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ABSTRACT

Optimizing large-scale nonconvex problems, common in deep learning, demands
balancing rapid convergence with computational efficiency. First-order (FO) opti-
mizers, which serve as today’s baselines, provide fast convergence and good gener-
alization but often incur high computation and memory costs due to the large size of
modern models. Conversely, zeroth-order (ZO) algorithms reduce this burden using
estimated gradients, yet their slow convergence in high-dimensional settings limits
practicality. We introduce VAMO (VAriance-reduced Mixed-gradient Optimizer),
a stochastic variance-reduced method that extends mini-batch SGD with full-batch
ZO0 gradients under an SVRG-style framework. VAMO’s hybrid design utilizes
a two-point ZO estimator to achieve a dimension-agnostic convergence rate of
O(1/T +1/b), where T is the number of iterations and b is the batch-size, surpass-
ing the dimension-dependent slowdown of purely ZO methods and significantly
improving over SGD’s O(1/+/T) rate. Additionally, we propose a multi-point
variant that mitigates the O(1/b) error by adjusting the number of estimation points
to balance convergence and cost. Importantly, VAMO achieves these gains with
smaller dynamic memory requirements than many FO baselines, making it partic-
ularly attractive for edge deployment. Experiments including traditional neural
network training and LLM finetuning confirm that VAMO not only outperforms
established FO and ZO methods, but also does so with a light memory footprint.

1 INTRODUCTION

First-order (FO) optimization methods, particularly Stochastic Gradient Descent (SGD), have been ap-
plied in training a wide range of machine learning models. For large-scale problems, variance-reduced
(VR) techniques, such as the Stochastic Variance Reduced Gradient (SVRG) algorithm (Johnson &
/hangl| |2013; |Allen-Zhu & Yuan, [2016; Reddi et al.,|2016)), offer significant improvements, achieving
faster convergence rates, O(1/T), compared to the rate of SGD O(1/v/T) (Reddi et al., 2016).
However, in recent years, extremely large models such as Large Language Models (LLMs) with
billions of parameters have become increasingly prevalent in machine learning. When training these
models, traditional variance reduction methods like SVRG face a major challenge: they require
periodically computing the full gradient over the entire dataset, which requires high cost for such
large-scale models (Redd:i et al.,|2016). For LLMs, this step results in prohibitive computational and
memory overhead, severely hindering efficient training of large models.

Zeroth-order (ZO) optimization methods present an appealing alternative in this context, as they
completely bypass the need for explicit gradient calculations, estimating gradients using only function
value queries (Nesterov & Spokoinyl 2017; [Liu et al., |2018b). This gradient-free characteristic
drastically reduces per-iteration computational cost and memory footprint, making ZO methods
attractive for resource-constrained training of LLMs (Malladi et al, 2023 |Gautam et al., [2024).
Despite these advantages, ZO methods typically exhibit slower theoretical convergence rates than FO
methods and, critically, often suffer from a strong dependence on the parameter dimension d (Duchi
et al.l 2015} [Nesterov & Spokoiny, [2017). Given the vast dimensionality of modern LLMs, this
dependence can render pure ZO approaches impractically slow. This creates a clear dilemma for large
model training: FO methods offer desirable convergence, but suffer from high gradient costs, while
Z0 methods are cheaper per step but often too slow and scale poorly with the parameter dimension.
This naturally raises the question: can we devise a hybrid strategy that combines the strengths of both
FO and ZO methods, thereby overcoming their limitations for efficient training of large models?
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In this work, we propose VAMO (VAriance-reduced Mixed-gradient Optimizer), a new adaptive
hybrid algorithm specifically designed to navigate this dilemma in large-scale non-convex opti-
mization. Our approach integrates FO and ZO techniques within the SVRG framework, aiming
to maintain SVRG’s fast convergence while substantially mitigating its computational burden. A
major breakthrough here is the replacement of the prohibitively expensive full FO gradient V f (%)

in the snapshot point with an efficient ZO gradient estimate V f (%), which significantly reduces
the computation. This leads to a convergence rate of O(1/T + 1/b), significantly outperforming
FO-SGD, matching the rate of FO-SVRG only with an additional error of O(1/b). The adaptability
of VAMO is then enhanced through several key innovations proposed in this work. First, we extend

VAMO with a multi-point ZO gradient estimator for the full ZO gradient v f(x). Compared to
the standard two-point variant, this extension reduces the additional O(1/b) error term and allows
flexibility in balancing performance and cost by varying the number of query directions. Second,
we introduce a mixing coefficient « into the update rule. Though incorporating the full ZO gradient
can effectively reduce variance, it inevitably introduces estimation error; the coefficient o provides
fine-grained control over this balance by adaptively weighting the FO stochastic gradient and the
ZO0 correction term. Together, these mechanisms make VAMO highly adaptable across diverse
optimization scenarios. Importantly, despite this hybrid design, our gradient estimator preserves the
unbiasedness of FO-SVRG, distinguishing VAMO from many biased ZO methods and enabling a
rigorous convergence analysis with stronger theoretical guarantees.

2 RELATED WORK

First-order optimization. While Stochastic Gradient Descent (SGD) (Robbins & Monro,|[1951)
remains a foundational algorithm in machine learning, its convergence can be slow in large-scale
settings due to high gradient variance (Johnson & Zhang|2013). Addressing this, the variance-reduced
(VR) methods (Gower et al., 2020)), notably SVRG (Johnson & Zhang| [2013;|Allen-Zhu & Yuan||2016;
Reddi et al., 2016) and SAGA (Defazio et al., 2014), represent a significant theoretical advancement.
These algorithms reduce variance by leveraging gradients from past iterates or periodically computing
full-batch gradients and achieve faster convergence rates (e.g., linear convergence under certain
assumptions) compared to SGD (Johnson & Zhang,2013};Reddi et al.,|2016). Despite these theoretical
benefits, a primary practical limitation is the substantial computational and memory cost associated
with full-batch gradients. This overhead can become prohibitive as model sizes and datasets scale.
Another common extension of SGD is the use of adaptive step-sizes, as in Adagrad (Duchi et al.|
2011) and ADAM (Kingma & Bal [2014). However, the convergence properties of these adaptive
methods remain debated and can be highly sensitive to hyper-parameter choices (Reddi et al.| [2019;
Défossez et al.,[2020; |[Zhang et al.,|2022)). To provide a clearer and more interpretable comparison,
we focus on standard baselines such as SGD and SVRG in our theoretical analysis, which better
isolate the effects of our proposed modifications.

Zeroth-order optimization. Zeroth-order (ZO) optimization approximates gradients using function
evaluations instead of explicit gradient computation, offering reduced computational and memory
overhead (Zhang et al.,[2024)). This advantage makes them attractive for large-scale problems like
fine-tuning of large language models (Malladi et al.,|2023; Gautam et al., 2024} |Zhang et al.| 2024}
Tang et al., |2024; [Ling et al.,|2024)), and their convergence properties are theoretically studied (Duchi
et al., 2015 Jamieson et al.| 2012; [Nesterov & Spokoiny, 2017; Liu et al.l |2018b). However, the
convergence rates of ZO methods often degrade with increasing parameter dimension d, which makes
them slow for large models compared to FO methods (Liu et al., [2018bza; Wang et al.,[2018]). Even
recent applications like MeZO (Malladi et al., 2023)) and MeZO-SVRG (Gautam et al., 2024) are
constrained by large parameter dimension. ZO optimization is crucial for black-box scenarios (Chen
et al., 2017} Tu et al., |2019), while tasks like fine-tuning models often have accessible gradients
whose computation is merely expensive. This motivates our hybrid approach, which aims to combine
Z0O’s efficiency with FO’s faster convergence by strategically incorporating both types of gradient
information, thereby avoiding the high computational cost associated with FO methods, while also
mitigating the performance degradation that ZO methods often suffer in high-dimensional settings.

Hybrid Zeroth-Order and First-Order Algorithms. Combining the strengths of FO and ZO
optimization is a relatively recent and underexplored direction, with limited established theoretical
analysis. The goal is to enjoy faster convergence while using less computational resource via ZO
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techniques (Zhang et al.| 2024; [Li et al.,|2024). Early explorations include schemes like applying ZO
to shallower model layers and FO to deeper ones (Zhang et al., [2024)), or concurrently computing
and combining FO-SGD and ZO-SGD updates at each step, as in Addax (L1 et al.,2024). However,
these initial hybrid approaches may have limitations; for instance, the theoretical convergence rate
of Addax still exhibits dependence on the parameter dimension d (Li et al., [2024)), hindering its
effectiveness for large-scale models. Furthermore, many early hybrid strategies often lack explicit
mechanisms to adaptively tune the balance between FO accuracy and ZO query efficiency in response
to varying computational resources or specific problem demands. The scarcity of hybrid strategies that
offer both theoretical convergence and controlled adaptability underscores the novelty of our work.
To contextualize our contributions, Table [I] summarizes the convergence rates and computational
complexities of our proposed methods, referred to as VAMO and VAMO (multi-point) in the table
alongside several FO and ZO algorithms. We provide a detailed explanation of Table|[I]in Appendix[C|

Table 1: Summary of convergence rate and computational complexity of our proposals given T total
iterations. n represents the total number of samples or component functions, d is the parameter
dimension, b denotes the mini-batch size, .S is the number of epochs or outer loops (for SVRG-type
methods, 7" = Sm where m is the number of inner iterations per epoch), and ¢ signifies the number
of query directions used for ZO estimation.

