
SPRINT: Enabling Interleaved Planning and
Parallelized Execution in Reasoning Models

Emil Biju1,2∗ Shayan Talaei1∗ Zhemin Huang1∗ Mohammadreza Pourreza3

Azalia Mirhoseini1† Amin Saberi1†
1Stanford University 2Microsoft 3Google

{emilbiju, stalaei, zheminh}@stanford.edu
pourreza@google.com, {azalia, saberi}@stanford.edu

Abstract

Large reasoning models (LRMs) excel at complex reasoning tasks but typically
generate lengthy sequential chains-of-thought, resulting in long inference times
before arriving at the final answer. To address this challenge, we introduce SPRINT,
a novel post-training and inference-time framework designed to enable LRMs
to dynamically identify and exploit opportunities for parallelization during their
reasoning process. SPRINT incorporates an innovative data curation pipeline that
reorganizes natural language reasoning trajectories into structured rounds of long-
horizon planning and parallel execution. By fine-tuning LRMs on a small amount
of such curated data, the models learn to dynamically identify independent sub-
tasks within extended reasoning processes and effectively execute them in parallel.
Through extensive evaluations, we demonstrate that models fine-tuned with the
SPRINT framework match the performance of reasoning models on complex do-
mains such as mathematics while generating up to 39% fewer sequential tokens on
problems requiring more than 8,000 output tokens. Finally, we observe consistent
results transferred to two out-of-distribution tasks, namely GPQA and Countdown,
with up to 45% and 65% reduction in average sequential tokens respectively for
longer reasoning trajectories, while matching the performance of the fine-tuned
reasoning model.

1 Introduction

Scaling inference-time compute in large language models (LLMs) has consistently been shown to
enhance reasoning accuracy. Existing methods broadly fall into two categories: sequential [1] and
parallel [2]. Sequential approaches, notably large reasoning models (LRMs) such as Deepseek-R1 [3]
and OpenAI o1 [4], have demonstrated remarkable successes in solving complex reasoning tasks, e.g.,
math and coding, but at the cost of generating very lengthy sequences of tokens. On the other hand,
parallel methods, such as repeated sampling with self-consistency [5] or best-of-N [6, 7] leverage
multiple response generations to improve accuracy. However, these methods typically lack effective
coordination and shared information across inference paths, leading to redundant computations and
limited performance gains. Furthermore, structured parallel methods like Tree-of-Thoughts [8] and
Graph-of-Thoughts [9] require predefined, heuristics-driven search structures, inherently restricting
flexibility and scalability across diverse tasks.

∗Equal contribution.
†Equal senior authorship.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

We propose SPRINT3, a framework for post-training and inference of reasoning models that combines
the advantages of sequential reasoning and parallel inference, while maintaining the flexibility
required for general tasks. Instead of relying on manual structures, SPRINT trains reasoning language
models to dynamically identify and exploit parallelization opportunities during inference. This
enables SPRINT to achieve the high accuracy of reasoning models while significantly reducing the
number of sequential tokens needed for solving complex reasoning tasks such as mathematics.

For the inference, SPRINT introduces an orchestration of LRMs through two distinct roles: a planner
and a pool of executors. At each step, the planner that has access to the cumulative context of the
reasoning trajectory generates a set of independent plans, each explained via a natural language
<prompt>. Subsequently, multiple executors concurrently carry out these plans. This interleaved
planning-execution strategy accelerates the reasoning process by enabling simultaneous execution of
lengthy tasks.

Although many off-the-shelf LRMs achieve high performance via sequential reasoning trajectories,
they are not trained for effectively proposing parallelizable tasks. Recognizing that LRMs’ reasoning
trajectories for a given query include steps such as reflection on their previous steps, decomposing
tasks to subtasks, and trial-and-error exploration of alternative strategies, we question the necessity
of strictly sequential reasoning. In practice, many reasoning steps are independent and thus can be
executed in parallel; for instance, by simultaneously exploring multiple strategies or independently
computing separate components of a complex problem. Building on these insights, we designed a
data curation pipeline that carefully reorganizes natural language reasoning trajectories into structured
plans and parallel executions, closely preserving the original data distribution. Finally, through
supervised fine-tuning of the reasoning model on only 1700 such demonstrations, we unlock the
model’s capability to dynamically recognize and exploit opportunities for parallel reasoning.

To evaluate the accuracy and efficacy of SPRINT, we conducted experiments on MATH-500 [7] for
testing in-distribution, and two out-of-domain distribution benchmarks: GPQA-diamond [10], and
Countdown (Game of 24) [8]. On MATH-500, SPRINT improved the accuracy of the base reasoning
model Deepseek-R1-distill-7B [3] from 89.1% to 92.5%, outperforming the reasoning fine-tuned
model (RFT) at 91%, while generating 440 fewer sequential tokens on average. On the problems
requiring longer reasoning trajectories (more than 8000 tokens under the RFT model), SPRINT
achieves even greater savings, reducing sequential tokens by up to 39%. We also show that SPRINT
generalizes well to out-of-domain tasks, matching the performance of the reasoning fine-tuned model
while significantly reducing token usage – by 53% on Countdown.

In summary, our work makes the following key contributions4:

• We propose SPRINT, an innovative framework for accelerating the reasoning process of large
reasoning models through rolling horizon parallel planning and execution.

• We develop a novel data curation pipeline that carefully converts complex natural language
reasoning trajectories into structured datasets for fine-tuning LRMs, featuring a multi-step
process that includes step extraction, Directed Acyclic Graph (DAG) creation, packing, filtering,
and reformatting.

• We analyze the accuracy and the efficiency of SPRINT on complex reasoning tasks in comparison
to strong reasoning baselines. Our results show that SPRINT can achieve higher accuracy
compared to the reasoning distilled model, while generating up to 39% fewer sequential tokens
on long reasoning trajectories.

• We show consistent generalization performance of SPRINT on two out-of-domain benchmarks,
saving sequential tokens by about 45% on GPQA and 65% on Countdown respectively, while
matching the performance of the reasoning finetuned model. These results highlight SPRINT’s
ability to effectively parallelize reasoning trajectories across diverse domains.

3The name SPRINT is inspired by the agile development methodology, where a sprint involves a planning
phase followed by parallel, incremental execution.

4We open-source our code and datasets at this repository.

2

https://github.com/ShayanTalaei/SPRINT/tree/main

Table 1: Comparison of inference-time scaling approaches. Methods are evaluated based on support
for inference-time parallelism, adaptive search, model optimization, and the capability to handle
multi-step sequential reasoning. SPRINT uniquely addresses all criteria, enabling dynamic parallelism
in general reasoning tasks that require interdependent sequential steps.

Method Inference-Time
Parallelism

Adaptive
Search

Model
Optimization

Multi-Step
Reasoning

Tree-of-Thought (ToT) [8] ✓ ✗ ✗ ✗
Graph-of-Thought (GoT) [9] ✓ ✗ ✗ ✗
Skeleton-of-Thought (SoT) [25] ✓ ✓ ✗ ✗
Repeated Sampling [2, 5, 6] ✓ ✗ ✗ ✗
Reasoning Models [3, 4] ✗ ✓ ✓ ✓
PASTA [26] ✓ ✓ ✓ ✗
Hogwild! Inference [27] ✓ ✓ ✗ ✗

SPRINT (Ours) ✓ ✓ ✓ ✓

2 Related Work

Long Chains-of-Thought for Improved Reasoning. Recent advancements have shown that gen-
erating extensive chains-of-thought [1] significantly enhances the reasoning capabilities of large
language models, particularly in tasks such as mathematical problem-solving and logical inference
[11, 12, 4, 3]. Despite their effectiveness, these methods inherently produce long sequential outputs,
increasing latency and slowing inference speed. SPRINT addresses this limitation by enabling models
to dynamically parallelize independent reasoning steps, significantly reducing sequential generation
and enhancing inference efficiency.

Structured Search and Multi-Agent Frameworks. Approaches like Tree-of-Thought [8], Graph-of-
Thought [9], Forest-of-Thought [13], and Atom-of-Thought [14], along with multi-agent interaction
methods [15, 16, 17, 18], structure reasoning processes through fixed search patterns or predefined
interaction protocols, often at the full-solution level. SPRINT generalizes these frameworks by
training models to autonomously allocate inference-time computation between serial and parallel
tasks to solve sub-parts of one solution trajectory or explore alternative solutions.

Planning and Execution with Language Models. Integrating planning capabilities into language
models has been explored through upfront decomposition of tasks into subtasks [19, 20, 21, 22] or
iterative refinement based on intermediate feedback [23, 24]. These approaches primarily rely on
sequential execution without explicitly considering dynamic parallel planning. SPRINT addresses this
gap by enabling models to autonomously perform dynamic parallel planning, enhancing inference
efficiency through concurrent execution.

Parallelization in language model reasoning. Methods that leverage parallel inference paths, such
as best-of-N sampling [6, 7] or self-consistency [5], have shown performance improvements through
generating multiple independent reasoning trajectories. However, these techniques typically lack
effective coordination among parallel threads, resulting in redundancy and inefficient computation. To
mitigate this issue, Skeleton-of-Thought (SoT)[25] and APAR[28] parallelize decoding by assuming
semantic independence among subtasks, thus enabling separate processing of different response
segments. Although these methods achieve faster inference, they exhibit suboptimal performance on
tasks that inherently require sequential reasoning, such as mathematical problem-solving, where later
steps depend on earlier computations.

Recently, three works, PASTA [26], Hogwild! Inference [27], and APR [29] have investigated
parallelization within a shared reasoning trajectory. PASTA teaches models to decompose a task
into parallel subtasks and subsequently merges their full context back into a single main thread,
but it does not optimize for reasoning tasks that require multi-step planning. Hogwild! Inference
relies on parallel prompting for collaborative reasoning among multiple workers, without tuning
the models to distribute tasks effectively. APR trains models to delegate subtasks to parallel child
threads for synthetic countdown tasks, but its training data curation relies on a specialized symbolic
solver, limiting its applicability to general reasoning tasks. SPRINT extends this line of research by

3

Planner

Query

<Plan_i>

</Plan_i>

Executor <execution_1>...</execution_1>

<execution_2>...</execution_2>

<execution_3>...</execution_3>

Running Context

Thinking ...
<prompt_i.1>...<prompt_i.1>

Executor

Executor

Thinking ...
<prompt_i.2>...<prompt_i.2>

Thinking ...
<prompt_i.3>...<prompt_i.3>

Final Answer

(3) Syncing

(2) Parallel execution

(1) Planning

Star ting the
next round

Terminating the
reasoning process

Figure 1: Overview of SPRINT’s inference process: 1) The planner receives the cumulative context,
including previous plans and execution results, and either proposes a new set of independent tasks or
terminates the process by producing the final answer. 2) A pool of executors concurrently performs
each task according to their prompts. 3) The execution outcomes are appended back into the
cumulative context with corresponding tags, returning to step 1 for the next iteration.

introducing a generalizable post-training framework that enables reasoning models to dynamically
structure inference for general reasoning tasks.

