)
Ior(L ∪ {i}) // Let k = n− 1− |L| −m.

=
1

n

∑
L⊆N\{i}

n−1−|L|∑
k=0

1(
n−1
|L|+k

)(n− 1− |L|
k

)
Ior(L ∪ {i})

=
1

n

∑
L⊆N\{i}

n

|L|+ 1
Ior(L ∪ {i})

=
∑

L⊆N\{i}

1

|L|+ 1
Ior(L ∪ {i})

=
∑

S⊆N,i∈S

1

|S|
Ior(S) // Let S = L ∪ {i}.

Therefore, ϕ(i) =
∑

S⊆N\{i}[A] +
∑

S⊆N\{i}[B] =
∑

S⊆N,i∈S
1
|S| [Iand(S) + Ior(S)].

D. Proof of Theorem 3
Proof. According to the definition of the AND/OR interaction, we can get:

Iand(S) =
∑

L⊆S(−1)|S|−|L|vand(L) =
∑

L⊆S\{i}(−1)|S|−|L|+1 [vand(L ∪ {i})− vand(L)]

Ior(S) = −
∑

L⊆S(−1)|S|−|L|vor(N \ L) =
∑

L⊆S\{i}(−1)|S|−|L|+1 [vor(N \ L)− vor(N − L− {i})]

where v(L) = vand(L) + vor(L).
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Then we have:∑
S⊆N,S∋i

1

2|S|−1
[Iand(S) + Ior(S)]

=
∑

S⊆N,S∋i

∑
L⊆S\{i}

(−1)|S|−|L|+1

2|S|−1
{[vand(L ∪ {i})− vand(L)] + [vor(N \ L)− vor(N − L− {i})]}

=
∑

S⊆N\{i}

∑
L⊆S

(−1)|S|−|L|

2|S| {[vand(L ∪ {i})− vand(L)] + [vor(N \ L)− vor(N − L− {i})]}

=
∑

L⊆N\{i}

(−1)|L|
∑

S⊆N\{i},S⊇L

(−1)|S|

2|S| {[vand(L ∪ {i})− vand(L)] + [vor(N \ L)− vor(N − L− {i})]}

=
∑

L⊆N\{i}

(−1)|L| (−1)|L|

2|N |−1
{[vand(L ∪ {i})− vand(L)] + [vor(N \ L)− vor(N − L− {i})]}

//
∑

S⊆N\{i},S⊇L

(−1)|S|

2|S| =
(−1)|L|

2|N |−1
.

=
∑

L⊆N\{i}

1

2|N |−1
{[vand(L ∪ {i})− vand(L)] + [vor(N \ L)− vor(N − L− {i})]}

=
∑

S⊆N\{i}

1

2|N |−1
[vand(S ∪ {i})− vand(S)] +

∑
S⊆N\{i}

1

2|N |−1
[vor(N \ S)− vor(N − S − {i})] // Let L = S.

=
∑

S⊆N\{i}

1

2|N |−1
[vand(S ∪ {i})− vand(S)] +

∑
S⊆N\{i}

1

2|N |−1
[vor(S ∪ {i})− vor(S)]

=
∑

S⊆N\{i}

1

2|N |−1
{[vand(S ∪ {i}) + vor(S ∪ {i})]− [vand(S) + vor(S)]}

=
∑

S⊆N\{i}

1

2|N |−1
· [v(S ∪ {i})− v(S)]

= B(i)

Therefore, B(i) =
∑

S⊆N,S∋i
1

2|S|−1 [Iand(S) + Ior(S)].

E. Proof of Theorem 4 & Corollary 5
Proof. According to Theorem 2, we have: ϕ(i) =

∑
T⊆N,i∈T

1
|T | [Iand(T ) + Ior(T )].

Then, according to Equation (6) in the paper, we have: φ(S) =
∑

T⊇S
|S|
|T | [Iand(T ) + Ior(T )].

