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3DGS Compact GS Light GS Ours

5,641,234 points 2,215,928 points 1,990,120 points 1,205,064 points

PSNR 27.25↑ PSNR 26.81↑ PSNR 26.73↑ PSNR 27.63↑

Figure 1: Top: We show point clouds of the Garden scene (Barron et al., 2022a) obtained using
different methods, where we feature the smallest number of points to store. Bottom: Images rendered
using the compared methods. Ours shows the best PSNR. We magnify a region highlighted with
blue, showing that despite significantly smaller storage requirements, we achieve the highest fidelity
and can reconstruct the detailed structure of the image. Zoom-in for greater detail.

ABSTRACT

Recent approaches representing 3D objects and scenes using Gaussian splats show
increased rendering speed across a variety of platforms and devices. While ren-
dering such representations is indeed extremely efficient, storing and transmitting
them is often prohibitively expensive. To represent large-scale scenes, one often
needs to store millions of 3D Gaussian, which can occupy up to gigabytes of stor-
age. This creates a significant practical barrier, preventing widespread adoption on
resource-constrained devices. In this work, we propose a new representation that
dramatically reduces the hard drive footprint while featuring similar or improved
quality when compared to the standard 3D Gaussian splats. This representation
leverages the inherent feature sharing among splats in the close proximity using a
hierarchical tree structure, with which only the parent splats need to be stored. We
present a method for constructing tree structures from naturally unstructured point
clouds. Additionally, we propose the adaptive tree manipulation to prune the re-
dundant trees in the space, while spawn new ones from the significant children
splats during the optimization process. On the benchmark datasets, we achieve
20× storage reduction in hard-drive footprint with improved fidelity compared to
the vanilla 3DGS and 2×-5× reduction compared to the exiting compact solu-
tions. More importantly, we demonstrate the practical application of our method
in real-world rendering on mobile devices and AR glasses in our Webpage.

1 INTRODUCTION

Gaussian Splatting (3DGS)-based methods are taking the graphics and vision communities by a
storm (Luiten et al., 2023; Wu et al., 2023; Yang et al., 2023). They strike the right balance be-
tween high-fidelity rendering, fast convergence, and efficient inference (Kerbl et al., 2023). The
latter two benefits make 3DGS-based methods superior to Neural Radiance Fields (NeRFs)-based
techniques (Mildenhall et al., 2020; Martin-Brualla et al., 2021; Barron et al., 2022b). Indeed, while
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NeRFs (Barron et al., 2022a) show high-fidelity renderings too, apart from several exceptions (Cao
et al., 2023; Wang et al., 2022; Chen et al., 2023b; Müller et al., 2022a), their training and inference
time is often prohibiting real-time and edge-based applications. 3DGS-based approaches represent
a 3D scene using an explicit, point-based representation (Aliev et al., 2020). The 3D Gaussians are
efficiently rasterized to 2D images, with much faster rendering than neural volumetric rendering ap-
proaches (Kerbl et al., 2023). However, to represent sophisticated geometry and texture, especially
for large-scale scenes, a significant amount of splats along with their attributes need to be stored,
which can amount to even gigabytes of storage.

In a world of connected devices, real-time experiences and applications, this storage requirement
imposes a heavy toll on the hard-drive and the transmission bandwidth. Hence, several initial so-
lutions have been proposed to reduce the storage for 3DGS, such as incorporating a sparse voxel
grid (Lu et al., 2023) or applying more aggressive pruning of the 3D points (Fan et al., 2024; Lee
et al., 2024). Yet, existing studies still suffer either from large storage requirements (Lu et al., 2023)
or inferior rendering quality compared to 3DGS (Fan et al., 2024; Lee et al., 2024).

