
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

VAMO: EFFICIENT ZEROTH-ORDER VARIANCE RE-
DUCTION FOR SGD WITH FASTER CONVERGENCE

Anonymous authors
Paper under double-blind review

ABSTRACT

Optimizing large-scale nonconvex problems, common in deep learning, demands
balancing rapid convergence with computational efficiency. First-order (FO) opti-
mizers, which serve as today’s baselines, provide fast convergence and good gener-
alization but often incur high computation and memory costs due to the large size of
modern models. Conversely, zeroth-order (ZO) algorithms reduce this burden using
estimated gradients, yet their slow convergence in high-dimensional settings limits
practicality. We introduce VAMO (VAriance-reduced Mixed-gradient Optimizer),
a stochastic variance-reduced method that extends mini-batch SGD with full-batch
ZO gradients under an SVRG-style framework. VAMO’s hybrid design utilizes
a two-point ZO estimator to achieve a dimension-agnostic convergence rate of
O(1/T +1/b), where T is the number of iterations and b is the batch-size, surpass-
ing the dimension-dependent slowdown of purely ZO methods and significantly
improving over SGD’s O(1/

√
T) rate. Additionally, we propose a multi-point

variant that mitigates the O(1/b) error by adjusting the number of estimation points
to balance convergence and cost. Importantly, VAMO achieves these gains with
smaller dynamic memory requirements than many FO baselines, making it partic-
ularly attractive for edge deployment. Experiments including traditional neural
network training and LLM finetuning confirm that VAMO not only outperforms
established FO and ZO methods, but also does so with a light memory footprint.

1 INTRODUCTION

First-order (FO) optimization methods, particularly Stochastic Gradient Descent (SGD), have been ap-
plied in training a wide range of machine learning models. For large-scale problems, variance-reduced
(VR) techniques, such as the Stochastic Variance Reduced Gradient (SVRG) algorithm (Johnson &
Zhang, 2013; Allen-Zhu & Yuan, 2016; Reddi et al., 2016), offer significant improvements, achieving
faster convergence rates, O(1/T), compared to the rate of SGD O(1/

√
T) (Reddi et al., 2016).

However, in recent years, extremely large models such as Large Language Models (LLMs) with
billions of parameters have become increasingly prevalent in machine learning. When training these
models, traditional variance reduction methods like SVRG face a major challenge: they require
periodically computing the full gradient over the entire dataset, which requires high cost for such
large-scale models (Reddi et al., 2016). For LLMs, this step results in prohibitive computational and
memory overhead, severely hindering efficient training of large models.

Zeroth-order (ZO) optimization methods present an appealing alternative in this context, as they
completely bypass the need for explicit gradient calculations, estimating gradients using only function
value queries (Nesterov & Spokoiny, 2017; Liu et al., 2018b). This gradient-free characteristic
drastically reduces per-iteration computational cost and memory footprint, making ZO methods
attractive for resource-constrained training of LLMs (Malladi et al., 2023; Gautam et al., 2024).
Despite these advantages, ZO methods typically exhibit slower theoretical convergence rates than FO
methods and, critically, often suffer from a strong dependence on the parameter dimension d (Duchi
et al., 2015; Nesterov & Spokoiny, 2017). Given the vast dimensionality of modern LLMs, this
dependence can render pure ZO approaches impractically slow. This creates a clear dilemma for large
model training: FO methods offer desirable convergence, but suffer from high gradient costs, while
ZO methods are cheaper per step but often too slow and scale poorly with the parameter dimension.
This naturally raises the question: can we devise a hybrid strategy that combines the strengths of both
FO and ZO methods, thereby overcoming their limitations for efficient training of large models?

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

In this work, we propose VAMO (VAriance-reduced Mixed-gradient Optimizer), a new adaptive
hybrid algorithm specifically designed to navigate this dilemma in large-scale non-convex opti-
mization. Our approach integrates FO and ZO techniques within the SVRG framework, aiming
to maintain SVRG’s fast convergence while substantially mitigating its computational burden. A
major breakthrough here is the replacement of the prohibitively expensive full FO gradient ∇f(x̂)
in the snapshot point with an efficient ZO gradient estimate ∇̂f(x̂), which significantly reduces
the computation. This leads to a convergence rate of O(1/T + 1/b), significantly outperforming
FO-SGD, matching the rate of FO-SVRG only with an additional error of O(1/b). The adaptability
of VAMO is then enhanced through several key innovations proposed in this work. First, we extend
VAMO with a multi-point ZO gradient estimator for the full ZO gradient ∇̂f(x̂). Compared to
the standard two-point variant, this extension reduces the additional O(1/b) error term and allows
flexibility in balancing performance and cost by varying the number of query directions. Second,
we introduce a mixing coefficient α into the update rule. Though incorporating the full ZO gradient
can effectively reduce variance, it inevitably introduces estimation error; the coefficient α provides
fine-grained control over this balance by adaptively weighting the FO stochastic gradient and the
ZO correction term. Together, these mechanisms make VAMO highly adaptable across diverse
optimization scenarios. Importantly, despite this hybrid design, our gradient estimator preserves the
unbiasedness of FO-SVRG, distinguishing VAMO from many biased ZO methods and enabling a
rigorous convergence analysis with stronger theoretical guarantees.

2 RELATED WORK

First-order optimization. While Stochastic Gradient Descent (SGD) (Robbins & Monro, 1951)
remains a foundational algorithm in machine learning, its convergence can be slow in large-scale
settings due to high gradient variance (Johnson & Zhang, 2013). Addressing this, the variance-reduced
(VR) methods (Gower et al., 2020), notably SVRG (Johnson & Zhang, 2013; Allen-Zhu & Yuan, 2016;
Reddi et al., 2016) and SAGA (Defazio et al., 2014), represent a significant theoretical advancement.
These algorithms reduce variance by leveraging gradients from past iterates or periodically computing
full-batch gradients and achieve faster convergence rates (e.g., linear convergence under certain
assumptions) compared to SGD (Johnson & Zhang, 2013; Reddi et al., 2016). Despite these theoretical
benefits, a primary practical limitation is the substantial computational and memory cost associated
with full-batch gradients. This overhead can become prohibitive as model sizes and datasets scale.
Another common extension of SGD is the use of adaptive step-sizes, as in Adagrad (Duchi et al.,
2011) and ADAM (Kingma & Ba, 2014). However, the convergence properties of these adaptive
methods remain debated and can be highly sensitive to hyper-parameter choices (Reddi et al., 2019;
Défossez et al., 2020; Zhang et al., 2022). To provide a clearer and more interpretable comparison,
we focus on standard baselines such as SGD and SVRG in our theoretical analysis, which better
isolate the effects of our proposed modifications.

Zeroth-order optimization. Zeroth-order (ZO) optimization approximates gradients using function
evaluations instead of explicit gradient computation, offering reduced computational and memory
overhead (Zhang et al., 2024). This advantage makes them attractive for large-scale problems like
fine-tuning of large language models (Malladi et al., 2023; Gautam et al., 2024; Zhang et al., 2024;
Tang et al., 2024; Ling et al., 2024), and their convergence properties are theoretically studied (Duchi
et al., 2015; Jamieson et al., 2012; Nesterov & Spokoiny, 2017; Liu et al., 2018b). However, the
convergence rates of ZO methods often degrade with increasing parameter dimension d, which makes
them slow for large models compared to FO methods (Liu et al., 2018b;a; Wang et al., 2018). Even
recent applications like MeZO (Malladi et al., 2023) and MeZO-SVRG (Gautam et al., 2024) are
constrained by large parameter dimension. ZO optimization is crucial for black-box scenarios (Chen
et al., 2017; Tu et al., 2019), while tasks like fine-tuning models often have accessible gradients
whose computation is merely expensive. This motivates our hybrid approach, which aims to combine
ZO’s efficiency with FO’s faster convergence by strategically incorporating both types of gradient
information, thereby avoiding the high computational cost associated with FO methods, while also
mitigating the performance degradation that ZO methods often suffer in high-dimensional settings.

Hybrid Zeroth-Order and First-Order Algorithms. Combining the strengths of FO and ZO
optimization is a relatively recent and underexplored direction, with limited established theoretical
analysis. The goal is to enjoy faster convergence while using less computational resource via ZO

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

techniques (Zhang et al., 2024; Li et al., 2024). Early explorations include schemes like applying ZO
to shallower model layers and FO to deeper ones (Zhang et al., 2024), or concurrently computing
and combining FO-SGD and ZO-SGD updates at each step, as in Addax (Li et al., 2024). However,
these initial hybrid approaches may have limitations; for instance, the theoretical convergence rate
of Addax still exhibits dependence on the parameter dimension d (Li et al., 2024), hindering its
effectiveness for large-scale models. Furthermore, many early hybrid strategies often lack explicit
mechanisms to adaptively tune the balance between FO accuracy and ZO query efficiency in response
to varying computational resources or specific problem demands. The scarcity of hybrid strategies that
offer both theoretical convergence and controlled adaptability underscores the novelty of our work.
To contextualize our contributions, Table 1 summarizes the convergence rates and computational
complexities of our proposed methods, referred to as VAMO and VAMO (multi-point) in the table
alongside several FO and ZO algorithms. We provide a detailed explanation of Table 1 in Appendix C.

Table 1: Summary of convergence rate and computational complexity of our proposals given T total
iterations. n represents the total number of samples or component functions, d is the parameter
dimension, b denotes the mini-batch size, S is the number of epochs or outer loops (for SVRG-type
methods, T ≈ Sm where m is the number of inner iterations per epoch), and q signifies the number
of query directions used for ZO estimation.

Method Grad. estimator Stepsize Convergence rate (worst
case as b < n)

Computational complex-
ity

ZO-SVRG Gradient Estimate O(1/d) O(d/T + 1/b) O(nS + 2bT)

FO-SGD Explicit Gradient O(1/
√
T) O(1/

√
T) O(bdT)

FO-SVRG Explicit Gradient O(1) O(1/T) O(dnS + 2bdT)

VAMO Mixed Gradient O(1) O(1/T + 1/b) O(nS + bT + bdT)

VAMO(multi-
point)

Mixed Gradient O(1) O(1/T + (1− q/d)2/b) O(qnS + bqT + bdT)

3 PRELIMINARIES

We consider the following nonconvex finite-sum optimization problem:

min
x∈Rd

f(x) :=
1

n

n∑
i=1

fi(x), (1)

where {fi(x)}ni=1 are n individual nonconvex cost functions. Note that equation 1 is the generic
form of many machine learning problems such as training neural networks, since this is the natural
form arising from empirical risk minimization (ERM). Next we introduce assumptions we will make
throughout the paper and provide the background of ZO gradient estimate.

3.1 ASSUMPTIONS

Throughout this paper, we make the following standard assumptions on the objective function
components fi(x). Let d be the dimension of the optimization variable x.
Assumption 1 (L-smooth). Each function fi : Rd → R is L-smooth for i ∈ [n] := {1, 2, . . . , n}.
That is, for any x,y ∈ Rd, there exists a constant L > 0 such that:

∥∇fi(x)−∇fi(y)∥2 ≤ L∥x− y∥2
This also implies that the full objective function f(x) = 1

n

∑n
i=1 fi(x) is L-smooth.

Assumption 2 (Bounded Variance). The variance of the stochastic gradients is bounded. Specifically,
for any x ∈ Rd, there exists a constant σ2 ≥ 0 such that:

1

n

n∑
i=1

∥∇fi(x)−∇f(x)∥22 ≤ σ2

Here, ∇fi(x) is the gradient of a single component function, which can be viewed as a stochastic
gradient of f(x) if i is chosen uniformly at random from [n].

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

These assumptions are standard in the analysis of stochastic optimization algorithms for nonconvex
problems (Ghadimi & Lan, 2013; Reddi et al., 2016; Nesterov & Spokoiny, 2017).