Thus, we have: ∑
i∈S

ϕ(i)

=
∑
i∈S

∑
T⊆N,T∋i

1

|T |
[Iand(T ) + Ior(T )]

=
∑
i∈S

∑
T⊆N,T⊇S

1

|T |
[Iand(T ) + Ior(T )] +

∑
T⊆N,T ̸⊇S,T∋i

1

|T |
[Iand(T ) + Ior(T )]

=
∑
i∈S

 1

|S|
∑

T⊆N,T⊇S

|S|
|T |

[Iand(T ) + Ior(T )] +
∑

T⊆N,T ̸⊇S,T∋i

1

|T |
[Iand(T ) + Ior(T )]
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=
∑
i∈S

 1

|S|
φ(S) +

∑
T⊆N,T ̸⊇S,T∋i

1

|T |
[Iand(T ) + Ior(T )]


=
∑
i∈S

1

|S|
φ(S) +

∑
i∈S

∑
T⊆N,
T ̸⊇S,
T∋i

1

|T |
[Iand(T ) + Ior(T )]

= |S| · 1

|S|
φ(S) +

∑
T⊆N,T∩S ̸=∅,T∩S ̸=S

|T ∩ S|
|T |

[Iand(T ) + Ior(T )]

// For any T ,
1

|T |
[Iand(T ) + Ior(T )] will only be counted |T ∩ S| times.

= φ(S) +
∑

T⊆N,T∩S ̸=∅,T∩S ̸=S

|T ∩ S|
|T |

[Iand(T ) + Ior(T )]

Therefore, we prove that:
∑

i∈S ϕ(i) = φ(S) +
∑

T⊆N,T∩S ̸=∅,T∩S ̸=S
|T∩S|
|T | [Iand(T ) + Ior(T )]

Especially, if a set of input variables in S are always encoded by the DNN as a coalition without any interactions containing
partial variables in S, i.e., ∀T ∈ {T : S ̸⊆ T, T ⊆ N, i ∈ S}, Iand(T ) = Ior(T ) = 0, then we have:

∑
i∈S

ϕ(i) = φ(S) +
∑

T⊆N,T∩S ̸=∅,T∩S ̸=S

|T ∩ S|
|T |

[Iand(T ) + Ior(T )] = φ(S)

Besides, we have:

ϕ(i) =
1

|S|
φ(S) +

∑
T⊆N,T ̸⊇S,T∋i

1

|T |
[Iand(T ) + Ior(T )] =

1

|S|
φ(S)

Therefore, we further prove Corollary 3.5.

F. Proof of Theorem 6 & Corollary 7
Proof. According to Theorem 3.2, we have: ϕ(i) =

∑
T⊆N,i∈T

1
|T | [Iand(T ) + Ior(T )].

Then, according to Equation (6) in the paper, we have: φ(S) =
∑

T⊇S
|S|
|T | [Iand(T ) + Ior(T )].

Thus, we have: ∀i ∈ S,

ϕ(i)

=
∑

T⊆N,T∋i

1

|T |
[Iand(T ) + Ior(T )]

=
∑

T⊆N,T⊇S

1

|T |
[Iand(T ) + Ior(T )] +

∑
T⊆N,T ̸⊇S,T∋i

1

|T |
[Iand(T ) + Ior(T )]

=
1

|S|
∑

T⊆N,T⊇S

|S|
|T |

[Iand(T ) + Ior(T )] +
∑

T⊆N,T ̸⊇S,T∋i

1

|T |
[Iand(T ) + Ior(T )]

=
1

|S|
φ(S) +

∑
T⊆N,T ̸⊇S,T∋i

1

|T |
[Iand(T ) + Ior(T )]

Therefore, we prove that ϕ(i) = 1
|S|φ(S) +

∑
T⊆N,T ̸⊇S,T∋i

1
|T | [Iand(T ) + Ior(T )].
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Specially, we let S = {i} and then we have:

ϕ(i)

=
1

|S|
φ(S) +

∑
T⊆N,T ̸⊇S,T∋i

1

|T |
[Iand(T ) + Ior(T )]

=
1

1
φ(S) +

∑
T⊆N,T ̸⊇{i},T∋i

1

|T |
[Iand(T ) + Ior(T )]

= φ(S) = φ(S = {i})

Therefore, we further prove Corollary 3.7: φ(S = {i}) = ϕ(i).

