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ABSTRACT

In recent years, multimodal large language models (MLLMs) have made signifi-
cant strides by training on vast high-quality image-text datasets, enabling them to
generally understand images well. However, the inherent difficulty in explicitly
conveying fine-grained or spatially dense information (e.g., object masks) in the
text format poses a challenge for MLLMs, limiting their ability to answer ques-
tions requiring an understanding of detailed or localized visual elements. Drawing
inspiration from the Retrieval-Augmented Generation (RAG) concept, this paper
proposes a new visual prompt approach to integrate fine-grained external knowl-
edge, obtained from specialized vision models (e.g., instance segmentation/OCR
models), into MLLMs. This is a promising yet underexplored direction for enhanc-
ing MLLMs’ performance. Our approach diverges from concurrent works, which
transform external knowledge into additional text prompts, necessitating the model
to indirectly learn the correspondence between visual content and text coordinates.
Instead, we propose embedding fine-grained object knowledge directly into a spa-
tial embedding map as a visual prompt. This design can be easily incorporated into
various MLLMs, such as LLaVA and Mipha, considerably improving their visual
understanding performance. Through rigorous experiments, we demonstrate that
our method can enhance MLLM performance across 11 benchmarks, improving
their fine-grained context-aware capabilities.

1 INTRODUCTION

The advancement of large language models (LLMs) [1, 2, 3, 4] has revolutionized how machines
process and generate human-like text, demonstrating remarkable abilities in reasoning, translation,
and contextual understanding. The integration of language and vision into unified models, such as
GPT-4V [5], represents a significant leap forward in enabling machines to understand and interact
with the world in a manner akin to human cognition.

Despite their remarkable capabilities, most of the MLLMs (shown in Figure 1 (a)) trained with image-
text pairs still often struggle in fine-grained multimodal comprehension capacities, e.g., correctly
counting objects or precisely locating a specific object. This is partially because of the lack of
high-quality data with fine-grained text descriptions. Moreover, text itself has inherent limitations
in accurately conveying fine-grained spatial information. As a result, current MLLMs often fail
to accurately interpret pixel-level visual content of localized regions within an image, which in
return impacts the overall comprehension capacity and thereby causing the notorious “hallucination”
problem [6].

To tackle this challenge, one line of work [7, 8, 9] explicitly integrates region coordinates information
into the text prompt and trains on specialized region-level chat data. However this still demands
that the model implicitly learns to understand coordinates and establish connections with visual
content, thereby increasing the learning complexity. Another line of work [10, 11, 12] proposes
incorporating Region of Interest (ROI) features directly into model learning, necessitating bespoke
model architectures. In contrast to these approaches, rather than learning region information from
scratch, this paper explores leveraging finely-grained recognition predictions from existing vision
models as external knowledge for MLLMs, inspired by the RAG concept. Concurrent with our
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Figure 1: Different training paradigms. (a) means the original visual instruction tuning of
LLaVA [16]. (b) denotes visual instruction tuning with external textual prompts [13] (e.g., 1
person and the center coordinates of its bounding box: [0.55,0.49]), note that we neglect the template
prefix of textual prompts for visualization. (c) is the proposed auxiliary visual prompt, which is a
feature map composed with different object regions. For each pixel, it is filled out with the textual
embedding of the corresponding categories or OCR text (tg, tp and tb in the example visual prompt
mean the textual embeddings of grass, person and baseball glove).

work, one recent approach [13] introduces external knowledge, such as regional coordinates from
object detection and Optical Character Recognition (OCR) technologies, into MLLMs (shown in
Figure 1 (b)), helping understand localized multimodal content. However, this method still integrates
external knowledge through the text prompt, requiring implicit learning of content-to-coordinate
correspondence by the model. Furthermore, it lacks support for more nuanced external knowledge,
such as instance masks.

In this paper, we propose a new visual prompt paradigm to inject external knowledge, such as
localized information, into MLLMs, addressing the challenge of precisely aligning detailed content
across multiple modalities. As illustrated in Figure 1 (c), the core idea is, rather than treating local
context information as a part of text prompts, we embed them directly within the visual prompts.
Specifically, we start by leveraging panoptic segmentation [14] and OCR detection [15] models, and
a pre-trained text encoder to generate pixel-wise text embeddings, which are served as the local
context information for MLLMs. Subsequently, we extend the original visual prompts by adding
the newly generated context information in a spatial-wise manner. This integrated prompt is then
assimilated into MLLMs, improving fine-grained visual content comprehension. Consequently, our
approach is capable of enabling MLLMs to discern contexts in the pixel-level space and improve
their performance.