In general, an effective reasoning system should support logical multi-step interdependencies (multi-
step reasoning) to accurately handle tasks where later steps depend on earlier outcomes. It should
dynamically adapt its search strategy (adaptive search) to address diverse problem structures. Opti-
mizing model performance specifically for downstream tasks (model optimization) is often necessary
to achieve efficient results. Finally, leveraging parallel execution (inference-time parallelism) is
crucial to reducing latency by concurrently processing independent reasoning subtasks. Table 1
compares our method and existing inference-time scaling methods against these criteria.

3 Methodology

In this section, we outline the design and components of SPRINT, which at a high level consists of an
inference framework for reasoning models and a training protocol to teach them how to effectively
identify and exploit parallelizable planning and execution during their reasoning processes.

3.1 Interleaved Planning and Parallel Execution at Inference Time

SPRINT’s inference comprises two main modules: a planner and a pool of executors, all powered by
fine-tuned reasoning models. Inference begins when the planner receives the input query, followed
by iterative rounds of planning and execution, called stages, until the planner decides to terminate
the process by producing the final answer. As shown in Figure 1, each inference stage includes the
following three phases:

1. Planning. At stage i, the planner receives the cumulative context of the reasoning trajectory, which
includes the input query, previous plans, and the execution outputs from all the preceding stages (1
through i− 1). The planner then generates a plan for the current stage, enclosed within <Plan_i>
tags. During this stage, the planner may generate intermediate reasoning tokens, benefiting from its
reasoning capabilities. When the planner identifies a subtask suitable for delegation to an executor,
it specifies this task within tags <prompt_i.j>. Upon closing each </prompt_i.j> tag, an executor
initiates the corresponding task given the current cumulative context snapshot.

2. Parallel executions. Each executor independently and concurrently performs its assigned subtask
by generating a chain-of-thought reasoning trajectory to accomplish the specific task. Executing these

4

Query

<Reasoning>
line 1: Let’s
calculate the ...
line 2: ...
....

line 11: Let’s verify
our calculation ...

....
line 200: I arrived
at the final answer
...
</Reasoning>

Final Answer

Step 1
Plan: line 1-3
prompt: Calculate ...
Execution: line 4-10

Step 2
Plan: line 11-14
prompt: Verify the ...
Execution: line 15-30

Step K
Plan: line 200-203
prompt: Concluding the
final answer which is ...

Final Answer Final Answer

Step 1

Query Query

Step 2 Step 4

Step 6

Step 3

Step 7

Step 5

Query

Step 1

Step 2 Step 4

Step 3 Step 5 Step 6

Step 7

Final Answer

0) Thinking trajectories
of a reasoning model

1) Extracting the steps with
plan, prompt, and executions

2) Creating the DAG of
execution dependencies

3) Packing the steps
into compact stages

LRMFormatted
dataset

Packed stages
dataset

filter & reformat

SFT

4) SFT the LRM on the
filtered, and reformatted data

SPRINT finetuned LRM

Figure 2: Overview of the SPRINT training pipeline: (0) Starting from raw reasoning trajectories,
(1) we first extract individual reasoning steps, identifying their planning and execution phases. Next,
(2) we construct a DAG representing dependencies among these steps, and then (3) group steps into
compact stages that can be executed in parallel. Finally, (4) after filtering and reformatting these
structured stages into training samples, we perform supervised fine-tuning of a reasoning model to
dynamically propose and execute parallelizable tasks.

subtasks in parallel significantly reduces the total number of sequential tokens generated compared to
processing them sequentially, greatly improving inference efficiency.

3. Syncing. Once all parallel executions are complete, the results from each executor are enclosed
within tags <execution_i.j>, clearly indicating their corresponding tasks. These results are synced
back into the cumulative context in the same order as their original prompt definitions. The updated
context is then fed back to the planner, which either initiates the next stage or concludes the inference
by outputting the final answer.

3.2 Training Reasoning Models for SPRINT Framework

To effectively train reasoning models to identify and exploit parallelization opportunities during
inference, we developed a data curation pipeline that transforms complete natural language reasoning
trajectories into structured rounds of rolling-horizon planning and parallel execution. The pipeline
extracts individual planning and execution steps, organizes them into dependency-based stages, and
generates training examples that capture both sequential planning and parallel execution aspects. An
overview of this pipeline is shown in Figure 2. Detailed prompts for each step in the pipeline are
provided in Appendix A.

1. Step extraction. Given a reasoning trajectory τ , generated by DeepSeek-R1 [3] in response to a
query Q, we decompose it into distinct steps S = {S1, S2, . . . , Sn} by prompting an LLM (in this
case, GPT-4o) with specific instructions; refer to Appendix A.2. Each step Si is further decomposed
into a planning phase (Pi), where R1 identifies tasks and strategies, and an execution phase (Ei),
where these planned tasks are performed. Note that some steps may only involve planning without
explicit execution; these are termed plan-only steps, and no executor instructions are generated for
them.

To discourage trivial executor calls, we merge very short executions back into their planning phase,
making them plan-only steps and encouraging the planner to handle simpler tasks independently.

2. DAG creation. Next, we identify dependencies among steps by prompting a smaller LLM (GPT-
4o-mini) to determine which steps depend on others; for the instructions see A.2. These dependencies
are represented formally as:

D = {(Si, Sj) | Sj depends on Si, i < j, Si, Sj ∈ S}.

This set of dependencies forms a Directed Acyclic Graph (DAG), denoted by G = (S,D), where
nodes represent individual steps and edges represent dependencies among them.

5

Plan 1Query

Query

Query

 Final Answer

Sequential tokens decoded during the reasoning process

Sequential
Reasoning models

SPRINT’s
Fine-tuning Data

SPRINT’s
Inference Framework

Plan 2 Plan 3 Plan 4

independent independentdependent

Plan 1 Final AnswerPlan 2 Plan 3 Plan 4

Plan 1

Exec 1

 Final AnswerPlan 2

Exec 2

Plan 3

Exec 3

Plan 4

Exec 4

Sync Sync

Exec 1 Exec 2 Exec 3 Exec 4

Exec 1 Exec 2 Exec 3 Exec 4

Figure 3: Comparison of sequential tokens decoded during reasoning. Sequential reasoning models
generate all the steps serially, resulting in long token sequences. SPRINT’s fine-tuning data restructures
these steps into stages, grouping parallelizable plans followed by their respective executions. This
organization enables SPRINT’s inference framework to execute these grouped steps in parallel,
significantly reducing the number of sequential tokens.

3. Packing. We group the steps into stages, each containing plans that can be generated simulta-
neously by the planner and executions that can be carried out concurrently by executors. While a
naive approach would group steps solely based on their depth in the DAG, we further optimize the
stage arrangement by observing that if the parent Sp of a node Si is a plan-only step, Si can safely be
included in the same stage as Sp. This optimization ensures both context availability and enhanced
parallelization efficiency. Further details on this adjustment are provided in Appendix A.2.

Formally, the stage number σ(Si) for each step Si = (Pi, Ei) is defined as:

σ(Si) =

{
1, if Si has no parents

max
Sp∈Parents(Si)

(σ(Sp) + ⊮(Ep ̸= ∅)) , otherwise

The set of steps at a given stage k consists of all steps with stage number σ(Si) = k, represented as:

L(k) = Si ∈ S | σ(Si) = k.

Within each stage k, the combined plan is created by concatenating the plans of all steps Si in L(k),
ordered according to their original sequence. The execution phase for stage k includes execution
components from all steps, excluding those that are plan-only:

P(k) = concat(Pi | Si ∈ L(k)), E(k) = {Ei | Si ∈ L(k), Ei ̸= ∅},

where Ei = ∅ indicates that Si is a plan-only step.

4. Training the LRM. To ensure that the model learns from trajectories with significant parallelization
potential, we introduce a parallelization ratio, defined as (#steps)/(#stages), and discard trajectories
with ratios below 1.5. The selected trajectories are reformatted into sequences of stage-wise plans
and executions, enclosed within explicit tags (<Plan_i> and <execution_i.j>) in the order illustrated
in Figure 3. Finally, we fine-tune the LRM on the reformatted thinking patterns. Through this
process, the model learns to dynamically propose independent, parallelizable tasks based on previous
sequences of plans and executions, and to execute each task following its corresponding prompt
effectively.

Methodology Overview. Overall, as detailed in Section 3.2, SPRINT trains reasoning models to
propose parallelizable subtasks rather than generating their entire reasoning trajectories serially.
During inference, as described in Section 3.1, the trained model effectively manages long-term
interdependencies while significantly reducing the number of sequential tokens generated. Figure 3
illustrates this workflow, highlighting how SPRINT reorganizes sequential reasoning traces into
parallelizable stages during training and subsequently leverages this learned parallel structure for
efficient, concurrent execution at inference time. For examples of SPRINT’s reasoning versus serial
reasoning trajectories, please refer to Appendix B.

6

4 Experiments

4.1 Experimental Setup

Datasets. To train our models, we begin with 6,000 reasoning trajectories from DeepSeek-R1 [3]
generated on the training set of the MATH dataset [30], as released by [31]. After filtering these
trajectories for correctness of the final answers and processing them through our data curation pipeline
(Section 3.2), we obtain a curated set of approximately 1,700 samples for training.

For evaluation, we primarily use the MATH-500 benchmark [32], a widely recognized test set
consisting of 500 mathematical reasoning problems. To further examine the generalization capabilities
of SPRINT to more challenging and out-of-distribution scenarios, we evaluate its performance against
strong baseline models on two additional benchmarks. First, we evaluate on GPQA-diamond [10],
a dataset from entirely different scientific domains, including biology, physics, and chemistry, thus
assessing cross-domain reasoning robustness. Moreover, following [29, 8], we test SPRINT on a
subset of 1000 samples from Countdown [8], a synthetic numerical reasoning task in which models
must derive a target number from four provided numbers using arithmetic operations (+,−,×,÷).

Baselines. We compare SPRINT against several reasoning baselines employing both serial and
parallel sampling strategies:

1. Base reasoning model (DeepSeek-R1-Distill-Qwen-7B) [3]: This model is a distillation of the
main R1 reasoning model into Qwen-2.5-7B [33], released by DeepSeek. We use this reasoning
model both as a baseline for direct comparison and as the base model for our fine-tuning experiments.

2. Reasoning fine-tuned model (RFT): To control for the effect of the training data and compare
against conventional distillation methods, we perform supervised fine-tuning of the DeepSeek-R1-
Distill-Qwen-7B model using the same 1,700 R1 reasoning trajectories from MATH used to train
SPRINT. This model represents a standard continued distillation of Qwen-2.5-7B on R1 trajectories
from the MATH dataset.