Method Grad. estimator Stepsize Convergence rate (worst Computational complex-
case as b < n) ity

Z0O-SVRG Gradient Estimate  O(1/d) O(d/T +1/b) O(nS + 2bT)

FO-SGD Explicit Gradient  O(1/v/T) o(1/VT) O(bdT)

FO-SVRG Explicit Gradient O(1) o(1/T) O(dnS + 2bdT)

VAMO Mixed Gradient  O(1) O(1/T +1/b) O(nS + bT' + bdT)

VAMO(multi- Mixed Gradient  O(1) O(1)T + (1 —q/d)*/b) O(qnS + bqT + bdT)

point)

3 PRELIMINARIES

We consider the following nonconvex finite-sum optimization problem:

1 n
i 1) =03 i) (M

where { f;(x)}"_, are n individual nonconvex cost functions. Note that equation |l|is the generic
form of many machine learning problems such as training neural networks, since this is the natural
form arising from empirical risk minimization (ERM). Next we introduce assumptions we will make
throughout the paper and provide the background of ZO gradient estimate.

3.1 ASSUMPTIONS

Throughout this paper, we make the following standard assumptions on the objective function
components f;(x). Let d be the dimension of the optimization variable x.

Assumption 1 (L-smooth). Each function f; : R¢ — R is L-smooth for i € [n] := {1,2,...,n}.
That is, for any x,y € RY, there exists a constant L > 0 such that:

IVfi(x) = Vi(y)ll2 < Lllx = yl2
This also implies that the full objective function f(x) = = 3" | fi(x) is L-smooth.

Assumption 2 (Bounded Variance). The variance of the stochastic gradients is bounded. Specifically,
for any x € RY, there exists a constant o2 > 0 such that:

S5 CIVHG) - VB < o7
i=1

Here, V f;(x) is the gradient of a single component function, which can be viewed as a stochastic
gradient of f(x) if i is chosen uniformly at random from [n).
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These assumptions are standard in the analysis of stochastic optimization algorithms for nonconvex
problems (Ghadimi & Lanl 2013 Reddi et al., 2016} Nesterov & Spokoinyl 2017).

3.2 CONVERGENCE NOTION

We study the nonconvex optimization problem in equation [I} which is common in modern machine
learning. For convex problems, convergence is typically measured by the expected suboptimality
E[f(xr) — f(x*)]. In contrast, nonconvex problems often contain multiple local minima and
saddle points (Dauphin et al., 2014} [Balasubramanian & Ghadimil, [2022), making global optimality
intractable. Consequently, convergence is evaluated by the first-order stationarity condition via the
expected squared gradient norm E[||V f(x)||3]. An algorithm is deemed convergent when this metric
approaches zero or falls below a tolerance € (Liu et al.l 20205 Mu et al.| 2024)), which is the criterion
used in our theoretical guarantees.

3.3 ZO GRADIENT ESTIMATION

Consider an individual cost function f; : R? — R that satisfies the conditions in Assumption|[1} The
Z0 approach estimates gradients using only function evaluations. A commonly used two-point ZO
gradient estimator for f;(x) is defined as (Spall,|1992; Nesterov & Spokoiny}, 2017):

fix) = % ik + ) — fi()]w;, fori € [n], @

where d is the dimension of the optimization variable x, p > 0 is a small smoothing parameter, and
{u;}?_, are i.i.d. random direction vectors drawn uniformly from the unit Euclidean sphere in R?
(.e.,u; ~ U(Sd_l)) (Flaxman et al., [2004; [Shamir, [2017; |Gao et al., [2018).

In general, for i > 0, the ZO gradient estimator v fi(x) is a biased approximation of the true gradient
V fi(x). The bias tends to decrease as ;1 — 0. However, in practical implementations, choosing
an excessively small p can render the function difference f;(x + pu;) — fi(x) highly sensitive
to numerical errors or system noise or numerical precision issues, potentially failing to accurately
represent the local change in the function (Lian et al.| | 2016). A key property of the ZO estimator is
that for © > 0, it provides an unbiased estimate of the gradient of a smoothed version of f;, often
denoted f; ,(x) = Ey[fi(x + pv)] (where v is a random vector from a unit ball or sphere), i.e.,

Eu, [V fi(x)] = Vfi.(x) (Liu et al, 2020).

To reduce the error of the ZO gradient estimate, a multi-point version can be employed. Instead of
using a single random direction u;, ¢ > 1 i.i.d. random directions {u; ; }?:1 are sampled for each
fi- Since estimating along each direction requires two function queries, the multi-point ZO gradient
estimator involves a total of 2q function queries and is defined as (Duchi et al.| 2015} |Liu et al.| [2020):

d q
Z fi(x + puy ) — fi(x)]w;, fori€ [n]. 3)

J=1

We refer to this as the multi-point ZO gradient estimate throughout the paper.

3.4 NOTATIONS

In this paper, we denote V f(z),Vf;(z) as FO gradients of f(z) and f;(x), respectively and

Vf(z),Vfi(x) as their ZO variants. E[-] operates as the usual mathematical expectation, and
7 is a mini-batch of indices sampled from [n] := 1,...,n, with size b = |Z|. || - || denotes the
Euclidean (i.e., £5) norm.

4 HYBRID FO AND ZO STOCHASTIC VARIANCE REDUCTION (VAMO)

4.1 FROM SVRG AND ZO-SVRG 1O HYBRID SVRG

The principles of FO-SVRG and ZO-SVRG have been extensively explored in optimization literature
(Johnson & Zhang| 2013} [Reddi et al., 2016} |Liu et al.l 2018bj [J1 et al., 2019). FO-SVRG, in
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particular, is known to achieve a linear convergence rate O(1/T") for non-convex problems under
certain conditions, significantly outperforming the convergence rate of FO-SGD (Reddi et al., 2016).
The key step of FO-SVRG involves leveraging a full gradient V f (%), computed periodically at the
snapshot X, to construct a variance-reduced stochastic gradient estimate (Johnson & Zhang] [2013)):

gro-svrG = V fr(x) — V fz(x) + V f(%), “4)

where V fz(x) = § > ,c7 V/i(x) is the mini-batch stochastic gradient from a subset Z C [n] of

size b. A crucial property of gro svrc is that §ro_svrg is an unbiased gradient estimate of V f(x),
E[grosvrc] = V f(x) (Johnson & Zhang, 2013).

In the ZO setting, ZO-SVRG adapts the SVRG structure by replacing all explicit gradient computa-
tions with ZO estimates derived from function evaluations:

870.svrG = Vfz(x) — Vfz(X) + Vf(%X), )

where V f(x) = (1/b) > et Vfi(x), V(x) = @f[n] (x), and V f;(x) is a ZO gradient estimate,
as defined in Section While structurally similar, a key distinction is that €70 svrg is generally a
biased estimate of V f(x) due to the inherent bias of V f;(x) relative to V f;(x) (Liu et al., 2020).
This bias significantly complicates its convergence analysis compared to FO-SVRG.

VAMO (Algorithm is motivated by the high cost of computing the full gradient V f (%) in SVRG for
large-scale models, and introduces a hybrid gradient estimator that combines FO and ZO components
to reduce this overhead:

&= Viz(x) —a (Vi) - Vi) O

Here, V f7(x) is the standard FO mini-batch stochastic gradient at the current iterate x, while V f (X)
is the ZO estimate of the full gradient at the snapshot x.

A critical design choice in equation [6] is the construction of the variance-reduction term
e (@ fr(%) = Vf (fc)) . To preserve the desirable unbiased property of FO-SVRG, we ensure that the

expectation of the ZO variance correction term, E [@ fr(%X) — Vf(X)|, is zero. Using ZO estimates

for both terms within the parentheses, v fz(%x) and i (%), is key to this property and also contributes
to computational savings at the snapshot. Maintaining this unbiasedness is pivotal, as it allows for a
more tractable convergence analysis similar to FO-SVRG, distinguishing our approach from many
Z0 algorithms that contend with biased estimators. Furthermore, VAMO introduces a novel mixing
coefficient o > 0. This parameter allows for explicit control over the influence of the ZO variance
correction term. We will provide a detailed theoretical and empirical analysis of « in Appendix

The introduction of this hybrid structure, particularly the ZO estimation at snapshot and the mixing
coefficient o, means that the convergence analysis of VAMO cannot be trivially inherited from existing
FO-SVRG or ZO-SVRG analyses. It requires a dedicated theoretical investigation to characterize its
behavior and prove its convergence guarantees, which constitutes a core part of our contribution in
Section4.2] This distinct analytical challenge underscores the theoretical novelty of our work.