In this work, we present a lightweight hierarchical Gaussian splats representation that takes advan-
tage of the spatial relationships among unstructured and isolated splats, offering improved rendering
quality while significantly reducing storage requirements. Intuitively, splats in close proximity ex-
hibit similar geometry and texture. Therefore, we leverage feature sharing among nearby splats and
propose structuring them into a hierarchical tree, where the parent splats are employed to neural-
predict splats that share similar features. We call these neural-predicted splats the children splats.
Note that children splats do not have to be stored and can be neural-predicted on-the-fly instead. We
use hash-grid (Müller et al., 2022b) to encode the offsets that are used to estimate the 3D locations
of children splats. In addition, within the same hash grid, we first query the features of both the
parent and children splats and apply an attention-based mechanism to attend to them. This atten-
tion is crucial for facilitating feature sharing within the tree. The attended features are then input
into a shallow MLP to predict the Gaussian attributes. We opt for the hash-grid due to its ability to
facilitate feature sharing in close proximity by interpolating spatially adjacent feature vectors. Our
representation is independent of grid-based structures; any representation that encourages feature
sharing can be utilized (e.g., K-plane (Fridovich-Keil et al., 2023)).

To build such tree structures, we first allow every point obtained from SfM to be considered as
a parent splat, and be used to predict its children splats. Since the splats in our representation are
structured and treated as a cohesive unit, we further introduce the Adaptive Tree Manipulation(ATM)
module to manage the tree during the optimization process. Specifically, we do not impose a limit on
the depth of the tree. This means that a children splat can serve as a parent in the next optimization
iteration and has its own children splats if it is deemed significant. Additionally, insignificant parent
splats are pruned along with their insignificant children. Note that significant children are promoted
to parent regardless of the significance of their parent. For instance, an insignificant parent may be
removed in the next optimization iteration, but it can still have significant children that are promoted
to parent. This flexible tree manipulation enables certain areas with complex geometry to include
more splats for more accurate modeling.

Fig. 1 shows the Garden scene (Barron et al., 2022a) reconstructed by the standard Gaussian
Splats (Kerbl et al., 2023), Compact GS (Lee et al., 2024), Light GS (Fan et al., 2024) and the
proposed approach. First, we observe a significantly reduced density of points in the point cloud
reconstructed by our approach. This, and the predicting of the attributes instead of storing them,
significantly reduces the storage requirement for our method. Second, we show improved PSNR
scores and visual quality, when we zoom-in into the details of the rendered images. We summarize
our contributions as follows:

1. We propose a hierarchical tree structure to model the inherent spatial relationships among splats
and an attention mechanism to enhance the relationship within the hierarchy.

2. We propose Adaptive Tree Manipulation in conjunction with the hierarchical representation to
effectively refine the tree for improved modeling.

3. Our representation achieves 20× reduction on average in hard-drive footprint, with improved
PSNR and comparable SSIM and LPIPS comparing to 3DGS and 2×-5× storage reduction
comparing the exiting works. Additionally, we showcase the practical real-world rendering
applications of our method on mobile devices and AR glasses.
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2 RELATED WORK

Novel View Synthesis. Research on rendering scenes from unseen viewpoints with photorealism
has evolved over several decades (Greene, 1986; Chen & Williams, 2023; Levoy & Hanrahan, 2023;
Buehler et al., 2023; Srinivasan et al., 2019). Traditional approaches typically rely on explicit depth
estimation to warp pixels for generating novel views (Kalantari et al., 2016; Penner & Zhang, 2017;
Choi et al., 2019; Riegler & Koltun, 2021). However, the accuracy of depth estimation algorithms
is critical, and handling disocclusions during rendering adds complexity. An alternative approach
involves Multiplane Images (MPI) (Zhou et al., 2018; Srinivasan et al., 2019; Flynn et al., 2019),
which learn a representation associating objects within the scene with fronto-parallel layers. This
structured representation facilitates efficient rendering from different viewpoints while preserving
depth relationships and occlusions. More recently, Neural Radiance Fields (NeRF) (Mildenhall
et al., 2020) have gained popularity for their ability to achieve highly realistic rendering, even in
scenarios involving complex view-dependent lighting effects such as transparency and reflectance.
However, the weakness of NeRF lies in its volumetric rendering formulation, which necessitates
sampling a large number of points per ray to render a single pixel. This high computational cost
limits the usage of NeRF for real-time or on-device applications. While efforts to reduce computa-
tional requirements for volumetric rendering have been a focus of recent research (Liu et al., 2020;
Neff et al., 2021; Garbin et al., 2021; Reiser et al., 2021; Lindell et al., 2021; Yu et al., 2021; Müller
et al., 2022a; Fridovich-Keil et al., 2022; Lombardi et al., 2021; Cao et al., 2023; Gupta et al., 2024),
point-based rendering, particularly 3D Gaussian Splatting (3DGS) (Kerbl et al., 2023), presents an-
other promising direction for real-time view synthesis.