3. Skeleton-of-Thought (SoT) [25]: Given a query, SoT decomposes it into subtasks and executes
them through parallel LLM calls within a single stage. Both the subtask generation and execution
processes rely on out-of-the-box LLMs without any task-specific fine-tuning. We evaluate SoT
using both the chat-instruct Qwen-2.5-7B model (referred to as SoT-chat) and the reasoning-focused
DeepSeek-R1-Distill-Qwen-7B model (referred to as SoT-reasoning).

4. Repeated Sampling + Self-consistency [2, 5]: We include repeated sampling combined with
self-consistency aggregation as a baseline to evaluate whether a purely parallel sampling approach
can achieve similar accuracy and efficiency compared to the interleaved planning and execution
framework of SPRINT.

Evaluation Metrics. We consider two metrics to evaluate the performance and efficiency of different
approaches. First, we measure the accuracy of the final answer reached for the downstream task,
computed as the percentage of the correctly answered queries by each method (see A.4 for details).
Second, to evaluate the efficiency improvements in terms of the latency, we measure the number of
sequential tokens generated by each method. In particular, for sequential reasoning baselines, it is
exactly the number of output tokens. For SPRINT, we calculate the sequential tokens as follows:

number of sequential tokens =
stages∑
i=1

prompts at stage i
max

k
(Pi.k + Ei.k),

where Pi.k and Ei.k represent the number of sequential tokens generated by the planner until the
end of kth prompt and by an executor for the kth execution at step i respectively. Note that the ideal
wall-clock time correlates with the number of sequential tokens generated by each method; however,
accurately measuring this metric would require higher computational resources, which we discuss
further in Section 5.

4.2 Results

Comparison to conventional distillation. Figure 4 shows the accuracy and average number of
sequential tokens generated by different methods on the MATH-500 benchmark. We observe that
fine-tuning our base model (R1-Distill-7B) on trajectories generated by DeepSeek-R1 improves

7

1500 2000 2500 3000 3500 4000
Average Number of Sequential Tokens

88.5

89.0

89.5

90.0

90.5

91.0

91.5

92.0

92.5

93.0

Ac
cu

ra
cy

 (%
)

R1-Distill-7B

RFT

SPRINT

SoT

R1-Distill-32B

Figure 4: Pareto plot comparing accuracy (%)
and sequential token counts generated by dif-
ferent methods on MATH-500. While SPRINT
achieves slightly higher accuracy compared
to the RFT model, it generates 440 (∼ 15%)
fewer tokens on average.

1 2 3 4 5 6 7 8 9 10 11
Stage number

0

100

200

300

400

500

Nu
m

be
r o

f p
ro

bl
em

s

Parallelized
Level 1
Level 2
Level 3
Level 4
Level 5

Figure 5: Number of problems at each difficulty
level in MATH-500 that pass each stage of in-
terleaved planning before arriving at the final
answer. The dashed line indicates the number of
problems at each stage that exhibit parallelism
(more than one plan).

the accuracy of both SPRINT and RFT, albeit with an increase in their average sequential token
counts. The accuracy gains are substantial, bringing both models close to the performance of the
much larger R1-Distill-32B reasoning model. Notably, SPRINT achieves a higher accuracy of 92.5%,
which can be attributed to independent executions within each stage that prevent one result from
influencing the others. Despite being fine-tuned on the same trajectories as RFT, reorganized in a
plan–execution format, SPRINT requires 440 (∼ 15%) fewer sequential tokens due to parallelized
executions. These results demonstrate that SPRINT achieves the same level of reasoning accuracy as
conventional distillation used in RFT while substantially reducing the sequential token count.

Effectiveness of interleaved planning. The SoT-reasoning baseline underperforms SPRINT in both
accuracy and the number of sequential tokens. Since SoT only allows a single round of planning and
uses a model without task-specific fine-tuning, it often generates mutually dependent subtasks. When
the model executes them independently in parallel, it cannot use the result of one execution to inform
another, resulting in redundant computations across subtasks and a total token count that is almost
three times higher than SPRINT (see Table 2). Similarly, repeated sampling with self-consistency
generates multiple independent responses to the same query, leading to a high total token count. In
contrast, SPRINT uses interleaved planning and execution over multiple stages where the plan in each
stage is generated based on the results of previous executions, allowing better coordination. Figure 5

In-domain Out-of-domain
MATH-500 Countdown GPQA-Diamond

Method Acc↑ # Seq↓ # Total↓ Acc↑ # Seq↓ Acc↑ # Seq↓
Self-consistency 80.5 590 11645 78.5 2845 45.4 4735
SoT-chat 47.3 256 1290 80.0 2367 49.4 3526
SoT-reasoning 90.8 3836 11538 82.4 5823 48.0 7560
RFT 91.0 2880 2880 84.9 4917 50.5 7103

SPRINT 92.5 2440 3622 85.9 2284 51.0 6336

Table 2: Comparison of pass@1 accuracy and sequential token count across MATH-500, GPQA-
Diamond, and Countdown tasks. While SPRINT is only fine-tuned on math reasoning, SPRINT
demonstrates strong generalization capabilities on the out-of-domain tasks, Countdown and GPQA-
Diamond. SPRINT also reduces sequential token count through parallelized executions without a
large increase in total token count.

8

0-4k 4k-6k 6k-8k 8k-10k

0

500

1000

1500

2000

2500

3000

3500

Se
qu

en
tia

l T
ok

en
 R

ed
uc

tio
n

by
 S

PR
IN

T

-5%

17%

19%

39%

MATH500

0-2k 2k-4k 4k-6k 6k-8k

0

1000

2000

3000

4000

5000

-42%

28%

52%

65%
Countdown

0-6k 6k-9k 9k-12k 12k-15k
1000

0

1000

2000

3000

4000

5000

6000

-28%
9%

25%

45%
GPQA-Diamond

Number of Tokens generated by RFT model

Figure 6: Sequential token reduction achieved by SPRINT. The x-axis shows the number of sequential
tokens generated by the RFT baseline model, and the y-axis indicates the average reduction in
sequential tokens achieved by SPRINT. As the baseline’s sequential requirements increase, SPRINT
finds greater opportunities for parallelization, yielding larger sequential token reductions.

illustrates patterns in SPRINT’s interleaved planning. As expected, harder problems require more
stages before reaching the final answer. Additionally, SPRINT generates more plans in the earlier
stages, as the model explores multiple strategies and identifies relevant subtasks, while later stages
are more deterministic.

Reduction in sequential token count. We further examine the sequential token reduction achieved
by SPRINT relative to RFT in Figure 6. For problems with short reasoning trajectories, the additional
prompts and plan/execution tags introduce a small overhead, resulting in a 5% increase in sequential
tokens. However, as problem difficulty increases and reasoning trajectories become longer, SPRINT
consistently reduces the sequential token count relative to the length of the RFT trajectory due to
parallel executions. In particular, on problems where RFT requires more than 8,000 tokens on average,
SPRINT achieves a 39% reduction in sequential tokens.

Reduction in runtime. The savings in sequential tokens translate directly to lower latency. We
estimate per-problem runtime by adding the time-to-first-token (TTFT) overhead incurred at the
start of each plan/execution to the subsequent decoding time. In practice, decoding dominates; the
prefilling (TTFT) cost is comparatively small. Under this estimate, SPRINT outperforms RFT by
9% on MATH-500 (36.92s vs. 40.57s per problem) and by 38% on the subset with longer reasoning
chains (74.47s vs. 120.54s). Because runtime scales primarily with the number of decoded tokens,
SPRINT’s advantage increases with trajectory length, yielding larger absolute and relative latency
reductions on harder instances.

Generalization. To assess SPRINT’s generalization capabilities to out-of-domain tasks, we report
performance on Countdown and GPQA-Diamond in Table 2. SPRINT leverages the highly paralleliz-
able nature of the Countdown task to solve problems with much fewer sequential tokens (2284 tokens
compared to 4917 tokens by RFT), demonstrating a 53.5% reduction. Notably, these parallelization
opportunities are identified despite not being trained on trajectories from this task. Due to the benefits
of independent exploration and interleaved planning, SPRINT also beats all baseline methods to
achieve an accuracy of 85.9%. Similarly, on the GPQA-Diamond dataset, SPRINT achieves the
highest accuracy (51.0%) while reducing sequential token count by 10.8% relative to RFT. Similar to
MATH-500, we observe from Figure 6 that SPRINT provides higher efficiency gains on problems
with longer reasoning chains.

5 Limitations and Future work

Hardware optimization for realized wall-clock time speed-up. SPRINT delivers clear efficiency
gains, reducing sequential tokens and lowering our end-to-end runtime approximation, but fully
realizing these benefits in wall-clock time requires hardware-aware optimizations. Previous works [26,
27, 29] have indicated that sequential token counts are closely correlated with wall-clock latency.
However, achieving the ideal latency improvements in practice requires optimized key-value caching
mechanisms and high-bandwidth GPU interconnects, especially for long reasoning trajectories

9

encountered in general tasks. Additionally, executing a large number of parallel tasks simultaneously
necessitates a corresponding number of GPUs. Due to limited resources, we were unable to implement
the optimal hardware-accelerated decoding for SPRINT. Future work could explore implementing
SPRINT within optimized caching frameworks and scalable GPU architectures to fully realize practical
wall-clock time efficiency gains offered by parallel decoding strategies.

Parallelizing tool-use in reasoning models. In our current work, we primarily treat executions as
sequences of tokens that models decode to accomplish tasks. However, from a planning perspective,
these executions can alternatively be viewed as black-box modules that receive specific tasks and
return corresponding execution results. Several prior works, such as ReAct [23], Self-Ask [34],
Swirl [35], and others [36, 37, 38], have introduced mechanisms enabling language models to in-
tegrate tool-use into their reasoning loops, iteratively planning, invoking external tools or APIs,
and then continuing their reasoning based on the obtained results. Such reasoning-tool interaction
trajectories could significantly benefit from parallelization, especially in scenarios where tool invo-
cations dominate the decoding latency. Future work could extend SPRINT’s data curation pipeline
to accommodate these trajectories, training models to effectively invoke multiple tools or APIs
concurrently within their reasoning processes.

Beyond Supervised Training. Through supervised fine-tuning (SFT) on curated data, our model
learned how to define parallelizable plans, effectively reducing sequential token generation. However,
the achievable parallelism is inherently limited by the quality of training data. Future work could
explore latency-aware reinforcement learning (RL), using reward signals based on inference efficiency,
allowing models to autonomously discover strategies that further enhance parallel reasoning beyond
the constraints of demonstration data.

6 Conclusion

In this work, we presented SPRINT, a framework for post-training reasoning language models that
reorganizes their reasoning trajectories into a series of plans and parallelized executions. Additionally,
SPRINT introduces an inference mechanism that leverages the trained reasoning model to identify
independent subtasks and execute them in parallel. This approach significantly reduces the number of
sequential tokens while achieving comparable state-of-the-art performance to the reasoning fine-tuned
(RFT) model. Notably, on problems requiring extensive reasoning trajectories, SPRINT uncovers
even greater parallelization potential, achieving sequential token reductions of 39%. Furthermore, we
evaluated our model’s generalization on multiple out-of-domain tasks and consistently found that
SPRINT generates substantially fewer sequential tokens while maintaining performance on par with
RFT. These results suggest that the SPRINT training unlocks parallelized reasoning capabilities in the
model across diverse domains with longer reasoning trajectories.