3.2 CONVERGENCE NOTION

We study the nonconvex optimization problem in equation 1, which is common in modern machine
learning. For convex problems, convergence is typically measured by the expected suboptimality
E[f(xT) − f(x∗)]. In contrast, nonconvex problems often contain multiple local minima and
saddle points (Dauphin et al., 2014; Balasubramanian & Ghadimi, 2022), making global optimality
intractable. Consequently, convergence is evaluated by the first-order stationarity condition via the
expected squared gradient norm E[∥∇f(x)∥22]. An algorithm is deemed convergent when this metric
approaches zero or falls below a tolerance ϵ (Liu et al., 2020; Mu et al., 2024), which is the criterion
used in our theoretical guarantees.

3.3 ZO GRADIENT ESTIMATION

Consider an individual cost function fi : Rd → R that satisfies the conditions in Assumption 1. The
ZO approach estimates gradients using only function evaluations. A commonly used two-point ZO
gradient estimator for fi(x) is defined as (Spall, 1992; Nesterov & Spokoiny, 2017):

∇̂fi(x) =
d

µ
[fi(x+ µui)− fi(x)]ui, for i ∈ [n], (2)

where d is the dimension of the optimization variable x, µ > 0 is a small smoothing parameter, and
{ui}ni=1 are i.i.d. random direction vectors drawn uniformly from the unit Euclidean sphere in Rd

(i.e., ui ∼ U(Sd−1)) (Flaxman et al., 2004; Shamir, 2017; Gao et al., 2018).

In general, for µ > 0, the ZO gradient estimator ∇̂fi(x) is a biased approximation of the true gradient
∇fi(x). The bias tends to decrease as µ → 0. However, in practical implementations, choosing
an excessively small µ can render the function difference fi(x + µui) − fi(x) highly sensitive
to numerical errors or system noise or numerical precision issues, potentially failing to accurately
represent the local change in the function (Lian et al., 2016). A key property of the ZO estimator is
that for µ > 0, it provides an unbiased estimate of the gradient of a smoothed version of fi, often
denoted fi,µ(x) = Ev[fi(x + µv)] (where v is a random vector from a unit ball or sphere), i.e.,
Eui [∇̂fi(x)] = ∇fi,µ(x) (Liu et al., 2020).

To reduce the error of the ZO gradient estimate, a multi-point version can be employed. Instead of
using a single random direction ui, q ≥ 1 i.i.d. random directions {ui,j}qj=1 are sampled for each
fi. Since estimating along each direction requires two function queries, the multi-point ZO gradient
estimator involves a total of 2q function queries and is defined as (Duchi et al., 2015; Liu et al., 2020):

∇̂fi(x) =
d

µq

q∑
j=1

[fi(x+ µui,j)− fi(x)]ui,j , for i ∈ [n]. (3)

We refer to this as the multi-point ZO gradient estimate throughout the paper.

3.4 NOTATIONS

In this paper, we denote ∇f(x),∇fi(x) as FO gradients of f(x) and fi(x), respectively and
∇̂f(x), ∇̂fi(x) as their ZO variants. E[·] operates as the usual mathematical expectation, and
I is a mini-batch of indices sampled from [n] := 1, . . . , n, with size b = |I|. ∥ · ∥2 denotes the
Euclidean (i.e., ℓ2) norm.

4 HYBRID FO AND ZO STOCHASTIC VARIANCE REDUCTION (VAMO)

4.1 FROM SVRG AND ZO-SVRG TO HYBRID SVRG

The principles of FO-SVRG and ZO-SVRG have been extensively explored in optimization literature
(Johnson & Zhang, 2013; Reddi et al., 2016; Liu et al., 2018b; Ji et al., 2019). FO-SVRG, in

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

particular, is known to achieve a linear convergence rate O(1/T) for non-convex problems under
certain conditions, significantly outperforming the convergence rate of FO-SGD (Reddi et al., 2016).
The key step of FO-SVRG involves leveraging a full gradient ∇f(x̂), computed periodically at the
snapshot x̂, to construct a variance-reduced stochastic gradient estimate (Johnson & Zhang, 2013):

ĝFO-SVRG = ∇fI(x)−∇fI(x̂) +∇f(x̂), (4)

where ∇fI(x) = 1
b

∑
i∈I ∇fi(x) is the mini-batch stochastic gradient from a subset I ⊆ [n] of

size b. A crucial property of ĝFO-SVRG is that ĝFO-SVRG is an unbiased gradient estimate of ∇f(x),
E[ĝFO-SVRG] = ∇f(x) (Johnson & Zhang, 2013).

In the ZO setting, ZO-SVRG adapts the SVRG structure by replacing all explicit gradient computa-
tions with ZO estimates derived from function evaluations:

ĝZO-SVRG = ∇̂fI(x)− ∇̂fI(x̂) + ∇̂f(x̂), (5)

where ∇̂fI(x) = (1/b)
∑

i∈I ∇̂fi(x), ∇̂f(x) = ∇̂f[n](x), and ∇̂fi(x) is a ZO gradient estimate,
as defined in Section 3.3. While structurally similar, a key distinction is that ĝZO-SVRG is generally a
biased estimate of ∇f(x) due to the inherent bias of ∇̂fi(x) relative to ∇fi(x) (Liu et al., 2020).
This bias significantly complicates its convergence analysis compared to FO-SVRG.

VAMO (Algorithm 1) is motivated by the high cost of computing the full gradient∇f(x̂) in SVRG for
large-scale models, and introduces a hybrid gradient estimator that combines FO and ZO components
to reduce this overhead:

ĝ = ∇fI(x)− α
(
∇̂fI(x̂)− ∇̂f(x̂)

)
. (6)

Here,∇fI(x) is the standard FO mini-batch stochastic gradient at the current iterate x, while ∇̂f(x̂)
is the ZO estimate of the full gradient at the snapshot x̂.

A critical design choice in equation 6 is the construction of the variance-reduction term
α
(
∇̂fI(x̂)− ∇̂f(x̂)

)
. To preserve the desirable unbiased property of FO-SVRG, we ensure that the

expectation of the ZO variance correction term, E
[
∇̂fI(x̂)− ∇̂f(x̂)

]
, is zero. Using ZO estimates

for both terms within the parentheses, ∇̂fI(x̂) and ∇̂f(x̂), is key to this property and also contributes
to computational savings at the snapshot. Maintaining this unbiasedness is pivotal, as it allows for a
more tractable convergence analysis similar to FO-SVRG, distinguishing our approach from many
ZO algorithms that contend with biased estimators. Furthermore, VAMO introduces a novel mixing
coefficient α > 0. This parameter allows for explicit control over the influence of the ZO variance
correction term. We will provide a detailed theoretical and empirical analysis of α in Appendix K.3.

The introduction of this hybrid structure, particularly the ZO estimation at snapshot and the mixing
coefficient α, means that the convergence analysis of VAMO cannot be trivially inherited from existing
FO-SVRG or ZO-SVRG analyses. It requires a dedicated theoretical investigation to characterize its
behavior and prove its convergence guarantees, which constitutes a core part of our contribution in
Section 4.2. This distinct analytical challenge underscores the theoretical novelty of our work.

Algorithm 1 VAMO (T,m, {ηk}, b, x̄0, µ, α)

1: Input: In addition to parameters in SVRG, set smoothing parameter µ > 0.
2: for s = 1, 2, . . . , S do
3: compute ZO estimate ĝs = ∇̂f(x̄s−1)
4: set xs

0 = x̄s−1

5: for k = 0, 1, . . . ,m− 1 do
6: choose mini-batch Ik of size b
7: compute hybrid FO and ZO gradient blending: vs

k = ∇fIk(xs
k)− α(∇̂fIk(xs

0)− ĝs)
8: update xs

k+1 = xs
k − ηkv

s
k

9: end for
10: set x̄s = xs

m
11: end for
12: return x̄ chosen uniformly at random from {{xs

k}
m−1
k=0 }Ss=1.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

4.2 CONVERGENCE ANALYSIS

In this section, we present the convergence analysis for VAMO using the two-point ZO gradient
estimate in equation 2. Our analysis is based on an upper bound on the expected squared gradient
norm E

[
∥∇f(x̄)∥22

]
, as shown in Theorem 1. As discussed in Section 3.2, for non-convex objectives,

a small value of E
[
∥∇f(x̄)∥22

]
implies convergence to a stationary point.

Theorem 1. Under the assumptions in Section 3.1, and the two-point ZO gradient estimate is used.
The output x̄ of Algorithm 1 satisfies:

E
[
∥∇f(x̄)∥22

]
≤ E[f(x̄0)− f∗]

T γ̄
+

Sχm

T γ̄
, (7)

where T = Sm, f∗ = minx f(x), γ̄ = mink∈[m] γk, and χm =
∑m−1

k=0 χk. γk and χk are
coefficients which depend on {ηk, µ, b, d, α}. The proof is provided in Appendix F.

Compared to FO-SVRG, Theorem 1 has an additional error (Sχm/(T γ̄)) due to the use of the ZO
gradient estimator. To obtain a clear dependence on these parameters and explore deeper insights into
convergence, we simplify equation 7 to suit the specific parameter settings, as shown below.

Corollary 1. Suppose parameters are set as

µ =
1√
T
, ηk = η =

ρ

L
, α =

1

d
, (8)

with βk = β = L, where 0 < ρ ≤ 1 is a universal constant independent of b, d, α, L and T . Then
Theorem 1 implies

E[f(x̄0)− f∗]

T γ̄
≤ O

(
1

T

)
,

Sχm

T γ̄
≤ O

(
1

bT
+

1

b

)
, (9)

yielding the convergence rate:

E
[
∥∇f(x̄)∥22

]
≤ O

(
1

T
+

1

bT
+

1

b

)
. (10)

The proof is provided in Appendix G.

From Corollary 1, we can observe that one advantage of VAMO is that, compared to previous ZO
algorithms, the value of smoothing parameters µ is less restrictive. For example, ZO-SVRG required
µ ≤ O(1/

√
dT), and ZO-SGD required µ ≤ O(1/d

√
T) (Liu et al., 2018b). Compared to FO-SGD,

the algorithm achieves an improved rate of O(1/T) rather than the rate of O(1/
√
T). Compared

to ZO algorithms, the convergence rate is independent of the parameter dimension d. Compared to
FO-SVRG, VAMO suffers an additional error of O(1/b) inherited from (Sχm/(T γ̄)) in equation 1.

4.3 MEMORY EFFICIENCY OF VAMO

Building on the convergence analysis of VAMO in the Section 4.2, where we showed that VAMO
achieves an O(1/T) convergence rate, we now analyze its memory efficiency in large-scale training.

In large-scale training, the total memory footprint of an algorithm is dominated by three components:
model parameters |x|, optimizer states, and dynamic memory for gradient computation (Zhang et al.,
2024). Here |x| denotes the memory required to store the model parameters in full precision, and |xl|
is that of the parameters in layer l. The symbol |al| denotes the memory of activations or intermediate
results of one single sample at layer l.

For FO methods, dynamic memory is dominated by intermediate results, scaling roughly as
∑

l b · |al|
in Table 1 for a mini-batch of size b. FO-SVRG (Johnson & Zhang, 2013) further requires computing
the full gradient at the snapshot point; while this can be accumulated over smaller mini-batches to
reduce peak memory of intermediate results to

∑
l b · |al|, it increases computational cost per epoch

due to multiple passes over all n samples. If the full FO gradient is computed at once, the dynamic
memory of intermediate results will increase to

∑
l n · |al|, which poses a substantial memory burden

for large-scale settings. Therefore, FO-SVRG must trade off compute and memory when computing

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

full FO gradients. In contrast, VAMO leverages full ZO gradient estimates, which do not require
backpropagation, and thus do not need to store intermediate results. Even for estimation of full
batch gradients at once, dynamic memory only reaches maxl |xl| , independent of b , the same as
ZO-SGD, which is much smaller than

∑
l b · |al|. Therefore, VAMO do not need to introduce a

compute–memory trade-off like FO-SVRG in large-scale settings. Regarding optimizer states, VAMO
needs 2|x| for storing full ZO gradient and the snapshot point, while Adagrad and Adam which
need around 2|x| to store first- or second-momentum. However, in practical applications, for faster
computation, Adam and Adagrad usually need to allocate large temporary buffers after activations
have already filled and fragmented GPU memory, spiking the true peak memory . In Table 2, we
can observe that Adam and Adagrad bring much higher peak memory cost in model fine-tuning
experiments. And Table 4 summarizes the three memory components for different optimizers and a
more detailed theoretical and empirical analysis of memory efficiency is provided in Appendix B.