G. Proofs of axioms for the attribution of a coalition
In this section, we will prove the axioms for the attribution of a coalition in the main paper and Corollary 8.

G.1. Proof of Anonymity axiom

Proof. According to the definition of the AND/OR interaction, we can get:

Iandv (T ) =
∑

L⊆T (−1)|T |−|L|vand(L), Iorv (T ) = −
∑

L⊆T (−1)|T |−|L|vor(N \ L)

Iandσv
(σ(T )) =

∑
L⊆σ(T )(−1)|σ(T )|−|L|σvand(L),

Iorσv
(σ(T )) = −

∑
L⊆σ(T )(−1)|σ(T )|−|L|σvor(N \ L)

Due to σv(σ(S)) = v(S), we have: σvand(σ(S)) = vand(S) and σvor(σ(S)) = vor(S).

Thus, we have:

Iandσv
(σ(T )) =

∑
L⊆σ(T )

(−1)|σ(T )|−|L|σvand(L)

=
∑

L=σ(K)⊆σ(T )
(−1)|σ(T )|−|σ(K)|σvand(σ(K))

=
∑

L=σ(K)⊆σ(T )
(−1)|T |−|K|vand(K)

=
∑

K⊆T
(−1)|T |−|K|vand(K) = Iandv (T )

Iorσv
(σ(T )) = −

∑
L⊆σ(T )

(−1)|σ(T )|−|L|σvor(N \ L)

= −
∑

L=σ(K)⊆σ(T )
(−1)|σ(T )|−|σ(K)|σvor(N \ σ(K))

= −
∑

L=σ(K)⊆σ(T )
(−1)|σ(T )|−|σ(K)|σvor(σ(N \K))

= −
∑

K⊆T
(−1)|T |−|K|vor(N \K) = Iorv (T )

Then, according to Equation (6) in the paper, we have: φv(S) =
∑

T⊇S
|S|
|T | [Iandv (T ) + Iorv (T )] and φσv(σ(S)) =∑

T⊇σ(S)
|σ(S)|
|T | [Iandσv (T ) + Iorσv (T )].

Thus, we have:

φσv(σ(S)) =
∑

T⊇σ(S)

|σ(S)|
|T |

[Iandσv (T ) + Iorσv (T )] =
∑

T=σ(L)⊇σ(S)

|σ(S)|
|σ(L)|

[Iandσv (σ(L)) + Iorσv (σ(L))]

=
∑

T=σ(L)⊇σ(S)

|S|
|L|

[Iandv (L) + Iorv (L)] =
∑
L⊇S

|S|
|L|

[Iandv (L) + Iorv (L)] = φv(S)

Therefore, we prove the Anonymity axiom.
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G.2. Proof of Symmetry axiom-α

Proof. According to the definition of the AND/OR interaction, we can get:

Iand(T ∪ {i}) =
∑

L⊆(T∪{i})(−1)|T∪{i}|−|L|vand(L), Ior(T ∪ {i}) = −
∑

L⊆(T∪{i})(−1)|T∪{i}|−|L|vor(N \ L)

Iand(T ∪ {j}) =
∑

L⊆(T∪{j})(−1)|T∪{j}|−|L|vand(L), Ior(T ∪ {j}) = −
∑

L⊆(T∪{j})(−1)|T∪{j}|−|L|vor(N \ L)

Due to ∀S ⊆ N \{i, j}, v(S∪{i}) = v(S∪{j}), we have: ∀S ⊆ N \{i, j}, vand(S∪{i}) = vand(S∪{j}), vor(S∪{i}) =
vor(S ∪ {j})

Then, we have:
Iand(T ∪ {i})− Iand(T ∪ {j})

=
∑

L⊆(T∪{i})
(−1)|T∪{i}|−|L|vand(L)−

∑
L⊆(T∪{j})