Efficient Representation for 3D Gaussian Splatting. Despite the benefits of 3DGS (Kerbl et al.,
2023), the disadvantages of bulky storage are noteworthy. As a result, several approaches (Fan et al.,
2024; Lee et al., 2024; Lu et al., 2023; Girish et al., 2023; Niedermayr et al., 2024; Morgenstern
et al., 2023; Navaneet et al.) have been proposed for compressing 3DGS. Several compression tech-
niques have been explored such as pruning the redundant Gaussian (Fan et al., 2024; Lee et al.,
2024) and utilizing codebooks (Fan et al., 2024; Lee et al., 2024; Niedermayr et al., 2024; Navaneet
et al.). LightGS (Fan et al., 2024) introduces a point pruning and recovery process to minimize re-
dundancy in Gaussian splats, utilizes distillation and pseudo-view augmentation to distill spherical
harmonics to a lower degree, and employs quantization to further reduce storage. While LightGS
achieves considerable storage reduction, it results in noticeable fidelity degradation compared to the
original Gaussian splatting due to quantization. CompactGS (Lee et al., 2024) proposes using a
grid-based neural field to implicitly represent view-dependent colors rather than explicitly storing
spherical harmonics per point, offering promising storage efficiency without significant fidelity loss.
Eagles (Girish et al., 2023) utilizes quantized embedding to quantize the per-point attributes and
pruning strategy to remove redundant Gaussian, leading to lower storage memory. ScaffoldGS (Lu
et al., 2023) exploits the spatial feature sharing by distributing local splats using anchor points, re-
parameterizing splats positions relative to these anchors to enable anchor-based point growing and
pruning strategies for redundancy reduction in 3DGS. Our method shares similarities with Com-
pactGS (Lee et al., 2024) and ScaffoldGS (Lu et al., 2023) while exhibits crucial differences. First,
unlike CompactGS, we utilize a combination of neural fields and self-attention layers to predict not
only view-dependent colors but also geometric properties. Second, in contrast to both approaches
which explicitly store the position of every splat in the point cloud, our method only stores a small
subset of splats, referred to as parent , while predicting the remaining points on-the-fly during ren-
dering. This substantially reduces memory footprint. Third, anchor-based representation essentially
creates a tree structure but restricts the depth of the tree to one. The growth strategy focuses solely
on the anchor points, neglecting the growth directly from the splats. In contrast, our hierarchical tree
representation combined with the proposed ATM take into account the significance of both parent
and children splats, allowing for a strategy of sub-tree expansion.

3 PRELIMINARIES

3D Gaussian Splatting (3DGS) (Kerbl et al., 2023) represents a scene with 3D points x. The points
are initialized with a coarse point cloud obtained using Structure-from-Motion (SfM) (Schonberger
& Frahm, 2016). These Gaussians, G(x), serve as the anisotropic volumetric splats defined by their
position (mean µ) and 3D covariance (Σ) as G (x) = e−

1
2 (x−µ)TΣ−1(x−µ). To ensure Σ remaining
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Figure 2: Top: Overview of our tree construction pipeline with the initial parent splats derived from
SfM. The children spats are inferred on-the-fly from the parent splats via querying the displacement
hash-grid. To estimate the Gaussian attributes like scale, rotation, color, and opacity, attribute fea-
tures fa and fak obtained on-the-fly from the attributes hash-grid are aggregated with self-attention.
Bottom: Tree manipulation through ATM. The significant children splats are promoted to parent (re-
gardless of the status of their parent, e.g., pruned) such that they have their own children in the next
iteration. Bad trees (e.g., transparent parent) are removed together with the insignificant children.

positive semi-definite during optimization, it is represented with an equivalent yet effective formu-
lation with the scaling matrix S and the rotation matrix R, such that Σ = RSSTRT . The attributes
of the 3D splats (e.g., location, covariance, and opacity) together with the directional appearance of
the radiance filed, represented via the spherical harmonics (SH) (Sara Fridovich-Keil and Alex Yu
et al., 2022), are end-to-end learned using optimization.