5 VAMO WITH MULTI-POINT ZO GRADIENT ESTIMATION

Building upon the VAMO algorithm previously introduced with a two-point ZO gradient estimator,
this section presents its multi-point ZO estimation variant. This extension is a key component of
VAMO’s adaptive design, as adjusting the number of random directions q in ZO estimate allows
for explicit tuning of the trade-off between computational cost and the precision of the ZO-based
variance reduction, thereby directly influencing convergence performance.

Theorem 2. Suppose assumptions A1 and A2 hold, and the multi-point ZO gradient estimate is used
in Algorithm 1. The gradient norm bound in equation 7 yields the simplified convergence rate:

E
[
∥∇f(x̄)∥22

]
≤ O

(
1

T
+

1

bT
+

1

b

(
1− q

d

)2)
. (11)

With parameter choices µ = 1
q
√
T

, η = ρ
L , α = q

d . The proof is provided in Appendix H.

By contrast with Corollary 1, it can be seen from equation 11 that the use of multi-point version
of VAMO reduces the error O(1/b) in equation 1 by leveraging multiple q direction sampling,
while increasing the computational cost accordingly. If q = d, the algorithm’s convergence rate
become comparable to FO-SVRG. A comprehensive summary and comparison of the computational
complexities and convergence rates of our proposed VAMO methods against various FO and ZO
algorithms can be found in Table 1 presented in Section 2. Briefly, the mixing coefficient α governs
the trade-off between the FO stochastic gradient and the ZO variance-correction: larger α increases
reliance on ZO information while smaller α favors FO updates to mitigate the error of ZO estimation.
A detailed theoretical and empirical analysis of α is provided in Appendix K.3.

6 APPLICATIONS AND EXPERIMENTS

In this section, we present empirical results to validate the effectiveness and adaptability of the
proposed VAMO through three experiments1: (i) an adaptability study on a synthetic task varying the
number of ZO query directions q, (ii) a benchmark on MNIST classification (LeCun et al., 1998),
and (iii) large-scale fine-tuning of GPT-2, GPT-2 Medium (Radford et al., 2019) and RoBERTa (Liu
et al., 2019) on SST-2 (Socher et al., 2013) and MNLI (Williams et al., 2017). We benchmark against
popular FO methods (FO-SGD (Robbins & Monro, 1951), FO-Adagrad (Duchi et al., 2011), FO-
Adam (Kingma & Ba, 2014)) and ZO methods (ZO-SGD (Ghadimi & Lan, 2013), ZO-SVRG (Liu
et al., 2018b)). Full setups and hyperparameters are deferred to Appendix J.

Adaptability Experiment. To highlight VAMO’s adaptive nature, we tested its multi-point ZO
estimation strategy on a synthetic non-convex least-squares task. We compared variants using
q ∈ {1, 3, 5} query directions against FO-SGD. Fig. 1a presents the training loss convergence. Con-
sistent with our theoretical analysis in Table 1, all VAMO variants achieve an O(1/T) convergence
rate, outperforming FO-SGD’s O(1/

√
T) rate. The figure clearly illustrates VAMO’s adaptability:

increasing q improves convergence performance, effectively mitigating the additional O(1/b) error

1Code for all experiments is available in the supplementary material.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

0 2000 4000 6000 8000 10000
Steps

0.0

0.1

0.2

0.3

0.4

0.5

Lo
ss

Nonconvex Least Squares: Adaptability Experiment
FO_SGD
VAMO (q=1)
VAMO (q=3)
VAMO (q=5)

(a)

0 2000 4000 6000 8000 10000
Steps

0.0

0.5

1.0

1.5

2.0

2.5

Lo
ss

MNIST Classification: Convergence Comparison
FO_SGD
ZO_SGD
ZO_SVRG
VAMO (q=1)

(b)

Figure 1: (a) Convergence comparison on a non-convex least-squares task, showing VAMO with
varying ZO query points (q = 1, 3, 5) against FO-SGD. (b) Convergence comparison on the MNIST
classification task against pure FO and ZO methods.

term associated with the two-point (q = 1) variant. This aligns with the theoretical prediction that
this error term diminishes for larger q (scaling towards O((1− q/d)2/b). These results empirically
validate our theory and highlight VAMO’s practical ability to adaptively trade computational cost for
enhanced convergence by managing ZO estimation error, a key aspect of its adaptive design.

Multiclass Classification. On the MNIST benchmark, we trained a Multi-Layer Perceptron (MLP)
and compared VAMO (two-point version, q = 1) against FO optimizer (FO-SGD) and ZO optimizers
(ZO-SGD and ZO-SVRG). As shown in Fig. 1b, VAMO significantly outperforms purely ZO methods,
converging faster and reaching a lower final loss. Its performance is also highly competitive with
FO-SGD, underscoring the practical effectiveness of our hybrid strategy.

Table 2: We measure peak GPU memory consumption (in GB) when fine-tuning RoBERTa-Large
and GPT-2 Medium models under varying batch sizes (bs) with a fixed context length (cl=128).

RoBERTa-Large GPT-2-Medium
Method bs = 16 bs = 32 bs = 64 bs = 16 bs = 32 bs = 64
FO-SGD 4.63 6.72 10.83 7.08 11.50 20.33
FO-Adagrad 7.21 10.46 16.54 10.25 15.74 27.57
FO-Adam 8.62 11.59 17.66 11.59 17.05 29.07
VAMO 5.95 7.83 11.96 8.40 12.62 21.46

Table 3: We show test accuracies and losses (in parentheses) of VAMO when fine-tuning GPT-2,
GPT-2 Medium and RoBERTa-Large on SST-2 and MNLI datasets, compared with FO and ZO
baselines.

Method RoBERTa-Large (MNLI) GPT-2 Medium (MNLI) GPT-2 (SST-2)

FO-SGD 75 (0.67) 60 (0.90) 90 (0.42)
FO-Adagrad 72 (0.74) 53 (1.33) 88 (0.37)
FO-Adam 61 (0.98) 48 (1.03) 98 (0.03)
ZO-SGD 73 (0.99) 66 (0.89) 84 (0.59)
ZO-SVRG 70 (1.01) 69 (0.88) 72 (0.64)
VAMO 78 (0.56) 67 (0.85) 94 (0.16)

Fine-Tuning Experiments. To further assess VAMO’s practical utility and its advantages in
complex, large-scale settings, we further evaluate VAMO on fine-tuning pre-trained large models,
including GPT-2, GPT-2 Medium, and RoBERTa-Large, on the SST-2 and MNLI datasets, comparing

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

against standard FO optimizers (FO-SGD, FO-Adagrad, FO-Adam) and ZO optimizers (ZO-SGD,
ZO-SVRG). Table 2 presents the peak GPU memory usage of different algorithms for batch sizes
of 16, 32, and 64, with the context length fixed at 128. Compared with FO-Adam and FO-Adagrad,
VAMO showcase great memory efficiency, The results show that VAMO’s peak memory cost is
32% (RoBERTa-Large) and 26% (GPT-2 Medium) lower than FO-Adam on average. Compared to
FO-Adagrad, the memory cost of VAMO is 23% (RoBERTa-Large) and 20% (GPT-2 Medium) lower
on average.

Fig. 2 presents the training loss of different algorithms over both iteration steps and wall-clock time.
VAMO achieves markedly faster and more stable convergence than FO-SGD, while maintaining a
similar memory footprint. This improvement is theoretically supported by Table 1: VAMO enjoys a
convergence rate ofO(1/T), superior to theO(1/

√
T) rate of FO-SGD. Compared with ZO methods,

VAMO not only yields better empirical performance but also avoids dependence on the parameter
dimension d, demonstrating stronger scalability for large models. Compared with Adagrad, VAMO
achieves a similar level of performance but with far lower memory overhead.

0 2000 4000 6000 8000 10000 12000
Steps

10−8

10−6

10−4

10−2

100

102

Tr
ai

ni
ng

 L
os

s

Fine-tuning GPT-2 on SST2
ZO-SGD
ZO-SVRG

FO-SGD
FO-Adagrad

FO-Adam
VAMO

100 101 102 103

Time (s)

10−8

10−6

10−4

10−2

100

102

Tr
ai

ni
ng

 L
os

s

Fine-tuning GPT-2 on SST2: Time Plot
ZO-SGD
ZO-SVRG

FO-SGD
FO-Adagrad

FO-Adam
VAMO

0 2000 4000 6000 8000 10000 12000
Steps

10−3

10−2

10−1

100

101

Tr
ai

ni
ng

 L
os

s

Fine-tuning GPT-2 Medium on MNLI
ZO-SGD
ZO-SVRG

FO-SGD
FO-Adagrad

FO-Adam
VAMO

100 101 102 103 104

Time (s)

10−3

10−2

10−1

100

101

Tr
ai

ni
ng

 L
os

s

Fine-tuning GPT-2 Medium on MNLI: Time Plot
ZO-SGD
ZO-SVRG

FO-SGD
FO-Adagrad

FO-Adam
VAMO

0 1000 2000 3000 4000 5000 6000
Steps

10−3

10−2

10−1

100

101

Tr
ai

ni
ng

 L
os

s

Fine-tuning RoBERTa-Large on MNLI
ZO-SGD
ZO-SVRG

FO-SGD
FO-Adagrad

FO-Adam
VAMO

100 101 102 103

Time (s)

10−3

10−2

10−1

100

101

Tr
ai

ni
ng

 L
os

s

Fine-tuning RoBERTa-Large on MNLI: Time Plot
ZO-SGD
ZO-SVRG

FO-SGD
FO-Adagrad

FO-Adam
VAMO

Figure 2: We compare the convergence performance of VAMO when fine-tuning GPT-2, GPT-2
Medium and RoBERTa-Large on SST-2 and MNLI datasets with pure FO and ZO methods.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Table 3 shows the final test accuracies and test losses (in parentheses) of different algorithms for
all tasks. Although VAMO underperforms FO-Adam in convergence speed, it demonstrates better
generalization ability in most tasks. For instance, VAMO’s test accuracy is 8% higher than that of FO-
Adam in RoBERTa-Large experiments and 26% higher in the GPT-2 Medium (MNLI) experiments,
while also achieving lower test losses in both. Compared with other algorithms, VAMO not only
outperforms them in wall-clock convergence, it also achieves a near 10% higher accuracy score
on average, demonstrating both superior convergence speed and better generalization with a light
memory footprint. We believe that the improved generalization ability might come from the use of
full-batch gradients, since all other algorithms only use mini batch gradients, which may result in
insufficient training.

7 CONCLUSION

In this paper, we propose a hybrid FO and ZO variance-reduced algorithm, VAMO, for nonconvex
optimization. We demonstrate that compared to FO-SGD, our algorithm improves the convergence
rate from O(1/

√
T) to a linear rate of O(1/T). Compared to ZO algorithms, our method maintains

convergence performance independent of the parameter dimension d, making it effective for opti-
mizing high-dimensional problems. However, due to the use of two-point ZO gradient estimation,
our convergence result includes an additional error term O(1/b). To mitigate this, we introduce a
multi-point ZO gradient estimation variant, which reduces this error. Unlike previous purely FO or
ZO methods, our hybrid approach leverages the advantages of both, enabling a more flexible trade-
off between efficiency and convergence performance. This makes it more adaptable to real-world
applications with complex constraints. Our theoretical analysis and empirical evaluations, including
comparisons with state-of-the-art methods, demonstrate the effectiveness of our approach.