With the proposed visual prompt paradigm, we train a set of MLLMs on the LLaVA-1.5 datasets [16].
The experimental results show that, even with 3 billion parameters, our method improves upon the
leading open-source MLLMs such as LLaVA-1.5 [17, 16] and Qwen-VL [18], without collecting
additional chat data for training. Remarkably, our models show superior performance across a
wide array of benchmarks when compared to the 7-billion MLLM variants, including LLaVA-1.5,
Qwen-VL, and InstructBLIP [19], and in some instances, even outperform their 13-billion MLLM
counterparts. Our experimental results confirm the significance of integrating our proposed prompt
approach with MLLMs to enhance their capabilities.

The contributions can be summarized as follows:

• We systematically investigate integrating localized information into MLLMs. Empirical
findings suggest that our proposed visual prompt significantly outperforms the previous
prompt paradigm relying solely on textual prompts containing coordinates.

• We propose to integrate contextual embeddings within local contours (e.g., object masks)
as the visual prompt, which facilitates the establishment of correlations between image
pixels and contexts, thereby enhancing the fine-grained understanding capabilities of various
MLLMs across a spectrum of benchmarks.

• Based on our proposed approach, our model with 3B parameters surpasses or achieves
comparable performances with both existing 7B and 13B models across 11 benchmarks.
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2 RELATED WORK

Large Language Models. The initial potential of large language models (LLMs) was showcased
by foundational works like BERT [20] and GPT [21]. They sparked a wave of scaling efforts, leading
to a range of influential projects, such as T5 [22], GPT-3 [23], Flan-T5 [24], and PaLM [25]. As
the volume of training data expanded and the dimensions of model parameters grew, these scaling
endeavors led to the creation of ChatGPT [26, 27]. Models like LLaMA [1] and GPT-4 [3] have been
trained on extensive corpora and demonstrated remarkable capabilities in diverse cognitive tasks.
Additionally, lightweight LLMs with fewer than 3B parameters, i.e., Phi [28, 29] and StableLM-
2 [30] have shown performance comparable to larger models [31]. In our work, we adopt Phi-2 [29],
Vicuna-7B [31] and Vicuna-13B [31] as our language backbone.

Multimodal Large Language Models. Influenced by the success of instruction tuning from
LLM, LLaVA [17] and MiniGPT-4 [32] have adopted visual instruction tuning to improve LLMs’
interaction with visual data, yielding impressive outcomes. Kosmos-2 [33] and Shikra [34] have
advanced MLLMs by enhancing visual comprehension capabilities. Works like LLaVA-Phi [35],
MobileVLM [36] and Bunny [37] mainly focus on optimizing training recipes and architecture design
for lightweight MLLMs. V∗ [38] searches visual targets using LLMs’ contextual cues to enhance
MLLM’s performance. To solve the challenge of understanding fine-grained information in images,
existing approaches propose to learn coordinate representations [7, 34, 8] and Region of Interest
(ROI) features [33, 11], which use inflexible visual referral formats or necessitate the collection of
region-level training data. On the contrary, we focus on utilizing external knowledge to improve the
fine-grained vision-language alignment for MLLMs without collecting extra chatting data.

Prompting Multimodal Large Language Models. Inspired by the ability of GPT-4V [5] to
process diverse inputs, ViP-LLaVA [9] collects a visual prompt instruction dataset containing various
visual prompts, e.g., scribbles and arrows, for MLLMs fine-tuning. [39] proposes to incorporate
the cropped regions to enhance the performance of MLLMs. Contemporary to our work, [13]
has offered advanced insights in prompting MLLMs through external knowledge, which introduces
bounding box and OCR coordinates into text prompt, however, it’s still challenging to interpret the
pixel-level contexts. In this paper, we investigate how to efficiently utilize external knowledge to
enhance multimodal fine-grained alignment of MLLMs and introduce a novel visual prompt paradigm
incorporating pixel-level contextual information.

3 PROPOSED METHOD

In this section, we propose a new visual prompt paradigm that integrates local external information to
enhance the capability of MLLMs. In section 3.1, we outline the design of the auxiliary visual prompt
that contains detailed region-specific information. Using the auxiliary visual prompt, in section 3.2,
we further embed it into MLLMs by merging it with the original visual tokens. Finally, we briefly
introduce the details of training in section 3.3.

3.1 AUXILIARY VISUAL PROMPT WITH EXTERNAL KNOWLEDGE

In this section, we propose a method to generate local contextual external knowledge to assist MLLMs.
In contrast to [13], which focuses solely on object detection and OCR information and integrates
them as part of the text prompt, we enhance the granularity of local external knowledge by leveraging
a panoptic segmentation model, it provides comprehensive pixel-level annotations that include both
object instances and background, offering detailed scene understanding. Additionally, we continue to
utilize an OCR model but transform both types of external knowledge into pixel-wise embeddings.
Further details are provided below.

