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ABSTRACT

Federated Learning (FL) is gaining popularity as a distributed learning framework
that only shares model parameters or gradient updates and keeps private data locally.
However, FL is at risk of privacy leakage caused by privacy inference attacks.
And most existing privacy-preserving mechanisms in FL conflict with achieving
high performance and efficiency. Therefore, we propose FedMD-CG, a novel FL
method with highly competitive performance and high-level privacy preservation,
which decouples each client’s local model into a feature extractor and a classifier,
and utilizes a conditional generator instead of the feature extractor to perform
server-side model aggregation. To ensure the consistency of local generators and
classifiers, FedMD-CG leverages knowledge distillation to train local models and
generators at both the latent feature level and the logit level. Also, we construct
additional classification losses and design new diversity losses to enhance client-
side training. FedMD-CG is robust to data heterogeneity and does not require
training extra discriminators (like cGAN). We conduct extensive experiments on
various image classification tasks to validate the superiority of FedMD-CG. We
provide our code here: https://anonymous.4open.science/r/FedMD-CG-34E2/.

1 INTRODUCTION

Many modern real-world applications involve data being dispersed across clients located in different
physical locations, such as autonomous driving (Li et al., 2021), medical image analysis (Liu et al.,
2021), and IoT (Nguyen et al., 2021). However, various regulation, privacy and security concerns
often make it impractical or even impossible to collect these dispersed data into one location for
traditional centralized learning (Voigt & Von dem Bussche, 2017). To ameliorate these limitations,
Federated Learning (FL) (Li et al., 2020a) has been proposed to enable each client to train a local
model using only its own data and share its model parameters or gradient updates with a central
server periodically to ensure that each client’s raw data does not leak from the local device.

Despite the success, the vanilla FL (e.g., FedAvg (McMahan et al., 2017) and its variants (Li
et al., 2020b; Karimireddy et al., 2020; Luo et al., 2023)) based on sharing complete local model
parameters or gradient updates are extremely vulnerable to inference attacks. Several prior arts
empirically demonstrate that it is feasible to reconstruct victim clients’ private data from trained
and publicly shared parameters and gradient updates (Zhu et al., 2019; Geiping et al., 2020; Haim
et al., 2022). Therefore, a variety of efforts have been devoted to reducing the risk of privacy leakage
in FL, including homomorphic encryption (HE) (Ma et al., 2022; Zhang et al., 2022b), differential
privacy (DP) (Geyer et al., 2017; Cheng et al., 2022) and model decoupling (MD) (Arivazhagan
et al., 2019; Liang et al., 2020). In particular, HE achieves high-level privacy protection at the
expense of extremely high computation and communication costs, which restricts its deployment
in bandwidth-limited and large-model scenarios. DP preserves privacy by perturbing server-side
model aggregation or client-side local model update, but this deteriorates the performance of the FL
methods. See Appendix A for more related work.

In this paper, we mainly focus on MD, which requires each client to decompose the local model into
the base and top layers, and send one of them to the server to reduce the risk of privacy leakage, yet
this inevitably results in performance degradation and even privacy exposure. Note that we regard
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Figure 1: Illustration of FedMD-CG: (a) The local model update distills the experience from the
global generator G for augmenting the generalization performance of the local model [Fi, Di]. (b)
The local generator update utilizes the trained local model [Fi, Di] to guide the local generator Gi to
mimic latent feature space. Note that G is not involved in client-side training. (c) The server-side
data-free KD aggregation takes a crossed manner to achieve as much knowledge transfer as possible.
Best viewed in color. Zoom in for details.

the base layers (top layers) as a feature extractor (classifier). Recently, FedCG (Wu et al., 2021)
combines FL and conditional generative adversarial network (cGAN) (Mirza & Osindero, 2014) to
adversarially train a conditional generator to replace the feature extractor for each client, aiming at
achieving competitive performance while maintaining high-level privacy protection. However, we
revisit it and observe that the following pitfalls may occur in client-side training. First, knowledge
transfer modality at the latent feature level may not be sufficient. Second, additional discriminators
need to be trained to satisfy the adversarial training of cGAN. Third, the trained local generator may
not match the local classifier, terming their inconsistency. Note that the latent feature denotes the
output of the feature extractor.