REPRODUCIBILITY STATEMENT

We have provided detailed descriptions of our algorithms, training settings, and datasets in the main
text and appendix. In addition, all source code and instructions to reproduce our experiments are
included in the supplementary material.

REFERENCES

Zeyuan Allen-Zhu and Yang Yuan. Improved svrg for non-strongly-convex or sum-of-non-convex
objectives. In International conference on machine learning, pp. 1080–1089. PMLR, 2016.

Krishnakumar Balasubramanian and Saeed Ghadimi. Zeroth-order nonconvex stochastic optimization:
Handling constraints, high dimensionality, and saddle points. Foundations of Computational
Mathematics, 22(1):35–76, 2022.

Pin-Yu Chen, Huan Zhang, Yash Sharma, Jinfeng Yi, and Cho-Jui Hsieh. Zoo: Zeroth order
optimization based black-box attacks to deep neural networks without training substitute models.
In Proceedings of the 10th ACM workshop on artificial intelligence and security, pp. 15–26, 2017.

Yann N Dauphin, Razvan Pascanu, Caglar Gulcehre, Kyunghyun Cho, Surya Ganguli, and Yoshua
Bengio. Identifying and attacking the saddle point problem in high-dimensional non-convex
optimization. Advances in neural information processing systems, 27, 2014.

Aaron Defazio, Francis Bach, and Simon Lacoste-Julien. Saga: A fast incremental gradient method
with support for non-strongly convex composite objectives. Advances in neural information
processing systems, 27, 2014.

Alexandre Défossez, Léon Bottou, Francis Bach, and Nicolas Usunier. A simple convergence proof
of adam and adagrad. arXiv preprint arXiv:2003.02395, 2020.

John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning and
stochastic optimization. Journal of machine learning research, 12(7), 2011.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

John C Duchi, Michael I Jordan, Martin J Wainwright, and Andre Wibisono. Optimal rates for
zero-order convex optimization: The power of two function evaluations. IEEE Transactions on
Information Theory, 61(5):2788–2806, 2015.

Abraham D Flaxman, Adam Tauman Kalai, and H Brendan McMahan. Online convex optimization
in the bandit setting: gradient descent without a gradient. arXiv preprint cs/0408007, 2004.

Xiang Gao, Bo Jiang, and Shuzhong Zhang. On the information-adaptive variants of the admm: an
iteration complexity perspective. Journal of Scientific Computing, 76:327–363, 2018.

Tanmay Gautam, Youngsuk Park, Hao Zhou, Parameswaran Raman, and Wooseok Ha. Variance-
reduced zeroth-order methods for fine-tuning language models. arXiv preprint arXiv:2404.08080,
2024.

Saeed Ghadimi and Guanghui Lan. Stochastic first-and zeroth-order methods for nonconvex stochastic
programming. SIAM journal on optimization, 23(4):2341–2368, 2013.

Robert M Gower, Mark Schmidt, Francis Bach, and Peter Richtárik. Variance-reduced methods for
machine learning. Proceedings of the IEEE, 108(11):1968–1983, 2020.

Kevin G Jamieson, Robert Nowak, and Ben Recht. Query complexity of derivative-free optimization.
Advances in Neural Information Processing Systems, 25, 2012.

Kaiyi Ji, Zhe Wang, Yi Zhou, and Yingbin Liang. Improved zeroth-order variance reduced algorithms
and analysis for nonconvex optimization. In International conference on machine learning, pp.
3100–3109. PMLR, 2019.

Rie Johnson and Tong Zhang. Accelerating stochastic gradient descent using predictive variance
reduction. Advances in neural information processing systems, 26, 2013.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

Lihua Lei, Cheng Ju, Jianbo Chen, and Michael I Jordan. Non-convex finite-sum optimization via
scsg methods. Advances in neural information processing systems, 30, 2017.

Zeman Li, Xinwei Zhang, Peilin Zhong, Yuan Deng, Meisam Razaviyayn, and Vahab Mirrokni.
Addax: Utilizing zeroth-order gradients to improve memory efficiency and performance of sgd for
fine-tuning language models. arXiv preprint arXiv:2410.06441, 2024.

Xiangru Lian, Huan Zhang, Cho-Jui Hsieh, Yijun Huang, and Ji Liu. A comprehensive linear
speedup analysis for asynchronous stochastic parallel optimization from zeroth-order to first-order.
Advances in neural information processing systems, 29, 2016.

Zhenqing Ling, Daoyuan Chen, Liuyi Yao, Yaliang Li, and Ying Shen. On the convergence of
zeroth-order federated tuning for large language models. In Proceedings of the 30th ACM SIGKDD
Conference on Knowledge Discovery and Data Mining, pp. 1827–1838, 2024.

Liu Liu, Minhao Cheng, Cho-Jui Hsieh, and Dacheng Tao. Stochastic zeroth-order optimization via
variance reduction method. arXiv preprint arXiv:1805.11811, 2018a.

Sijia Liu, Bhavya Kailkhura, Pin-Yu Chen, Paishun Ting, Shiyu Chang, and Lisa Amini. Zeroth-
order stochastic variance reduction for nonconvex optimization. Advances in neural information
processing systems, 31, 2018b.

Sijia Liu, Pin-Yu Chen, Bhavya Kailkhura, Gaoyuan Zhang, Alfred O Hero III, and Pramod K
Varshney. A primer on zeroth-order optimization in signal processing and machine learning:
Principals, recent advances, and applications. IEEE Signal Processing Magazine, 37(5):43–54,
2020.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike
Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining
approach. arXiv preprint arXiv:1907.11692, 2019.

Sadhika Malladi, Tianyu Gao, Eshaan Nichani, Alex Damian, Jason D Lee, Danqi Chen, and Sanjeev
Arora. Fine-tuning language models with just forward passes. Advances in Neural Information
Processing Systems, 36:53038–53075, 2023.

Huaiyi Mu, Yujie Tang, and Zhongkui Li. Variance-reduced gradient estimator for nonconvex
zeroth-order distributed optimization. arXiv preprint arXiv:2409.19567, 2024.

Yurii Nesterov and Vladimir Spokoiny. Random gradient-free minimization of convex functions.
Foundations of Computational Mathematics, 17(2):527–566, 2017.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

Sashank J Reddi, Ahmed Hefny, Suvrit Sra, Barnabas Poczos, and Alex Smola. Stochastic variance
reduction for nonconvex optimization. In International conference on machine learning, pp.
314–323. PMLR, 2016.

Sashank J Reddi, Satyen Kale, and Sanjiv Kumar. On the convergence of adam and beyond. arXiv
preprint arXiv:1904.09237, 2019.

Herbert Robbins and Sutton Monro. A stochastic approximation method. The annals of mathematical
statistics, pp. 400–407, 1951.

Ohad Shamir. An optimal algorithm for bandit and zero-order convex optimization with two-point
feedback. Journal of Machine Learning Research, 18(52):1–11, 2017.

Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D Manning, Andrew Y Ng, and
Christopher Potts. Recursive deep models for semantic compositionality over a sentiment treebank.
In Proceedings of the 2013 conference on empirical methods in natural language processing, pp.
1631–1642, 2013.

James C Spall. Multivariate stochastic approximation using a simultaneous perturbation gradient
approximation. IEEE transactions on automatic control, 37(3):332–341, 1992.

Xinyu Tang, Ashwinee Panda, Milad Nasr, Saeed Mahloujifar, and Prateek Mittal. Private fine-tuning
of large language models with zeroth-order optimization. arXiv preprint arXiv:2401.04343, 2024.

Chun-Chen Tu, Paishun Ting, Pin-Yu Chen, Sijia Liu, Huan Zhang, Jinfeng Yi, Cho-Jui Hsieh, and
Shin-Ming Cheng. Autozoom: Autoencoder-based zeroth order optimization method for attacking
black-box neural networks. In Proceedings of the AAAI conference on artificial intelligence,
volume 33, pp. 742–749, 2019.

Yining Wang, Simon Du, Sivaraman Balakrishnan, and Aarti Singh. Stochastic zeroth-order opti-
mization in high dimensions. In International conference on artificial intelligence and statistics,
pp. 1356–1365. PMLR, 2018.

Adina Williams, Nikita Nangia, and Samuel R Bowman. A broad-coverage challenge corpus for
sentence understanding through inference. arXiv preprint arXiv:1704.05426, 2017.

Yihua Zhang, Pingzhi Li, Junyuan Hong, Jiaxiang Li, Yimeng Zhang, Wenqing Zheng, Pin-Yu
Chen, Jason D Lee, Wotao Yin, Mingyi Hong, et al. Revisiting zeroth-order optimization for
memory-efficient llm fine-tuning: A benchmark. arXiv preprint arXiv:2402.11592, 2024.

Yushun Zhang, Congliang Chen, Naichen Shi, Ruoyu Sun, and Zhi-Quan Luo. Adam can converge
without any modification on update rules. Advances in neural information processing systems, 35:
28386–28399, 2022.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A THE USE OF LARGE LANGUAGE MODELS

The use of large language models (LLMs) in this work was limited to writing assistance and
minor code editing. Theoretical analysis and experimental results were conducted without LLM
involvement.

B DETAILED DISCUSSION ON MEMORY EFFICIENCY

We have made a brief analysis of VAMO’s memory efficiency in Section 4.3. In this section, we
analyse VAMO’s memory profile in detail and compare it against standard FO and ZO optimizers,
theoretically and empirically.

B.1 THEORETICAL ANALYSIS

We adapt the memory analysis framework of Zhang et al. (2024) to compare the peak memory
consumption of different optimizers. Table 4 summarizes the decomposition into three components:
the model (Weight Mem.), the optimizer states (Opt. State Mem.), and dynamic allocation for
computing gradients and optimization (Dynamic Mem.).

Table 4: Comparison of the instant peak memory consumption of different optimizers when fine-
tuning the full model. Here |x| denotes the memory required to store the model parameters in full
precision, and |xl| is that of the parameters in layer l. The symbol |al| denotes the memory of
intermediate activations of one single sample at layer l, where b and n correspond to the mini-batch
size and the total dataset size, respectively. In Dynamic Mem., b · |al| represents the memory of
saving mini-batch activations at layer l, while |xl| also accounts for temporarily saved gradients, as
they have the same size as the corresponding parameters (Zhang et al., 2024).

Optimizer Weight Mem. Dynamic Mem. (Grad.&Opt.) Opt. State Mem.

FO-SGD |x|
∑

l max{b · |al|, |xl|} 0

FO-SVRG (accumulation) |x|
∑

l max{b · |al|, |xl|} 2|x|
FO-SVRG (full batch at once) |x|

∑
l max{n · |al|, |xl|} 2|x|

FO-Adam |x|
∑

l max{b · |al|, |xl|} 2|x|
FO-Adagrad |x|

∑
l max{b · |al|, |xl|} |x|

VAMO |x|
∑

l max{b · |al|, |xl|} 2|x|
ZO-SGD |x| maxl |xl| 0

The advantage of ZO methods is the removal of backpropagation, which eliminates the need to store
intermediate activations |al| for each input example during the forward pass. In FO optimizers, the
total activation memory grows as b ·

∑
l |al| for a mini-batch of size b, while ZO methods completely

avoid this dependence on the batch size. This reduction in dynamic memory cost becomes especially
significant when b is large in large-scale settings. Moreover, ZO gradients can be estimated in a
layer-wise manner, so only the gradients of the currently processed layer need to be stored, further
lowering the peak memory footprint compared to FO methods (Zhang et al., 2024). For ZO-SGD,
dynamic memory is dominated by a temporary copy of the parameters of a single layer for gradient
estimation, resulting in a peak memory of maxl |xl|, independent of batch size, and no extra optimizer
state is required.