As shown in Figure 2, given the input image I ∈ R3×H×W , we can obtain the granular pixel-level
information by an off-the-shelf panoptic segmentation model [14] and an OCR model [15]. The
generation of the external knowledge can be expressed as:

{Mj , Cj}Ns
j=1 = fseg(I), {Bj , Tj}No

j=1 = focr(I), (1)

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Mask
Segmenter

book, bed, catClass Prompt

Object Binary Masks
Input Image

Object Masks
Semantic-Aware 
Visual Prompt

Textual Embedding

𝑡!""# 𝑡!$% 𝑡&'(

𝑡&'(

𝑡!$%

𝑡!""#Fill

Text 
Encoder

Figure 2: Auxiliary visual prompt generation. It firstly generates the panoptic segmentation
masks [14] for the input image, there’s a class category for each mask region, then we can obtain the
textual embeddings (e.g., tbook, tbed and tcat) through a pre-trained text encoder for all the classes
(e.g., book, bed, cat). Finally, the auxiliary visual prompt can be generated by concatenating these
textual embeddings within the corresponding mask regions together. Note that we can also adopt the
OCR model [15] to obtain the texts and the regions, we don’t display it here for clearer explanation.

where fseg(·) and focr(·) mean panoptic segmentation and optical character recognition (OCR)
models, Ns and No are the numbers of detected mask regions and OCR bounding boxes. {Mj , Cj}Ns

j=1

is the set of mask regions and the corresponding classes, and {Bj , Tj}No
j=1 represents the set of

detected OCR bounding boxes and texts.

With the detected classes {Cj}Ns
j=1 and OCR texts {Tj}No

j=1, a pre-trained text encoder (ftext(·)) is
leveraged to generate the textual embeddings as:

Ts = {t1, . . . , tNs
} = {ftext(C1), . . . , ftext(CNs

)},
To = {t̂1, . . . , t̂No

} = {(ftext(T1), . . . , ftext(TNo
)},

(2)

where ti ∈ R1×d(1 ⩽ i ⩽ Ns) and t̂i ∈ R1×d(1 ⩽ i ⩽ No) denote the ith textual embedding vector
of the classes for the detected mask region and OCR texts respectively, while d is the embedding
dimension.

In order to generate a pixel-wise visual prompt for the external knowledge instead of a pure text
description for the regions with coordinates and category names, the auxiliary visual prompt is
initialized as a zero tensor P ∈ RH×W×d and then filled with the newly generated textual embeddings
for the external knowledge as:

Pj,k =

{
tu if (j, k) ∈ Mu

Pj,k otherwise
∀u ∈ {1, . . . , Ns},

Pj,k = Pj,k +

{
t̂v if (j, k) ∈ Bv

0 otherwise
∀v ∈ {1, . . . , No}.

(3)

Note, for some regions, if the confidence of the class prediction given by the segmentation model
is low or the OCR model fails to detect any text, we leave the region area with zero values. For the
regions that are occupied by both models, we simply add the text embeddings directly. We leave the
investigation of more refined fusion techniques to future research.

With the auxiliary visual prompt containing pixel-level local contextual information from panoptic
segmentation and OCR models, MLLMs can effectively capture finer-grained features. The next
challenge is to establish a clearer connection between these pixel-wise annotations and the original
image feature. This will help alleviate the model’s difficulties in learning their relationship effectively.

3.2 VISUAL PROMPT INFUSION

In this section, we introduce the visual prompt infusion that incorporates the proposed auxiliary
visual prompts into the MLLMs. Previous methods [13] choose to append the external knowledge
(embeddings for object category and its coordinates) to the text prompts, which requires the model to
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description  for this region: 

[0.45, 0.39, 0.67, 0.63]”

Response: “The cat 
looks surprised”LLM

Input Image Visual Prompt

Figure 3: The illustration of visual instruction tuning with the generated visual prompt. Our
proposed visual prompt can be easily combined with existing multimodal large language models (e.g.,
LLaVA [16]), note that PEN means prompt embedding network.

learn the correspondence of visual content within the specified coordinates encoded in the external
knowledge and, as a result, increasing the difficulties of the learning process of the model. To address
this challenge, we propose to directly align the auxiliary visual prompt with the image features on a
pixel-by-pixel basis.

Specifically, as shown in Figure 3, the image tokens are first generated via an image encoder fimg(·)
and an MLP projector (fMLP(·)):

Fv = fMLP(fimg(I)), (4)

where Fv ∈ RNv×dv , Nv and dv represent the number of image tokens and the embedding dimension.
Then, the auxiliary visual prompt is further processed by a prompt embedding network (PEN) as

Fp = fPEN(P). (5)

For the prompt embedding network, we employ three convolutional layers, with an activation layer
(ReLU) inserted between each pair of them. This network primarily serves to align the feature space
and spatial size between the image tokens and the auxiliary visual prompts.

When combining the image tokens and the processed auxiliary visual prompt, we mainly consider
two options, both of which operate pixel-wise. (1) feature fusion: F̂v = f(Concat(Fv,Fp)), where
f is a linear layer that maps the embedding RNv×d2v → RNv×dv to maintain the total number of
image tokens unchanged; (2) feature addition, F̂v = Fv +Fp, which sums the two types of features
directly.