To this end, we propose a new Federated Learning with MD method (dubbed as FedMD-CG), which
resorts to knowledge distillation (KD) to train a local conditional generator for each client to replace
the local feature extractor. To be more specific, FedMD-CG works on how to efficiently train the
local model and generator on the client side. To achieve this, FedMD-CG utilizes KD to perform
knowledge transfer from the global generator to the local model and from the local model to the local
generator at the latent feature level and the logit level. Meanwhile, we additionally construct two
classification losses to enhance the local model update and the local generator update, respectively.
In addition, we devise two novel diversity constraints to ensure the diversity of the local generator
outputs. On the server side, FedMD-CG performs aggregation of local generators and classifiers in a
crossed data-free KD fashion. The overview of our method is illustrated in Fig. 1.

In a nutshell, the main contributions of this work are as follows: 1) We formulate a novel privacy-
preserving FL method FedMD-CG to achieve better generalization performance, via leveraging
KD to efficiently transfer knowledge from the global generator to the local model and then from
the local model to the local generator. 2) To enhance client-side training, we construct additional
classification losses and tailor new diversity constraints. Our method ensures the consistency between
trained local generators and classifiers, thereby being robust to data heterogeneity. 3) FedMD-CG
performs aggregation in a crossed data-free KD fashion on the server side in order to extract as much
knowledge as possible from the local generators and classifiers. 4) We conduct extensive experiments
to show that FedMD-CG is highly competitive compared with state-of-the-art baselines w.r.t test
performance, convergence speed and privacy protection.

2 PROPOSED METHOD

In this section, we detail the proposed method FedMD-CG. We first define the problem setup and
notations for clarity. And then the core modules of FedMD-CG are presented. Moreover, we present
pseudocode for FedMD-CG in Appendix B.
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Problem Setup and Notations. In this work, we consider supervised federated learning (FL)
setting, i.e., the general problem of multi-class classification. To be specific, we focus on the
centralized setup that consists of a central server and N clients owning private labeled datasets
{(Xi,Yi)}Ni=1 with |Xi| = ni, where Xi = {xb

i}
ni

b=1 follows data distribution Di over input
feature space Xi, i.e., xb

i ∼ Di, and Yi = {ybi }
ni

b=1 ⊂ R denotes the ground-truth labels of Xi.
Notably, we consider the same input feature space, yet the sample distribution may be different
among clients, that is, data heterogeneity caused by label distribution skewness (i.e., Xi = Xj

and Di ̸= Dj ,∀i ̸= j, i, j ∈ [N ]). Besides, each client i holds a local model parameterized by
θi = [θi

F ;θ
i
D] comprising two components: the base layers (feature extractor) Fi : Xi → F

parameterized by θi
F , and the top layers (classifier) Di : F → Rc parameterized by θi

D, where
F ⊂ Rp is the output space of feature extractor with p dimension, i.e., the latent feature space, and c
is the number of classes. For extracting knowledge from clients without accessing any extra data,
each client equips with a conditional generator G : Z×Y → Rp parameterized by w, where Z ⊂ Rq

is the multivariate standard normal distribution N (0, I) and Y ⊂ Rc indicates the one-hot vector
space of the ground-truth label. We use bold y ∈ Y to denote one-hot vector corresponding to class
y ∈ R. Hereafter, we refer to conditional generator as generator.

2.1 CLIENT-SIDE TWO-STAGE DISTILLATION

The training process for each client i involves two stages: augmenting the local model update with
global generator (see Fig. 1 (a)), and guiding the local generator update with trained local model (see
Fig. 1 (b)).

Augmenting the local model update with global generator. In the classical local model update,
client i leverages the following classification loss to optimize the local model θi = [θi

F ,θ
i
D]:

Lce,i = CE(ρ(Di(Fi(x))), y), (1)

where ρ is the softmax function and CE is the cross-entropy function. However, Lce,i has no access to
global knowledge in our work, which is embedded in the global generator. To transfer the knowledge
of the global generator to the local model efficiently, we construct the following two losses based on
KD:

→
Lmse,i = ∥Fi(x)−G(ẑ,y)∥2,

→
Lkl,i = KL(ρ(Di(Fi(x)))∥ρ(Di(G(ẑ,y)))), (2)

where ẑ is sampled from N (0, I). ∥ · ∥2 and KL are L2-norm function and Kullback-Leibler

function, respectively. Specifically,
→
Lmse,i utilizes L2-norm function to enforce the output of feature

extractor Fi(x) to approximate that of global generator G(ẑ,y). After that, client i feeds both

Fi(x) and G(ẑ,y) into the classifier to get Di(Fi(x)) and Di(G(ẑ,y)). Further,
→
Lkl,i harnesses

Kullback-Leibler function to make Di(Fi(x)) close to Di(G(ẑ,y)).