7 Acknowledgment

This work was supported in part by the Air Force Office of Scientific Research (AFOSR) under Grant
FA9550-23-1-0251 and in part by the Office of Naval Research under Grant N00014-24-1-2164. We
also thank Yuhao Ge at the University of Illinois Urbana-Champaign for his guidance on the model
training process and computing requirements.

References
[1] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed Chi,

Quoc Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language
models, 2023.

[2] Bradley Brown, Jordan Juravsky, Ryan Ehrlich, Ronald Clark, Quoc V Le, Christopher Ré,
and Azalia Mirhoseini. Large language monkeys: Scaling inference compute with repeated
sampling. arXiv preprint arXiv:2407.21787, 2024.

[3] Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in
llms via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

10

[4] OpenAI. Learning to reason with llms, 2024.

[5] Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V Le, Ed H Chi, Sharan Narang, Aakanksha
Chowdhery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language
models. In The Eleventh International Conference on Learning Representations.

[6] Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to
solve math word problems. arXiv preprint arXiv:2110.14168, 2021.

[7] Hunter Lightman, Vineet Kosaraju, Yura Burda, Harri Edwards, Bowen Baker, Teddy Lee, Jan
Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step, 2023.

[8] Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan Cao, and Karthik
Narasimhan. Tree of thoughts: Deliberate problem solving with large language models. Ad-
vances in neural information processing systems, 36:11809–11822, 2023.

[9] Maciej Besta, Nils Blach, Ales Kubicek, Robert Gerstenberger, Michal Podstawski, Lukas
Gianinazzi, Joanna Gajda, Tomasz Lehmann, Hubert Niewiadomski, Piotr Nyczyk, et al. Graph
of thoughts: Solving elaborate problems with large language models. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 38, pages 17682–17690, 2024.

[10] David Rein, Betty Li Hou, Asa Cooper Stickland, Jackson Petty, Richard Yuanzhe Pang, Julien
Dirani, Julian Michael, and Samuel R. Bowman. Gpqa: A graduate-level google-proof q&a
benchmark, 2023.

[11] Banghua Zhu, Hiteshi Sharma, Felipe Vieira Frujeri, Shi Dong, Chenguang Zhu, Michael I
Jordan, and Jiantao Jiao. Fine-tuning language models with advantage-induced policy alignment.
arXiv preprint arXiv:2306.02231, 2023.

[12] Eric Zelikman, Yuhuai Wu, Jesse Mu, and Noah Goodman. Star: Bootstrapping reasoning with
reasoning. Advances in Neural Information Processing Systems, 35:15476–15488, 2022.

[13] Zhenni Bi, Kai Han, Chuanjian Liu, Yehui Tang, and Yunhe Wang. Forest-of-thought: Scaling
test-time compute for enhancing llm reasoning, 2025.

[14] Fengwei Teng, Zhaoyang Yu, Quan Shi, Jiayi Zhang, Chenglin Wu, and Yuyu Luo. Atom of
thoughts for markov llm test-time scaling. arXiv preprint arXiv:2502.12018, 2025.

[15] Yilun Du, Shuang Li, Antonio Torralba, Joshua B Tenenbaum, and Igor Mordatch. Improv-
ing factuality and reasoning in language models through multiagent debate. In Forty-first
International Conference on Machine Learning, 2023.

[16] Sehoon Kim, Suhong Moon, Ryan Tabrizi, Nicholas Lee, Michael W Mahoney, Kurt Keutzer,
and Amir Gholami. An llm compiler for parallel function calling. In Forty-first International
Conference on Machine Learning, 2024.

[17] Mingchen Zhuge, Wenyi Wang, Louis Kirsch, Francesco Faccio, Dmitrii Khizbullin, and Jürgen
Schmidhuber. GPTSwarm: Language agents as optimizable graphs. In Proceedings of the 41st
International Conference on Machine Learning, 2024.

[18] Jon Saad-Falcon, Adrian Gamarra Lafuente, Shlok Natarajan, Nahum Maru, Hristo Todorov,
Etash Guha, E. Kelly Buchanan, Mayee Chen, Neel Guha, Christopher Ré, and Azalia Mirho-
seini. Archon: An architecture search framework for inference-time techniques, 2024.

[19] Denny Zhou, Nathanael Schärli, Le Hou, Jason Wei, Nathan Scales, Xuezhi Wang, Dale
Schuurmans, Claire Cui, Olivier Bousquet, Quoc Le, et al. Least-to-most prompting enables
complex reasoning in large language models. arXiv preprint arXiv:2205.10625, 2022.

[20] Karthik Valmeekam, Sarath Sreedharan, Matthew Marquez, Alberto Olmo, and Subbarao
Kambhampati. On the planning abilities of large language models (a critical investigation with
a proposed benchmark), 2023.

11

[21] Gurusha Juneja, Subhabrata Dutta, Soumen Chakrabarti, Sunny Manchanda, and Tanmoy
Chakraborty. Small language models fine-tuned to coordinate larger language models improve
complex reasoning, 2024.

[22] Archiki Prasad, Alexander Koller, Mareike Hartmann, Peter Clark, Ashish Sabharwal, Mohit
Bansal, and Tushar Khot. Adapt: As-needed decomposition and planning with language models,
2024.

[23] Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan
Cao. React: Synergizing reasoning and acting in language models. In International Conference
on Learning Representations (ICLR), 2023.

[24] Noah Shinn, Federico Cassano, Edward Berman, Ashwin Gopinath, Karthik Narasimhan, and
Shunyu Yao. Reflexion: Language agents with verbal reinforcement learning, 2023.

[25] Xuefei Ning, Zinan Lin, Zixuan Zhou, Zifu Wang, Huazhong Yang, and Yu Wang. Skeleton-
of-thought: Prompting llms for efficient parallel generation. arXiv preprint arXiv:2307.15337,
2023.

[26] Tian Jin, Ellie Y. Cheng, Zack Ankner, Nikunj Saunshi, Blake M. Elias, Amir Yazdanbakhsh,
Jonathan Ragan-Kelley, Suvinay Subramanian, and Michael Carbin. Learning to keep a promise:
Scaling language model decoding parallelism with learned asynchronous decoding, 2025.

[27] Gleb Rodionov, Roman Garipov, Alina Shutova, George Yakushev, Vage Egiazarian, Anton
Sinitsin, Denis Kuznedelev, and Dan Alistarh. Hogwild! inference: Parallel llm generation via
concurrent attention, 2025.

[28] Mingdao Liu, Aohan Zeng, Bowen Wang, Peng Zhang, Jie Tang, and Yuxiao Dong. Apar: Llms
can do auto-parallel auto-regressive decoding, 2024.

[29] Jiayi Pan, Xiuyu Li, Long Lian, Charlie Snell, Yifei Zhou, Adam Yala, Trevor Darrell, Kurt
Keutzer, and Alane Suhr. Learning adaptive parallel reasoning with language models, 2025.

[30] Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn
Song, and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset,
2021.

[31] open r1. Openthoughts-114k-math, 2025.

[32] Hunter Lightman, Vineet Kosaraju, Yura Burda, Harri Edwards, Bowen Baker, Teddy Lee, Jan
Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. arXiv preprint
arXiv:2305.20050, 2023.

[33] An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan
Li, Dayiheng Liu, Fei Huang, Haoran Wei, et al. Qwen2. 5 technical report. arXiv preprint
arXiv:2412.15115, 2024.

[34] Ofir Press, Muru Zhang, Sewon Min, Ludwig Schmidt, Noah A. Smith, and Mike Lewis.
Measuring and narrowing the compositionality gap in language models, 2023.

[35] Anna Goldie, Azalia Mirhoseini, Hao Zhou, Irene Cai, and Christopher D. Manning. Synthetic
data generation multi-step rl for reasoning tool use, 2025.

[36] Zhengliang Shi, Shen Gao, Lingyong Yan, Yue Feng, Xiuyi Chen, Zhumin Chen, Dawei Yin,
Suzan Verberne, and Zhaochun Ren. Tool learning in the wild: Empowering language models
as automatic tool agents, 2025.

[37] Yongliang Shen, Kaitao Song, Xu Tan, Dongsheng Li, Weiming Lu, and Yueting Zhuang.
Hugginggpt: Solving ai tasks with chatgpt and its friends in hugging face, 2023.

[38] Bhargavi Paranjape, Scott Lundberg, Sameer Singh, Hannaneh Hajishirzi, Luke Zettlemoyer,
and Marco Tulio Ribeiro. Art: Automatic multi-step reasoning and tool-use for large language
models, 2023.

12

[39] Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang,
Lu Wang, Weizhu Chen, et al. Lora: Low-rank adaptation of large language models. ICLR,
1(2):3, 2022.

[40] Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. Qlora: Efficient
finetuning of quantized llms. Advances in neural information processing systems, 36:10088–
10115, 2023.

[41] Yuze Zhao, Jintao Huang, Jinghan Hu, Xingjun Wang, Yunlin Mao, Daoze Zhang, Zeyinzi
Jiang, Zhikai Wu, Baole Ai, Ang Wang, Wenmeng Zhou, and Yingda Chen. Swift:a scalable
lightweight infrastructure for fine-tuning, 2024.

[42] Jeff Rasley, Samyam Rajbhandari, Olatunji Ruwase, and Yuxiong He. Deepspeed: System
optimizations enable training deep learning models with over 100 billion parameters. In
Proceedings of the 26th ACM SIGKDD international conference on knowledge discovery &
data mining, pages 3505–3506, 2020.

[43] Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase, and Yuxiong He. Zero: Memory optimiza-
tions toward training trillion parameter models. In SC20: International Conference for High
Performance Computing, Networking, Storage and Analysis, pages 1–16. IEEE, 2020.

[44] Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph
Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
serving with pagedattention. In Proceedings of the 29th Symposium on Operating Systems
Principles, pages 611–626, 2023.

13

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: All the claims made in the paper are backed by the experimental results
provided in section 4.2.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discussed the limitations of our work in section 5.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA] .

14

Justification: The paper does not include theoretical results.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We have provided steps for dataset preparation, model training, and evaluation
in the paper and with the details explained in Appendix. We also provided a repository link
containing our code and datasets for complete reproducibility.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

15

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We provide open access to our repository containing code, and datasets, along
with the detailed instructions on how to reproduce the main experimental results.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We specify all necessary training and testing details, clearly described in the
Appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: Due to the cost of resources (GPUs), and the size of the experiments, we only
reported the average metrics on each benchmark. However, as described in the paper, we ran
our experiments on multiple benchmarks and the results were consistent across the datasets.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

16

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We reported the details of the computational resources used for the experiments
in the Appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Our research fully complies with the NeurIPS Code of Ethics; it involves no
ethical issues, and respects all relevant guidelines outlined by NeurIPS.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: Our research is foundational and aimed at reducing latency in reasoning
language models without being tied to any specific application; hence, it does not directly
entail identifiable societal impacts.