To render an image, 3D G(x) are first transformed into 2D Gaussians (denoted as G′(x)) (Zwicker
et al., 2001). 3DGS uses an efficient tiled-based rasterizer that presorts primitives for the entire im-
age, allowing fast α-blending of anisotropic splats. The color C of a pixel is computed by blending
N 2D Gaussians that overlap at the pixel as: C =

∑
i∈N ciαiG

′
i(x)

∏i−1
j=1(1 − αjG

′
j(x)),where ci

represents view-dependent colors for each splat, αi is the opacity. With the highly optimized raster-
izer for modern GPUs, 3DGS render high-fidelity scenes in real-time across many platforms. These
benefits come with a cost. 3DGS require a significant number of 3D Gaussians, sometimes needing
gigabytes for complex large-scale scenes. This requirement limits their application on edge devices,
as downloading gigabytes over the network and storing them is hardly feasible or practical.

4 METHOD

We show a high-level overview of our approach in Fig. 2. Our primary motivation is to use a
hierarchical representation(i.e., tree) to model the spatial relationships among the splats. We show
that the locations of children splats and associated attributes —position, color, scale, etc.— can be
derived from the parent using a small neural network. This allows us to store only the parent splats
along with the weights of the neural network. To achieve this, we initially represent a 3D scene
as a forest of depth-1 tree structures where the parent splats are initialized from SfM (Schönberger
& Frahm, 2016) and the children are neural-predicted on-the-fly. The trees are then refined and
expanded to sub-trees during the optimization process using Adaptive Tree Manipulation. Formally,
we represent a scene using S = {X1,X2, . . .Xn}, where Xi is tree and each node contains the
attributes, such as position (x), color (c), opacity (α), scale (s), and rotation (r). This representation
can be stored very efficiently, as for each tree we need to save only the positions and scales of parent
splats and small neural network shared across the trees, to predict all the other attributes of the tree.

4.1 NEURAL REPRESENTATION FOR LIGHTWEIGHT PREDICTIVE SPLATS

We model close relationship between a parent and children nodes. Specifically, we assume that
the children nodes are in the vicinity of parent node and have similar geometric and appearance at-
tributes such as shape, color and opacity. We satisfy these requirements by using a hash-grid based
approach (Müller et al., 2022b; Chen et al., 2023a) as our representation, which has an inherent
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property to return similar features when queried with the points located nearby via feature interpo-
lation. Below we describe how a tree (Xi) can be represented in storage efficient manner. In what
follows we drop the index i. We use the notation node to refer the splat in the context of a tree.

For a hash-grid H(·) shared across the trees and parent node positions xp, we query the features as
f = H(xp) and use them to predict the displacement of children and attributes of the tree. We divide
f into two halves f ≡ {f∆ ∈ RD/2, fa ∈ RD/2}, where the first half (f∆) represents displacement
and is used to predict the position of children. The second half (fa) is used to predict other attributes.

Predicting Position. We want children and parent nodes to represent similar geometry and appear-
ance. Hence, children should be located in the vicinity of the parents nodes. We model the position
of children as their displacement from their parent nodes. For the parent we predict the position of
kth child using xk = xp + gpos(f∆)[k] where gpos is an MLP with output shape K × 3.