(−1)|T∪{j}|−|L|vand(L)

=
(∑

L⊆T
(−1)|T∪{i}|−|L|vand(L) +

∑
L⊆T

(−1)|T∪{i}|−|L∪{i}|vand(L ∪ {i})
)

−
(∑

L⊆T
(−1)|T∪{j}|−|L|vand(L) +

∑
L⊆T

(−1)|T∪{j}|−|L∪{j}|vand(L ∪ {j})
)

=
∑

L⊆T
(−1)|T |−|L|[vand(L ∪ {i})− vand(L ∪ {j})] = 0

Ior(T ∪ {i})− Ior(T ∪ {j})

=−
∑

L⊆(T∪{i})
(−1)|T∪{i}|−|L|vor(N \ L) +

∑
L⊆(T∪{j})

(−1)|T∪{j}|−|L|vor(N \ L)

=
(∑

L⊆T
(−1)|T∪{j}|−|L|vor(N \ L) +

∑
L⊆T

(−1)|T∪{j}|−|L∪{j}|vor(N \ (L ∪ {j}))
)

−
(∑

L⊆T
(−1)|T∪{i}|−|L|vor(N \ L) +

∑
L⊆T

(−1)|T∪{i}|−|L∪{i}|vor(N \ (L ∪ {i}))
)

=
∑

L⊆T
(−1)|T |−|L|[vor((N \ (L ∪ {i, j})) ∪ {i})− vor((N \ (L ∪ {i, j})) ∪ {j})] = 0

Besides, according to Equation (6) in the paper, we have: φ(S ∪ {i}) =
∑

T⊇(S∪{i})
|S∪{i}|

|T | [Iand(T ) + Ior(T )] and

φ(S ∪ {j}) =
∑

T⊇(S∪{j})
|S∪{j}|

|T | [Iand(T ) + Ior(T )].

Then, we have:

φ(S ∪ {i})− φ(S ∪ {j})

=
∑

T⊇(S∪{i})

|S ∪ {i}|
|T |

[Iand(T ) + Ior(T )]−
∑

T⊇(S∪{j})

|S ∪ {j}|
|T |

[Iand(T ) + Ior(T )]

=

 ∑
T⊇(S∪{i,j})

|S|+ 1

|T |
[Iand(T ) + Ior(T )] +

∑
T⊇(S∪{i}),T ̸∋j

|S|+ 1

|T |
[Iand(T ) + Ior(T )]


−

 ∑
T⊇(S∪{i,j})

|S|+ 1

|T |
[Iand(T ) + Ior(T )] +

∑
T⊇(S∪{j}),T ̸∋i

|S|+ 1

|T |
[Iand(T ) + Ior(T )]


=

∑
T⊇(S∪{i}),T ̸∋j

|S|+ 1

|T |
[Iand(T ) + Ior(T )]−

∑
T⊇(S∪{j}),T ̸∋i

|S|+ 1

|T |
[Iand(T ) + Ior(T )]

=
∑

T⊇S,T⊆N\{i,j}

|S|+ 1

|T ∪ {i}|
[Iand(T ∪ {i}) + Ior(T ∪ {i})]−

∑
T⊇S,T⊆N\{i,j}

|S|+ 1

|T ∪ {j}|
[Iand(T ∪ {j}) + Ior(T ∪ {j})]

=
∑

T⊇S,T⊆N\{i,j}

|S|+ 1

|T |+ 1
[(Iand(T ∪ {i})− Iand(T ∪ {j})) + (Ior(T ∪ {i})− Ior(T ∪ {j}))] = 0

i.e.,φ(S ∪ {i}) = φ(S ∪ {j})
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Therefore, we prove the Symmetry axiom-α axiom.

G.3. Proof of Symmetry axiom-β

Proof. Without loss of generality, we assume S ∩ T = ∅.