17

https://neurips.cc/public/EthicsGuidelines

Guidelines:
• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: Our work does not introduce safety risks, as it involves fine-tuning pretrained
language models specifically on mathematical data, which poses no additional risks of
misuse.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: All datasets, models, and other assets used in this work are properly cited,
with original creators clearly credited. We explicitly adhere to the licenses and terms of use
associated with these assets.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.

18

• The authors should state which version of the asset is used and, if possible, include a
URL.

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: All new assets, including datasets and code, are well documented, with clear
instructions provided alongside them.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: Our work does not involve crowdsourcing or research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Our research does not involve human subjects, so IRB approval is not applica-
ble.

19

paperswithcode.com/datasets

Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.
• Depending on the country in which research is conducted, IRB approval (or equivalent)

may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA] .
Justification: This work is the original work of the authors and does not involve the use of
LLMs as an important, original, or non-standard component of the core methods.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

20

https://neurips.cc/Conferences/2025/LLM

A Implementation Details

A.1 Inference

Inference from a sequential reasoning model. To generate responses from sequential reasoning
models, such as DeepSeek-R1-Distill-7B and the RFT model, we use the prompt provided below.
The same prompt was used for fine-tuning DeepSeek-R1-Distill-7B to derive the RFT model. During
inference, the question is appended to the prompt and the model is called in the completions format.
Following guidelines suggested by DeepSeek [3], we set the generation temperature to 0.6 to mitigate
repetitive outputs. Additionally, we enforce a maximum token limit of 36,000 per response, truncating
any outputs exceeding this threshold.

Sequential Reasoning Prompt

Your role as an assistant involves thoroughly exploring questions through a systematic long
thinking process before providing the final precise and accurate solutions. This requires
engaging in a comprehensive cycle of analysis, summarizing, exploration, reassessment,
reflection, backtracking, and iteration to develop well-considered thinking process.

Please structure your response into two main sections: Thought and Solution.

• In the Thought section, detail your reasoning process using the specified format: <think>
{thought with steps separated with "\n \n"} </think> Each step should include detailed
considerations such as analyzing questions, summarizing relevant findings, brainstorming
new ideas, verifying the accuracy of the current steps, refining any errors, and revisiting
previous steps.

• In the Solution section, based on various attempts, explorations, and reflections from the
Thought section, systematically present the final solution that you deem correct. The
solution should remain a logical, accurate, concise expression style and detail necessary
step needed to reach the conclusion.

Now, try to solve the following question through the above guidelines. Return your final
response within \boxed{}.

SPRINT Inference. During inference, we use the following prompt to guide the generation of
plans and executions from the SPRINT model. Although the model is fine-tuned to produce an entire
trajectory—including all plans and executions—in a single generation, we manage model invocations
and output token handling to alternate between planner and executor roles effectively.

To restrict the model’s outputs to either a single plan or execution per invocation, we employ specific
stop tokens. Generation is terminated once the model produces any of the following strings, indicating
the completion of a plan or execution segment: {</Execution_, </Plan_, </Final_answer>,
</execution_}.

When generating a plan for stage i, we feed the prompt along with the input query and the cumulative
context, which includes all preceding plans and executions, to the SPRINT model. Conversely, to
generate the execution corresponding to a particular prompt_i.j, we provide the model with the
prompt, the input query, all previously generated plans and executions up to stage i− 1, and the text
from plan i until the end of prompt_i.j. This structured context management allows us to reuse the
same prompt for both planning and execution tasks seamlessly.

The model is permitted a maximum of 12 stages to produce a final answer. To enforce this constraint,
we append "<Final_answer>\n" at the end of the prompt when invoking the model at the 12th
stage. Generated responses for each plan or execution are limited to 8,000 tokens, with any excess
tokens truncated accordingly. This prompt is identical to that used during model fine-tuning.

21

SPRINT Prompt

You are an AI system that follows a systematic long thinking process to arrive at the
precise and accurate answer to the below math question specified within <Question> and
</Question> tags. The solution is generated over multiple phases, where each phase
consists of a plan and an execution.

Planning. At phase p, you must first create a plan within <Plan_p> and </Plan_p> tags
by thinking out loud and planning the tasks that need to be executed next.
• Your plan may involve detailed considerations such as analyzing the question, summarizing

relevant findings, brainstorming new/alternative approaches, verifying the accuracy of the
current steps, refining any errors, or revisiting previous steps.

• Since you may think about multiple aspects of the problem within the same plan, you must
insert a line break using "- - - - -" before you transition from one train of thought to another.

• While generating the plan, if you identify a task that needs to be executed, you must create
a prompt that clearly specifies the task within <prompt_p.k> and </prompt_p.k> tags
where k starts from 1.

• When planning within each phase, you must create prompts that can be run independent of
the results from the other prompts, to achieve speedup through parallelization. You must
also try to minimize the number of phases required further to arrive at the accurate final
answer.

Execution. After creating the plan, you must carry out the tasks identified in the plan
sequentially within <Execution_p> and </Execution_p> tags. For the prompt labeled
as prompt_p.k, the corresponding execution must be generated within <execution_p.k>
and </execution_p.k> tags.

If the plans and execution results you receive are sufficient to generate the accurate
final answer, you must respond with the final answer within <Final_answer> and
</Final_answer> tags. The numerical answer must be within \boxed{}.

A.2 Dataset Curation

Step Extraction. For step extraction, we use the GPT-4o model with the temperature set to 0. The
following prompt is used to extract steps from a reasoning trajectory generated by DeepSeek R1. In
the prompt, we use the term "Component" to refer to the extracted steps to prevent the model from
confusing it with the traditional use of the term "step" in a math solution which could be a single
operation as opposed to a logical part of the solution. Components, as defined here, may involve tasks
such as identifying subsequent actions, validating previous results, proposing alternative methods, or
comparing solutions derived through different strategies. For each component, the model starts by
thinking out loud about what needs to be done and then carries out the identified task. We refer to the
first part as the plan and the second as the execution and extract them separately using this prompt.

The reasoning trajectory passed to the model as input is formatted by labeling each line/sentence with
a unique line number and the model provides the range of line numbers for each plan and execution
within a component. This minimizes the number of output tokens that have to be generated by the
model, consequently reducing costs. The line numbers are later parsed from the response to infer the
block of text that is relevant to each plan or execution.

Step Extraction Prompt

Given below is a math problem and a well-thought out solution to the problem generated
by an AI model. The solution contains multiple components (progressing with next steps,
verifying past steps, proposing alternative methods, comparing solutions across different
methods, etc.). Within each component, there are three phases:

• Planning: Here, the model first thinks out loud and plans what it needs to do.

22

• Execution: Here,the model follows the plan and executes it.

• Commenting: Here, the model comments on the execution results with phrases such as
"Yes, that seems right", "Both methods lead to the same answer, etc.

Note that the verification of an execution should be considered as a separate component and
not as the commenting phase of the same component.

I am building a new AI system to solve such math problems. This system will consist of two
separate AI models – a planner and an executor.
• Planner: The planner will receive all the components of the solution completed so far and

will need to think aloud and generate a plan for the next component. Then, it needs to
provide a prompt to the executor model to execute a specific task.

• Executor: The executor will receive all the components of the solution completed so far,
the plan for the next component generated by the planner, and the prompt generated by the
planner. It will need to execute the specified task.

To train these two AI models, I must generate training data by breaking down the solution pro-
vided below into individual components. For each component, clearly provide the following
details:

Required Response Format:
Component X (Line Number Range)

• Description: Brief explanation of what this component achieves.
• Plan: Lines (minimal number of lines to describe the plan clearly).
• Prompt: A precise, actionable instruction for the executor based explicitly on the

above plan.
• Execution: Lines (specific line numbers performing the planned task).
• Comment: Lines (reflective comments or Lines not found if missing).

Important Notes:
• The planning phase should only include a minimal number of lines required to specify

what needs to be done. The remaining lines from the component where the model carries
out the plan should be included in the execution phase.

• There MUST be NO overlap between the line numbers of different components.
• There MUST be NO overlap between the line numbers of the planning and execution

phases of the same component.
• All the lines in the solution should be covered by the components.
• Use the line number mentioned at the start and end of each line to identify the line when

specifying the line number range.
• The prompt to the executor model must be a very specific instruction that the executor

can follow to complete the required task. The executor must not perform more tasks than
required. The prompt can refer to the plan for that component by saying "the above plan".

• If the model does not comment on the execution results within a component, the corre-
sponding bullet point can be written as Comment: Lines not found

23

DAG Creation. For DAG creation, we use the GPT-4o-mini model with the temperature set to
0. The following prompt is used to infer the DAG in the form of a parent dictionary, where each
key refers to a step extracted above and the corresponding values refer to the steps on which the key
depends.

DAG Creation Prompt

Given below is a well-thought out solution to a math problem generated by an AI system.
The system consists of a planner and an executor. The planner model thinks out loud and
plans the next component of the problem solution. Then, it provides a prompt along with the
plan to an executor model. The executor then follows the instructions in the prompt and uses
context from the plan to carry out the given task.
The solution consists of multiple components, each containing the following:

• Description: A brief description of what the component does.

• Plan: The plan generated by the planner.

• Prompt: Instructions generated by the planner enclosed within <prompt> tags.

• Execution: Output provided by the executor.

Though the executions are run sequentially in this solution, some of the executions may be
parallelized to improve speed. Identify and explain which components can run in parallel and
determine the best way to parallelize them to maximize speed. Note that parallel runs should
not have co-dependency.

The parallelization schedule can be represented as a directed acyclic graph (DAG) where
the nodes are the component numbers. You need to represent the DAG as a parent dictionary
where each node is a key and its value is a list of nodes that point to it, i.e., the nodes that
must be executed immediately before it. For a key node, do not include any nodes in its value
that can be run in parallel with it.

Format of parent dictionary:
Let us consider a simple example. Suppose that the following constraints hold:
• Component 1 needs to be run before any other component
• Components 2, 3, 4 can be run in parallel after 1
• Component 5 which depends on the results of 2 and 3 can be run after 2 and 3
• Component 6 which depends on the results of 4 and 5 can be run after 4 and 5
The parent dictionary for this example *MUST* be represented as a python dictionary as
follows:

parent_dictionary = {
1: [],
2: [1],
3: [1],
4: [1],
5: [2, 3],
6: [4, 5]

}

Using the resulting DAG, we can reorganize the components into interleaved plans and executions to
obtain a parallelizable reasoning trajectory. A simple strategy involves assigning components at the
same DAG depth to the same planning-execution stage. However, further optimization can reduce the
total number of stages required to reach the final answer.