Having the positions of all nodes in the tree, we can predict the rest of the attributes, such as scale,
rotation, color, and opacity. We reuse the hash-grid to get the attribute feature (fak) for kth child
node using H(xk). A naive approach to extract the remaining attributes using fa and fak is to pass
the latter to an MLP get scale, rotation, color and opacity. We found such approach to be sub optimal.
A hash-grid representation implicitly makes the representation of spatially points similar. There
is no mechanism to share information between the features after they are computed. Since there
is relation between physical attributes of the parent and children nodes, having such information
sharing mechanism is beneficial. To this end, we propose a modified self-attention mechanism to
better capture the inter-dependencies between children and parent nodes. To do so, we first obtain
the aggregated feature Fa ∈ RK+1×D/2 by concatenating features of all the nodes in the tree, such
as Fa = Concat({fa, (fa1, . . . , faK}), where Concat is a concatenation operation. We then
apply a modified self-attention operation on Fa to get the final feature F ′

a:

F ′
a = Fa + λσ(

P1(Fa) ∗ P2(Fa)
T

√
d

) ∗ Fa, (1)

where σ(·) is a Softmax function, Pi(·) is a projection matrix, d is a scaling factor set as D/2, λ
is a hyper-parameter for balancing the information trade-off from the attention mechanism and ∗
denotes the matrix multiplication. Different from vanilla attention (Vaswani et al., 2017), we do not
apply positional embedding, so that Eq. 1 is permutation invariant which is an important property to
maintain while working with point clouds (Qi et al., 2016). Further, we use the unprojectedFa when
multiplying with σ(·), since we empirically found no performance gain by projecting Fa. Next, we
split F ′

a in K+1 attribute feature vector to predict the remaining attributes for each node in the tree.

Predicting Scale and Rotation. It is vital to properly initialize the scale of Gaussians for stable
training. For instance, Gaussians with small scales make minimal contributions to the rendering
quality, mainly because of their limited volume. In contrast, large Gaussians can potentially con-
tribute to every pixel during rasterization, leading to a significant amount of GPU memory. Hence,
to make training stable and minimize storage needs at the same time, we adopt a middle-ground
strategy. More specifically, we represent the scales of children as a scaled version of their parents
(sp): sk = ŝk sp where ŝk is predicted by an MLP. In case of rotation, we directly regress it for both
parents and children nodes using the corresponding attribute feature vector. We share the weights
of the MLP to regress both scale and rotation. We experimentally found, that including position of
node (xk), the distance of the point to the center of the axis aligned bounding box (bk) along with
attribute feature ((f ′

ak) improves performance: ŝk, rk = grs(f
′
ak, xk, bk).

Predicting Color and Opacity. 3DGS uses degree-3 spherical harmonics (SH) for view-dependent
color representation (Kerbl et al., 2023). However, we find such design is unnecessary and the
color can be directly predicted using from feature vectors and a viewing direction. We use an MLP
that takes them as an input and directly predicts the color as output, ck = gc(f

′
ak, dk) where dk is

the viewing direction of the node in the tree. This reduces the storage by a significant amount as
previously each splat storing the spherical harmonics individually. To predict opacity, we use another
MLP with inputs as f ′

ak and the position of the node to get corresponding opacity, ok = go(f
′
ak, xk).

We described all the operations above for a single tree. The same operation is extended for all the
trees. Further, the neural networks for all the operations share their weights across all the trees. To
summarize, the proposed representation efficiently represents the tree structure with hash-grid based
neural representations H(·) and a few MLPs. We only store position and scale of parent nodes and
the weights of our neural networks, while the rest of the properties is regressed as described above.
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4.2 ADAPTIVE TREE MANIPULATION

3DGS (Kerbl et al., 2023) starts by using an initial point cloud from SfM. To allow for some flex-
ibility in the point cloud structure they propose several techniques to add and delete the Gaussians
during optimization. These techniques work effectively for individual splats, but naively applying
them to our tree (i.e., applying directly to the parent nodes of a tree) results in sub-optimal or in-
correct outcomes(see Tab. 2a and Fig. 8). This is because such an approach implicitly limits the
depth of all trees to one, overlooking the significance of the children nodes and preventing sub-tree
expansion and consequently hindering the quality. This consideration necessitate a new strategy that
incorporates the importance of the children into the process. On the other hand, a structural repre-
sentation facilitates feature sharing, while simultaneously entangling the parent and children nodes
into a cohesive unit due to the nature of the tree. Consequently, operations on the parent directly
affect the children (e.g., pruning the parent results in the removal of the children). Considering these
factors, we propose the following strategy (see Fig. 2):

• Promotion A children can become a parent if it is deemed significant during training, and it
can have its own children in the next iteration.