According to the definition of the AND/OR interaction, we can get:∀K ⊇ L,K ⊆ N \ (S ∪ T ),∀T ′ ⊆ T, T ′ ̸= T, ∀S′ ⊆
S, S′ ̸= S, |S′| = |T ′|,

Iand(K ∪ S ∪ T ′) =
∑

J⊆(K∪S∪T ′)(−1)|K∪S∪T ′|−|J|vand(J)

Ior(K ∪ S ∪ T ′) = −
∑

J⊆(K∪S∪T ′)(−1)|K∪S∪T ′|−|L|vor(N \ J)

Iand(K ∪ S′ ∪ T ) =
∑

J⊆(K∪S′∪T )(−1)|K∪S′∪T |−|J|vand(J)

Ior(K ∪ S′ ∪ T ) = −
∑

J⊆(K∪S′∪T )(−1)|K∪S′∪T |−|L|vor(N \ J)

Then, we have:

Iand(K ∪ S ∪ T ′)− Iand(K ∪ S′ ∪ T )

=
∑

J⊆(K∪S∪T ′)
(−1)|K∪S∪T ′|−|J|vand(J)−

∑
J⊆(K∪S′∪T )

(−1)|K∪S′∪T |−|J|vand(J)

=
∑

J⊆(K∪S′∪T ′)

 ∑
A∈S\S′

A ̸=S\S′

(−1)|K∪S∪T ′|−|J∪A|vand(J ∪A)−
∑

B∈T\T ′

B ̸=T\T ′

(−1)|K∪S′∪T |−|J∪B|vand(J ∪B)


=

∑
J⊆(K∪S′∪T ′)

∑
A∈S\S′,A̸=S\S′

B∈T\T ′,B ̸=T\T ′

|A|=|B|

(−1)|K∪S′∪T |−|J∪B|[vand(J ∪A)− vand(J ∪B)]

= 0

Ior(K ∪ S ∪ T ′)− Ior(K ∪ S′ ∪ T )

=−
∑

J⊆(K∪S∪T ′)
(−1)|K∪S∪T ′|−|L|vor(N \ J) +

∑
J⊆(K∪S′∪T )

(−1)|K∪S′∪T |−|L|vor(N \ J)

=
∑

J⊆(K∪S′∪T ′)

 ∑
B∈T\T ′

B ̸=T\T ′

(−1)|K∪S′∪T |−|J∪B|vor(N \ (J ∪B))−
∑

A∈S\S′

A ̸=S\S′

(−1)|K∪S∪T ′|−|J∪A|vor(N \ (J ∪A))


=

∑
J⊆(K∪S′∪T ′)

∑
A∈S\S′,A̸=S\S′

B∈T\T ′,B ̸=T\T ′

|A|=|B|

(−1)|K∪S′∪T |−|J∪B|[vor(N \ (J ∪B))− vor(N \ (J ∪A))]

=
∑

J⊆(K∪S′∪T ′)

∑
A∈S\S′,A ̸=S\S′

B∈T\T ′,B ̸=T\T ′

|A|=|B|

(−1)|K∪S′∪T |−|J∪B|[vor((N \ (J ∪A ∪B)) ∪A)− vor((N \ (J ∪A ∪B)) ∪B)]

=
∑

J⊆(K∪S′∪T ′)

∑
A∈S\S′,A ̸=S\S′

B∈T\T ′,B ̸=T\T ′

|A|=|B|

0 = 0

Besides, according to Equation (6) in the paper, we have: φ(L∪S) =
∑

K⊇(L∪S)
|L∪S|
|K| [Iand(K) + Ior(K)] and φ(L∪T ) =∑

K⊇(L∪T )
|L∪T |
|K| [Iand(K) + Ior(K)].
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Then, we have:

φ(L ∪ S)− φ(L ∪ T )

=
∑

K⊇(L∪S)

|L ∪ S|
|K|

[Iand(K) + Ior(K)]−
∑

K⊇(L∪T )

|L ∪ T |
|K|

[Iand(K) + Ior(K)]

=

 ∑
K⊇(L∪S∪T )

|L ∪ S|
|K|

[Iand(K) + Ior(K)] +
∑

K⊇(L∪S),K ̸⊇T

|L ∪ S|
|K|

[Iand(K) + Ior(K)]