In contrast, all FO methods require storing intermediate activations or other temporary variables
to compute gradients, which results in dynamic memory that grows with the mini-batch size. FO-
SVRG (Johnson & Zhang, 2013) additionally needs to compute the full gradient at the snapshot point.
Although this full gradient can be obtained by accumulating gradients over smaller mini-batches,
reducing dynamic memory of intermediate results per step to b · |al|, it comes at the expense of
higher computational cost per epoch due to multiple passes over all mini-batches. Computing the
full gradient in a single full batch would substantially increase dynamic memory of intermediate
results to n · |al|, requiring a compute-memory trade-off as commonly done in FO-SVRG. In contrast,
VAMO leverages ZO estimation to compute the full gradient without storing intermediate activations,
so even when computing over the full batch at once, the peak dynamic memory is only maxl |xl|,

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

the same as ZO-SGD, and no compute–memory trade-off is required. This makes VAMO highly
memory-efficient for large mini-batches or large models. Regarding optimizer state, adaptive methods
such as Adam (Kingma & Ba, 2014) or Adagrad (Duchi et al., 2011) require additional memory
for first- or second-order momentum, resulting in |x|–2|x| extra memory per step. FO-SVRG and
VAMO need 2|x| optimizer state for storing the snapshot and full gradient (Johnson & Zhang, 2013).

B.2 EMPIRICAL RESULTS ANALYSIS

To empirically validate our theoretical analysis, we conducted full-parameter fine-tuning of a
pre-trained RoBERTa-large model (Liu et al., 2019) and GPT-2 medium model (Radford et al., 2019)
on the MNLI dataset (Williams et al., 2017) with FP32 (see Section 6). We measured the peak GPU
memory consumption of VAMO, FO-SGD, FO-Adagrad and FO-Adam by varying the batch size
(with sequence length fixed at 128). The detailed results are presented in Table 2 in Section 6.

We observe that VAMO’s peak memory consumption is consistently only marginally higher than
FO-SGD, with the difference stemming from the overhead of storing the ZO full gradient and the
snapshot point for variance reduction. Importantly, as the batch size increases, the scaling trend
of VAMO almost parallels that of FO-SGD, confirming that the intermediate results for computing
mini-batch FO gradients dominates the memory cost in both methods. Notably, the ZO full gradient
in VAMO does not require storing additional intermediate activations, further preventing the memory
blow-up typically associated with FO-SVRG.

Compared with adaptive methods like Adam and Adagrad, it seems that there is no improvement of
memory cost in theoretical analysis. However, in practice, VAMO achieves a substantial improvement
in peak memory compared to FO-Adam and Adagrad. Adaptive methods like Adam and Adagrad,
for faster computation, allocate large, temporary buffers after activations have already filled and
fragmented GPU memory, spiking the true peak memory. This "last-minute" allocation often fails to
reuse memory efficiently, spiking the true peak memory. VAMO’s update is linear, in-place, and relies
on static states. It never requests these problematic temporary buffers, thus avoiding the allocation
spike entirely and resulting in a lower practical footprint. Taken together, these results highlight
VAMO’s practical advantage: for a negligible increase in memory compared to FO-SGD, it achieves
markedly better convergence, as shown in Section 6, while remaining far more memory efficient than
Adam and Adagrad. This balance makes VAMO particularly well suited for memory-constrained
large-scale fine-tuning tasks.

C DETAILED DISCUSSING OF CONVERGENCE AND COMPLEXITY

In this section, we provide additional discussion of the convergence rates and computational com-
plexities summarized in Table 1 (see Section 2). Table 1 summarizes the convergence rates and
computational complexities of our proposed methods, referred to as VAMO and VAMO (multi-point)
in the table alongside several FO and ZO algorithms.

For ZO methods, ZO-SVRG is listed with a complexity of O(nS + 2bT) function queries. Among
FO methods, FO-SGD has the lowest computational cost O(bdT) but also exhibits the slowest
convergence rate of O(1/

√
T). FO-SVRG improves convergence to O(1/T) but increases the cost

to O(dnS + 2bdT) due to full gradient computations. Our proposed VAMO maintains a complexity
of O(nS + bT + bdT), similar to ZO-SVRG in terms of nS but replacing the ndS full gradient
cost of FO-SVRG with a cheaper nS ZO estimation cost for snapshots, while achieving a fast
O(1/T + 1/b) convergence rate. This makes its computational complexity significantly slower
than FO-SVRG, especially when d is large. The VAMO (multi-point) variant has a complexity
of O(qnS + qbT + bdT). Here, increasing q (the number of ZO sampling directions) leads to
higher complexity but also improves the convergence rate to O(1/T + (1− q/d)2/b), reducing the
O(1/b) error term and making its performance more comparable to FO-SVRG, particularly if q ≪ d.
This demonstrates that our proposed methods provide a flexible and often more efficient trade-off
between computational cost and convergence performance compared to existing pure FO or ZO
approaches. Our work further develops such an adaptive hybrid approach by specifically integrating
ZO estimation within the SVRG structure, aiming to reduce the full gradient cost while preserving
strong convergence guarantees independent of the parameter dimension.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

D ZO GRADIENT ESTIMATOR

Lemma 1. Under the assumptions in Section 3.1, and define fµ = Eu∼Ub
[f(x+ µu)] where Ub is

the uniform distribution over the unit Euclidean ball. Then:

(i) fµ is L-smooth with

∇fµ(x) = Eu

[
∇̂f(x)

]
. (12)

(ii) For any x ∈ Rd:

|fµ(x)− f(x)| ≤ Lµ2

2
, (13)

∥∇fµ(x)−∇f(x)∥22 ≤
µ2L2d2

4
, (14)

1

2
∥∇f(x)∥22 −

µ2L2d2

4
≤ ∥∇fµ(x)∥22 ≤ 2∥∇f(x)∥22 +

µ2L2d2

2
. (15)

(iii) For any x ∈ Rd:

Eu

[
∥∇̂f(x)−∇fµ(x)∥22

]
≤ 2d∥∇f(x)∥22 +

µ2L2d2

2
. (16)

Proof. See the proof of Lemma 1 in (Liu et al., 2018b)

Lemma 2. Under the conditions of Lemma 1:

(i) For any x ∈ Rd:
∇fµ(x) = Eu

[
∇̂f(x)

]
. (17)

where ∇̂f(x) is the multi-point gradient estimate.
(ii) For any x ∈ Rd:

E
[
∥∇̂f(x)−∇fµ(x)∥22

]
≤ 2d

q
∥∇f(x)∥22 +

µ2L2d2

2q
. (18)

Proof. See the proof of Lemma 2 in (Liu et al., 2018b)

E SECOND-ORDER MOMENT OF THE HYBRID GRADIENT ESTIMATOR

The primary goal of our convergence analysis is to establish theoretical guarantees for VAMO in
solving non-convex optimization problems. Specifically, we aim to bound the expected squared norm
of the gradient, E[∥∇f(x̄)∥22], as shown in Theorem 1. Due to the hybrid structure of the gradient
estimator vs

k used in VAMO, directly analyzing the final convergence metric is challenging. As a key
intermediate step, we first derive an upper bound on the second-order moment E[∥vs

k∥22].
Proposition 1. Under the assumptions in Section 3.1, and two-point ZO gradient estimate is used in
Algorithm 1. The blended gradient vs

k in Step 7 of Algorithm 1 satisfies,

E
[
∥vs

k∥22
]
≤ 4

(
2α2 − 2α+ 1 +

24dδn
b

α2

)
E
[
∥∇f(xs

k)∥22
]

+
12δn(4d+ 1)L2

b
α2E

[
∥xs

0 − xs
k∥22
]

+
9δn
b

d2L2µ2α2 +
4σ2

b

(
24dδnα

2 + (1− α)2
)
,

(19)

where δn = 1 if the mini-batch contains i.i.d. samples from [n] with replacement, and δn = I(b < n)
if samples are randomly selected without replacement. Here I(b < n) is 1 if b < n, and 0 if b = n.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Proof. In Algorithm 1, we recall that the mini-batch I is chosen uniformly randomly (with replace-
ment). It is known from Lemma 1 and Lemma 3 that

EIk

[
∇fIk

(xs
k)− ∇̂fIk

(xs
0)
]
= ∇f(xs

k)− ∇̂f(xs
0). (20)

We then rewrite vs
k as

vs
k = (1− α)∇fIk

(xs
k)

+ α
(
∇fIk

(xs
k)− ∇̂fIk

(xs
0)− EIk

[
∇fIk

(xs
k)− ∇̂fIk

(xs
0)
]
+∇f(xs

k)
) (21)

Taking the expectation of ∥vs
k∥

2
2 with respect to all the random variables, we have

E
[
∥vs

k∥
2
2

]
≤ 2 (1− α)

2 E
[
∥∇fIk

(xs
k)∥

2
2

]
+ 2α2E

[∥∥∥∇fIk
(xs

k)− ∇̂fIk
(xs

0)− EIk

[
∇fIk

(xs
k)− ∇̂fIk

(xs
0)
]
+∇f(xs

k)
∥∥∥2
2

]
≤ 4α2E

[∥∥∥∇fIk
(xs

k)− ∇̂fIk
(xs

0)− EIk

[
∇fIk

(xs
k)− ∇̂fIk

(xs
0)
]∥∥∥2

2

]
+ 4α2E

[
∥∇f(xs

k)∥
2
2

]
+ 2 (1− α)

2 E
[
∥∇fIk

(xs
k)∥

2
2

]
(22)

where the first inequality holds due to Lemma 4. Based on equation 20, we note that the following
holds

n∑
i=1

{
∇fi(xs

k)− ∇̂fi(xs
0)− EIk

[
∇fIk

(xs
k)− ∇̂fIk

(xs
0)
]}

= n(∇f(xs
k)− ∇̂f(xs

0))− n(∇f(xs
k)− ∇̂f(xs

0)) = 0.

(23)

Based on equation 23 and applying Lemma 1 and Lemma 3, the first term at the right hand side
(RHS) of equation 22 yields

E
[∥∥∥∇fIk

(xs
k)− ∇̂fIk

(xs
0)− EIk

[
∇fIk

(xs
k)− ∇̂fIk

(xs
0)
]∥∥∥2

2

]
≤ δn

bn

n∑
i=1

E
[
∥∇fi(xs

k)− ∇̂fi(xs
0)− (∇f(xs

k)− ∇̂f(xs
0))∥22

]
= E

[
δn
b

(
1

n

n∑
i=1

∥∇fi(xs
k)− ∇̂fi(xs

0)∥22 − ∥∇f(xs
k)− ∇̂f(xs

0)∥22

)]

≤ δn
bn

n∑
i=1

E
[∥∥∥∇fi(xs

k)− ∇̂fi(xs
0)
∥∥∥2
2

]
.

(24)

where the first inequality holds due to Lemma 1 and Lemma 3 (taking the expectation with respect to
mini-batch I), we define δn as

δn =

{
1 if I contains i.i.d. samples with replacement (Lemma 3)
I(b < n) if I contains samples without replacement (Lemma 4). (25)

Substituting equation 24 into equation 22, we obtain

E
[
∥vs

k∥
2
2

]
≤ 2 (1− α)

2 E
[
∥∇fIk

(xs
k)∥

2
2

]
+

4α2δn
bn

n∑
i=1

E
[∥∥∥∇fi(xs

k)− ∇̂fi(xs
0)
∥∥∥2
2

]
+ 4α2E

[
∥∇f(xs

k)∥
2
2

]
.

(26)

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Similar to Lemma 1, we introduce a smoothing function fi,µ of fi, and continue to bound the second
term at the right hand side (RHS) of equation 26. This yields

E
[
∥∇fi(xs

k)− ∇̂fi(xs
0)∥22

]
≤ 3E

[
∥∇fi(xs

k)−∇fi,µ(xs
k)∥22

]
+ 3E

[
∥∇fi,µ(xs

0)− ∇̂fi(xs
0)∥22

]
+ 3E

[
∥∇fi,µ(xs

k)−∇fi,µ(xs
0)∥22

]
≤ 6dE[∥∇fi(xs

0)∥22] +
9

4
L2d2µ2 + 3E

[
∥∇fi,µ(xs

k)−∇fi,µ(xs
0)∥22

]
(27)

Since both fi and fi,µ are L-smooth (Lemma 1), we have

E
[
∥∇fi,µ(xs

k)−∇fi,µ(xs
0)∥22

]
≤ L2E

[
∥xs

k − xs
0∥22
]
,

E
[
∥∇fi(xs

0)∥22
]
≤ 2E

[
∥∇fi(xs

0)−∇fi(xs
k)∥22

]
+ 2E

[
∥∇fi(xs

k)∥22
]

≤ 2L2E
[
∥xs

0 − xs
k∥22
]
+ 2E

[
∥∇fi(xs

k)∥22
]
.