Algorithm 1 VAMO (T, m, {nx }, b, X0, i1, @)

1: Input: In addition to parameters in SVRG, set smoothing parameter y > 0.

2: fors=1,2,...,5do

3:  compute ZO estimate g, = @f(is,l)

set X§ = Xs—1

fork=0,1,...,m—1do
choose mini-batch Iy, of size b )
compute hybrid FO and ZO gradient blending: v; = V f1, (x}) — a(V f1, (x]) — &)
update X3 | = X — NgVy

9: end for

10:  setx, = X7,

11: end for

12: return X chosen uniformly at random from {{x; }}"" ' }5_;.

AN AN
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4.2 CONVERGENCE ANALYSIS

In this section, we present the convergence analysis for VAMO using the two-point ZO gradient
estimate in equation[2] Our analysis is based on an upper bound on the expected squared gradient
norm E[||V f(x)||3], as shown in Theorem As discussed in Section for non-convex objectives,

a small value of E[||V f(x)||3] implies convergence to a stationary point.

Theorem 1. Under the assumptions in Section|3.1} and the two-point ZO gradient estimate is used.
The output X of Algorithm|l|satisfies:

Elf(%X0) — f*] . Sxm
E[IIV/ ()] < mx% I T )

where T' = Sm, f* = miny f(x), ¥ = mingepn & and xm = ZZZOI Xk Yk and xi are
coefficients which depend on {ny,, 11, b, d, a}. The proof is provided in Appendix@

Compared to FO-SVRG, Theorem 1] has an additional error (Sx,, /(1)) due to the use of the ZO
gradient estimator. To obtain a clear dependence on these parameters and explore deeper insights into
convergence, we simplify equation[7]to suit the specific parameter settings, as shown below.

Corollary 1. Suppose parameters are set as

1 p 1
B=—= Me=n=F, o= ®)
\/T’ L’ d’
with B, = B = L, where 0 < p < 1 is a universal constant independent of b, d, o, L and T. Then
Theorem[l|implies
E[f(%0) — /7] 1 Sxm 11
—WA J e — ZAm 4 -
T —OT’ T <0 i b ) 2
vielding the convergence rate:
1 1 1
E )] <O =+ —+ - ). 1
19718} <0( 7+ 57+ 3) (10)

The proof'is provided in Appendix |G|

From Corollary |1} we can observe that one advantage of VAMO is that, compared to previous ZO
algorithms, the value of smoothing parameters  is less restrictive. For example, ZO-SVRG required
1 < O(1/+/dT), and ZO-SGD required 1 < O(1/d+/T) (Liu et al., 2018b). Compared to FO-SGD,
the algorithm achieves an improved rate of O(1/T') rather than the rate of O(1/+/T). Compared
to ZO algorithms, the convergence rate is independent of the parameter dimension d. Compared to
FO-SVRG, VAMO suffers an additional error of O(1/b) inherited from (Sx,/(1%)) in equation 1}

4.3 MEMORY EFFICIENCY OF VAMO

Building on the convergence analysis of VAMO in the Section[d.2] where we showed that VAMO
achieves an O(1/T) convergence rate, we now analyze its memory efficiency in large-scale training.

In large-scale training, the total memory footprint of an algorithm is dominated by three components:
model parameters |x|, optimizer states, and dynamic memory for gradient computation (Zhang et al.,
2024). Here |x| denotes the memory required to store the model parameters in full precision, and |x;|
is that of the parameters in layer . The symbol |a;| denotes the memory of activations or intermediate
results of one single sample at layer [.

For FO methods, dynamic memory is dominated by intermediate results, scaling roughly as ), b- |ay|
in Table I] for a mini-batch of size b. FO-SVRG (Johnson & Zhang| [2013)) further requires computing
the full gradient at the snapshot point; while this can be accumulated over smaller mini-batches to
reduce peak memory of intermediate results to ), b - |ay|, it increases computational cost per epoch
due to multiple passes over all n samples. If the full FO gradient is computed at once, the dynamic
memory of intermediate results will increase to ), n - |a;|, which poses a substantial memory burden
for large-scale settings. Therefore, FO-SVRG must trade off compute and memory when computing
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full FO gradients. In contrast, VAMO leverages full ZO gradient estimates, which do not require
backpropagation, and thus do not need to store intermediate results. Even for estimation of full
batch gradients at once, dynamic memory only reaches max; |x;| , independent of b , the same as
Z0-SGD, which is much smaller than ), b - |a;|. Therefore, VAMO do not need to introduce a
compute—memory trade-off like FO-SVRG in large-scale settings. Regarding optimizer states, VAMO
needs 2|x| for storing full ZO gradient and the snapshot point, while Adagrad and Adam which
need around 2|x| to store first- or second-momentum. However, in practical applications, for faster
computation, Adam and Adagrad usually need to allocate large temporary buffers after activations
have already filled and fragmented GPU memory, spiking the true peak memory . In Table 2] we
can observe that Adam and Adagrad bring much higher peak memory cost in model fine-tuning
experiments. And Table ] summarizes the three memory components for different optimizers and a
more detailed theoretical and empirical analysis of memory efficiency is provided in Appendix [B]

5 VAMO WITH MULTI-POINT ZO GRADIENT ESTIMATION

Building upon the VAMO algorithm previously introduced with a two-point ZO gradient estimator,
this section presents its multi-point ZO estimation variant. This extension is a key component of
VAMO'’s adaptive design, as adjusting the number of random directions ¢ in ZO estimate allows
for explicit tuning of the trade-off between computational cost and the precision of the ZO-based
variance reduction, thereby directly influencing convergence performance.

Theorem 2. Suppose assumptions Al and A2 hold, and the multi-point ZO gradient estimate is used
in Algorithm[l} The gradient norm bound in equation[7|yields the simplified convergence rate:

1 1 1 2
B8] <0( 5+ 55 +3(1-2)). 1

With parameter choices p = q%/f’ n = £, a = 4. The proof is provided in Appendix@

By contrast with Corollary [I] it can be seen from equation [TT]that the use of multi-point version
of VAMO reduces the error O(1/b) in equation [I| by leveraging multiple ¢ direction sampling,
while increasing the computational cost accordingly. If ¢ = d, the algorithm’s convergence rate
become comparable to FO-SVRG. A comprehensive summary and comparison of the computational
complexities and convergence rates of our proposed VAMO methods against various FO and ZO
algorithms can be found in Table[I] presented in Section 2] Briefly, the mixing coefficient @ governs
the trade-off between the FO stochastic gradient and the ZO variance-correction: larger « increases
reliance on ZO information while smaller « favors FO updates to mitigate the error of ZO estimation.
A detailed theoretical and empirical analysis of « is provided in Appendix

6 APPLICATIONS AND EXPERIMENTS

In this section, we present empirical results to validate the effectiveness and adaptability of the
proposed VAMO through three experimentsﬂ (i) an adaptability study on a synthetic task varying the
number of ZO query directions g, (ii) a benchmark on MNIST classification (LeCun et al., |1998)),
and (iii) large-scale fine-tuning of GPT-2, GPT-2 Medium (Radford et al.||2019) and RoBERTa (Liu
et al., 2019) on SST-2 (Socher et al.,2013)) and MNLI (Williams et al.,[2017). We benchmark against
popular FO methods (FO-SGD (Robbins & Monro, [1951), FO-Adagrad (Duchi et al., 2011)), FO-
Adam (Kingma & Bal 2014))) and ZO methods (ZO-SGD (Ghadimi & Lan, [2013), ZO-SVRG (Liu
et all[2018b)). Full setups and hyperparameters are deferred to Appendix [J}

Adaptability Experiment. To highlight VAMO’s adaptive nature, we tested its multi-point ZO
estimation strategy on a synthetic non-convex least-squares task. We compared variants using
q € {1,3,5} query directions against FO-SGD. Fig. presents the training loss convergence. Con-
sistent with our theoretical analysis in Table|I} all VAMO variants achieve an O(1/7") convergence
rate, outperforming FO-SGD’s O(1/ VT ) rate. The figure clearly illustrates VAMO’s adaptability:
increasing ¢ improves convergence performance, effectively mitigating the additional O(1/b) error

!Code for all experiments is available in the supplementary material.
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Figure 1: (a) Convergence comparison on a non-convex least-squares task, showing VAMO with
varying ZO query points (¢ = 1, 3, 5) against FO-SGD. (b) Convergence comparison on the MNIST
classification task against pure FO and ZO methods.

term associated with the two-point (¢ = 1) variant. This aligns with the theoretical prediction that
this error term diminishes for larger ¢ (scaling towards O((1 — q/d)?/b). These results empirically
validate our theory and highlight VAMO’s practical ability to adaptively trade computational cost for
enhanced convergence by managing ZO estimation error, a key aspect of its adaptive design.