−

 ∑
K⊇(L∪S∪T )

|L ∪ T |
|K|

[Iand(K) + Ior(K)] +
∑

K⊇(L∪T ),K ̸⊇S

|L ∪ T |
|K|

[Iand(K) + Ior(K)]


=

∑
K⊇(L∪S),K ̸⊇T

|L ∪ S|
|K|

[Iand(K) + Ior(K)]−
∑

K⊇(L∪T ),K ̸⊇S

|L ∪ T |
|K|

[Iand(K) + Ior(K)]

=
∑

K⊇L,K⊆N\(S∪T )

∑
T ′⊆T,T ′ ̸=T

|L ∪ S|
|K ∪ S ∪ T ′|

[Iand(K ∪ S ∪ T ′) + Ior(K ∪ S ∪ T ′)]

−
∑

K⊇L,K⊆N\(S∪T )

∑
S′⊆S,S′ ̸=S

|L ∪ T |
|K ∪ S′ ∪ T |

[Iand(K ∪ S′ ∪ T ) + Ior(K ∪ S′ ∪ T )]

=
∑
K⊇L

K⊆N\(S∪T )

∑
T ′⊆T,T ′ ̸=T
S′⊆S,S′ ̸=S
|S′|=|T ′|

|L ∪ T |
|K ∪ S′ ∪ T |

[Iand(K ∪ S ∪ T ′)− Iand(K ∪ S′ ∪ T ) + Ior(K ∪ S ∪ T ′)− Ior(K ∪ S′ ∪ T )]

= 0

Therefore, we prove the Symmetry axiom-β axiom.

G.4. Proof of Additivity axiom

Proof. According to the definition of the AND/OR interaction, we can get:

Iandv (T ) =
∑

L⊆T (−1)|T |−|L|vand(L), Iorv (T ) = −
∑

L⊆T (−1)|T |−|L|vor(N \ L)

Iandv1 (T ) =
∑

L⊆T (−1)|T |−|L|vand1(L), Iorv1 (T ) = −
∑

L⊆T (−1)|T |−|L|vor1(N \ L)

Iandv2 (T ) =
∑

L⊆T (−1)|T |−|L|vand2(L), Iorv2 (T ) = −
∑

L⊆T (−1)|T |−|L|vor2(N \ L)

where v(L) = vand(L) + vor(L), v1(L) = vand1(L) + vor1(L) and v2(L) = vand2(L) + vor2(L).

Due to v(L) = v1(L) + v2(L), we have: Iandv (T ) = Iandv1 (T ) + Iandv2 (T ) and Iorv (T ) = Iorv1 (T ) + Iorv2 (T ).

According to Equation (6) in the paper, we have: φv(S) =
∑

T⊇S
|S|
|T | [Iandv (T ) + Iorv (T )], φv1(S) =∑

T⊇S
|S|
|T |

[
Iandv1 (T ) + Iorv1 (T )

]
, φv2(S) =

∑
T⊇S

|S|
|T |

[
Iandv2 (T ) + Iorv2 (T )

]
Then, we have:

φv(S) =
∑
T⊇S

|S|
|T |

[Iandv (T ) + Iorv (T )]

=
∑
T⊇S

|S|
|T |

[
(Iandv1 (T ) + Iandv2 (T )) + (Iorv1 (T ) + Iorv2 (T ))

]
=

∑
T⊇S

|S|
|T |

[
Iandv1 (T ) + Iorv1 (T )

]
+

∑
T⊇S

|S|
|T |

[
Iandv2 (T ) + Iorv2 (T )

]
= φv1(S) + φv2(S)

Therefore, we prove the Additivity axiom.
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G.5. Proof of Dummy axiom

Proof. According to the definition of the AND/OR interaction, we can get:

∀T ∋ i, Iand(T ) =
∑

L⊆T (−1)|T |−|L|vand(T ) =
∑

L⊆T\{i}(−1)|T |−|L|+1 [vand(L ∪ {i})− vand(L)]

∀T ∋ i, Ior(T ) = −
∑

L⊆T (−1)|T |−|L|vor(N \ L) =
∑

L⊆T\{i}(−1)|T |−|L|+1 [vor(N \ L)− vor(N − L− {i})]

Due to ∀T ⊆ N \ {i}, v(T ∪ {i}) = v(T ), we have: ∀T ⊆ N \ {i}, vand(T ∪ {i}) = vand(T ), vor(T ∪ {i}) = vor(T ).