(28)

We obtain

E
[
∥∇fi(xs

k)− ∇̂fi(xs
0)∥22

]
≤ 12dE[∥∇fi(xs

k)∥22] + (12d+ 3)L2E
[
∥xs

0 − xs
k∥22
]
+

9

4
L2d2µ2

≤ 24dE
[
∥∇fi(xs

k)−∇f(xs
k)∥22

]
+ 24dE

[
∥∇f(xs

k)∥22
]

+ (12d+ 3)L2E
[
∥xs

0 − xs
k∥22
]
+

9

4
L2d2µ2

≤ 24dσ2 + 24dE
[
∥∇f(xs

k)∥22
]
+ (12d+ 3)L2E

[
∥xs

0 − xs
k∥22
]
+

9

4
L2d2µ2,

(29)

where the last inequality holds due to Assumption in Section 3.1.
We bound the first term at the right hand side (RHS) of equation 26. This yields

E
[
∥∇fIk

(xs
k)∥

2
2

]
≤ 2E

[
∥∇fIk

(xs
k)−∇f(xs

k)∥
2
2

]
+ 2E

[
∥∇f(xs

k)∥
2
2

]
≤ 2

b
σ2 + 2E

[
∥∇f(xs

k)∥
2
2

] (30)

Therefore, we have

E
[
∥vs

k∥22
]
≤ 4(1− α)2

b
σ2 + 4(1− α)2E

[
∥∇f(xs

k)∥
2
2

]
+

12δn(4d+ 1)L2

b
α2E

[
∥xs

0 − xs
k∥22
]
+

(
4 +

96dδn
b

)
α2E

[
∥∇f(xs

k)∥22
]

+
9δn
b

d2L2µ2α2 +
96dσ2δn

b
α2.

= 4

(
2α2 − 2α+ 1 +

24dδn
b

α2

)
E
[
∥∇f(xs

k)∥22
]

+
12δn(4d+ 1)L2

b
α2E

[
∥xs

0 − xs
k∥22
]

+
9δn
b

d2L2µ2α2 +
4σ2

b

(
24dδnα

2 + (1− α)2
)
.

(31)

The bound on E[∥vs
k∥22], detailed in Proposition 1, plays a central role in our analysis. It enables

us to control the error accumulation during the optimization process and ultimately leads to the
convergence rate stated in Theorem 1. Based on Proposition 1, Theorem 1 provides the convergence
rate of VAMO in terms of an upper bound on E

[
∥∇f(x̄)∥22

]
at the solution x̄.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

F PROOF OF THEOREM 1

Proof. Since f is L-smooth (Lemma 1), from Lemma 5 we have

f(xs+1
k) ≤ f(xs

k) + ⟨∇f(xs
k),x

s+1
k − xs

k⟩+
L

2
∥xs+1

k − xs
k∥22

= f(xs
k)− ηk⟨∇f(xs

k),v
s
k⟩+

L

2
η2k∥vs

k∥22
(32)

where the last equality holds due to xs
k+1 = xs

k − ηkv
s
k. Since xs

k and xs
0 are independent of I and

random directions u used for ZO gradient estimates, from equation 12 we obtain

Eu,Ik
[vs

k] =Eu,Ik

[
∇fIk

(xs
k)− α

(
∇̂fIk

(xs
0)− ∇̂f(xs

0)
)]

=∇f(xs
k)− α (∇fµ(xs

0)−∇fµ(xs
0)) = ∇f(xs

k).
(33)

Combining equation 32 and equation 33, we have

E
[
f(xs

k+1)
]
≤ E [f(xs

k)]− ηkE
[
∥∇f(xs

k)∥22
]
+

L

2
η2kE

[
∥vs

k∥22
]
, (34)

where the expectation is taken with respect to all random variables.
At RHS of equation 34, the upper bound on E

[
∥vs

k∥22
]

is given by Proposition 1,

E
[
∥vs

k∥22
]
≤ 4

(
2α2 − 2α+ 1 +

24dδn
b

α2

)
E
[
∥∇f(xs

k)∥22
]

+
12δn(4d+ 1)L2

b
α2E

[
∥xs

0 − xs
k∥22
]

+
9δn
b

d2L2µ2α2 +
4σ2

b

(
24dδnα

2 + (1− α)2
)
.

(35)

In equation 34, we further bound E
[
∥xs

k+1 − xs
0∥22
]

as,

E
[
∥xs

k+1 − xs
0∥22
]
= E

[
∥xs

k+1 − xs
k + xs

k − xs
0∥22
]

= η2kE
[
∥vs

k∥22
]
+ E

[
∥xs

k − xs
0∥22
]
− 2ηkE [⟨vs

k,x
s
k − xs

0⟩]
= η2kE

[
∥vs

k∥22
]
+ E

[
∥xs

k − xs
0∥22
]
− 2ηkE [⟨∇f(xs

k),x
s
k − xs

0⟩]

≤ η2kE
[
∥vs

k∥22
]
+ E

[
∥xs

k − xs
0∥22
]
+ 2ηkE

[
1

2βk
∥∇f(xs

k)∥22 +
βk

2
∥xs

k − xs
0∥22
]
,

(36)

We introduce a Lyapunov function with respect to fµ,

Rs
k = E

[
f(xs

k) + ck∥xs
k − xs

0∥22
]
, (37)

for some ck > 0, Substituting equation 34 and equation 36 into Rs
k+1, we obtain

Rs
k+1 = E

[
f(xs

k+1) + ck+1∥xs
k+1 − xs

0∥22
]

≤ E
[
f(xs

k)− ηk∥∇f(xs
k)∥22 +

L

2
η2k∥vs

k∥22
]
+ E

[
ck+1η

2
k∥vs

k∥22 + ck+1∥xs
k − xs

0∥s2
]

+ E
[
ck+1ηk
βk

∥∇f(xs
k)∥22 + ck+1βkηk∥xs

k − xs
0∥22
]

= E [f(xs
k)]−

(
ηk −

ck+1ηk
βk

)
E
[
∥∇f(xs

k)∥22
]

+ (ck+1 + ck+1βkηk)E
[
∥xs

k − xs
0∥22
]
+

(
L

2
η2k + ck+1η

2
k

)
E
[
∥vs

k∥22
]
.

(38)

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Moreover, substituting equation 35 into equation 38, we have

Rs
k+1 ≤E [f(xs

k)]−
(
ηk −

ck+1ηk
βk

)
E
[
∥∇f(xs

k)∥22
]
+ (ck+1 + ck+1βkηk)E

[
∥xs

k − xs
0∥22
]

+

(
L

2
η2k + ck+1η

2
k

)
12(4d+ 1)L2δn

b
α2E

[
∥xs

k − xs
0∥22
]

+ 4

(
L

2
η2k + ck+1η

2
k

)(
2α2 − 2α+ 1 +

24dδn
b

α2

)
E
[
∥∇f(xs

k)∥22
]

+

(
L

2
η2k + ck+1η

2
k

)(
9δn
b

d2L2µ2α2 +
4σ2

b

(
24dδnα

2 + (1− α)2
))

.

(39)
The definition of ck is given by

ck = ck+1 + βkηkck+1 +

(
L

2
η2k + ck+1η

2
k

)
12(4d+ 1)L2δn

b
α2 (40)

Based on the definition of ck and the definition of Rs
k in equation 37, we can simplify the inequality

equation 39 as

Rs
k+1 ≤ Rs

k −
(
ηk −

ck+1ηk
βk

)
E
[
∥∇f(xs

k)∥22
]

+ 4

(
L

2
η2k + ck+1η

2
k

)(
2α2 − 2α+ 1 +

24dδn
b

α2

)
E
[
∥∇f(xs

k)∥22
]

+

(
L

2
η2k + ck+1η

2
k

)(
9δn
b

d2L2µ2α2 +
4σ2

b

(
24dδnα

2 + (1− α)2
))

= Rs
k − γkE

[
∥∇f(xs

k)∥22
]
+ χk,

(41)

where γk and χk are coefficients given by

γk =

(
1− ck+1

βk

)
ηk − 4

(
L

2
+ ck+1

)(
2α2 − 2α+ 1 +

24dδn
b

α2

)
η2k,

χk =

(
L

2
+ ck+1

)(
9δn
b

d2L2µ2α2 +
4σ2

b

(
24dδnα

2 + (1− α)2
))

η2k

(42)

Taking a telescopic sum for equation 42, we obtain

Rs
m ≤ Rs

0 −
m−1∑
k=0

γkE
[
∥∇f(xs

k)∥22
]
+ χm, (43)

where χm =
∑m−1

k=0 χk. It is known from equation 37 that,

Rs
0 = E [f(xs

0)] , Rs
m = E [f(xs

m)] , (44)

where the last equality used the fact that cm = 0, since x̄s−1 = xs
0 and x̄s = xs

m, we obtain

Rs
0 −Rs

m = E [f(x̄s−1)− f(x̄s)] . (45)

Telescoping the sum for s = 1, 2, . . . , S, we obtain,

S∑
s=1

m−1∑
k=0

γkE[∥∇f(xs
k)∥22] ≤ E[f(x̄0)− f(x̄S)] + Sχm. (46)

let γ̄ = mink γk and we choose x̄ uniformly random from {{xs
k}

m−1
k=0 }Ss=1, then we obtain

E[∥∇f(x̄)∥22] ≤
E[f(x̄0)− f∗]

T γ̄
+

Sχm

T γ̄
. (47)

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

G PROOF OF COROLLARY 1

Proof. We start by rewriting ck in equation 40 as

ck = (1 + θ)ck+1 +
6(1 + 4d)L3δnη

2

b
α2 (48)

where θ = βη + 12(1+4d)L2δnη
2

b α2. The recursive formula equation 48 implies that ck ≤ c0 for any
k, and

c0 =
6(1 + 4d)L3δnη

2α2

b

(1 + θ)m − 1

θ
. (49)

Based on the choice of η = ρ
L , α = 1

d , and β = L, we have

θ = ρ+
12(4d+ 1)δnρ

2

bd2
(50)

where we have used the fact that δn ≤ 1, Substituting equation 50 into equation 49, we have

ck ≤ c0 =
6(1 + 4d)L3δnα

2

b

η2

θ
[(1 + θ)m − 1] =

6(1 + 4d)Lρδn
bd2 + 12(4d+ 1)δnρ

[(1 + θ)m − 1]

≤ 30Lρδn
bd

[(1 + θ)m − 1] ≤ 30Lρδn
bd

(e− 1) ≤ 60Lρδn
bd

,

(51)

where the third inequality holds since (1 + θ)m ≤ (1 + 31ρ
d)m, (1 + 1/a)a ≤ lima→∞(1 + 1

a)
a =

e for a > 0, and the last inequality loosely uses the notion ’≤’ since e < 3.
We recall from equation 41 that

γ̄ = min
0≤k≤m−1

{(
1− ck+1

βk

)
ηk − 4

(
L

2
+ ck+1

)(
2α2 − 2α+ 1 +

24dδn
b

α2

)
η2k

}
. (52)

Since ηk = η, βk = β and ηk = η, βk = β, we have

γ̄ ≥
(
1− c0

β

)
η − 4

(
L

2
+ c0

)(
2α2 − 2α+ 1 +

24dδn
b

α2

)
η2. (53)