Packing. The objective of packing is to optimally assign stage numbers to each component. To
achieve this, we apply the following greedy heuristics:

24

• If a component’s execution consists of fewer than three lines, it is merged directly with its
corresponding plan. This approach reduces overhead from additional prompt writing and executor
invocation. Through fine-tuning on trajectories with merged short executions, the planner learns to
carry out short or trivial executions on its own.

• If a component C depends on a plan-only component P , then C’s plan is independent of the
execution results from P ’s stage. When all of C’s parent components satisfy this condition, C is
merged into the same planning stage as P by combining their respective plans.

As a result, we obtain optimal stage numbers for each component which can then be used for
generating the fine-tuning trajectory.

A.3 Fine-tuning

We conducted supervised fine-tuning (SFT) of our models by training on the reasoning trajecto-
ries. Initially, we experimented with more efficient fine-tuning techniques such as LoRA[39] and
qLoRA [40]. However, since LoRA did not adequately enable the models to adhere to the desired
response format, we proceed with full fine-tuning instead.

Fine-tuning was primarily executed on a single machine with eight NVIDIA A100 GPUs with 40
GB memory per GPU. We use the ms-swift framework [41], a fine-tuning toolkit provided by the
Modelscope community.

Each model is fine-tuned for 5 epochs. Due to the long-context required for reasoning traces and the
memory constraints, we use a batch size of 1 during the training. We use bfloat16 precision, an
initial learning rate of 1× 10−5, and a weight decay factor of 1× 10−4. The learning rate scheduling
consists of a linear warm-up phase during the first 5% of training steps, subsequently followed by
linear decay to zero over the remaining training iterations. Model evaluation is conducted every 100
steps, and the best-performing model based on evaluation loss is retained.

To optimize memory usage during training, we integrate several efficiency strategies, notably the
DeepSpeed ZeRO Redundancy Optimizer [42, 43] and 4-bit quantization. DeepSpeed’s ZeRO
optimizer offers a set of memory-partitioning strategies that trade off memory savings against
communication overhead. In many workloads, ZeRO Stage 1 or 2 strikes the best balance between
memory efficiency and communication cost; however, since we need to train on long sequences, our
per-GPU memory demands exceed what those stages can support. Therefore, we adopted ZeRO
Stage 3 to train with extended context lengths without OOM errors.

A.4 Evaluation

For model evaluation, we leverage vLLM [44] to serve our models. Specifically, each 7B-scale model
(SPRINT, RFT, and DeepSeek-R1-Distill-7B) is deployed on a single NVIDIA A100 GPU with 40
GB of memory.

To enhance evaluation accuracy, we instruct the models to encapsulate their final answers within
\boxed{}. For evaluations on the MATH-500 and Countdown tasks, we leverage the Math-Verify
library alongside SymPy for equivalence checking, ensuring robustness against mathematically equiv-
alent but differently expressed solutions. In the GPQA task, accuracy is determined by comparing
explicitly generated option labels (e.g., A, B, C, D) directly with the corresponding ground-truth
options.

Despite providing explicit formatting instructions, we occasional observe deviations by the models
from the specified output format. For instance, during the Countdown task evaluation, the models
occasionally produce outputs in unexpected formats (e.g., \times, ×), complicating the parsing
procedure. To mitigate these issues, we incorporate the GPT-4o-mini model as an auxiliary evaluator
to judge the generated answer against the ground truth.

A.5 Baselines

Below we present the implementation details for the baselines used in our study:

• SoT (Skeleton of Thought): For SoT-chat, we use the Qwen2.5-7B-Instruct model with
the temperature set to 0.1. For SoT-reasoning, we use the DeepSeek-R1-Distill-Qwen-7B

25

model with the temperature set to 0.6. We use the same prompts as reported in the original
paper [25]. After the full solution is generated, we send it to GPT-4o-mini to extract the
final answer for evaluation.

• RFT (Reasoning Fine-tuned Model): This baseline was created by fine-tuning the
DeepSeek model on sequential R1 trajectories. During inference, we set the temperature to
0.6 and employed the sequential reasoning prompt provided in Appendix A.1.

• Parallel Sampling + Self-consistency: The Qwen2.5-7B-Instruct model was used with a
temperature of 0.3, generating 20 independent samples per problem. The majority answer is
considered as the predicted answer for the evaluation of this baseline.

26

B Sample Demonstrations

B.1 Demonstration of the Data Curation Pipeline

To illustrate our data curation pipeline, we examine a representative example from the MATH training
dataset. Consider the following question:

Question: The vertex of the parabola described by the equation y = −3x2 − 30x − 81 is (m,n).
What is n?

Next, we provide the response generated by DeepSeek-R1 for this question with each logical
component in a separate box. Note that the original response does not provide any separation among
its logical components and the full text is generated as a single long trajectory.

Outline of DeepSeek-R1 response

Okay, so I need to find the vertex of the parabola given by the equation
y = −3x2 − 30x − 81, and specifically determine the n-coordinate of the vertex,
which is (m,n). Hmm, let’s start by recalling how to find the vertex of a quadratic
equation. I remember that quadratic equations are in the form y = ax2 + bx+ c, and
their graphs are parabolas. The vertex of a parabola can be found using the formula
for the x-coordinate, which is −b/(2a). Then once we have the x-coordinate, we
can plug that back into the original equation to find the corresponding y-coordinate,
which would be n in this case.

So let’s identify a, b, and c from the given equation. Comparing y = −3x2−30x−81
with the standard form y = ax2+bx+c, it looks like a = −3, b = −30, and c = −81.

Wait, is that right? Let me check again. The coefficient of x2 is −3, so a = −3. The
coefficient of x is −30, so b = −30. The constant term is −81, so c = −81. Okay,
that seems correct.

Now, using the formula for the x-coordinate of the vertex: m = −b/(2a). Plugging
in the values of a and b, we get m = −(−30)/(2 ∗ (−3)). Let’s compute that step by
step. The numerator is −(−30), which is positive 30. The denominator is 2 times a,
which is 2 ∗ (−3) = −6. So m = 30/(−6) = −5. Therefore, the x-coordinate of
the vertex is −5. That seems straightforward.

Now, to find the y-coordinate n, I need to substitute x = −5 into the original
equation. Let’s do that. The original equation is y = −3x2 − 30x− 81. Plugging in
x = −5:

y = −3 ∗ (−5)2 − 30 ∗ (−5) − 81. Let’s compute each term step by step. First,
(−5)2 is 25, so −3 ∗ 25 is −75. Then, −30 ∗ (−5) is positive 150. And the last term
is −81. So adding them up: −75 + 150− 81. Let’s calculate this.

First, −75+ 150 = 75. Then, 75− 81 = −6. So n = −6. Therefore, the vertex is at
(−5,−6), so n is −6.

27

Wait, let me double-check my calculations to make sure I didn’t make any arithmetic
errors. Let’s redo the substitution.

Calculating y when x = −5:

First term: −3 ∗ (−5)2. The exponent first: (−5)2 = 25. Then multiply by −3:
−3 ∗ 25 = −75. Second term: −30 ∗ (−5). Multiply those: −30 times −5 is 150.
Third term is −81. So adding them: −75 + 150 = 75; 75 − 81 = −6. Yep, that’s
correct.

Alternatively, maybe I can use another method to confirm. Sometimes, completing
the square can be a good way to find the vertex. Let me try that. The given equation
is y = −3x2 − 30x− 81. To complete the square, first factor out the coefficient of
x2 from the first two terms. So:

y = −3(x2 + 10x) − 81. Wait, let’s check: −3x2 − 30x becomes −3(x2 + 10x).
Yes, that’s correct because −3 times x2 is −3x2 and −3 times 10x is −30x. Then,
we have the remaining constant term as −81.

Now, to complete the square inside the parentheses, we need to take half of the
coefficient of x, which is 10, so half of 10 is 5, and then square it: 52 = 25. So we
add and subtract 25 inside the parentheses to maintain equality. However, since we
are adding 25 inside the parentheses that’s multiplied by −3, we have to balance that
by actually adding and subtracting −3 ∗ 25 to the entire equation. Wait, maybe I
need to write it out more carefully.

So:

y = −3(x2 + 10x+ 25− 25)− 81

Wait, that is equivalent to:
y = −3[(x2 + 10x+ 25)− 25]− 81

Which simplifies to:
y = −3(x+ 5)2 + 75− 81

Because (x2 +10x+25) is (x+5)2, and then we have −3 times −25 which is +75.
Then, subtract 81. So:
y = −3(x+ 5)2 + 75− 81

Then, combining the constants: 75− 81 = −6. So the equation becomes:
y = −3(x+ 5)2 − 6

Which is in vertex form: y = a(x− h)2 + k, where the vertex is (h, k). Wait, in this
case, it’s (x+5) which is the same as (x− (−5)), so h is −5 and k is −6. Therefore,
the vertex is at (−5,−6), so n is −6. That confirms the previous result.

Alternatively, maybe I can use calculus, taking the derivative and setting it to zero,
but since this is a simple quadratic, that might be overkill. But for thoroughness,
let’s try it. The derivative of y with respect to x is dy/dx = 2 ∗ (−3)x+ (−30) =
−6x− 30. Setting this equal to zero for critical points: −6x− 30 = 0. Solving for
x: −6x = 30 ⇒ x = −5. Then substitute x = −5 into original equation, as before,
gives y = −6. So again, same result.

28

Therefore, all three methods (vertex formula, completing the square, calculus) lead to
the same answer: n = −6.

Is there any chance I made a mistake in the signs? Let me check again. The original
equation is y = −3x2 − 30x− 81. So a = −3, b = −30. Then the x-coordinate of
vertex is −b/(2a) = −(−30)/(2 ∗ (−3)) = 30/ − 6 = −5. That’s correct. Then
substituting x = −5 into the equation: y = −3 ∗ (−5)2 − 30 ∗ (−5)− 81. Compute
each term:

First term: −3 ∗ (25) = −75

Second term: −30 ∗ (−5) = +150

Third term: −81

Total: −75 + 150 = 75; 75− 81 = −6. Correct.

Completing the square also confirmed the same. Calculus as well. So multiple
methods confirm that n = −6.

Therefore, I’m confident that the answer is n = −6.

Next, we demonstrate the output of step extraction. As explained in A.2, the output from step
extraction contains line numbers corresponding to each plan and execution within a component. In
the sample below, we replace line numbers with the corresponding block of text from the reasoning
trajectory for ease of understanding. For the sake of brevity, we only show the full details for a few
components.

Formatted output of Step Extraction

Component 1
Description: Planning how to find the vertex of the parabola.
Plan: Okay, so I need to find the vertex ... Then once we have the x-coordinate, we can plug
that back into the original equation to find the corresponding y-coordinate, which would be n
in this case.
Prompt: Identify the values of a, b, and c from the given quadratic equation.
Execution: So let’s identify a, b, and c ... it looks like a = −3, b = −30, and c = −81.
Comment: No lines found

Component 2
Description: Verifying the identified values of a, b, and c.