Thus, we have:

Iand(T ) =
∑

L⊆T\{i}
(−1)|T |−|L|+1 [vand(L ∪ {i})− vand(L)] = 0

Ior(T ) =
∑

L⊆T\{i}
(−1)|T |−|L|+1 [vor(N \ L)− vor(N − L− {i})] = 0

Then, according to Equation (6) in the paper, we get:

φ(S) =
∑
T⊇S

|S|
|T |

[Iand(T ) + Ior(T )] =
∑

T⊇S,T∋i

|S|
|T |

[Iand(T ) + Ior(T )] = 0

Therefore, we prove the Dummy axiom.

G.6. Proof of Corollary 8

Proof. According to the Efficiency axiom of the Shapley value, we have: v(N)− v(∅) =
∑

i∈N ϕ(i).

Then, according to Theorem 4, we have:
∑

i∈S ϕ(i) = φ(S) +
∑

T⊆N,T∩S ̸=∅,T∩S ̸=S
|T∩S|
|T | [Iand(T ) + Ior(T )].

Thus, we have:

v(N)− v(∅) =
∑
i∈N

ϕ(i)

=
∑
i∈S

ϕ(i) +
∑

i∈N\S

ϕ(i)

= φ(S) +
∑

i∈N\S

ϕ(i) +
∑

T⊆N,T∩S ̸=∅,T∩S ̸=S

|T ∩ S|
|T |

[Iand(T ) + Ior(T )]

Therefore, we prove Corollary 8.

H. Detailed introduction about the axioms for the coalition attribution
The anonymity axiom shows that the order of input variables does not essentially affect the coalition’s attribution φ(S).
The symmetry axiom shows that if two coalitions always have the same roles, then they have exactly the same attributions.
The additivity axiom shows if the model output v(S) can be represented as the sum of outputs of two sub-models
v(S) = v1(S) + v2(S), then a coalition’s attribution can be decomposed into attributions computed on the two sub-models.
The dummy axiom shows that if the coalition S contains a dummy input variable i, which does not contribute to the model
output, then the coalition S has zero attribution (but the coalition S \ {i} may have non-zero attribution φ(S \ {i}).

I. Results of coalition faithfulness metrics on the image data
We evaluated whether these DNNs accurately represented natural coalitions in human cognition. We trained VGG-
11 (Simonyan & Zisserman, 2014) and ResNet-20 (He et al., 2016) on the MNIST (LeCun et al., 1998) and CIFAR-
10 (Krizhevsky, 2012) datasets. We divided an image sample into 8× 8 regions and manually selected 10 image regions,
which included some neighboring regions with specific semantics and some other random regions. The set of regions that
represented clear visual concepts was annotated as a true coalition. In comparison, a random set of image regions was
annotated as a false coalition.
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Game 1

(1) 𝜑 3,5,7 = 1.70 and 𝜑 1,3,5,7 = 0.53. The shape pattern is a “shoulder-hit” pattern, therefore, white stones are in 

advantage in this shape pattern. However, the white stone 1 makes the opportunity for black stones to break the union of 

white stones, therefore,𝜑 1,3,5,7 < 𝜑 3,5,7 .

Game 2

(1) 𝜑 7, 10 = 0.74 and 𝜑 3, 7, 10 = 2.55. The combination of white stones 7 and 10 is not a good strategy. However, the 

move of black stone 3 makes the combination of white stones {7, 10} form a combat configuration. The shape pattern {3,7,10} 

is a typical tactical pattern known as “shoulder-hit.” Therefore, shape pattern {3,7,10} is more advantageous for white stones 

than shape pattern {7, 10}. 