From equation 51 and the definition of β, we have
c0
β
≤ 60ρ

bd
,

(54)

and (
L

2
+ c0

)(
2α2 − 2α+ 1 +

24dδn
b

α2

)
η

≤
(
L

2
+

60Lρ

bd

)(
2

d2
− 2

d
+ 1 +

24δn
bd

)
ρ

L

≤ ρ

(
1 +

24

bd

) (55)

Substituting equation 54 and equation 55 into equation 53, we obtain

γ̄ ≥ η

(
1− 60ρ

bd
− 4ρ− 96ρ

bd

)
≥ η

(
1− 156ρ

bd
− 4ρ

)
, (56)

where we have used the fact that b < d. Moreover, if we set ρ ≤ 1
160 , then γ̄ > 0. In other

words, the current parameter setting is valid for Theorem 1. Upon defining a universal constant
z0 = 1− 156ρ

bd − 4ρ, we have
γ̄ ≥ ηz0 (57)

Next, we find the upper bound on χm in equation 41 given the current parameter setting and ck ≤ c0,

χm ≤ m

(
L

2
+ c0

)(
9δn
b

d2L2µ2α2 +
4σ2

b

(
24dδnα

2 + (1− α)2
))

η2 (58)

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Based on γ̄ ≥ ηz0 and c0 ≤ 60Lρδn ≤ L
2 , we have

χm

γ̄
≤ mρ

(
9δn
bz0

d2L2µ2α2 +
4σ2

bz0

(
24dδnα

2 + (1− α)2
))

(59)

since T = Sm, and µ = 1√
T

,the above inequality yields

Sχm

T γ̄
≤ 9ρL2δn

z0bT
+

4σ2

bz0

(
24δn
d

+ (1− 1

d
)2
)

= O

(
1

Tb
+

1

b

)
, (60)

where in the big O notation, we only keep the dominant terms and ignore the constant numbers that
are independent of d, b, and T .
Substituting equation 57 and equation 60 into equation 7, we have

E[∥∇f(x)∥22] ≤
[f(x̄0)− f∗]

Tz0

L

ρ
+

Sχm

T γ̄
= O

(
1

T
+

1

bT
+

1

b

)
. (61)

H PROOF OF THEOREM 2

Proof. Motivated by Proposition 1, we first bound ∥vs
k∥

2
2, Following, we have

E
[
∥vs

k∥
2
2

]
≤ 2 (1− α)

2 E
[
∥∇fIk

(xs
k)∥

2
2

]
+

4α2δn
bn

n∑
i=1

E
[∥∥∥∇fi(xs

k)− ∇̂fi(xs
0)
∥∥∥2
2

]
+ 4α2E

[
∥∇f(xs

k)∥
2
2

]
.

(62)

Following together with equation 18, we can obtain that

E
[
∥∇fi(xs

k)− ∇̂fi(xs
0)∥22

]
≤ 24d

q
σ2 +

24d

q
E
[
∥∇f(xs

k)∥22
]

+

(
3 +

12d

q

)
L2E

[
∥xs

0 − xs
k∥22
]
+

(
3

4
+

3

2q

)
L2d2µ2,

(63)

Substituting equation 63 and equation 30 into equation 62, we have:

E
[
∥vs

k∥22
]
≤ 4

((
2 +

24dδn
qb

)
α2 − 2α+ 1

)
E
[
∥∇f(xs

k)∥22
]

+
12L2δn

b

(
1 +

4d

q

)
α2E

[
∥xs

0 − xs
k∥22
]
+

3δn
b

(
1 +

2

q

)
L2d2µ2α2

+
4σ2

b

(
24dδnα

2

q
+ (1− α)2

)
.

(64)

Substituting equation 64 into equation 38, we have:

Rs
k+1 ≤E [f(xs

k)]−
(
ηk −

ck+1ηk
βk

)
E
[
∥∇f(xs

k)∥22
]
+ (ck+1 + ck+1βkηk)E

[
∥xs

k − xs
0∥22
]

+

(
L

2
η2k + ck+1η

2
k

)
12L2δn

b

(
1 +

4d

q

)
α2E

[
∥xs

k − xs
0∥22
]

+ 4

(
L

2
η2k + ck+1η

2
k

)((
2 +

24dδn
qb

)
α2 − 2α+ 1

)
E
[
∥∇f(xs

k)∥22
]

+

(
L

2
η2k + ck+1η

2
k

)
3δn
b

(
1 +

2

q

)
L2d2µ2α2

+

(
L

2
η2k + ck+1η

2
k

)
4σ2

b

(
24dδnα

2

q
+ (1− α)2

)
(65)

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Based on the definition of ck = (1 + βkηk) ck+1 +
(
L
2 + ck+1

) (
1 + 4d

q

)
12L2δnη

2
kα

2

b and Rs
k given

by equation 37, we can simplify equation 65 to

Rs
k+1 ≤ Rs

k −
(
ηk −

ck+1ηk
βk

)
E
[
∥∇f(xs

k)∥22
]

+ 4

(
L

2
η2k + ck+1η

2
k

)((
2 +

24dδn
qb

)
α2 − 2α+ 1

)
E
[
∥∇f(xs

k)∥22
]

+

(
L

2
η2k + ck+1η

2
k

)
3δn
b

(
1 +

2

q

)
L2d2µ2α2

+

(
L

2
η2k + ck+1η

2
k

)
4σ2

b

(
24dδnα

2

q
+ (1− α)2

)
≤ Rs

k − γkE
[
∥∇f(xs

k)∥22
]
+ χk,

(66)

where γk and χk are defined coefficients in Theorem 2.
Based on equation 66 and the following argument in, we can achieve

E[∥∇f(x̄)∥22] ≤
E[f(x̄0)− f∗]

T γ̄
+

Sχm

T γ̄
. (67)

The rest of the proof is similar to the proof of Corollary 1 with the added complexity of the parameter
q.
Let θ = βηk +

(
1 + 4d

q

)
12L2δnα

2

b η2k, and ck = ck+1(1 + θ) +
(
1 + 4d

q

)
6L3δnη

2
kα

2

b . This leads to:

c0 =

(
1 +

4d

q

)
6L3δnη

2α2

b

(1 + θ)m − 1

θ
(68)

Let η = ρ
L , α = q

d , β = L, and q ≤ d we have:

θ = ρ+ (q + 4d)
12δnqρ

2

bd2
≤ ρ+ 12ρ

(
q2

d2
+ 4

q

d

)
≤ ρ+

60ρq

d
(69)

Substituting equation 69 into equation 68, we have:

ck ≤ c0 =

(
1 +

4d

q

)
6L3δnη

2α2

b

(1 + θ)m − 1

θ

=
6(q + 4d)Lδnρq

bd2 + 12(q + 4d)δnρq
[(1 + θ)m − 1]

≤ 6(q + 4d)Lδnρq

bd2
[(1 + θ)m − 1]

≤ 30Lδnρq

bd
(e− 1) =

60Lδnρq

bd
,

(70)

where the second inequality holds since q ≤ d, and the first inequality holds if m = ⌈ 1
ρ+ 108ρq

d

⌉
Because we define γ̄ = mink γk, we have

γ̄ ≥ η − c0η

β
− 4

(
L

2
η2 + c0η

2

)((
2 +

24dδn
qb

)
α2 − 2α+ 1

)
(71)

From equation 70, we have,
c0
β
≤ 60ρq

bd
(72)

Because η = ρ
L , α = q

d , and q ≤ d we have(
L

2
η + c0η

)((
2 +

24dδn
qb

)
α2 − 2α+ 1

)
≤
(
ρ

2
+

60ρ2q

bd

)(
2q2

d2
+

24q

bd
− 2q

d
+ 1

)
≤ ρ

(
24q

bd
+ 1

)
≤ ρ

(
24

b
+ 1

) (73)

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

The second inequality holds if we let ρ ≤ 1
120 Substituting equation 73 and equation 72 into

equation 71, we can get

γ̄ ≥ η

(
1− 60ρq

bd
− 4ρ

(
24

b
+ 1

))
= ηz0, (74)

where z0 > 0, and γ̄ is a universal constant that is independent of T , b and d.
Then, we bound χm =

∑
k χk

χm ≤ m

(
L

2
η2 + c0η

2

)
3δn
b

(
1 +

2

q

)
L2d2µ2α2

+m

(
L

2
η2 + c0η

2

)
4σ2

b

(
24dδnα

2

q
+ (1− α)2

) (75)

Because c0 ≤ 60Lρq
bd ≤ L

2 if ρ ≤ 1
120 , this yields

χm

γ̄
≤ ρ

z0

3δn
b

(
1 +

2

q

)
L2µ2q2

+
ρ

z0

4σ2

b

(
24qδn
d

+ (1− q

d
)2
) (76)

Since T = Sm and µ = 1
q
√
T

, we have

Sχm

T γ̄
≤ ρ

z0

3δn
b

(
1 +

2

q

)
L2

T

+
ρ

z0

4σ2

b

(
24qδn
d

+ (1− q

d
)2
)

≤ O

(
1

bT
+

1

b

(
1− q

d

)2)
(77)

Substituting equation 74 and equation 77 into equation 7, we have

E[∥∇f(x̄)∥22] ≤
E[f(x̄0)− f∗]

Tz0

L

ρ
+

Sχm

T γ̄
= O

(
1

T
+

1

bT
+

1

b

(
1− q

d

)2)
(78)

H.1 AUXILIARY LEMMAS

Lemma 3. Let {zi}ni=1 be a sequence of n vectors. Let I be a mini-batch of size b, which contains
i.i.d. samples selected uniformly randomly (with replacement) from [n].

EI

[
1

b

∑
i∈I

zi

]
=

1

n

n∑
j=1

zj . (79)

When
∑n

i=1 zi = 0, then

EI

∥∥∥∥∥1b∑
i∈I

zi

∥∥∥∥∥
2

2

 =
1

bn

n∑
i=1

∥zi∥22. (80)

Proof. See the proof of Lemma 4 in (Liu et al., 2018b).

Lemma 4. Let {zi}ni=1 be a sequence of n vectors. Let I be a uniform random mini-batch of [n]
with size b (no replacement in samples). Then

EI

[
1

b

∑
i∈I

zi

]
=

1

n

n∑
j=1

zj . (81)

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

When
∑n

i=1 zi = 0, then

EI

∥∥∥∥∥1b∑
i∈I

zi

∥∥∥∥∥
2

2

 =
I(b < n)

bn

n∑
i=1

∥zi∥22. (82)

where I is an indicator function, which is equal to 1 if b < n and 0 if b = n.

Proof. See the proof of Lemma A.1 in (Lei et al., 2017).

Lemma 5. For variables {zi}ni=1, we have∥∥∥∥∥
n∑

i=1

zi

∥∥∥∥∥
2

2

≤ n

n∑
i=1

∥zi∥22. (83)

Proof. See the proof of Lemma 6 in (Liu et al., 2018b).

Lemma 6. if f is L-smooth, then for any x,y ∈ Rd

|f(x)− f(y)− ⟨∇fi(y),x− y⟩| ≤ L

2
∥x− y∥22. (84)

Proof. This is a direct consequence of Lemma A.2 in (Lei et al., 2017).

I ANALYSIS OF ZEROTH-ORDER GRADIENT ESTIMATION ERROR

This section details bounds on the expected squared error of the ZO gradient estimators used in
our work. We consider a ZO gradient estimator ∇̂fi(x) for a component function fi(x), which
approximates the true gradient∇fi(x) with an estimation error ωi(x), such that ∇̂fi(x) = ∇fi(x)+
ωi(x). The characteristics of the expected squared error, E[∥ωi(x)∥22], are presented below.

For the two-point ZO gradient estimator of fi(x), as defined in Equation equation 2 in the main text,
the expected squared error is bounded by:

E[∥ωi(x)∥22] ≤ O(d)∥∇fi(x)∥22 +O(µ2L2d2). (85)

Here, d is the problem dimension, µ is the smoothing parameter, and L is the smoothness constant
associated with fi.