Multiclass Classification. On the MNIST benchmark, we trained a Multi-Layer Perceptron (MLP)
and compared VAMO (two-point version, ¢ = 1) against FO optimizer (FO-SGD) and ZO optimizers
(ZO-SGD and ZO-SVRG). As shown in Fig.[Tb] VAMO significantly outperforms purely ZO methods,
converging faster and reaching a lower final loss. Its performance is also highly competitive with
FO-SGD, underscoring the practical effectiveness of our hybrid strategy.

Table 2: We measure peak GPU memory consumption (in GB) when fine-tuning RoBERTa-Large
and GPT-2 Medium models under varying batch sizes (bs) with a fixed context length (cl=128).

\ RoBERTa-Large \ GPT-2-Medium
Method ‘ bs=16 bs=32 bs=64 ‘ bs=16 bs=32 bs=64
FO-SGD 4.63 6.72 10.83 7.08 11.50 20.33
FO-Adagrad 7.21 10.46 16.54 10.25 15.74 27.57
FO-Adam 8.62 11.59 17.66 11.59 17.05 29.07
VAMO 5.95 7.83 11.96 8.40 12.62 21.46

Table 3: We show test accuracies and losses (in parentheses) of VAMO when fine-tuning GPT-2,
GPT-2 Medium and RoBERTa-Large on SST-2 and MNLI datasets, compared with FO and ZO
baselines.

Method RoBERTa-Large (MNLI) GPT-2 Medium (MNLI) GPT-2 (SST-2)
FO-SGD 75 (0.67) 60 (0.90) 90 (0.42)
FO-Adagrad 72 (0.74) 53 (1.33) 88 (0.37)
FO-Adam 61 (0.98) 48 (1.03) 98 (0.03)
Z0-SGD 73 (0.99) 66 (0.89) 84 (0.59)
Z0O-SVRG 70 (1.01) 69 (0.88) 72 (0.64)
VAMO 78 (0.56) 67 (0.85) 94 (0.16)

Fine-Tuning Experiments. To further assess VAMO’s practical utility and its advantages in
complex, large-scale settings, we further evaluate VAMO on fine-tuning pre-trained large models,
including GPT-2, GPT-2 Medium, and RoBERTa-Large, on the SST-2 and MNLI datasets, comparing
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against standard FO optimizers (FO-SGD, FO-Adagrad, FO-Adam) and ZO optimizers (ZO-SGD,
ZO-SVRG). Table 2] presents the peak GPU memory usage of different algorithms for batch sizes
of 16, 32, and 64, with the context length fixed at 128. Compared with FO-Adam and FO-Adagrad,
VAMO showcase great memory efficiency, The results show that VAMO’s peak memory cost is
32% (RoBERTa-Large) and 26% (GPT-2 Medium) lower than FO-Adam on average. Compared to
FO-Adagrad, the memory cost of VAMO is 23% (RoBERTa-Large) and 20% (GPT-2 Medium) lower
on average.

Fig. 2] presents the training loss of different algorithms over both iteration steps and wall-clock time.
VAMO achieves markedly faster and more stable convergence than FO-SGD, while maintaining a
similar memory footprint. This improvement is theoretically supported by Table[T} VAMO enjoys a
convergence rate of O(1/T), superior to the O(1/+/T) rate of FO-SGD. Compared with ZO methods,
VAMO not only yields better empirical performance but also avoids dependence on the parameter
dimension d, demonstrating stronger scalability for large models. Compared with Adagrad, VAMO
achieves a similar level of performance but with far lower memory overhead.
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Figure 2: We compare the convergence performance of VAMO when fine-tuning GPT-2, GPT-2
Medium and RoBERTa-Large on SST-2 and MNLI datasets with pure FO and ZO methods.
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Table [3] shows the final test accuracies and test losses (in parentheses) of different algorithms for
all tasks. Although VAMO underperforms FO-Adam in convergence speed, it demonstrates better
generalization ability in most tasks. For instance, VAMO’s test accuracy is 8% higher than that of FO-
Adam in RoBERTa-Large experiments and 26% higher in the GPT-2 Medium (MNLI) experiments,
while also achieving lower test losses in both. Compared with other algorithms, VAMO not only
outperforms them in wall-clock convergence, it also achieves a near 10% higher accuracy score
on average, demonstrating both superior convergence speed and better generalization with a light
memory footprint. We believe that the improved generalization ability might come from the use of
full-batch gradients, since all other algorithms only use mini batch gradients, which may result in
insufficient training.

7 CONCLUSION

In this paper, we propose a hybrid FO and ZO variance-reduced algorithm, VAMO, for nonconvex
optimization. We demonstrate that compared to FO-SGD, our algorithm improves the convergence
rate from O(1/+/T) to a linear rate of O(1/T). Compared to ZO algorithms, our method maintains
convergence performance independent of the parameter dimension d, making it effective for opti-
mizing high-dimensional problems. However, due to the use of two-point ZO gradient estimation,
our convergence result includes an additional error term O(1/b). To mitigate this, we introduce a
multi-point ZO gradient estimation variant, which reduces this error. Unlike previous purely FO or
Z0 methods, our hybrid approach leverages the advantages of both, enabling a more flexible trade-
off between efficiency and convergence performance. This makes it more adaptable to real-world
applications with complex constraints. Our theoretical analysis and empirical evaluations, including
comparisons with state-of-the-art methods, demonstrate the effectiveness of our approach.

REPRODUCIBILITY STATEMENT

We have provided detailed descriptions of our algorithms, training settings, and datasets in the main
text and appendix. In addition, all source code and instructions to reproduce our experiments are
included in the supplementary material.
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A THE USE OF LARGE LANGUAGE MODELS

The use of large language models (LLMs) in this work was limited to writing assistance and
minor code editing. Theoretical analysis and experimental results were conducted without LLM
involvement.

B DETAILED DISCUSSION ON MEMORY EFFICIENCY

We have made a brief analysis of VAMO’s memory efficiency in Section[d.3] In this section, we
analyse VAMO’s memory profile in detail and compare it against standard FO and ZO optimizers,
theoretically and empirically.

B.1 THEORETICAL ANALYSIS

We adapt the memory analysis framework of [Zhang et al. (2024)) to compare the peak memory
consumption of different optimizers. Table ] summarizes the decomposition into three components:
the model (Weight Mem.), the optimizer states (Opt. State Mem.), and dynamic allocation for
computing gradients and optimization (Dynamic Mem.).

Table 4: Comparison of the instant peak memory consumption of different optimizers when fine-
tuning the full model. Here |x| denotes the memory required to store the model parameters in full
precision, and |x;| is that of the parameters in layer I. The symbol |a;| denotes the memory of
intermediate activations of one single sample at layer [, where b and n correspond to the mini-batch
size and the total dataset size, respectively. In Dynamic Mem., b - |a;| represents the memory of
saving mini-batch activations at layer [, while |x;| also accounts for temporarily saved gradients, as
they have the same size as the corresponding parameters (Zhang et al., [2024)).

Optimizer Weight Mem. Dynamic Mem. (Grad.&Opt.) Opt. State Mem.
FO-SGD x| > max{b - |ay, [x|} 0

FO-SVRG (accumulation) x| > max{b- |a, x|} 2|x|

FO-SVRG (full batch at once)  |x] >y max{n - |ay, x|} 2|x|

FO-Adam x| >y max{b- |ay, [x:|} 2|x|

FO-Adagrad B4 > max{b- |ay, |x:|} x|

VAMO x| > max{b- |ay, |x:|} 2|x|

Z0-SGD |x| max; |x;| 0

The advantage of ZO methods is the removal of backpropagation, which eliminates the need to store
intermediate activations |a;| for each input example during the forward pass. In FO optimizers, the
total activation memory grows as b - ), |a;| for a mini-batch of size b, while ZO methods completely
avoid this dependence on the batch size. This reduction in dynamic memory cost becomes especially
significant when b is large in large-scale settings. Moreover, ZO gradients can be estimated in a
layer-wise manner, so only the gradients of the currently processed layer need to be stored, further
lowering the peak memory footprint compared to FO methods (Zhang et al.l 2024). For ZO-SGD,
dynamic memory is dominated by a temporary copy of the parameters of a single layer for gradient
estimation, resulting in a peak memory of max; |x;|, independent of batch size, and no extra optimizer
state is required.

In contrast, all FO methods require storing intermediate activations or other temporary variables
to compute gradients, which results in dynamic memory that grows with the mini-batch size. FO-
SVRG (Johnson & Zhang|, 2013)) additionally needs to compute the full gradient at the snapshot point.
Although this full gradient can be obtained by accumulating gradients over smaller mini-batches,
reducing dynamic memory of intermediate results per step to b - |a;|, it comes at the expense of
higher computational cost per epoch due to multiple passes over all mini-batches. Computing the
full gradient in a single full batch would substantially increase dynamic memory of intermediate
results to o - |a;|, requiring a compute-memory trade-off as commonly done in FO-SVRG. In contrast,
VAMO leverages ZO estimation to compute the full gradient without storing intermediate activations,
so even when computing over the full batch at once, the peak dynamic memory is only max; |x;],
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the same as ZO-SGD, and no compute—memory trade-off is required. This makes VAMO highly
memory-efficient for large mini-batches or large models. Regarding optimizer state, adaptive methods
such as Adam (Kingma & Ba, |2014) or Adagrad (Duchi et al.| 2011) require additional memory
for first- or second-order momentum, resulting in |x|-2|x| extra memory per step. FO-SVRG and
VAMO need 2|x| optimizer state for storing the snapshot and full gradient (Johnson & Zhang| 2013).