...

Component 3
Description: Calculating the x-coordinate of the vertex using the vertex formula.

...

Component 4
Description: Calculating the y-coordinate of the vertex by substituting the x-coordinate.
...

29

Component 5
Description: Verifying the calculation of the y-coordinate.
...

Component 6
Description: Using the method of completing the square to find the vertex.
Plan: Alternatively, maybe I can use another method to confirm. Sometimes, completing the
square can be a good way to find the vertex. Let me try that.
Prompt: Use the method of completing the square on the given equation to find the vertex.
Execution: The given equation is y = −3x2 − 30x− 81. To complete the square, first factor
out the coefficient of x2 ... So the equation becomes: y = −3(x+ 5)2 − 6 which is in vertex
form: y = a(x− h)2 + k, where the vertex is (h, k) ... Therefore, the vertex is at (−5,−6),
so n is −6.
Comment: That confirms the previous result.
...

Component 7
Description: Using calculus to find the vertex by taking the derivative and setting it to zero.
...

Component 8
Description: Comparing results from different methods.
...

Component 9
Description: Final verification of the solution and confirming results.
...

In Figure 7, we demonstrate the dependencies that are inferred from running DAG creation over the
steps (a.k.a components) extracted above. The model has identified that Components 2, 3, 6, and 7
can run in parallel. This is because once the values of a, b, and c are identified in Component 1, the
verification of that calculation (Component 2) and the computation of the x-coordinate (Component 3)
are mutually independent. Besides, alternative approaches such as completing the square (Component
6) and using calculus (Component 7) are not dependent on components other than Component 1.
Component 4 depends on Component 3 as the computation of the y-coordinate depends on the
value of the x-coordinate identified in Component 3. Comparing the results of the three approaches
(Component 8) depends on the results from Components 4, 6, and 7 while the final verification
(Component 9) depends on Component 8. Hence, the DAG effectively models the dependencies
among the components and identifies parallelization opportunities.

As explained in Appendix A.2, for components with short executions, we merge the executions with
their plans. Hence, for the above problem, the executions of Components 2, 3, and 8 are merged
with their plans. The trajectory containing plans and executions generated for the above problem
following this modification is given below. Note that the plans are ordered based on the dependencies
modeled in the DAG.

The sequential token count for the original response from R1 is measured as the total number of
tokens in the response which is 1645. The trajectory sample below has a smaller sequential token
count of 1445 due to the parallelized executions.

30

Figure 7: Dependencies inferred from running DAG creation over the steps extracted from the
example reasoning trajectory in Appendix B.1

Trajectory sample for fine-tuning

<Plan_1>

Okay, so I need to find the vertex ... it looks like a = −3, b = −30, and c = −81.
...
Wait, is that right? Let me check again ... The constant term is −81, so c = −81.
...
Now, using the formula and plugging in the values of a and b... Let’s compute that
step by step.
...
<prompt_1.1> Calculate the x-coordinate of the vertex </prompt_1.1>

Alternatively, maybe I can use another method to confirm. Sometimes, completing
the square can be a good way to find the vertex.
<prompt_1.2> Use the method of completing the square on the given equation
to find the vertex. </prompt_1.2>

Alternatively, maybe I can use calculus, taking the derivative ... let’s try it.
<prompt_1.3> Use calculus to find the x-coordinate </prompt_1.3>

</Plan_1>

<Execution_1>

31

<execution_1.1>
The numerator is −(−30)... So m = 30/(−6) = −5. Therefore, the x-coordinate
of the vertex is −5.
</execution_1.1>

<execution_1.2>
The given equation is y = −3x2 − 30x− 81. To complete the square, first factor
out the coefficient of x2 ... So the equation becomes: y = −3(x+ 5)2 − 6 which is
in vertex form: y = a(x − h)2 + k, where the vertex is (h, k) ... Therefore, the
vertex is at (−5,−6), so n is −6.
</execution_1.2>

<execution_1.3>
The derivative of y with respect to x is dy/dx = 2 ∗ (−3)x+ (−30) = −6x− 30.
Setting this equal to zero for critical points ... as before, gives y = −6.
</execution_1.3>

</Execution_1>

<Plan_2>

Now, to find the y-coordinate n ... , I need to substitute x = −5...
<prompt_2.1> Substitute x = -5 to find the y-coordinate of the vertex.
</prompt_2.1>
</Plan_2>

<Execution_2>
<execution_2.1>
Plugging in x = -5:
...
So n = −6.
</execution_2.1>
</Execution_2>

<Plan_3>
Based on execution_2.1:
Wait, let me double-check my calculations ...
<prompt_3.1> Redo the substitution of x = −5 into the original equation to
verify. </prompt_3.1>

Based on execution_2.1, execution_1.2, execution_1.3:
Therefore, all three methods (vertex formula, completing the square, calculus) lead
to the same answer: n = −6.

Let me check again.
<prompt_3.2> Recheck the calculations and confirm the results
</prompt_3.2>

</Plan_3>

<Execution_3>

32

<execution_3.1>
Calculating y when x = −5: First term: −3 ∗ (−5)2 ... So adding them:
n = −75 + 150 = 75; 75− 81 = −6.
</execution_3.1>

<execution_3.2>
The original equation is ... So multiple methods confirm that n = −6.
</execution_3.2>

</Execution_3>

<Final_answer>

Therefore, the value of n is \boxed{−6}.

</Final_answer>

33

B.2 Demonstration of SPRINT execution versus sequential reasoning from RFT

Given below is an example of how SPRINT responds to a question from the MATH-500 benchmark at
inference time. The executions presented side-by-side are carried out in parallel using the inference
strategy shown in Figure 3.
Question: The binary number 101010011102 is equal to what number in base eight?

Planning and parallel execution trajectory generated by SPRINT

<Plan_1>

Okay, so I need to convert the binary number 101010011102 to base eight. So, the
plan is probably to group the binary digits into sets of three starting from the right
and then convert each group to an octal digit.
Wait, but first, let me confirm: the binary number given is 10101001110. Let me
count the digits.

Let’s see: 10101001110. That’s 11 binary digits. Since 8 is 23, each octal digit is
three bits, so 11 bits would need to be grouped into 4 octal digits (since 4*3=12,
which is more than 11) but we need to add a leading zero to make it 12 bits? Wait,
no, actually, when converting from binary to octal, you start from the right and
split into groups of three. Right, so even if the total number of bits isn’t a mul-
tiple of three, you can add leading zeros to make it a multiple of three. Let me check.

<prompt_1.1> Verify the method of converting binary to octal by considering
the binary number 10101001110. </prompt_1.1>

But let me think again. Let me confirm with another approach. Alternatively, I
could convert the binary number to decimal first and then to octal. Maybe that’s a
good way to cross-verify.

<prompt_1.2> Consider converting the binary number to decimal first and
then to octal as an alternative method. </prompt_1.2>

</Plan_1>

<Execution_1>

<execution_1.1>
The original number is 10101001110.
Let’s write them out: positions from
right to left (since we start grouping
from the right). Wait, actually, when
grouping, we start from the right, so
the leftmost digit might need to be
padded with zeros to make the total
number of digits a multiple of three.
So the binary number has 11 digits.
11 divided by 3 is 3 with a remainder
of 2. So, we need to add one lead-
ing zero to make it 12 digits. Wait,
3*4=12, so yes, adding one zero on
the left. So the original binary is
10101001110. Adding a leading zero
gives 010101001110.
</execution_1.1>

<execution_1.2>
Let’s see. The binary number is
10101001110. Let me write down the
positions from right to left, starting at
0. Wait, actually, in computers, the
rightmost bit is the least significant bit,
which is position 0. So let’s list the bits:
Position: 10 9 8 7 6 5 4 3 2 1 0 Bit: 1 0
1 0 1 0 0 1 1 1 0 ...
So: Bit 10: 1 (210)
Bit 9: 0 (29)
Bit 8: 1 (28)
...
So the binary number is: 210+28+...21

... ... Adding them all up: 1024 + 256
= 1280; 1280 + 64 = 1344; 1344 + 8
= 1352; 1352 + 4 = 1356; 1356 + 2
= 1358. So the decimal equivalent is
1358. </execution_1.2>

34

</Execution_1>

<Plan_2>
Based on execution_1.1:
Now, splitting into groups of three starting from the right:
<prompt_2.1> Split the 12-digit binary number into groups of three starting
from the right and convert each group to octal. </prompt_2.1>

Based on execution_1.2:
Now, converting 1358 to octal. Let’s divide by 8:
<prompt_2.2> Convert the decimal number 1358 to octal using division by 8.
</prompt_2.2>

</Plan_2>

<Execution_2>

<execution_2.1>
0 1 0 1 0 0 0 1 1 1 0
Wait, no, wait. Wait, the binary number af-
ter adding a leading zero is 010101001110.
Now, group into 4 sets of three: Group 1
(leftmost): 010, Group 2: 101, Group 3:
001, Group 4: 110. Then convert each of
these to octal digits. Wait, octal digits go
from 0 to 7, so each group of three bits
represents 0-7. Let me recall the binary to
octal mapping:
000 = 0, 001 = 1, 010 = 2, ... So:
Group 1: 010 → 2
Group 2: 101 → 5
Group 3: 001 → 1
Group 4: 110 → 6
So putting them together: 2 5 1 6 → 25168.
</execution_2.1>

<execution_2.2>
1358 ÷ 8 = 169 with remainder 6
(since 169*8 = 1352, 1358 - 1352
= 6)
169 ÷ 8 = 21 with remainder 1
(21*8 = 168, 169 - 168 = 1)
21 ÷ 8 = 2 with remainder 5 (2*8
= 16, 21 - 16 = 5)
2 ÷ 8 = 0 with remainder 2
So the remainders, from last to
first, are 2, 5, 1, 6. There-
fore, 1358 in octal is 25168.
</execution_2.2>

</Execution_2>

<Plan_3>

Based on execution_2.1:
Wait, but let me check again. Let’s verify the grouping.
<prompt_3.1> Verify the grouping of the binary digits and the conversion to
octal. </prompt_3.1>

Based on execution_2.2:
Therefore, the binary number 101010011102 is equal to 25168. So both methods
give the same result, which is reassuring.
<prompt_3.2> Reflect on the solution and confirm its correctness by comparing
both conversion methods. </prompt_3.2>

</Plan_3>

<Execution_3>

35

<execution_3.1>
Original binary with leading
zero: 010 101 001 110.
Group 1: 010 → 2
Group 2: 101 → 5
Group 3: 001 → 1
Group 4: 110 → 6
So octal number is 2 5 1 6
→ 2516.
</execution_3.1>

<execution_3.2>
I think this confirms that the answer is correct.
But let me just go through the steps once more
to be thorough. Original binary: 10101001110
Convert to groups of three starting from the right.
Since it’s 11 digits, add a leading zero to make
it 12 digits: 010101001110.
Group into four parts: 010 101 001 110. Convert
each:
010 = 2, 101 = 5, 001 = 1, 110 = 6
Combine: 2516. Yep.
Alternatively, converting to decimal via binary
to decimal conversion: 101010011102 = 1 ∗
210 + 0 ∗ 29 + 1 ∗ 28 + 0 ∗ 27 + ...+ 0 ∗ 20 =
1024 + 256 + 64 + 8 + 4 + 2 = 1358. Then
1358 divided by 8 gives 169*8=1352, remainder
6; 169 divided by 8 is 21*8=168,
... So 2 5 1 6. So 2516. All checks out. There-
fore, the final answer is 2516 in octal. I think
that’s solid. No mistakes detected in the process.
</execution_3.2>

</Execution_3>

<Final_answer>

This step-by-step conversion shows that the binary number 101010011102 is equal
to \boxed{25168} in base eight.