To further augment the local model update, client i resamples a batch of noisy data to feed the
generator and classifier sequentially, and minimizes the following classification loss:

→
Lce,i = CE(ρ(Di(G(ẑ, ŷ))), ŷ), (3)

where ŷ ∼ p(y) ∝
∑

i∈[N ] n
y
i , ny

i denotes the number of samples w.r.t class y on the i-th client.

Combining Lce,i,
→
Lce,i,

→
Lmse,i and

→
Lkl,i, the overall objective of the local model update can be

formalized as follows:

min
θi
F ,θi

D

Eẑ,ŷ∼N (0,I),p(y)
x,y∼Xi,Yi

[Lce,i + λ1

→
Lce,i + λ2

→
Lmse,i + λ3

→
Lkl,i], (4)

where λ1, λ2 and λ3 are tunable hyperparameters for balancing different loss items.

Guiding the local generator update with trained local model. After the local model update, we
maintain a local generator in client i to extract the knowledge of the trained local model without
accessing its private data. Note that the global generator does not replace the local generator in our
work to learn the knowledge of the trained local model.

Similar to the manner of augmenting local model update, we utilize KD to construct losses
←
Lkl,i and

←
Lmse,i to transfer the knowledge of the local model to the local generator.

←
Lkl,i and

←
Lmse,i take the
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Figure 2: Visualization for output of the generator: The toy example first trains a LeNet (LeCun et al.,
1998) as teacher model (T) using the training set of MNIST (LeCun et al., 1998). Then the test set of
MNIST is fed to T to get the latent features. And the dimensions of the latent features are reduced by
principal component analysis (PCA) (Halko et al., 2011). (a) shows the latent features distribution of
T after PCA dimension reduction. Next, we let T guide the training of the generator according to
Eq. (9). Similarly, we utilize PCA to perform dimension reduction for the output of the generator.
(b) visualizes the output distribution of the generator without diversity constraint. (c), (d) and (e)
visualize the output distribution of the generator with L0

div , L1
div and L2

div , respectively.

forms:
←
Lmse,i = ∥Gi(ẑ,y)− Fi(x)∥2,

←
Lkl,i = KL(ρ(Di(Gi(ẑ,y)))∥ρ(Di(Fi(x)))). (5)

To ensure the fidelity of the output of the local generator Gi, Gi is expected to fit the input space of
the local classifier for better knowledge extraction from the local model. Therefore, client i takes the
following classification loss

←
Lce,i to enforce Gi to yield higher prediction on class y:

←
Lce,i = CE(ρ(Di(Gi(ẑ,y))), y). (6)

However, if we only optimize
←
Lkl,i,

←
Lmse,i and

←
Lce,i for Gi, it is likely to generate similar outputs

for each class with little diversity, which can cause the model collapse of the local generator. To tackle
this limitation, the constraint L0

div has been added to enhance the output diversity of the generator as
follows (Yoo et al., 2019; Zhu et al., 2021; Zhang et al., 2022c):

L0
div = e

1
B2

∑
j,k∈[B]

(−∥f̂j−f̂k∥2∗∥ẑj−ẑk∥2)
, (7)

where B denotes the batch size and f̂j/k = Gi(ẑj/k,yj/k). This constraint treats the noise pair
distance ∥ẑj − ẑk∥2 as a weight, which is then multiplied by the corresponding output pair distance
∥f̂j − f̂k∥2 in each batch B, thus imposing more weights on the output pairs whose corresponding
noise pairs are more distant. It can be found that this weighting scheme of L0

div is label-agnostic. In
other words, the weight differences between intra- and inter-class output pairs are not considered
in L0

div, which may lead to inter-class output pairs being close but intra-class output pairs being
distant, thus adversely affecting the performance of Gi. To rectify this issue, we propose two novel
diversity constraints, L1

div and L2
div . In terms of L1

div , we simply replace ∥ẑj − ẑk∥2 of Eq. (7) with
∥ẑy

j − ẑy
k∥2, where ẑy

j = [ẑj ;yj ]. Further, we formulate L2
div in the following form:

L2
div = e

1
B2

∑
j,k∈[B]

(−∥f̂j−f̂k∥2∗∥ẑj−ẑk∥2∗e∥ŷj−ŷk∥1)
. (8)

Compared to L0
div, L1

div and L2
div further differentiate the weights of the generator’s intra- and

inter-class output pair distances, with more weights applied to the inter-class output pair distances.
For brevity, we uniformly denote L0

div, L1
div and L2

div as Ldiv unless otherwise noted. In Fig. 2, we
provide a toy example showing the output distribution of the generator without diversity constraints
as well as with different diversity constraints.