The advantages of the pixel-wise fusion for both options facilitate correspondence between external
knowledge and original visual features. Providing explicit pixel labels for segmentation and OCR
allows the model to easily interpret pixel categories and associated OCR text descriptions. This
guidance is crucial in helping the model disambiguate complex scenes, highlight salient features, and
distinguish finer objects, thereby improving its overall performance.

3.3 TRAINING

Training MLLMs involves predicting responses based on multimodal inputs using an autoregressive
approach. The objective is to maximize the probability of generating tokens that match the ground-
truth answer Ya. With the new visual embedding F̂v, this can be mathematically expressed as
follows:

P (Ya|F̂v,Ft) =

L∏
i=1

Pθ(yi|F̂v,Ft, Ya,<i). (6)

Here, L represents the sequence length of the ground truth answer Ya, θ means the trainable
parameters. Ya,<i represents all the answer tokens preceding the current prediction token xi, where i
denotes the step in the sequence of text token generation. Ft ∈ RNt×dt is the token embedding of the
input question, Nt and dt denote the number of text tokens and token embedding dimension. By fusing
these enriched visual cues with the training pipeline, MLLMs can develop a more comprehensive
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Table 1: The ablation study of different prompting methods. Mipha-3B is the baseline with standard
visual & text prompt. Mipha-3B+FTBI denotes using textual prompting with Fine-tuning Based Infu-
sion (FTBI) [13]. REVIP-FF and REVIP-FA mean feature fusion and feature addition respectively,
which represent two visual prompt fusion methods we use to insert the auxiliary visual prompt to the
original image features.

Method VQAv2 GQA VisWiz SQAI VQAT MME-P MME-C MMB MM-Vet POPE MMMU

Mipha-3B 81.3 63.9 45.7 70.9 56.6 1488.9 295.0 69.7 32.1 86.7 32.5
w/ FTBI 81.6↑ 62.6↓ 45.8↑ 71.4↑ 57.8↑ 1472.3↓ 356.8↑ 71.0↑ 34.8↑ 88.5↑ 32.8↑
w/ REVIP-FF 81.9↑ 64.8↑ 46.6↑ 71.6↑ 57.6↑ 1493.5↑ 345.5↑ 71.3↑ 34.3↑ 88.5↑ 33.2↑
w/ REVIP-FA 82.4↑ 65.3↑ 47.0↑ 71.8↑ 57.8↑ 1501.2↑ 369.1↑ 71.5↑ 35.1↑ 88.7↑ 33.5↑

Table 2: The ablation study of using different vision encoders, i.e., SigLIP [42] v.s. CLIP [44]. Note
that the reported results for Mipha-3B using the CLIP vision encoder are from [40].

Method Vis Enc VQAv2 GQA VisWiz SQAI VQAT MME-P MME-C MMB MM-Vet POPE MMMU

Mipha-3B CLIP 78.6 62.3 - 68.2 53.0 - - 68.4 31.0 86.9 -
Mipha-3B+(Ours) CLIP 79.7↑ 63.7↑ 45.8 70.1↑ 54.8↑ 1445.5 308.4 70.1↑ 33.7↑ 88.8↑ 32.3

Mipha-3B SigLIP 81.3 63.9 45.7 70.9 56.6 1488.9 295.0 69.7 32.1 86.7 32.5
Mipha-3B+(Ours) SigLIP 82.4↑ 65.3↑ 47.0↑ 71.8↑ 57.8↑ 1501.2↑ 369.1↑ 71.5↑ 35.1↑ 88.7↑ 33.5↑

understanding of visual content, leading to better alignment between visual and textual representations.
To accelerate the training process, we follow FTBI [13] to perform fine-tuning on Mipha-3B [40]
and LLaVA-1.5 [16] using LoRA [41].

4 EXPERIMENT

In this section, we conduct a comprehensive comparison of our method with existing state-of-the-art
(SOTA) multimodal models. Additionally, we perform a series of ablation studies to further validate
the proposed method. Finally, we provide visualization examples for in-depth analysis.

Models. For the vision encoder, we adopt SigLIP-384px [42] for experiments. We leverage Phi-
2-2.7B [29], Vicuna-7B [31] and Vicuna-13B [31] model as the language decoder. For the mul-
timodal projector, same as LLaVA [16], we adopt a two-layer MLP. We use OpenSeed [14] and
PaddleOCRv2 [15] to generate the per-pixel externally knowledge for pixel class and OCR text, and
leverage UAE-Large-V1 [43] to extract the textual embedding.