B.2 EMPIRICAL RESULTS ANALYSIS

To empirically validate our theoretical analysis, we conducted full-parameter fine-tuning of a
pre-trained RoBERTa-large model (Liu et al., 2019) and GPT-2 medium model (Radford et al., 2019)
on the MNLI dataset (Williams et al., [2017) with FP32 (see Section @ We measured the peak GPU
memory consumption of VAMO, FO-SGD, FO-Adagrad and FO-Adam by varying the batch size
(with sequence length fixed at 128). The detailed results are presented in Table 2)in Section [6]

We observe that VAMO’s peak memory consumption is consistently only marginally higher than
FO-SGD, with the difference stemming from the overhead of storing the ZO full gradient and the
snapshot point for variance reduction. Importantly, as the batch size increases, the scaling trend
of VAMO almost parallels that of FO-SGD, confirming that the intermediate results for computing
mini-batch FO gradients dominates the memory cost in both methods. Notably, the ZO full gradient
in VAMO does not require storing additional intermediate activations, further preventing the memory
blow-up typically associated with FO-SVRG.

Compared with adaptive methods like Adam and Adagrad, it seems that there is no improvement of
memory cost in theoretical analysis. However, in practice, VAMO achieves a substantial improvement
in peak memory compared to FO-Adam and Adagrad. Adaptive methods like Adam and Adagrad,
for faster computation, allocate large, temporary buffers after activations have already filled and
fragmented GPU memory, spiking the true peak memory. This "last-minute" allocation often fails to
reuse memory efficiently, spiking the true peak memory. VAMO’s update is linear, in-place, and relies
on static states. It never requests these problematic temporary buffers, thus avoiding the allocation
spike entirely and resulting in a lower practical footprint. Taken together, these results highlight
VAMO'’s practical advantage: for a negligible increase in memory compared to FO-SGD, it achieves
markedly better convergence, as shown in Section[6] while remaining far more memory efficient than
Adam and Adagrad. This balance makes VAMO particularly well suited for memory-constrained
large-scale fine-tuning tasks.

C DETAILED DISCUSSING OF CONVERGENCE AND COMPLEXITY

In this section, we provide additional discussion of the convergence rates and computational com-
plexities summarized in Table [I] (see Section [2). Table [ summarizes the convergence rates and
computational complexities of our proposed methods, referred to as VAMO and VAMO (multi-point)
in the table alongside several FO and ZO algorithms.

For ZO methods, ZO-SVRG is listed with a complexity of O(nS + 2bT') function queries. Among
FO methods, FO-SGD has the lowest computational cost O(bdT') but also exhibits the slowest

convergence rate of O(1/+/T). FO-SVRG improves convergence to O(1/T') but increases the cost
to O(dnS + 2bdT) due to full gradient computations. Our proposed VAMO maintains a complexity
of O(nS + bT + bdT), similar to ZO-SVRG in terms of n.S but replacing the ndS full gradient
cost of FO-SVRG with a cheaper nS ZO estimation cost for snapshots, while achieving a fast
O(1/T + 1/b) convergence rate. This makes its computational complexity significantly slower
than FO-SVRG, especially when d is large. The VAMO (multi-point) variant has a complexity
of O(qnS + ¢bT + bdT'). Here, increasing ¢ (the number of ZO sampling directions) leads to
higher complexity but also improves the convergence rate to O(1/T + (1 — q/d)?/b), reducing the
O(1/b) error term and making its performance more comparable to FO-SVRG, particularly if ¢ < d.
This demonstrates that our proposed methods provide a flexible and often more efficient trade-off
between computational cost and convergence performance compared to existing pure FO or ZO
approaches. Our work further develops such an adaptive hybrid approach by specifically integrating
Z0 estimation within the SVRG structure, aiming to reduce the full gradient cost while preserving
strong convergence guarantees independent of the parameter dimension.
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D ZO GRADIENT ESTIMATOR

Lemma 1. Under the assumptions in Section and define f, = Eu~u, [f(x + pu)] where Uy is
the uniform distribution over the unit Euclidean ball. Then:

(i) fuis L-smooth with

Vfu(x) =Eu[VF(x)]. (12)

(ii) For any x € R%:
Ly?
[fulx) = £G0)] < =25, (13)
2L2d2
IV£,60 = VFGI13 < B, (14)
1 M2L2d2 M2L2d2

SIVIGIIE = == < IVAMIE < 2VIEIE+ —— (15)

(iii) For any x € R%:
. 2L2d2
Eu[IIVf(0) = V() 3] < 20| VI ()]13 + 7 (16)
Proof. See the proof of Lemma 1 in (Liu et al.| 2018b)) O
Lemma 2. Under the conditions of Lemmal|l}

(i) Forany x € R%:

Vfu(x) =Eu[Vf(x)]. (17)

where N f () is the multi-point gradient estimate.
(ii) For any x € R%:
- 2d w2 L2d?
E[|Vf(x) = Vfu(x)l3] < ;IIVf(X)H% g (18)
Proof. See the proof of Lemma 2 in (Liu et al., | 2018b) O

E SECOND-ORDER MOMENT OF THE HYBRID GRADIENT ESTIMATOR

The primary goal of our convergence analysis is to establish theoretical guarantees for VAMO in
solving non-convex optimization problems. Specifically, we aim to bound the expected squared norm
of the gradient, E[||V f(X)||3], as shown in Theorem 1} Due to the hybrid structure of the gradient
estimator v, used in VAMO, directly analyzing the final convergence metric is challenging. As a key
intermediate step, we first derive an upper bound on the second-order moment E[|v;|3].

Proposition 1. Under the assumptions in Section[3.1] and two-point ZO gradient estimate is used in
AlgorithmE] The blended gradient vi, in Step 7 ofAlgorithm[Z]satisﬁes,

24dd,,

E[IviI] < 4<2a2 o414 a2>E[IIVf(xZ)II§]
126, (4d + 1)L L.
4 2O DL g — 2] (19)

96,,

4 2
+ 7d2L2u2a2 + =

5 (24d5n042 +(1- a)z),

where 6, = 1 if the mini-batch contains i.i.d. samples from [n] with replacement, and 5, = I(b < n)
if samples are randomly selected without replacement. Here I(b < n) is 1 ifb < n, and 0 if b = n.
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Proof. In Algorithm T] we recall that the mini-batch Z is chosen uniformly randomly (with replace-
ment). It is known from Lemma|[T]and Lemma 3] that

Ez, |Vz.(5) = Vi ()| = VF(xi) = VI(x5). 0)

We then rewrite vy, as

vi = (1-a) Vg (x})

N N 21
o (V£ (t) — V£, (8) — Bz, [V, () = Vo )] + V1) )

Taking the expectation of || v} ||§ with respect to all the random variables, we have

E[Ivil3] <201 - o)’ E[IV 2 6x2)13]

+ 208 ||V, 0c0) — . 9) ~ B [V 00) - ¥ (0)] + 9

|
<4 {HVfIk (x3) — VfIk(Xo) Ez, [vffk(xk) szk ) }H }

+40?B [V ()] +2 (1 — o) E IV £, (<011

(22)

where the first inequality holds due to Lemmalfd] Based on equation 20} we note that the following
holds

>~ {TA0cD) - D10x0) - B, [V x0) - 9155 .