• Pruning Removing or pruning the parent operates only on itself and its insignificant children.
Significant children are unaffected.

• Cloning Cloning the parent operates on the entire tree (i.e., all children are cloned as well).

To determine the significance of a children, we track the position gradient of all the children splats.
When the gradient of a child node is above a certain threshold τ cpos (i.e., ∇c

pos > τ cpos ) where τ cpos
is a hyper-parameter, we consider the children significant. Then we promote the children node to
become a new parent in next training iteration (satisfying Promotion ). This is crucial to represent
complicated regions in the scene where there might not be many parent nodes. Once the children
has been promoted to parent node we apply clone and split operations to all the parents following
similar practices in 3DGS (satisfying Cloning). To address Pruning, we first check if any nodes
meet the criteria outlined in Promotion and promote them if needed. Then to delete the tree we only
rely on the statistics of parent node. This is because we assume if a children node was important
then it would have been already promoted to become a new parent. Hence, we can safely delete the
current parent that will in turn delete all the corresponding insignificant children nodes. Specifically,
for deleting the trees we track the scale and opacity of the parent nodes and delete them if they are
below a certain threshold similar to 3DGS.

4.3 TRAINING

Our model, including the hash-grid and MLPs, is end-to-end learnable guided by the L1 loss be-
tween the rendered images and ground-truth images along with a D-SSIM loss, such that:

L = (1− β)L1 + βLD−SSIM, (2)

where β is set as 0.2 following the setting in (Kerbl et al., 2023).

We use a warm-up training scheme that helps in convergence of the model (Kerbl et al., 2023). The
warm-up consists of training the model in a low resolution setting, eventually moving to higher
resolution after a certain number of steps have been completed. We found that the warm-up strat-
egy is crucial to correctly position the splats and densify the regions. Without the warm-up, the
model struggles to populate enough splats in the background area, despite the importance of the
area resulting in substandard performance. Please refer to Appendix material for details.

5 EXPERIMENTS

Dataset and Metrics. We evaluate our method using seven scenes from the Mip-NeRF 360◦

dataset (Barron et al., 2022b), two scenes from Tank&Temples (Knapitsch et al., 2017), and two
scenes from Deep Blending (Hedman et al., 2018). We use the widely adopted metrics like PSNR,
SSIM (Wang et al., 2004), and LPIPS (Zhang et al., 2018) to assess the quality for image recon-
struction. We also report the storage size (in MB) for various methods along with their on-device
capabilities. We benchmark the Gaussian Splatting based methods on iPhone 14 with our imple-
mentation of the mobile application. We report three configurations of our method named C1, C2,
and C3 by varying feature dimension D of the hash-grid H. C1 is our smallest model with D = 32
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followed by C2 with D = 48 and C3 is largest with D = 64. Since our framework adds and re-
moves points during optimization, the final storage for each model can vary. For each dataset we
report the average size of all the scenes within one configuration. The metrics, too, are averaged
over all scenes of each dataset. Per-scene quantitative results are in the Appendix.

Quality vs. Storage. First, we show that our approach provides a practical means of satisfying
diverse technical requirements. We can reduce or increase the feature dimension of the hash-grid
and the number of points, while still maintaining similar or superior rendering quality. In Fig. 3, we
plot PSNR, evaluated on the dataset introduced by (Barron et al., 2022a), for contemporary models
as well as for three configurations of our approach. Our smallest configuration is almost 50% smaller
than the smallest prior work (LightGS (Fan et al., 2024)), and shows the same rendering quality. Our
largest configuration, which is still 32% smaller than the smallest existing work, shows significantly
increased PSNR. To give the reader a better perspective, we also plot conventional works with large
hard-drive footprint (Lu et al., 2023; Kerbl et al., 2023). Our largest configuration, which uses only
20% of ScaffoldGS (Lu et al., 2023) and only 4.5% of 3DGS (Kerbl et al., 2023) storage, shows
higher quality than both of these much larger works. These advantages of our method are crucial
for mobile deployment. Less disk storage also helps in speeding up transmission that significantly
impacts user experience when sharing content.