Training Setting. We fine-tune the models on LLaVA-Instruct-150K dataset [16] using LoRA [41] for
1 epoch, at a learning rate of 2e-4 and a batch size of 256 on 32×V100 32GB GPUs. For the setting
of LoRA, we set LoRA rank to be 128 and LoRA’s hyperparameter α as 256. Note that we fix all the
weights of pre-trained modules, i.e., vision encoder, language encoder and MLP, during training. Our
models’ weights are initialized from Mipha-3B [40], LLava-7B [16] and LLava-13B [16].

Benchmarks and Baselines. We evaluate our approach using 11 popular benchmarks to compre-
hensively assess its multimodal capabilities. These benchmarks include: VQA-v2 test-dev split [45],
VisWiz [46], GQA test-dev-balanced split [47], ScienceQA-IMG test split [48], MME perception [49],
MME cognition [49], MMBench test split [50], MM-Vet test split [51], TextVQA [52], POPE [53]
and MMMU test split [54].

We compare our results with a bunch of state-of-the-art multimodal large language models (MLLMs):
BLIP-2 [55], InstructBLIP [19], Shikra-13B [34], IDEFICS80/9B [56], Qwen-VL [18], mPLUG-
Owl2 [57], LLaVA-v1.5-13/7B [16], FTBI-13B/7B [13], and multimodal small language models
(MSLMs) [40]: MobileVLM [36], LLaVA-Phi [35], MC-LLaVA [58], Imp-v1 [59], MoE-LLaVA-
3.6B [60], TinyLLaVA-share-Sig-Phi [61], Bunny [37] and Mipha [40].

4.1 ABLATION STUDIES

In this section, we conduct an ablation study to assess the effectiveness of the proposed approach.
By default, the experiments are conducted using Mipha-3B [40] with Phi-2 [29] as the language
backbone unless otherwise specified. Note that we use Mipha-3B+ to denote Mipha-3B using our
presented REVIP method.
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Table 3: The ablation study of adopting different textual encoders, i.e., CLIP [44] v.s. UAE [43], to
extract textual embeddings for the proposed visual prompt.

Method Text Enc VQAv2 GQA VisWiz SQAI VQAT MME-P MME-C MMB MM-Vet POPE MMMU

Mipha-3B - 81.3 63.9 45.7 70.9 56.6 1488.9 295.0 69.7 32.1 86.7 32.5
Mipha-3B+(Ours) CLIP 82.1↑ 64.9↑ 46.2↑ 71.3↑ 57.4↑ 1497.2↑ 361.5↑ 71.1↑ 34.6↑ 88.5↑ 33.1↑
Mipha-3B+(Ours) UAE 82.4↑ 65.3↑ 47.0↑ 71.8↑ 57.8↑ 1501.2↑ 369.1↑ 71.5↑ 35.1↑ 88.7↑ 33.5↑

Table 4: The ablation study of utilizing different external knowledge, “Seg” and “OCR” denote
panoptic segmentation and OCR information respectively.

Seg OCR VQAv2 GQA VisWiz SQAI VQAT MME-P MME-C MMB MM-Vet POPE MMMU

✗ ✗ 81.3 63.9 45.7 70.9 56.6 1488.9 295.0 69.7 32.1 86.7 32.5
✓ ✗ 81.9↑ 64.7↑ 46.5 ↑ 71.3↑ 57.1↑ 1498.3↑ 355.2↑ 70.8↑ 34.0↑ 87.9↑ 33.0↑
✓ ✓ 82.4↑ 65.3↑ 47.0↑ 71.8↑ 57.8↑ 1501.2↑ 369.1↑ 71.5↑ 35.1↑ 88.7↑ 33.5↑

Table 5: The comparison of adopting the external knowledge via different visual prompts.

Method VQAv2 MMB POPE MM-Vet SQAI MME-P MME-C VisWiz GQA VQAT MMMU

LLAVA-1.5-7B 78.5 64.3 85.9 30.5 66.8 1510.7 316.1 50.0 62.0 58.2 32.0
w/ clip-CROP 78.5 64.9 86.6 31.5 67.8 1465.4 345.6 50.2 62.3 58.7 32.1
w/ yolo-CROP 78.4 65.1 86.8 31.4 67.6 1455.9 347.9 50.3 62.4 58.6 32.1
w/ sam-CROP 78.7 65.4 86.9 32.6 68.0 1478.3 352.2 50.3 62.5 58.8 32.2
w/ REVIP (Ours) 79.8 67.6 88.9 34.9 69.5 1515.3 399.5 51.5 63.3 59.8 33.1

Prompting MLLMs with Different Approaches. In Table 1, we present the results of the ablation
study for four different prompting strategies: (1) Mihpa-3B baselines with vanilla text prompt, as used
by LLaVA-1.5 [16]. (2) Mihpa-3B + FTBI proposed in [13] that appends external local contextual
knowledge to the text prompts. (3) The proposed auxiliary visual prompt inserted via feature fusion.
(4) The proposed auxiliary visual prompt added via feature addition.