Subsequently, for the multi-point ZO gradient estimator of fi(x) using 2q query points, as defined in
Equation equation 3 in the main text, the expected squared error is bounded by:

E[∥ωi(x)∥22] ≤ O(d/q)∥∇fi(x)∥22 +O(µ2L2d2). (86)

The detailed proofs for these bounds can be found in Proposition 2 of (Liu et al., 2018b).

J EXPERIMENT SETUP

J.1 ADAPTABILITY EXPERIMENT

The primary objective of this adaptability experiment was to empirically investigate the impact of
the number of ZO query points (q) on the performance of VAMO and to validate the theoretical
benefits of its multi-point ZO estimation strategy (see Section 5). The optimization problem was a
finite-sum non-convex least-squares objective: f(x) = 1

n

∑n
i=1(h(x; zi)− yi)

2. We configured this
synthetic task with n = 1000 individual component functions and a parameter dimension of d = 100.
The function h(x; ·) was parameterized using a simple neural network with a non-convex activation
function to ensure the overall non-convexity of the loss landscape.

In this setup, VAMO variants utilizing q ∈ {1, 3, 5} query directions for the multi-point ZO gradient
estimator were compared against the classical FO-SGD algorithm. A mini-batch size of b = 8 was
consistently applied across all methods. Learning rates for both VAMO (for each q setting) and

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

FO-SGD were individually tuned by selecting the best performing value from the range [10−2, 10−1].
For all VAMO variants, the ZO smoothing parameter was fixed at µ = 10−3. The mixing coefficient
α for VAMO was also tuned for each value of q, guided by the theoretical insights on balancing FO
and ZO information discussed in Appendix K.3.

J.2 MNIST CLASSIFICATION TASK

For the MNIST multi-class image classification task (LeCun et al., 1998), we trained a Multi-Layer
Perceptron (MLP) to evaluate VAMO against established baselines. The MLP architecture consisted
of an input layer receiving flattened 28× 28 pixel images (784 dimensions), followed by two hidden
layers with 32 and 16 units respectively, both employing ReLU activation functions. The final output
layer comprised 10 units corresponding to the digit classes, and the network was trained using a
standard cross-entropy loss function. Images were normalized to the range [0, 1].

Our proposed VAMO algorithm, configured with a single ZO query direction (q = 1), was bench-
marked against pure first-order FO-SGD (Robbins & Monro, 1951) and pure zeroth-order methods,
ZO-SGD and ZO-SVRG (Liu et al., 2018b; Ghadimi & Lan, 2013). For all methods, the mini-batch
size was set to b = 4. The learning rates were independently tuned for each method, selected from the
range [10−4, 10−3] for the ZO methods, and [10−3, 10−2] for FO methods and VAMO. For VAMO
with q = 1, we fixed the mixing coefficient at α = 0.1 and used a ZO smoothing parameter of
µ = 10−3. All models were trained for 10 epochs.

J.3 FINE-TUNING EXPERIMENTS

To further examine VAMO in realistic large-scale scenarios, we conducted fine-tuning experiments
on three language models under the MultiNLI (MNLI) dataset (Williams et al., 2017) for a three-way
natural language inference task. In all settings, the training and validation sets were subsampled
to 256 and 128 examples, respectively, with a maximum input sequence length of 128 tokens. All
models were fine-tuned for 1500 epochs with full precision (FP32) on a single NVIDIA RTX5880
49GB GPU. All experiments involved full-parameter fine-tuning.

For fair comparisons, VAMO was compared against representative FO methods including FO-
SGD (Robbins & Monro, 1951), FO-Adagrad (Duchi et al., 2011) and FO-Adam (Kingma & Ba,
2014), and ZO methods including ZO-SGD (Ghadimi & Lan, 2013) and ZO-SVRG (Liu et al., 2018b).
We set the batch size as 32. The learning rates of FO methods were tuned within [1e− 4, 1e− 3],
while those of ZO methods were tuned within [1e − 6, 1e − 5]. For VAMO, the learning rate was
also tuned in the range [1e− 4, 1e− 3]. We adopted the same learning rate schedule as illustrated in
Algorithm 2. For ZO methods, we adopted a smoothing parameter µ = 1e− 3 and q = 1 (two-point
version). VAMO was configured with the the smoothing parameter µ = 1e − 3, q = 1, and inner
loop length m = 10.

The main difference is in setting the mixing coefficient α. α was set to 1e − 2 for the GPT-2
experiments, while a lower value α = 5e− 3 was used for RoBERTa-Large and GPT-2 Medium. We
used a smaller α for larger models because the ZO gradient estimates exhibit higher inherent error in
higher-dimensional models, so reducing α limits the contribution of the noisier ZO correction and
helps stabilize the training. A detailed analysis of α selection and the error of the ZO estimation is
provided in Appendix K.3 and Appendix I.

Algorithm 2 Learning Rate Scheduling for VAMO

1: Input: Learning rates η1, η2, annealing factor δη , losses L, annealing threshold κ, total number
of batches in an epoch w

2: Compute moving averages:
3: L1 ← mean(L[−w, :])
4: L2 ← mean(L[−2w,−w])
5: if L1

L2
> κ then

6: η1 ← η1

δη
, η2 ← η2

δη

7: end if
8: Return: updated η1, η2

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

0 1000 2000 3000 4000 5000 6000 7000
Steps

100

1.05 × 100

1.1 × 100

1.15 × 100

1.2 × 100

1.25 × 100

1.3 × 100

Tr
ai

ni
ng

 L
os

s

Effects of Varying μ
μ= 0.001
μ= 0.0001
μ= 0.01
μ= 1e− 05

Figure 3: The effects of the smoothing parameter µ on the performance of VAMO for fine-tuning
GPT-2 on MNLI.

K ABLATION ON KEY HYPERPARAMETERS

K.1 ROLE OF µ (SMOOTHING PARAMETER)

We investigated the role of the parameter µ in VAMO. Recall that µ defines as smoothing parameter
when computing ZO gradients equation 2 and equation 3. It is known from Spall (1992) that the ZO
estimator is asymptotically unbiased as µ→ 0. We wanted to see the practical effects of different µ
settings for VAMO. Therefore we conducted the ablation experiment that the smoothing parameter µ
varied. We fine-tune the GPT-2 (Radford et al., 2019) on the MNLI dataset (Williams et al., 2017).
We fixed the key parameters (α = 0.01, q = 1, and m = 10), and the learning rate η is set as 1e− 3.

Fig. 3 shows how different values of µ affect the training loss of VAMO algorithm. We observe
that there is no noticeable difference if the value of µ is sufficient small. Similar findings were also
empirically stated in (Malladi et al., 2023) and Gautam et al. (2024). Therefore, in the fine-tuning
experiments (see Section 6), we chose the default value of µ = 1e− 3.

K.2 ROLE OF m

The parameter m is a significant role in VAMO as it governs the frequency of the full-batch ZO
gradient updates. Specifically, a smaller m means that the full-batch ZO gradient estimate is
computed more frequently, which can lead to a more effective reduction in gradient variance. To
better understand the trade-off between the effectiveness of these updates and their computational
overhead, we perform an ablation study on m. We consider the task of fine-tuning the GPT-2 (Radford
et al., 2019) model on the MNLI dataset (Williams et al., 2017) . For this study, we fixed the other
key hyperparameters (α = 0.1, q = 1, and µ = 1e− 3) while varying m and the learning rate η is
set as 1e− 3.

Fig. 4 shows that there is no noticeable difference when computing the full-batch ZO gradient
frequently enough (e.g. 2 ≤ m ≤ 10). However, the larger m (e.g. m ≥ 20) results in diverging
behavior. If the value of m is too small, computing the full-batch ZO gradient too frequently will
bring additional and unnecessary computational cost. Thus, we chose the default value of m = 10 in
the fine-tuning experiment.

K.3 ROLE OF α (MIXING COEFFICIENT)

Theoretical Analysis. The mixing coefficient α in the VAMO update in equation 6 critically
balances the FO stochastic gradient∇fI(x) against the ZO variance correction term ∇̂fI(x̂)−∇̂f(x̂).
The optimal choice for α directly depends on the estimation error ωi inherent in the ZO gradient
components (∇̂fi(x) = ∇fi(x) + ωi). As established in the literature (Liu et al., 2018b; 2020) and
detailed in Appendix I, the expected squared ZO error E[∥ωi∥22] typically scales asO(d) for two-point
estimates and O(d/q) for multi-point estimates using q random directions. This relationship dictates

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

0 500 1000 1500 2000 2500 3000
Steps

100

101

Tr
ai

ni
ng

 L
os

s

Effects of Varying m
m= 20
m= 2
m= 100
m= 50
m= 30
m= 5
m= 10

Figure 4: The effects of the frequency of full-batch gradient computation m on the performance of
VAMO for fine-tuning GPT-2 on MNLI.

0 1000 2000 3000 4000 5000 6000 7000
Steps

10−1

100

101

Tr
ai

ni
ng

 L
os

s

Effects of Varying α
α= 0.1
α= 0.2
α= 0.4
α= 0.05
α= 0.01
α= 0.005

Figure 5: The effects of the mixing coefficient α on the performance of VAMO for fine-tuning GPT-2
on MNLI.

that α should reflect the trustworthiness of the ZO estimates: when the ZO error is substantial (e.g.,
large d, small q), a smaller α is warranted to prevent amplifying this error. Conversely, when ZO
estimates are more reliable (e.g., larger q reducing error), a larger α can more aggressively leverage
the variance reduction. This principled inverse relationship between ZO error magnitude (influenced
by d and q) and the appropriate scale of α is key. While specific forms like α ∝ 1/d or α ∝ q/d
analyzed in our theoretical sections (e.g., Corollary 1 and Theorem 2) illustrate this adaptive trend,
the core insight is that α must be adjusted to counterbalance the ZO estimator’s error profile. Such
adaptability enables VAMO to effectively navigate the trade-off between computational cost and
convergence performance, a central aspect of its practical utility.

Empirical Results Analysis. The mixing coefficient α controls how much weight VAMO assigns
to the ZO-based variance reduction term relative to the FO gradient. A larger α strengthens the effect
of variance correction but also amplifies the noise of the ZO estimator. To study this trade-off, we
fine-tuned GPT-2 (Radford et al., 2019) on the MNLI dataset (Williams et al., 2017), fixing other
hyperparameters (m = 10, q = 1, and µ = 1e− 3) while varying α and the learning rate η is set as
1e− 3. As shown in Fig. 5, smaller values (e.g. α = 1e− 2) provide a good balance, leading to fast
convergence without being overly sensitive to noisy ZO gradients. However, if α is set too small
(e.g., α = 5e − 3), the variance reduction term becomes underutilized, diminishing its benefit. In
contrast, setting α too high (e.g., α = 0.2) magnifies estimation error, results in diverging behavior.
These results align with our theoretical analysis, which highlights the need for careful tuning of α in
high-dimensional settings.

27

	Introduction
	Related Work
	Preliminaries
	Assumptions
	Convergence Notion
	ZO Gradient Estimation
	Notations

	Hybrid FO and ZO Stochastic Variance Reduction (VAMO)
	From SVRG and ZO-SVRG to Hybrid SVRG
	Convergence analysis
	Memory Efficiency of VAMO

	VAMO with Multi-Point ZO Gradient Estimation
	Applications and Experiments
	Conclusion
	The Use of Large Language Models
	Detailed Discussion on Memory Efficiency
	Theoretical Analysis
	Empirical Results Analysis

	Detailed Discussing of Convergence and Complexity
	ZO gradient estimator
	Second-Order Moment of the Hybrid Gradient Estimator
	Proof of Theorem 1
	Proof of Corollary 1
	Proof of Theorem 2
	Auxiliary Lemmas

	Analysis of Zeroth-Order Gradient Estimation Error
	Experiment Setup
	Adaptability Experiment
	MNIST Classification Task
	Fine-Tuning Experiments

	Ablation on Key Hyperparameters
	Role of (Smoothing Parameter)
	Role of m
	Role of (Mixing Coefficient)