We combine
←
Lkl,i,

←
Lmse,i,

←
Lce,i and Ldiv to yield the overall objective of the local generator update

for client i is shown below:

min
wi

E ẑ∼N (0,I)
x,y∼Xi,Yi

[
←
Lkl,i + λ4

←
Lmse,i + λ5

←
Lce,i + λ6Ldiv,i], (9)
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where λ4, λ5 and λ6 are non-negative hyperparameters. Ldiv,i denotes the diversity constraint of
client i.

2.2 SERVER-SIDE CROSSED DISTILLATION AGGREGATION

After gathering local generators and classifiers uploaded by clients, the server aggregates them as a
preliminary global generator and classifier via weighted averaging. However, straightforward average
aggregation may counteract the local knowledge from clients. To alleviate this issue, we train the
preliminary global generator and classifier via crossed data-free KD to distill as much knowledge
as possible from the local generators and classifiers. Fig. 1 (c) shows the distillation schema on the
server, where the overall distillation objective consists of three parts: Lkl,1, Lkl,2 and Lkl,3.

Specifically, the server first samples (ẑ, ŷ), and feeds it to the local generators {Gi}i∈[N ] and the
global generator G, where ẑ ∼ N (0, I) and ŷ ∼ p(y) ∝

∑
i∈[N ] n

y
i . Their outputs are then fed into

the corresponding classifiers to compute the loss Lkl,1:

Lkl,1 =
∑
i∈[N ]

τi,ŷKL(ρg∥ρi), (10)

where ρg = ρ(D(G(ẑ, ŷ))), ρi = ρ(Di(Gi(ẑ, ŷ))), and τi,ŷ = nŷ
i /

∑
j∈[N ] n

ŷ
j . Lkl,1 ensures

that the ρg from the global classifier approximates {ρi}i∈[N ] from the local classifiers. However,
simply distilling knowledge by minimizing Lkl,1 could be insufficient, since Di fits Gi(ẑ, ŷ) (via
optimizing Eq. (9)) but may not fit G(ẑ, ŷ) and Gi(ẑ, ŷ) fits Di but may not fit D, such that only
partial knowledge from clients can be extracted. Therefore, to address these limitations, we introduce
a crossover strategy and formulate two losses Lkl,2 and Lkl,3 as:

Lkl,2 =
∑
i∈[N ]

τi,ŷKL(ρig∥ρi),Lkl,3 =
∑
i∈[N ]

τi,ŷKL(ρgi∥ρi), (11)

where ρig = ρ(D(Gi(ẑ, ŷ))) and ρgi = ρ(Di(G(ẑ, ŷ))).

Further, Lkl,1, Lkl,2 and Lkl,3 form the following overall distillation objective on the server side:

min
w,θD

Eẑ,ŷ∼N (0,I),p(y)[Lkl,1 + Lkl,2 + Lkl,3]. (12)

2.3 DISCUSSION

Privacy. FedMD-CG trains a local generator on each client for replacing the local feature extrac-
tor (LFE) by simulating the output vector space of LFE, i.e., the latent feature space, rather than the
distribution space of private data. In other words, the local generator captures only high-level feature
patterns of the local model, which are incomprehensible to human beings. Also, FedMD-CG requires
each client to share its classifier. In our work, the classifier is in the top layers (i.e., fully connected
layers) with a high degree of abstraction. As verified by (Yosinski et al., 2014), the lower layer
features are more general and higher layer features have larger specificity. This suggests that different
inputs to the model can result in the same top-layer activations, making it difficult to reconstruct the
original data with the classifier (Wang, 2021). Therefore, FedMD-CG can reduce the risk of privacy
leakage, and has the same level of privacy protection as FedCG.

Consistency and Computing cost. FedMD-CG performs client-side knowledge transfer at the latent
feature level and the logit level, thus extracting knowledge embedded in the global generator and local
model more directly and efficiently than FedCG. Meanwhile, our method guarantees the consistency
of the local generator and classifier trained by each client, which may not be satisfied in FedCG. To
put it differently, FedMD-CG requires the local generator to generate pseudo-features that the local
classifier can significantly distinguish in order to make the generator output more fidelity. According
to our experiments, the consistency of FedMD-CG ensures high-quality aggregation on the server
side and robustness to data heterogeneity. In addition, FedMD-CG does not employ an additional
discriminator to adversarially train the local generator under the cGAN framework independently of
the local classifier like FedCG, which reduces the client’s computing cost.
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Table 1: Test performance (%) comparison between FedMD-CG and baselines over different datasets.
Note that L.acc and G.acc denote local test accuracy and global test accuracy, respectively.