= n(V(x}) = VI(x5) = n(Vf(x}) = VF(x5)) = 0.
Based on equation 23] and applying Lemma [I[]and Lemma [3] the first term at the right hand side
(RHS) of equation [22|yields
s v s s v s 2
E [va (%) = V. (x3) — Bz, |V fz, (x}) =V, (x3)] (\2]

< 32 Y B[IVAGh) — TAi09) — (VF00) — 6513
i=1 (24)

i (iz I95:0x3) — VLG~ 1956eh) W<x3>|§ﬂ

< ;E [vrext) - wre)])

where the first inequality holds due to Lemma|[I]and Lemma 3] (taking the expectation with respect to
mini-batch 7), we define §,, as

5. — 1 if 7 contains i.i.d. samples with replacement (Lemma 3] 25)
"1 I(b<n) ifZ contains samples without replacement (Lemma ).
Substituting equation 24]into equation 22] we obtain
5112 2 P
E[Ivill3] <20 - o) E [IVfz o))
4a S (26)

ZE [vstxt) — 9a6p)[}] + 4072 [1976c013].
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Similar to Lemma we introduce a smoothing function f; ,, of f;, and continue to bound the second
term at the right hand side (RHS) of equation [26] This yields

B (|1 £i(x3) = Vi3I

< B[ £i(x2) = fiu ()] +3E [V 7 (0) — 900 ]
BRIV fiaGch) — V foa ) ]

< GBIV £,(5) 3] + S L0 + 3B [V £ () — ¥ fors o))

27

Since both f; and f; , are L-smooth (Lemma , we have
E [IIVfiu(xi) = Vfiu(x)3] < LE [|Ix} — x513] ,
E [V fi(x)ll3] < 2E [IIVfi(x5) — Vfi(xp)II3] + 2E [V fi(x})|3] (28)
< 2L%E [||xg — x¢[13] + 2E [IIV£i(x3)I13] -
We obtain
E IV i) = Vixd)I3]
9
< 124E[|[V£i (i) [13] + (12d + 3)LE [[xg — xi[15] + S L%d*ps?
< 24dE [||Vf;(x}) — V(x0)[13] + 24dE [||V £ (x3) ]3] (29)
+ (12d + 3)L*E [||x§ — x3|13] + §L2d2u2
< 24do® + 24dE [||V f(x})113] + (12d + 3)L°E [||x§ — x3[|3] + §L2d2 2,

where the last inequality holds due to Assumption in Section
We bound the first term at the right hand side (RHS) of equation [26] This yields

E IV fz. (<) 3] < 2B [V £z, (x0) = VDI] + 2B [I97 (<)l

2, , (30)
< 5o+ 2B [V (eI
Therefore, we have
s 4(1 — a)? s
EfIvii3) < 2P0 a0 - apE [V E]
125, (4d + 1)L? s . 96do,, s
%O‘QE [”Xo - X/g”%] + (4 + b) o’E [va(xk)H%}
2
+ %dQLQ;LQaQ + S6da~0rn o?.
b b (31)
9 24do,, 4 s\112
=4(20% =20+ 1+ ——a® | E[|[Vf(x})|Z]
126,,(4d + 1)L? . s
4 2L DL o s — )
4 2
+ %dQLQ/AzaQ + 27 (24d6na2 +(1- a)2) .
O

The bound on E[||v{||3], detailed in Proposition |1} plays a central role in our analysis. It enables
us to control the error accumulation during the optimization process and ultimately leads to the
convergence rate stated in Theorem [T} Based on Proposition|[T} Theorem T| provides the convergence
rate of VAMO in terms of an upper bound on E[||V f(x)||3] at the solution X.

17
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F PROOF OF THEOREM 1

Proof. Since f is L-smooth (Lemmal[T), from Lemma 5| we have

PO < F00) + (VA6 X = i) + 5 i~ xi3
I (32)
= k)~ m(V A (), Vi) + S IvER

where the last equality holds due to x7 , | = x — nxvg. Since zf, and xj are independent of Z and
random directions u used for ZO gradient estimates, from equation [T2] we obtain

Euz, Vi) =Euz, V2, () — o (Vfz.(5) - VI(x3))
=V (i) = (Vu(x5) = VIu(x3)) = VS ().

Combining equation [32]and equation [33] we have

(33)

E [f(xi1)] SEFG)] = mE [IVF )13 ]+ SRE [Ivil3] (34

where the expectation is taken with respect to all random variables.
At RHS of equatlon | the upper bound on E [||v;[|3] is given by Proposition|l] I

2443, ,

E[||VZ||§}§4(2042—2@—|—1+ ) IV f(x)1I3]

126,(4d + 1)L*

B [lIx5 - xil3] 59

4 2

In equation 34} we further bound E [||x} , ; — x§||3] as

E [|Ix741 — x5013] = B [lIx31 — x5 + x5 — x[3]
= B [IIVil3] + E[Ix; —x5l3] — 2mE[(vi, x} — x5)]
= WkE [||Vk|| ] [HXZ - Xo|| ] 277kE Vf(xk) X) — >] (36)

<RE [IIVEIIE] + E [lk = x5 18] + 2 —HW( DIZ + Zixi — 03]
We introduce a Lyapunov function with respect to f,,
=B [FGe0) + exllxi — x5 13] (37)
for some c;, > 0, Substituting equation@and equation@into R}, we obtain
Ry, = [f Xir1) + Ch1|[Xpg1 — XS||§]

L S S S||s
{f = VFNE + il kHQ] E [er1milIVEIE + e lxi — x5]13]

+E[ck+1"ka >§+ck+1ﬁknk||xzx3n§] a5
—B 176k - (e~ 5 ) B (19 ) ]

L
+ (ch1 + o1 Bemw) E [|[x5 — x§[13] + <277;% + Ck+177]%) E [Ivil3] -

18
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Moreover, substituting equation [33]into equation 38] we have

Rj,1 <E[f(x})] — (nk = ;k”) E [V £(x)I13] + (crr + crpr Beme) E [Ix; — x5113]

L 12(4d + 1)L26,, .
+ (o b annt) ZEEDED 2 [1x - xif

24d6,,
P2 ) £ (191

L
+4 <2n,€ + ck+177,%> (2a2 —2a+1+
L On 402
+ <2ni -~ Ck+1n§) (9bd2L2u2a2 + % (24d6,02 + (1 — a)2)> :

The definition of ¢y, is given by

12(4d + 1)L%5, ,

L
Ck = Ck+1 + BeNrCry1 + <2 N + Ck+177k> b

(39)

(40)

Based on the definition of ¢;, and the definition of Rj in equation@ we can simplify the inequality

equation [39)as

s s Ck+1"k S
R < 85 = (- 252 ) B 197618

L 24d5,, .
(gt ann) (200 -2 01+ 2002 B IR

2
+ (Sni + ck+1m%> (9(2”61%2#2@2 - 4% (24d6,02 + (1 — a)2)>

= Ry — mE [[IVFxDIZ] + xk,

where v, and xj are coefficients given by

c L 24d6,,
T = (1— g]:l)??k—4<2+0k+1> (2@2—2a—|—1+ b 042) U}%a

L " 40”
Xk = (2 + Ck+1> (96 CLa® + - (Adbral + (1= a)z)) ™

Taking a telescopic sum for equation 2} we obtain

m—1

Ry, < Ry = Y mE[IVSGRIE] + xom,
k=0

where x,, = ZZL:_Ol Xk- It is known from equationthat,
R =E[f(x0)], R, =E[f(x}.)],

where the last equality used the fact that ¢,,, = 0, since X,_; = x{ and X, = X;,, we obtain

R an _]E[f(xs—l) _f(xé)]

m?>

Telescoping the sum for s = 1,2, ..., 5, we obtain,
S m-—1
D wENVEDIE] < Elf (%0) = f(%s)] + Sxm-
s=1 k=0

let ¥ = miny, ), and we choose X uniformly random from {{x;}7*-;'}%_,, then we obtain

E[f(%0) = /"] , Sxm
T~ Ty °

E[|Vf(®)]3] <

19
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(44)
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G PROOF OF COROLLARY 1

Proof. We start by rewriting ¢, in equation[d0]as

1+ 4d)L36,1?
eh = (14 0)cpyy 4 SLTADL00” (48)

b
where 6 = On + woﬂ. The recursive formula equationimplies that ¢, < ¢( for any
k, and
6(1 + 4d)L36,m%a® (1+6)™ — 1
o = (1+ )b 7705("'; . (49)

Based on the choice of n = %, o= é, and 8 = L, we have

12(4d + 1)6,,p?
0 = i S e 50
p+ 2 (50)
where we have used the fact that §,, < 1, Substituting equation [50]into equation 49} we have
6(1 + 4d)L36,02 n? 6(1 + 4d) Lpo,,
<cy= —[(1+6)™—-1] = 1+0)™ -1
o = €0 b g+ A = st e, LT 0"~ 5h)
30Lpdy, 30Lpdy, 60Lpdy,
< 1+40)m—-1] < -1)<
< g (A +0) <= == ——,

where the third inequality holds since (1 +6)™ < (1 + 22)™ (1 +1/a)® <limoo(1 + 1) =
e for a > 0, and the last inequality loosely uses the notion ’<’ since e < 3.
We recall from equation 1] that

_ . Gkl (L 2 24don 5\ o
¥ = O<II€I££11_1 { (1 A ) N — 4 <2 +ck+1> (Za 200+ 1 4+ 5 a® |-  (52)

Since n, =1, B = B and ny = 10, B, = B, we have

L 24d6,,
72<1—Cﬂ°)n—4(2+c0> (2a2—2a+1+ba2>n2. (53)
From equationand the definition of 5, we have
c _ 60p
I} bd 54)

and

L 24do.
<2+co) (ZaZ—Qa—l—l—i— b nozz)n

L 60Lp 2 2 246, \ p
ittt i Y (R | £
- (2 + bd ) <d2 d L bd ) L (53)

<1+ 2

Substituting equation [54]and equation [53]into equation [53] we obtain

60 96 156
7277(1—p—4p—p)277(1—p—4p>, (56)