</Final_answer>

The sequential token count of the above response from SPRINT is 1463. For the same question, we
present the sequential trajectory generated by the RFT model below. The sequential token count
of this response is 1989 since all tokens are generated sequentially. This highlights the benefit of
parallelizing executions using SPRINT.

Sequential reasoning trajectory generated by the RFT model

Okay, so I need to convert the binary number 101010011102 to base eight. Hmm, I remember
that converting between binary and octal is done by grouping the binary digits into sets of
three, starting from the right. Each group of three bits corresponds to a single octal digit. Let
me think through the steps carefully.

First, let me write down the binary number: 1 0 1 0 1 0 0 1 1 1 0. Wait, let me count the
digits. The original number is 10101001110, which has 11 digits. Since octal groups are in
threes, I need to split this into groups of three. But 11 isn’t divisible by three. So, I should
add leading zeros to make the total number of digits a multiple of three. Right, so 11 divided
by 3 is 3 with a remainder of 2. That means I need to add one leading zero to make it 12
digits. So the new number becomes 0101010011102.

Now, let me split this into groups of three starting from the right. Let me write it out:

Group 1: 010, Group 2: 101, Group 3: 001, Group 4: 110

Wait, no. Wait, the leading zeros are added at the beginning, so the original number was
10101001110. Adding a leading zero makes it 010101001110. Now, splitting into groups of

36

three from the right:

Starting from the end, the last three digits are 110, then moving left, the next three are 001,
then 101, then 010. So the groups are 010, 101, 001, 110. Now, each of these binary groups
needs to be converted to their octal equivalents.

Let me convert each group:

0102 is 2 in octal because 0× 4 + 1× 2 + 0× 1 = 2.

1012 is 5 in octal because 1× 4 + 0× 2 + 1× 1 = 5.
...

So putting those together in order from left to right, the octal digits are 2, 5, 1, 6. Therefore,
the octal number should be 25168. Wait, but let me verify this again to make sure I didn’t
make a mistake in grouping or conversion.

Wait, when grouping from the right, the first group (rightmost) is 110, then moving left, the
next is 001, then 101, then 010. So the groups are 010, 101, 001, 110. Converting each to
octal:

0102 = 2, 1012 = 5, 0012 = 1, 1102 = 6. So the octal number is 2 5 1 6, which is 25168.
Let me check if this is correct by converting the original binary number to decimal and then
converting that decimal number to octal to see if it matches.

First, converting 101010011102 to decimal. Let’s write out the binary number with each
digit’s place value:

From right to left, the positions are 0 to 10. The digits are:

Position 10: 1, Position 9: 0, Position 8: 1, ..., Position 0: 0

Calculating the decimal value:

1× (210) + 0× (29) + 1× (28) + 0× (27) + 1× (26) + 0× (25) + 0× (24) + 1× (23) +
1× (22) + 1× (21) + 0× (20)

Calculating each term:

210 = 1024, 28 = 256, 26 = 64, 23 = 8, 22 = 4, 21 = 2

Adding them up: 1024 + 256 = 1280; 1280 + 64 = 1344; 1344 + 8 = 1352;
1352 + 4 = 1356; 1356 + 2 = 1358.

So the decimal value is 1358. Now, converting 1358 to octal. Let’s divide 1358 by 8
repeatedly.

1358÷ 8 = 169 with a remainder of 6.
169÷ 8 = 21 with a remainder of 1.
21÷ 8 = 2 with a remainder of 5.
2÷ 8 = 0 with a remainder of 2.

Writing the remainders from last to first: 2 5 1 6. So 25168. Which matches the previous
result. Therefore, the conversion is correct.

But wait, let me check the grouping again. The original binary number was 10101001110.
When adding a leading zero, it becomes 010101001110. Splitting into groups of three from

37

the right:

Starting from the right:
111 001 101 010. Wait, that’s different. Wait, perhaps I made a mistake in grouping.

Wait, the original binary number is 10101001110. Let me write it as 10 101 001 110. Wait,
that’s not correct. Wait, the original number is 11 digits. So when adding a leading zero, it
becomes 12 digits: 0 1 0 1 0 1 0 0 1 1 1 0. Then grouping from the right:

Group1: 0 1 0 (positions 11, 10, 9), Group2: 1 0 1 (positions 8, 7, 6), Group3: 0 0 1 (positions
5, 4, 3), Group4: 1 1 0 (positions 2, 1, 0)

Wait, but when grouping from the right, the rightmost group is the last three digits. So the
original number is 010101001110. The rightmost three digits are 110, then moving left, next
three are 001, then 101, then 010. So the groups are 010, 101, 001, 110. Which is the same
as before. So converting each gives 2, 5, 1, 6. So 25168. Which is correct. So the answer is
25168.

But wait, when I grouped the original number as 10101001110, which is 11 digits, adding a
leading zero makes it 010101001110, which is 12 digits. So grouping into three from the
right: 010, 101, 001, 110. So that’s correct.

Alternatively, another way to check is by converting each group as I did before. So yes, the
answer is 2516 in octal.

But let me just confirm once again by converting 25168 back to binary to see if it’s
101010011102.

2516 in octal:

Each digit corresponds to three binary digits:

2 → 010
5 → 101
1 → 001
6 → 110

So putting them together: 010 101 001 110 → 010101001110, which is the original number.
So that’s correct.

Therefore, the final answer is \boxed{2516} in base eight.

38

B.3 Demonstration of SPRINT parallelism within a single solution method

The sample in Section B.2 shows SPRINT parallelizing alternative solution methods in stages 1 and 2.
In the below example, we show that SPRINT can also split a single solution method into subtasks,
execute them in parallel, and aggregate the results later. Here, the planner splits the problem into
calculating the vertical asymptote and re-evaluating the horizontal asymptote, as prompts 1.1 and 1.2
in parallel.

Question: The graph of 2x
x2−5x−14 has vertical asymptotes x = a and x = b, and horizontal

asymptote y = c. Find a+ b+ c.

Trajectory sample for parallelism within a single solution method

<Plan_1>

Determine the vertical and horizontal asymptotes of f(x)=\frac{2x}{x^2-5x-14},
then compute a+b+c.

<prompt_1.1> Identify the vertical asymptotes by finding the roots of the
denominator. </prompt_1.1>

<prompt_1.2> Re-evaluate the horizontal asymptote using the degrees of the
numerator and denominator. </prompt_1.2>

</Plan_1>

<Execution_1>

<execution_1.1>
Vertical asymptotes occur where the denominator is zero (provided the numerator
isn’t zero). Factoring x^2-5x-14 = (x-7)(x+2) gives roots at x=7 and x=-2. Thus,
a=7 and b=-2.
</execution_1.1>

<execution_1.2>
Since the numerator’s degree (1) is less than the denominator’s (2), the horizontal
asymptote is y=0. Hence, c=0.
</execution_1.2>

</Execution_1>

Rest of the solution continues...

B.4 Demonstration of SPRINT execution on a non-STEM task

We use the below example to demonstrate that SPRINT generalizes well to non-STEM tasks like
creative writing, despite being different from tasks in the MATH dataset used for fine-tuning. When
tasked with generating a brief movie scene description, the planner successfully devises three
independent subtasks, each executed concurrently by separate executors. After three planning and
execution rounds, these independently developed results were integrated into a coherent and unified
narrative.

39

Trajectory sample for creative writing task

<Plan_1>

The user wants a 250-word scene set shortly after the Battle of King’s Landing.

<prompt_1.1> Identify the key elements and emotions for each perspective:
Bran Stark’s visions, the noble’s skepticism, and the urchin’s admiration.
</prompt_1.1>

</Plan_1>

<Execution_1>

<execution_1.1>
- Bran: He’s the one who saw the vision of the White City...
- Noble from the Vale: He’s skeptical...
- Urchin: This adds an unexpected element...
</execution_1.1>

</Execution_1>

<Plan_2>

Based on Execution 1.1:
Bran: His lines should include visions...
<prompt_2.1> Develop Bran Stark’s lines to describe the vision of the White
City and the Iron Throne. </prompt_2.1>

<prompt_2.2> Develop the noble’s lines to express skepticism about Bran’s
leadership and his brother’s choice. </prompt_2.2>

<prompt_2.3> Develop the urchin’s lines to show admiration for Bran and the
vision, and the impact on his journey. </prompt_2.3>

</Plan_2>

<Execution_2>

<execution_2.1>
The urchin’s lines should be simple but full of wonder...
</execution_2.1>

<execution_2.2>
The urchin in the Red Keep adds a layer of innocence, contrasting with...
</execution_2.2>

<execution_2.3>
The streets below are in ruins, but the urchin’s eyes...
</execution_2.3>

</Execution_2>

<Plan_3>

40

Based on Executions 2.1–2.3:
<prompt_3.1> Ensure each character’s perspective is distinct and contributes
to the overall mood. The scene should capture the transition from battle chaos
to the realm of possibility of a new order. </prompt_3.1>

</Plan_3>

<Execution_3>

<execution_3.1>
The urchin’s admiration is genuine...
</execution_3.1>

</Execution_3>

<Final_answer>

The air was thick with the scent of incense and the faint hum of machinery. The
throne loomed before Bran...

The council chambers were quiet, save for the faint murmur of leather on wood...

The Red Keep was alive with the promise of change ... The White City was his
home, and the Iron Throne was his throne.

</Final_answer>

41

	Introduction
	Related Work
	Methodology
	Interleaved Planning and Parallel Execution at Inference Time
	Training Reasoning Models for Sprint Framework

	Experiments
	Experimental Setup
	Results

	Limitations and Future work
	Conclusion
	Acknowledgment
	Implementation Details
	Inference
	Dataset Curation
	Fine-tuning
	Evaluation
	Baselines

	Sample Demonstrations
	Demonstration of the Data Curation Pipeline
	Demonstration of Sprint execution versus sequential reasoning from RFT
	Demonstration of Sprint parallelism within a single solution method
	Demonstration of Sprint execution on a non-STEM task