Alg.s

EMNIST FMNIST CIFAR-10

ω = 1.0 ω = 0.1 ω = 1.0 ω = 0.1 ω = 10.0 ω = 1.0
L.acc G.acc L.acc G.acc L.acc G.acc L.acc G.acc L.acc G.acc L.acc G.acc

FedAvg 96.29±0.06 96.83±0.07 85.65±2.33 95.06±0.46 80.99±0.81 84.77±0.30 59.29±3.19 78.91±2.12 51.68±0.53 54.18±0.52 42.84±2.03 52.39±0.58
LT 90.48±1.46 95.17±0.70 40.77±2.34 62.08±5.11 74.19±2.92 80.32±1.02 37.71±2.99 56.34±10.42 49.83±0.88 48.99±1.35 40.92±2.25 37.92±2.24

FedPer 91.96±1.20 96.45±0.10 41.08±2.40 76.90±2.34 75.83±2.42 82.94±1.11 37.39±3.17 61.88±9.80 50.72±0.63 53.87±0.58 41.80±2.15 49.83±1.66
LG-FedAvg 94.01±0.53 96.22±0.19 46.29±3.39 86.48±1.75 77.03±1.94 82.55±0.46 38.89±3.18 66.35±6.65 50.11±0.80 51.80±0.67 41.49±2.56 44.59±1.88

FedGen 95.62±0.38 97.64±0.17 51.29±4.01 87.69±2.50 77.88±3.10 83.81±1.95 41.96±3.40 68.05±3.96 52.94±2.38 48.49±3.13 38.13±4.89 40.85±3.87
FedCG 96.06±0.33 97.70±0.16 49.91±3.83 87.66±2.08 74.92±2.11 81.74±0.81 34.97±2.55 54.61±2.67 39.39±5.23 37.06±4.35 30.44±3.30 26.79±2.82

FedMD-CG 95.45±0.25 97.18±0.17 54.45±3.56 87.87±1.64 79.00±1.43 84.47±0.38 42.55±3.68 71.09±1.01 54.82±0.79 55.18±1.75 46.30±2.24 47.56±2.21

3 EXPERIMENTS

3.1 IMPLEMENTATION SETTINGS

Datasets. We perform our experiments on three public datasets EMNIST (Cohen et al., 2017),
Fashion-MNIST (Xiao et al., 2017) (FMNIST in short in this paper), and CIFAR-10 (Krizhevsky
et al., 2009). Following existing works (Zhang et al., 2022c; Acar et al., 2021; Zhu et al., 2021),
we use Dirichlet process Dp(ω) to strictly partition the training set of each dataset across clients.
Notably, a smaller ω corresponds to higher data heterogeneity. We set ω ∈ {0.1, 1.0, 10.0} in our
experiments.

Backbone Architectures and Baselines. Throughout all our experiments, we deploy LeNet-5 (LeCun
et al., 1998) as the backbone network with two convolutional layers (i.e., feature extractor) and three
fully connected layers (i.e., classifier). Similarly, we employ three fully connected layers with
BatchNorm as the generator for each client and adjust its output dimension to match that of the
corresponding feature extractor. We select five FL methods most relevant to our work as baselines
for comparison, including FedAvg (McMahan et al., 2017), FedPer (Arivazhagan et al., 2019), LG-
FedAvg (Liang et al., 2020), FedGen1 (Zhu et al., 2021) and FedCG (Wu et al., 2021). Moreover, we
consider the baseline that trains a local model for each client, without any sharing. We call it Local
Training (LT for short). For fairness, FedGen shares clients’ classifiers with the server. In particular,
we treat the client’s classifier whose output dimension is set to 1 as the discriminator of cGAN in
FedCG.
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Figure 3: (a)-(c) are learning curves selected from FedMD-CG as well as baselines over different
datasets. (d)-(f) show test performance (%) w.r.t data hetergeneity over each dataset.