From Table 1, we note that compared to the baseline (1) with vanilla prompts, both proposed fusion
strategies (3) and (4) exhibit a significant improvement. This suggests that external knowledge is
indeed beneficial in enhancing the capabilities of MLLMs. In comparison to Mihpa-3B+FTBI (2),
which inserts external local contextual knowledge into the text prompt, (4) outperforms it in 10 out of
11 benchmarks, notably for GQA [47] and MME-P [49]. This implies that explicitly linking external
local knowledge to the original visual features reduces the model’s learning burden in establishing
spatial relationships, consequently enhancing performance. Furthermore, we empirically observe that
directly adding auxiliary visual prompts yields slightly better results than concatenation. Therefore,
we adopt feature addition as our default setting for subsequent experiments.

The Effect of Using Different Vision Encoders. In Table 2, we further ablate the effectiveness
brought by different vision encoders, i.e., CLIP [44] v.s. SigLIP [42], since the Mipha-3B model
with the CLIP vision encoder has not been released, we cite the results from its paper [40]. From the
results, we can draw two conclusions. First, for both vision encoders, our methods have consistent
improvement compared to the baselines, which validates the stability of our methods. Second, SigLIP
emerges as the stronger vision encoder when compared to CLIP. Therefore, we opt to utilize SigLIP
as the default vision encoder in subsequent sections.

The Impact of Adopting Different Textual Encoders. In Table 3, we perform an ablation study
using different textual encoders, i.e., CLIP [44] vs. UAE [43], to extract textual embeddings for
the proposed visual prompt. We draw two conclusions from Table 3: (1) Using different textual
encoders, the proposed approach consistently outperforms the baseline, demonstrating the robustness
of our method. (2) Adopting UAE as the pre-trained textual encoder achieves significantly better
performance. Therefore, we choose UAE as the default pre-trained textual encoder in our experiments.

Exploring the Influence of External Knowledge Components. In Table 4, we perform the abla-
tion of the utilized external knowledge components, we can conclude that adopting the information
from OCR can further improve the model’s overall performance, especially, when incorporating
OCR information for some text-specific tasks (e.g., TextVQA [52] and MM-Vet [51]), it can achieve
remarkable performance boosts.
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Table 6: The challenging examples on LLaVA-1.5, our approach can provide reasonable reponses
for the tricky questions which need to fully understand the contexts of the images.

Visual input example, context-related questions:

What is funny about this image? Why are the persons wearing black clothes?

LLaVA-7B The funny aspect of this image is the juxtapo-
sition of two women pointing fingers at a cat,
which is sitting at a table with a plate of food.
The cat appears to be looking at the women with
an angry expression, as if it is reacting to their
pointing fingers. This creates a humorous and
unexpected scene, as it is not common to see a
cat reacting to human gestures in such a manner.
The image captures a light-hearted and amusing
moment between the women and the cat.

The persons in the image are wearing black
clothes, which is a common attire for religious
ceremonies or events. The group of people, in-
cluding a man and a woman, are walking down
the street, possibly participating in a religious
procession or a funeral. The black clothing sig-
nifies their respect and adherence to the reli-
gious or cultural traditions associated with the
event they are attending.

Ours The funny aspect of this image is the contrast
between the two women pointing at the cat and
the cat’s reaction to the situation. One woman is
making a funny face, while the cat is sitting on a
table with a plate of food, seemingly unbothered
by the attention. The cat’s calm demeanor in the
face of the women’s playful behavior creates a
humorous scene, as the women try to entertain
themselves and the cat seems to be enjoying the
attention without reacting to their attempts.

The persons in the image are wearing black
clothes, which are typically associated with
mourning or a period of grieving. This sug-
gests that they might be attending a funeral or a
memorial service for someone who has passed
away. The black attire signifies respect and soli-
darity with the bereaved family and friends dur-
ing this difficult time. It is a common practice in
many cultures to wear black clothes to express
sympathy and support for those persons who
have experienced a loss.

Comparison with Other Visual Prompting Paradigms. [39] proposes to crop region-of-interests
according to the given prompt and utilize the cropped information to further enhance the performances
of large language models, we perform the comparison experiments based on LLAVA-1.5-7B [16],
which has been presented in Table 5. Specifically, three cropping techniques (clip-CROP, yolo-CROP,
and sam-CROP) are employed, following the released code1. Note that for fair comparison, we also
fine-tune LLAVA-1.5-7B by using the cropped regions with clip/yolo/sam-CROP and report their
results. It shows that our method consistently outperforms [39] across all multimodal benchmarks,
which can demonstrate the effectiveness of our presented visual prompting method.