A

where we have used the fact that b < d. Moreover, if we set p < Wlo , then 4 > 0. In other
words, the current parameter setting is valid for Theorem [I} Upon defining a universal constant
zo=1-— % — 4p, we have
¥ =1%o (57
Next, we find the upper bound on ., in equation[dT]given the current parameter setting and ¢, < ¢,
L 96y, 402
Xm < m (2 + cO> (bd2L2u2a2 + % (24d6,0” + (1 — 04)2)) n? (58)
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Based on 7 > nzg and ¢y < 60Lpd,, < %, we have

90, 40
A< omp [ ZERL2 20 4+~ (24d6,02 + (1 — )?) (59)
ol bzo bzo
since’ T’ = Sm, and u = %,the above inequality yields

SXm _ 9pL%6, 40? (246, 1., 1 1
—Am o - 1-22)=0(=+2 60
Ty — 2T +bzo d + d) © ) (60)

where in the big O notation, we only keep the dominant terms and ignore the constant numbers that
are independent of d, b, and T .
Substituting equation[57) and equation [60]into equation[7] we have

%0) — f*] L Sx 111
19seg < L0220 (L g Q)
O
H PROOF OF THEOREM 2
Proof. Motivated by Proposition we first bound ||v; H;, Following, we have
E[IviI3] <201 - o)’ B [IV/z 6)13]
4028, — e N . (62)
+ 200 S g |9t - Vaes)[)] + 1028 [Iv o)1)
i=1
Following together with equation [I8] we can obtain that
E[IV£:0xi) = Vit 113
24d , 24d .
< —o’+ ~ E [V £ (<)113] (63)
12d L. 3 3
+ (3 + q) LE [|[x§ — %3 3] + (4 + 2q> L*d*p?,
Substituting equation [63] and equation [30]into equation [62} we have:

24d6,,
(il <4 (2+ 257 )02 2a-41) B 197 6DIE)

2
N 12L%6,, 14 4d o%F [||x§ — x3|12] + 30n 1 +Z L2d2p202  (64)
b q b q

2 2
N (MZ"O[+(1—Q)2>.

Substituting equation [64]into equation 38| we have:

Ry, <E[f(x})] - <nk- - ’“;W) E [V £0)I2] + (cort + copsfene) E [Ix5 — x31E]

L 12125, 4d L
+ (gt +ant) 250 (14 50) %R [l - 1]

L 24d6,, s
+4 <2771% + Ck+1771€> ((2 + s ) o’ — 20 + 1) E UIVf(xk)H%]
L 30, 2
+ (277,% + ck+177,2€) - (1 + q) L2d% 1202

L 402 (24d6,a?
+ (2771% + Ck+1772) o (q +(1- a)2>

(65)
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Based on the definition of ¢, = (1 + Brnk) ck41 + (% + ck+1) (1 + %d) M and R; given

by equation[37] we can simplify equation [65]to

Ck Nk s
<Rl (nk _ “) E |V f(x2)I2]

Br
L 24d5, .

v (g rann) (24 252) o - 2041) E[IV/GxDIE)

L 30, 2
+( 577+ crini 1+ =) LPdpPa? (66)

2 b q

L 402 (24d6,a? 9
+ 5 —n + Ch1mi B\ +(1-a)

< Ry —wmE [IVFxI3] + Xk

where 7, and x, are defined coefficients in Theorem 2]
Based on equation [66] and the following argument in, we can achieve

- E[f(%0) = f*] | Sxm
E 21 < .
VAR < ==+ 2
The rest of the proof is similar to the proof of Corollary [T| with the added complexity of the parameter
q.

Let 0 = B + (1 + %d) %nﬁ, and ¢ = cp11(1+0) + (1 + %) M. This leads to:

(67)

4d\ 6L36,n%a? (1 +0)™ —
co=(1+2 o’ (1+6) (68)
q b 0
Letn=%,a=12,3=L,and ¢ < d we have:
126,qp° 60pq
0= 4d < 12 4 — 69
p+ (q+4d) 2 SPT p(d2+ d) Pt (69)
Substituting equation [69]into equation [3_81 we have:
L36, 1+0)™ —
o < o= 1+ 6L36,m%a? (1+0)
q b 0
6(q + 4d) L3, pq
= 1+6)" —1
6(q + 4d)Ld,pq
< — = |[(1 m_1
30Ld, Lo,
< 30Lonpg , _ qy _ 90LOwpq.
bd bd
where the second inequality holds since ¢ < d, and the first inequality holds if m = [W]
d

Because we define ¥ = ming %, we have

s g (L) (24 2% 02 g 41 1)
B 2 qb

From equation[70} we have,

60

Co
DA 2
5 bd (72)
Because n = £, a = 4, and ¢ < d we have
L 24d6,,
—n + con a?—2a+1
2 qb
p | 60p°q\ (2¢°  24q 24

<[(Z =+ ——=—-=+1 73
_<2+ bd)(d2+bd d+ (73)

<, 24q L1 24 41
bd b
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The second inequality holds if we let p < 120 Substituting equation [73| and equation (72 into

equation [71] we can get

60 24
VZn(l—bdpq—ﬁl <b+1>)=nZo,

where zy > 0, and 7 is a universal constant that is independent of 7', b and d.

Then, we bound x,,, = Zk Xk

L 35,
Xm <M (2772 + 00772) ) (1 + ) L2d?p?

L 402 (24d5, 0 9
e (Gt et ) - (F 4 (- a)

2
Because ¢g < 60qu < Lif p < 155, this yields
m 30, 2
Xm o %0 <1 + > L*p*q®
Y Tz b q
p 40 (2440, (1 9y
zo b d d

Since T'= Sm and 1 = #’ we have

2

Sxm _ p 36, (1 2) L

T Zo b q) T
p 40?% [ 24q¢0, q
L (a-1y
zo b d d

Substituting equation[74]and equation [77)into equation[7, we have

Bl SIL S _ g1 ]

E[| V(]3] < =H— T S

bT

H.1 AUXILIARY LEMMAS

o=t

1
b

(

(74)

(75)

(76)

(77)

(78)

Lemma 3. Let {z;}! | be a sequence of n vectors. Let T be a mini-batch of size b, which contains

i.i.d. samples selected uniformly randomly (with replacement) from [n).

When ", z; = 0, then

€T 2 =1

Proof. See the proof of Lemma 4 in (Liu et al.| 2018b).

Lemma 4. Let {z;}!
with size b (no replacement in samples). Then

1 1 &
bZzL] = EZZ]'.

i€T j=1

Ez

23

(79)

(80)

O

', be a sequence of n vectors. Let T be a uniform random mini-batch of [n]
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When Y| z; = 0, then

2
1 Z(b<n) w— )
Er |||z > 2| | = TZ}IIziIIQ. 82)
2 1=

i€L

where I is an indicator function, which is equal to 1 if b < n and 0 ifb = n.

Proof. See the proof of Lemma A.1 in (Lei et al.| 2017). O
Lemma 5. For variables {z;}"_,, we have
n 2 n

ol <l (83)

i=1 |lg i=1
Proof. See the proof of Lemma 6 in (Liu et al.| | 2018b). O
Lemma 6. if fis L-smooth, then for any x,y € R?

L
£(0) = F(y) = (VFiy),x =yl < Sl = yl3. (84)

Proof. This is a direct consequence of Lemma A.2 in (Lei et al.| 2017). O

I ANALYSIS OF ZEROTH-ORDER GRADIENT ESTIMATION ERROR

This section details bounds on the expected squared error of the ZO gradient estimators used in
our work. We consider a ZO gradient estimator V f;(x) for a component function f;(x), which

approximates the true gradient V f;(x) with an estimation error w; (x), such that V f;(x) = V f;(x) +
w; (x). The characteristics of the expected squared error, E[||w;(x)||3], are presented below.

For the two-point ZO gradient estimator of f;(x), as defined in Equation equation [2]in the main text,
the expected squared error is bounded by:

Eflwi(x)[5] < 0@V fi(x)|5 + O(n*L*d?). (85)

Here, d is the problem dimension, p is the smoothing parameter, and L is the smoothness constant
associated with f;.

Subsequently, for the multi-point ZO gradient estimator of f;(x) using 2¢ query points, as defined in
Equation equation [3]in the main text, the expected squared error is bounded by:

E[llw:(x)[5] < O(d/)|IV fi(x)|5 + O(u* L*d?). (86)
The detailed proofs for these bounds can be found in Proposition 2 of (Liu et al.,[2018b).

J  EXPERIMENT SETUP

J.1 ADAPTABILITY EXPERIMENT

The primary objective of this adaptability experiment was to empirically investigate the impact of
the number of ZO query points (g) on the performance of VAMO and to validate the theoretical
benefits of its multi-point ZO estimation strategy (see Section [3). The optimization problem was a
finite-sum non-convex least-squares objective: f(x) = L 3" | (h(x;2;) — y;)?. We configured this
synthetic task with n = 1000 individual component functions and a parameter dimension of d = 100.
The function h(x; -) was parameterized using a simple neural network with a non-convex activation

function to ensure the overall non-convexity of the loss landscape.