Evaluation Metrics. We use the test set of each dataset to evaluate the test performance of different
FL methods. 1) Local test accuracy. We randomly and evenly distribute the test set to each client and
harness the test set on each client to verify the performance of local models. 2) Global test accuracy.
We construct a virtual global model to evaluate the global performance of different FL methods via
utilizing the original test set. As with FedAvg, this virtual global model is obtained by uploading all
local models to the server for weighted average. 3) Peak signal-to-noise ratio (PSNR). Consistent

1In this paper, we consider FedGen with partial parameter sharing.
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with FedCG (Wu et al., 2021), we also consider the server is malicious, which uses DLG attack (Zhu
et al., 2019) to recover the original data from victim clients. We employ PSNR to measure the quality
of the recovered images, thus evaluating the privacy-preserving capability of different FL methods.
To ensure reliability, we report the average for each experiment over 5 different random seeds. Due
to the space limitations, we relegate full experimental settings and results to Appendix E.

3.2 RESULTS COMPARISON

Table 2: Comparison of FedMD-CG and baselines
in terms of PSNR (dB) (ω = 10.0). Note that both
FedGen and LG-FedAvg upload local classifiers to
the server, and their privacy-preserving capabilities
are intuitively the same, so we only report the PSNR
of LG-FedAvg.

Alg.s EMNIST FMNIST CIFAR-10

FedAvg 24.54±0.15 22.63±0.61 29.22±1.56
FedPer 23.55±0.52 19.66±1.03 14.84±2.61

LG-FedAvg 6.78±0.09 6.33±1.32 8.75±1.03
FedCG 7.05±0.63 6.98±1.57 9.87±1.83

FedMD-CG 6.95±0.31 7.02±1.22 9.69±1.04

Overview test performance comparison. As
shown in Table 1, FedAvg achieves the best
test performance while FedMD-CG achieves
the second-best test performance in most
cases of EMNIST and FMNIST. FedAvg’s
test performance benefits from the fact that
the server can collect complete local models
from clients and then obtain the real global
model to ensure remarkable test performance.
In most cases, the test performance of LT is
worse than that of other methods since no in-
formation is shared among clients, inevitably
causing over-fitting and poor generalization
to new samples. LG-FedAvg consistently out-
performs FedPer w.r.t the local test accuracy,
indicating that personalized classifiers can mitigate the sacrifice of local model performance when the
feature extractor has several convolutional layers. Meanwhile, FedMD-CG achieves the optimal local
test accuracy on CIFAR-10. We conjecture that the simple model average aggregation in FedAvg
may counteract the personalized knowledge from clients, thus adversely affecting local models’
performance in difficult classification tasks. Further, Fig. 3 (b)-(e) demonstrate that there is an over-
whelming advantage of FedMD-CG over baselines in terms of learning efficiency during the early
stages of training. Particularly, the local learning efficiency of FedMD-CG consistently outperforms
that of baselines on FMNIST with ω = 10.0 and CIFAR-10. Fig. 3 (f)-(h) reveal the impact of data
heterogeneity on test performance for the methods. It can be observed that the test performance of all
methods deteriorates as ω decreases. In most cases, FedMD-CG dominates the baselines that share
only part of the model in terms of the local test accuracy. Also, FedMD-CG uniformly surpasses
baselines w.r.t the local test accuracy over varying ω on CIFAR-10. This indicates that our method is
robust to data heterogeneity.

original

18.58 dB

FedAvg

17.22 dB

FedPer

5.06 dB

LG-FedAvg

5.98 dB

FedCG

5.91 dB

FedMD-CG

18.18 dB 16.92 dB 5.85 dB 6.87 dB 6.94 dB

28.91 dB 13.52 dB 8.61 dB 9.55 dB 9.53 dB

Figure 4: Image reconstruction with DLG attack
in FedMD-CG and baselines. From the first to the
last row, the images are selected from EMNIST,
FMNIST and CIFAR-10 respectively. PSNR (dB)
is reported under each recovered image.

Privacy comparison. Here, we compare the
privacy-preserving ability of FedMD-CG with
other baselines under DLG attack. It is worth
noting that PSNR measures the similarity be-
tween the original image and the restored im-
age. A larger PSNR value indicates a higher
similarity between the images. As observed in
Table 2, while FedAvg achieves excellent test
performance (see Table 1), it scores the high-
est PSNR value across all datasets, which se-
riously threatens clients’ private information.
Also, Fig. 4 illustrates that the DLG attack is
able to reconstruct the image very close to the
original image in FedAvg. According to Table 1
and Fig. 4, it is noticed that the strategy in Fed-
Per to share clients’ feature extractors should be
prohibited, as it neither enables competitive test
performance nor protects clients’ privacy. On
the other hand, LG-FedAvg, FedCG and FedMD-CG can effectively prevent the privacy leakage
of clients due to the low PSNR values. Despite the small performance gap between FedMD-CG
and LG-FedAvg w.r.t. PSNR, FedMD-CG can significantly outperform LG-FedAvg in terms of
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Table 3: Test performance (%) comparison FedMD-CG and FedCG with different server-side
aggregation manners over different datasets. Note that AVE agg and AVE agg⋆ denote weighted
average aggregation. Specifically, FedMD-CG with AVE agg transfers the knowledge from the global
generator to local models at both the latent feature level and the logit level, whereas FedMD-CG with
AVE agg⋆ transfers the knowledge from the global generator to local models only at the latent feature
level. Also, KD agg and KDC agg denote the server-side aggregation manners from FedCG and
FedMD-CG, respectively.