4.2 MAIN RESULTS

In Table 7, we compare our methods with other state-of-the-art (SOTA) models. We divide the
table into sections for language models smaller than 3B and those beyond 7B to provide a clearer
comparison. From the results, we observe that our model achieves the best performance on 9 out
of 11 benchmarks for larger language models (>7B) and attains the highest accuracy on 9 out of
11 benchmarks for relatively smaller language models (<3B). Note that, in Table 7, some models,
e.g., Shikra-13B [34], Qwen-VL [18], are trained with million or billion level data, while our model
is only trained on LLaVA-Instruct-150K dataset without collecting any additional chatting data for
neither pre-training nor fine-tuning, which highlights the exceptional multimodal understanding
and reasoning capabilities of our models. In addition, on top of the LLaVA-1.5 framework, our
approach can bring more remarkable and consistent improvement on all benchmarks compared with
FTBI [13]. It justifies the proposed infusion strategy, which involves inserting external knowledge in

1https://github.com/saccharomycetes/visual_crop_zsvqa
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Table 7: The comprehensive multi-modal evaluation across 11 distinct benchmarks to thoroughly
assess model performance: VQAv2 [45], GQA [47], VisWiz [46], SQAI: ScienceQA-IMG [48],
VQAT: TextVQA [52], MME-P: MME Perception [49], MME-C: MME Cognition [49], MMB:
MMBench [50], MM-Vet [51], POPE [53] and MMMU [62]. “V”, “Q”, “L”, “M” and “P” mean
Vicuna [31], Qwen [18], LLaMA [1], MobileLLaMA [63] and Phi-2 [29]. The image resolution used
by the visual backbone is indicated in the column labeled Res., LLaVA-1.5+ and Mipha-3B+ mean
LLaVA-1.5 and Mipha-3B models with our presented REVIP method.

Method LM Res. VQAv2 GQA VisWiz SQAI VQAT MME-P MME-C MMB MM-Vet POPE MMMU

Multimodal Large Language Models

BLIP-2 [55] V-13B 224 65.0 41.0 19.6 61.0 42.5 1293.8 290.0 - 22.4 85.3 -
InstructBLIP [19] V-7B 224 - 49.2 34.5 60.5 50.1 - - 36 26.2 - -
InstructBLIP [19] V-13B 224 - 49.5 33.4 63.1 50.7 1212.8 291.8 - 25.6 78.9 -
Shikra [34] V-13B 224 77.4 - - - - - - 58.8 - - -
IDEFICS-9B [56] L-7B 224 50.9 38.4 35.5 - 25.9 - - 48.2 - - -
IDEFICS-80B [56] L-65B 224 60.0 45.2 36.0 - 30.9 - - 54.5 - - -
Qwen-VL [18] Q-7B 448 78.8 59.3 35.2 67.1 63.8 - - 38.2 - - -
Qwen-VL-Chat [18] Q-7B 448 78.2 57.5 38.9 68.2 61.5 1487.5 360.7 60.6 - - 32.9
mPLUG-Owl2 [57] L-7B 448 79.4 56.1 54.5 68.7 58.2 1450.2 313.2 64.5 36.2 85.8 32.1
LLaVA-1.5 [16] V-7B 336 78.5 62.0 50.0 66.8 58.2 1510.7 316.1 64.3 30.5 85.9 32.0
FTBI-7B [13] V-7B 336 79.0 60.5 - - 60.1 1482.7 397.9 67.3 35.2 88.9 -
LLaVA-1.5+(Ours) V-7B 336 79.8↑ 63.3↑ 51.5↑ 69.5↑ 59.8↑ 1515.3↑ 399.5↑ 67.6↑ 34.9↑ 88.9↑ 33.1↑
LLaVA-1.5 [16] V-13B 336 80.0 63.3 53.6 71.6 61.3 1531.3 295.4 67.7 36.1 85.9 33.6
FTBI-13B [13] V-13B 336 80.3 62.2 - - 61.8 1555.1 365.4 71.4 38.9 88.8 -
LLaVA-1.5+(Ours) V-13B 336 81.3↑ 64.9↑ 55.3↑ 73.5↑ 63.3↑ 1568.7↑ 370.5↑ 71.3↑ 39.5↑ 88.8↑ 34.8↑