(2) 𝜑 7, 10 = 0.74 and 𝜑 4, 7, 10 = 1.39. Likewise, the move of black stone 4 also makes the combination of white stones 

{7, 10} form a combat configuration. The shape pattern {4,7,10} is also a “shoulder-hit” pattern, and is more advantageous 

for white stones than shape pattern {7, 10}. However, the position of black stone 4 in the pattern {4, 7, 10} is superior to the

black stone in the pattern {3, 7, 10}. Therefore, 𝜑 4, 7, 10 < 𝜑 3, 7, 10 .
(3) 𝜑 3, 7, 10 = 2.55 and 𝜑 3, 7, 8,10 = 0.86. Although the shape pattern {3,7,10} is a “shoulder-hit” pattern, due to the 

problematic placement of white stone 8, black stones get the opportunity to split the white combinations {7, 8, 10}. Therefore, 

shape pattern {3,7,8,10} have a lower advantage score than shape pattern {3,7,10}.

(4) 𝜑 4, 7, 10 = 1.39 and 𝜑 4, 7, 8,10 = 0.88. Although the shape pattern {4,7,10} is a “shoulder-hit” pattern, due to the 

problematic placement of white stone 8, black stones get the opportunity to split the white combinations {7, 8, 10}. Therefore, 

shape pattern {4,7,8,10} have a lower advantage score than shape pattern {4,7,10}.

Game 3

(1) 𝜑 1,2,4,5 = −0.81. The shape 

pattern {1,2,4,5} is advantageous 

for black stones, because in this 

case white stones form a combat 

configuration too slowly.

Game 4

(1) 𝜑 {3,7,8} = 3.41. The shape pattern 

{3,7,8} is advantageous for white 

stones, because it is a typical 

formalized series of moves (Dingshi), 

known as “corner regular form.”

Figure 3. Analysis of shape patterns in Go compared to human intuition
Figure 4 and 5 respectively show the results of coalition attribution faithfulness metrics of VGG-11 and ResNet-20 model
on the CIFAR-10 dataset. Figure 6 and 7 respectively show the results of coalition attribution faithfulness metrics of
VGG-11 and ResNet-20 model on the MNIST dataset. In these figures, x1, ..., x10 represent the selected image regions,
and the image regions marked in yellow represent the selected coalition S. These results show that the manually selected
coalitions, like {x0, x1, x4} on the left side of the top row in Figure 4, which represents the head of the horse, had high
Q(S), R(i), R′(i) values and were considered as faithful coalitions. In comparison, the randomly selected coalitions with
low high Q(S), R(i), R′(i) values, were considered as unfaithful coalitions.

J. Comparison with human intuitions in Go game
This experiment applies our theoretical framework to uncover shape patterns implicitly learned by the network, many of
which go beyond traditional human knowledge.

We hired 5 expert Go players to analyze the fitness between the extracted coalitions and human intuition on many more
game boards. Under their guidance, we focused on explaining shape patterns involving a limited number of stones, as
determined by the experts. Specifically, we excluded coalitions with more than six stones, as such complex configurations
were often found to have a negligible impact and likely reflect noise. Figure J shows the detailed analysis of shape patterns
in Go compared to human intuition. As shown in Figure J, some automatically learned coalitions do not fit human intuition.
As a possible explanation for this, human players typically assess patterns based on short-term tactical search and a few-step
lookahead, but the value network implicitly captures long-term statistical regularities from many more games. Although
these long-term patterns are difficult to interpret directly, they may reveal new shape patterns. Expert Go players say they
have learned some new knowledge from these patterns.
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Figure 4. Coalition attribution faithfulness metrics of VGG-11 on CIFAR-10 dataset
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Figure 5. Coalition attribution faithfulness metrics of ResNet-20 on CIFAR-10 dataset
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Figure 6. Coalition attribution faithfulness metrics of VGG-11 on MNIST dataset
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Figure 7. Coalition attribution faithfulness metrics of ResNet-20 on MNIST dataset
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