Alg.s Agg.
EMNIST, ω = 0.1 FMNIST, ω = 0.1 CIFAR-10, ω = 1.0
L.acc G.acc L.acc G.acc L.acc G.acc

FedCG
AVE agg⋆ 50.55±4.32 86.74±1.44 39.46±3.40 67.41±3.59 41.85±2.48 44.98±1.79
KD agg 49.91±3.83 87.66±2.08 34.97±2.55 54.61±2.67 30.44±3.30 26.79±2.82
KDC agg 39.65±4.67 82.32±4.66 37.23±2.54 62.89±7.01 28.87±0.90 25.92±1.53

FedMD-CG

AVE agg⋆ 51.36±3.63 86.88±1.53 40.55±3.55 67.34±5.41 43.24±2.32 45.10±1.44
AVE agg 52.62±3.74 86.92±1.35 41.44±2.98 67.88±6.07 45.16±2.35 46.72±2.32
KD agg 53.14±4.73 83.86±2.10 41.79±3.54 64.68±4.31 45.12±2.30 46.98±2.60
KDC agg 54.45±3.56 87.87±1.64 42.55±3.68 71.09±1.01 46.30±2.24 47.56±2.21

test performance (see Table 1). This indicates that approximating the local feature extractor with a
generator not only has little privacy leakage risk but also improves performance.
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Figure 5: The consistency comparison between
local generators and classifiers for FedCG and
FedMD-CG w.r.t. AVE agg⋆. G+D loss denotes
the classification loss of the local classifier on the
output of the local generator.

Comparison between FedCG and FedMD-
CG. From Table 1 and Fig. 3, the test perfor-
mance of FedCG is worse than that of FedMD-
CG in most cases, even worse than other base-
lines on CIFAR-10 and FMNIST (ω = 0.1). We
speculate that this attributes to the way FedCG
transfers knowledge from the global generator to
the local model and the inconsistency between
the local generator and classifier in each client.
We next perform extensive experiments to verify
our statement, as shown in Table 3 and Fig. 5.
From Table 3, FedMD-CG with AVE agg⋆ con-
sistently surpasses FedCG with AVE agg⋆ in
terms of the local test accuracy. The main reason
is that FedMD-CG enables the local generators
to extract the knowledge of the local models more effectively, which results in higher-quality trained
local generators. Also, the test performance of FedMD-CG with AVE agg uniformly leads that of
FedMD-CG with AVE agg⋆, suggesting the insufficiency of knowledge transfer from the global
generator to local models only at the latent feature level. In addition, we compare the efficacy of
different server-side aggregation manners. Concretely, the test performance of FedMD-CG with
KDC agg consistently outperforms FedMD-CG with KD agg, indicating that KDC agg is more
effective in transferring knowledge from local generators and classifiers to the global generator and
classifier. However, KD agg and KDC agg significantly deteriorate the test performance of FedCG.
We conjecture that the output of the local generator does not match the local classifier’s, that is,
the local classifier cannot effectively distinguish the output of the local generator, resulting in the
degraded performance of FedCG. As shown in Fig. 5, G+D loss of FedCG is consistently larger
than that of FedMD-CG and does not converge. In general, the inconsistency of the local generator
and classifier in each client may impede the server-side knowledge distillation aggregation training,
resulting in poor performance of FedCG.

3.3 ABLATION STUDY

Necessity of losses in client-side for FedMD-CG. We look into the test performance of FedMD-CG
on CIFAR-10 with ω = 10.0 after discarding some losses in Eqs. (4) and (9), respectively, as shown
in Table 4. We can see that removing any loss leads to worse performance, i.e., lower local test
accuracy and global test accuracy. Also, their joint absence can cause further degradation of test
performance. A trend in losses is observed that the absence of a single loss leads to a drop in test
performance, while the removal of multiple losses enlarges the drop. In addition, it should be noted
that dropping multiple losses in the local generator update leads to more severe test performance
degradation compared to the local model update. This shows that well-trained local generators can
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Table 4: Impact of each loss for client-side training over CIFAR-10 with ω = 10.0. Note that L.M.U
and L.G.U denote the local model update and the local generator update, respectively. Also, we omit
the subscript i of each loss for client i.