In this setup, VAMO variants utilizing ¢ € {1, 3,5} query directions for the multi-point ZO gradient
estimator were compared against the classical FO-SGD algorithm. A mini-batch size of b = 8 was
consistently applied across all methods. Learning rates for both VAMO (for each ¢ setting) and
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FO-SGD were individually tuned by selecting the best performing value from the range [10~2,1071].
For all VAMO variants, the ZO smoothing parameter was fixed at z = 10~3. The mixing coefficient
o for VAMO was also tuned for each value of g, guided by the theoretical insights on balancing FO
and ZO information discussed in Appendix

J.2  MNIST CLASSIFICATION TASK

For the MNIST multi-class image classification task (LeCun et al.l [1998), we trained a Multi-Layer
Perceptron (MLP) to evaluate VAMO against established baselines. The MLP architecture consisted
of an input layer receiving flattened 28 x 28 pixel images (784 dimensions), followed by two hidden
layers with 32 and 16 units respectively, both employing ReLU activation functions. The final output
layer comprised 10 units corresponding to the digit classes, and the network was trained using a
standard cross-entropy loss function. Images were normalized to the range [0, 1].

Our proposed VAMO algorithm, configured with a single ZO query direction (¢ = 1), was bench-
marked against pure first-order FO-SGD (Robbins & Monro| |1951) and pure zeroth-order methods,
7Z0-SGD and ZO-SVRG (L1u et al., 2018b; |(Ghadimi1 & Lan, [2013)). For all methods, the mini-batch
size was set to b = 4. The learning rates were independently tuned for each method, selected from the
range [10~%,1073] for the ZO methods, and [10~3, 10~2] for FO methods and VAMO. For VAMO
with ¢ = 1, we fixed the mixing coefficient at « = 0.1 and used a ZO smoothing parameter of
w = 1073, All models were trained for 10 epochs.

J.3 FINE-TUNING EXPERIMENTS

To further examine VAMO in realistic large-scale scenarios, we conducted fine-tuning experiments
on three language models under the MultiNLI (MNLI) dataset (Williams et al.l 2017) for a three-way
natural language inference task. In all settings, the training and validation sets were subsampled
to 256 and 128 examples, respectively, with a maximum input sequence length of 128 tokens. All
models were fine-tuned for 1500 epochs with full precision (FP32) on a single NVIDIA RTX5880
49GB GPU. All experiments involved full-parameter fine-tuning.

For fair comparisons, VAMO was compared against representative FO methods including FO-
SGD (Robbins & Monro, [1951), FO-Adagrad (Duchi et al., [2011)) and FO-Adam (Kingma & Ba,
2014), and ZO methods including ZO-SGD (Ghadimi & Lan|,2013)) and ZO-SVRG (Liu et al.,[2018b)).
We set the batch size as 32. The learning rates of FO methods were tuned within [le — 4, le — 3],
while those of ZO methods were tuned within [le — 6, 1e — 5]. For VAMO, the learning rate was
also tuned in the range [le — 4, 1e — 3]. We adopted the same learning rate schedule as illustrated in
Algorithm[2] For ZO methods, we adopted a smoothing parameter ; = le — 3 and ¢ = 1 (two-point
version). VAMO was configured with the the smoothing parameter ;4 = le — 3, ¢ = 1, and inner
loop length m = 10.

The main difference is in setting the mixing coefficient . « was set to le — 2 for the GPT-2
experiments, while a lower value &« = 5e — 3 was used for RoOBERTa-Large and GPT-2 Medium. We
used a smaller « for larger models because the ZO gradient estimates exhibit higher inherent error in
higher-dimensional models, so reducing « limits the contribution of the noisier ZO correction and
helps stabilize the training. A detailed analysis of « selection and the error of the ZO estimation is
provided in Appendix and Appendix

Algorithm 2 Learning Rate Scheduling for VAMO

1: Input: Learning rates 71, 72, annealing factor d,,, losses L, annealing threshold &, total number
of batches in an epoch w
Compute moving averages:
Ly < mean(L[—w,:])
Ly + mean(L[—2w, —w))
if % > k then
2 m n2
m < 5,0 2 — 5,
end if
Return: updated 71, 72

A A i
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Effects of Varying u
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Figure 3: The effects of the smoothing parameter i+ on the performance of VAMO for fine-tuning
GPT-2 on MNLL

K ABLATION ON KEY HYPERPARAMETERS

K.1 ROLE OF 4 (SMOOTHING PARAMETER)

We investigated the role of the parameter 1 in VAMO. Recall that 14 defines as smoothing parameter
when computing ZO gradients equation [2]and equation 3] It is known from Spall (1992) that the ZO
estimator is asymptotically unbiased as 1« — 0. We wanted to see the practical effects of different 1
settings for VAMO. Therefore we conducted the ablation experiment that the smoothing parameter p
varied. We fine-tune the GPT-2 (Radford et al.| 2019) on the MNLI dataset (Williams et al.| 2017).
We fixed the key parameters (o = 0.01, ¢ = 1, and m = 10), and the learning rate 7 is set as le — 3.

Fig. 3| shows how different values of v affect the training loss of VAMO algorithm. We observe
that there is no noticeable difference if the value of p is sufficient small. Similar findings were also
empirically stated in (Malladi et al.| 2023)) and |Gautam et al.| (2024). Therefore, in the fine-tuning
experiments (see Section E]), we chose the default value of ;1 = 1le — 3.

K.2 ROLE OFm

The parameter m is a significant role in VAMO as it governs the frequency of the full-batch ZO
gradient updates. Specifically, a smaller m means that the full-batch ZO gradient estimate is
computed more frequently, which can lead to a more effective reduction in gradient variance. To
better understand the trade-off between the effectiveness of these updates and their computational
overhead, we perform an ablation study on m. We consider the task of fine-tuning the GPT-2 (Radford;
et al.,|2019) model on the MNLI dataset (Williams et al., 2017)) . For this study, we fixed the other
key hyperparameters (o« = 0.1, ¢ = 1, and px = le — 3) while varying m and the learning rate 7 is
setas le — 3.

Fig. [] shows that there is no noticeable difference when computing the full-batch ZO gradient
frequently enough (e.g. 2 < m < 10). However, the larger m (e.g. m > 20) results in diverging
behavior. If the value of m is too small, computing the full-batch ZO gradient too frequently will
bring additional and unnecessary computational cost. Thus, we chose the default value of m = 10 in
the fine-tuning experiment.

K.3 ROLE OF a (MIXING COEFFICIENT)

Theoretical Analysis. The mixing coefficient « in the VAMO update in equation [] critically
balances the FO stochastic gradient V f7(x) against the ZO variance correction term V f7(X)—V f(X).
The optimal choice for « directly depends on the estimation error w; inherent in the ZO gradient
components (V f;(x) = Vf;(x) + w;). As established in the literature (Liu et al., 2018b; 2020) and
detailed in Appendix|l] the expected squared ZO error E[||w;||3] typically scales as O(d) for two-point
estimates and O(d/q) for multi-point estimates using ¢ random directions. This relationship dictates
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Effects of Varying m
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Figure 4: The effects of the frequency of full-batch gradient computation m on the performance of
VAMO for fine-tuning GPT-2 on MNLL

Effects of Varying a
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Figure 5: The effects of the mixing coefficient v on the performance of VAMO for fine-tuning GPT-2
on MNLI.

that o should reflect the trustworthiness of the ZO estimates: when the ZO error is substantial (e.g.,
large d, small ¢), a smaller « is warranted to prevent amplifying this error. Conversely, when ZO
estimates are more reliable (e.g., larger g reducing error), a larger o can more aggressively leverage
the variance reduction. This principled inverse relationship between ZO error magnitude (influenced
by d and ¢) and the appropriate scale of « is key. While specific forms like & < 1/d or @ x ¢/d
analyzed in our theoretical sections (e.g., Corollary [[jand Theorem 2) illustrate this adaptive trend,
the core insight is that o must be adjusted to counterbalance the ZO estimator’s error profile. Such
adaptability enables VAMO to effectively navigate the trade-off between computational cost and
convergence performance, a central aspect of its practical utility.

Empirical Results Analysis. The mixing coefficient « controls how much weight VAMO assigns
to the ZO-based variance reduction term relative to the FO gradient. A larger « strengthens the effect
of variance correction but also amplifies the noise of the ZO estimator. To study this trade-off, we
fine-tuned GPT-2 (Radford et al.l 2019) on the MNLI dataset (Williams et al.| [2017), fixing other
hyperparameters (m = 10, ¢ = 1, and pu = 1le — 3) while varying « and the learning rate 7 is set as
le — 3. As shown in Fig.[5] smaller values (e.g. &« = le — 2) provide a good balance, leading to fast
convergence without being overly sensitive to noisy ZO gradients. However, if « is set too small
(e.g., @« = be — 3), the variance reduction term becomes underutilized, diminishing its benefit. In
contrast, setting « too high (e.g., @ = 0.2) magnifies estimation error, results in diverging behavior.
These results align with our theoretical analysis, which highlights the need for careful tuning of « in
high-dimensional settings.
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