Multimodal Small Language Models

MobileVLM-1.7B [63] M-1.4B 336 - 56.1 - 57.3 41.5 1196.2 - 53.2 - 84.5 -
MobileVLM-3B [63] M-2.7B 336 - 59.0 - 61.2 47.5 1288.9 - 59.6 - 84.9 -
MobileVLM-v2-1.7B [36] M-1.4B 336 - 59.3 - 66.7 52.1 1302.8 - 57.7 - 84.3 -
MobileVLM-v2-3B [36] M-2.7B 336 - 61.1 - 70.0 57.5 1440.5 - 63.2 - 84.7 -
LLaVA-Phi [35] P-2.7B 336 71.4 - 35.9 68.4 48.6 1335.1 - 59.8 28.9 85.0 -
MC-LLaVA [58] P-2.7B 384 64.2 49.6 - 38.6 - - - - 80.6 -
Imp-v1 [59] P-2.7B 384 79.5 58.6 - 70.0 59.4 1434.0 - 66.5 33.1 88.0 -
MoE-LLaVA-3.6B [60] P-2.7B 384 79.9 62.6 43.7 70.3 57.0 1431.3 - 68.0 35.9 85.7 -
TinyLLaVA [61] P-2.7B 384 79.9 62.0 - 69.1 59.1 1464.9 - 66.9 32.0 86.4 -
Bunny-3B [37] P-2.7B 384 79.8 62.5 - 70.9 - 1488.8 289.3 68.6 - 86.8 33.0
Mipha-3B [40] P-2.7B 384 81.3 63.9 45.7 70.9 56.6 1488.9 295.0 69.7 32.1 86.7 32.5
Mipha-3B+(Ours) P-2.7B 384 82.4↑ 65.3↑ 47.0↑ 71.8↑ 57.8↑ 1501.2↑ 369.1↑ 71.5↑ 35.1↑ 88.7↑ 33.5↑

a pixel-wise manner directly into the visual features, as being more effective than appending it to the
text prompt [13].

4.3 QUALITATIVE RESULT ANALYSIS

We present visualization results in Table 6 and 8 to further illustrate the improvement of our model in
terms of both global image understanding and local object and text recognition. Table 6 demonstrates
that compared to LLaVA-1.5 7B [16], our approach generates more detailed and contextually relevant
responses, e.g., “The cat’s calm demeanor in the face of the women’s playful behavior” for the left
example; “mourning or a period of grieving” and “express sympathy and support for those persons
who have experienced a loss” for the right example, which all need a deeper understanding of the
global image context. Meanwhile, Table 8 highlights our model’s ability to correctly recognize
objects’ spatial relationships, such as between a “desk lamp” and a “laptop” from the left image,
and exhibit stronger OCR capability in detecting words written on a book from the right image,
compared to LLaVA-1.5 7B [16]. These visualizations validate the effectiveness of our proposed
methods and support the conclusion that incorporating external local contextual information in a
spatial-wise manner improves the model’s fine-grained recognition capability and enhances its overall
ability for global image understanding. Note that we’ve shown more ablation study experiments and
visualization result analysis in the Appendix.

Time Cost and Scalability. In Figure 4, using the LLaVA-Instruct-150K dataset [16], we report
the computational costs, including training and inference times, for both Mipha-3B and Mipha-
3B+ (with our proposed REVIP) across four different image resolutions (i.e., 384×384, 512×512,
640×640, and 768×768). Specifically, we resized the input images to these four resolutions. It’s
worth mentioning that REVIP increases the number of parameters of Mipha-3B only from 3.22B to
3.23B. For the input image resolution of 768×768, the training time increases only from 526.4 to
536.2 GPU hours; the inference time per sample increases only from 0.98 to 1.17 seconds, integrating
panoptic segmentation and OCR information adds 0.14 and 0.05 seconds, respectively, contributing
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Table 8: The challenging examples on LLaVA-1.5. Our approach can generate accurate responses
for text-related questions.

Visual input example, relationship-aware and text-related questions:

On the right desk, what is to the left of the
laptop?

What are all the scene text in the image?

LLaVA-1.5 7B To the left of the laptop, there is a stack of
books on the desk.

The scene text in the image is "Shakespeare’s
Dramas, Sonnets, & Poems".

Ours There is a desk lamp to the left of the laptop
on the right desk.

The scene text in the image includes the ti-
tle "Shakespeare’s Comedies, Histories, and
Tragedies".

Figure 4: The time costs of Mipha-3B and Mipha-3B+ across a range of image resolutions.

to the total increase of 0.19 seconds. This demonstrates that our method’s enhancements come with
only a modest computational cost and are even scalable to a 768×768 image resolution.

5 LIMITATIONS AND BROADER IMPACT

Our method relies on pre-trained panoptic segmentation and OCR detection models in a zero-shot
fashion, making their performance critical to our approach—especially when substantial domain gaps
exist between the benchmark images and their training data.

While our method promises to significantly enhance the cognitive capabilities of multimodal models
and inspire new methodologies, users should be aware of potential societal impacts, such as biases
arising from training data in MLLMs, segmentation, or OCR models, which may lead to biased
responses. However, typical textual prompting methods [13] that incorporate captions, object names,
and OCR information for MLLMs can also contain biases or errors.

6 CONCLUSION

We propose a method to enhance multimodal language models (MLLMs) by leveraging external
knowledge such as localized contextual information. By extracting pixel-wise contextual information
using panoptic segmentation and OCR models and integrating it with visual features, our model better
understands fine-grained objects and global image context. Experimental results and comparisons
with state-of-the-art methods demonstrate our approach’s effectiveness. We hope this work highlights
the importance of external knowledge for MLLMs and offers an effective way to leverage it.
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