FedMD-CG (baseline)

L.acc G.acc

54.82±0.79 55.18±1.75

L.M.U L.acc G.acc L.G.U L.acc G.acc

−
→
Lce 51.53±1.04 52.52±1.37 −

←
Lmse 52.73±1.15 53.19±1.72

−
→
Lmse 53.07±0.97 53.73±1.99 −

←
Lce 53.89±0.89 52.88±2.09

−
→
Lkl 53.46±0.94 53.34±1.74 −Ldiv 52.66±0.77 53.11±1.72

−
→
Lce, −

→
Lmse 51.02±0.52 52.96±1.01 −

←
Lmse, −

←
Lce 46.94±1.33 49.37±1.53

−
→
Lce, −

→
Lkl 51.55±0.60 52.81±1.22 −

←
Lmse, −Ldiv 47.80±0.30 50.15±1.24

−
→
Lmse, −

→
Lkl 52.64±0.40 53.46±1.25 −

←
Lce, −Ldiv 48.02±0.31 50.41±1.61

−
→
Lce, −

→
Lmse, −

→
Lkl 50.27±0.41 49.55±1.28 −

←
Lmse, −

←
Lce, −Ldiv 44.33±1.38 47.66±1.35

effectively boost the performance of our method, while under-trained local generators hinder the
training of models.

Table 5: Test performance (%) comparison among
different diversity constraints.

Div. con.
EMNIST, ω = 0.1 FMNIST, ω = 1.0 CIFAR-10, ω = 10.0
L.acc G.acc L.acc G.acc L.acc G.acc

L0
div 53.09±4.27 88.85±1.31 78.58±1.58 84.69±0.46 54.24±0.72 54.78±1.88
L1
div 53.65±4.12 88.51±0.80 79.03±1.52 84.73±0.49 54.81±0.71 54.90±1.73
L2
div 54.45±3.56 87.87±1.64 79.00±1.43 84.47±0.38 54.82±0.79 55.18±1.75

Impacts of diversity constraints. We also
explore the effect of different diversity con-
straints on FedMD-CG. Note that we omit the
subscript i of diversity loss for client i. From
Table 5, FedMD-CG with L1

div and L2
div beats

FedMD-CG with L0
div w.r.t. the test perfor-

mance in most case. Also, L1
div and L2

div
uniformly trump L0

div in terms of the local test accuracy. Consequently, an empirical finding can
be derived that imposing more weight on the inter-class output pair distance of the local generator
boosts the local models’ performance.
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Figure 6: Test performance of FedMD-CG using
varying hyperparameters on FMNIST with ω =
1.0.

Robustness of FedMD-CG against hyper-
parameters. We investigate the test perfor-
mance of FedMD-CG with varying hyperpa-
rameters over FMNIST. We set ω = 1.0
and select λ1, λ2, λ3, λ4, λ5 and λ6 from
[0.25, 0.5, 0.75, 1.0, 1.25, 1.5]. Fig. 6 shows
the test performance using the box plot, where
FedMD-CG exemplifies similar test perfor-
mance for non-zero selection of hyperparam-
eters. Notably, for a single loss, the effect of
non-zero varying hyperparameters on the lo-
cal test accuracy of FedMD-CG is slight. This
indicates that FedMD-CG is insensitive to the
choice of non-zero hyperparameters over a large
range for a single loss.

4 CONCLUSIONS

In this paper, we propose a novel FL method FedMD-CG, which achieves high competitive perfor-
mance and high-level privacy preservation. Specifically, FedMD-CG decomposes each client’s local
model into a feature extractor and a classifier, and utilizes a conditional generator instead of the feature
extractor to perform server-side model aggregation. Meanwhile, our method taps KD to train local
models and generators at the latent feature level and the logit level, thereby ensuring the consistency
of local generators and classifiers. Also, we construct additional classification losses and craft new
diversity losses to enhance client-side training. On the server side, FedMD-CG aggregates trained
local generators and classifiers in a crossed data-free KD manner. Finally, we conduct extensive
experiments to verify the superiority of FedMD-CG. Due to space constraints, we discuss in detail
the limitations and broader impacts of our work in Appendixes F and G, respectively.
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