Ours-C1 (PSNR: 28.45)

Ours-C2 (PSNR: 28.86)

Ours-C3 (PSNR: 29.11)

LightGS (PSNR: 28.45)

CompactGS (PSNR: 28.60)

20 30 40 50
28

28.2

28.4

28.6

28.8

29

29.2

ScaffoldGS (PSNR: 29.02)

155 156 157

3DGS (PSNR: 28.69)

692 693 694

PS
N

R

Storage (MB)

Figure 3: Comparisons of PSNR and storage computed on the dataset from Barron et al. (2022a).

5.1 COMPARISON RESULTS

Quantitative Results. Tab. 1 shows the quantitative results on real-world scenes, spanning from
large-scale urban landscapes to intricate indoor and outdoor environments. We compare our ap-
proach against 3DGS (Kerbl et al., 2023) and concurrent works (i.e., LightGS (Fan et al., 2024),
CompactGS (Lee et al., 2024), Eagles (Girish et al., 2023), CompGS (Navaneet et al.) and Scaf-
foldGS (Lu et al., 2023)). On the Mip-NeRF 360◦ dataset, we achieve the best PSNR among all
the approaches. Compared with 3DGS (Kerbl et al., 2023), we obtain a significant storage reduc-
tion, i.e., 19.5×, and require 3.5× fewer 3D points. On the Tank&Temples (Knapitsch et al., 2017)
dataset, although ScaffoldGS (Lu et al., 2023) has better PSNR than our approach, our storage is
almost 2.4× smaller than ScaffoldGS. Compared with 3DGS (Kerbl et al., 2023) on this dataset, we
require 1.9× fewer 3D points and 11.3× less storage. On the Deep Blending (Hedman et al., 2018)
dataset, our method has higher PSNR and 19× storage reduction than 3DGS (Kerbl et al., 2023).

Fig. 4 demonstrates the high-quality rendering of our method produced using C3 configuration
across 5 example scenes covering all the datasets. We see various examples where our method
outperforms previous compression works. We can see our models can better capture background
details (row 3, 5), better capture reflections (row 2) while being the smallest or of comparable size.
It can also capture intricate details where other methods fail such as ceilings (row 1, 4).

On-Device Capability. We explore the feasibility of running splatting based methods on mobile
devices. We use iPhone14 and Snap AR glasses Spectacles to implement the applications. For fair
comparison, we unpack splats from all methods to a standard 3DGS format (Kerbl et al., 2023) for
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Table 1: Quantitative comparisons on three widely used benchmark datasets, including Mip-NeRF
360◦ dataset (Barron et al., 2022a), Tanks&Temples (Knapitsch et al., 2017), and Deep Blend-
ing (Hedman et al., 2018). We report the image quality metrics, such as PSNR, SSIM, and LPIPS,
and the required storage. We also report the on-device capability of each Gaussian Splatting based
work (On-Device in the table), where OOM denotes Out-of-Memory error and ✓denotes the real-
time capability (> 30 fps) on our tested device, i.e., iPhone14. and− denotes unknown of on-device
capability. The evaluation results on other works are obtained from their papers. Compared with
the methods that are capable to run on mobile devices, our models (Ours-C1, C2, C3) can obtain
smaller model size with higher rendering quality (i.e., PSNR).

Method On-Device Mip-NeRF 360◦ Dataset Tank&Temples Deep Blending

PSNR ↑ SSIM ↑ LPIPS ↓ Storage ↓ PSNR ↑ SSIM ↑ LPIPS ↓ Storage ↓ PSNR ↑ SSIM ↑ LPIPS ↓ Storage ↓
ScaffoldGS (Lu et al., 2023) OOM 29.02 0.848 0.220 156MB 23.96 0.853 0.177 87MB 30.21 0.906 0.254 66MB
3DGS (Kerbl et al., 2023) OOM 28.69 0.870 0.182 693MB 23.14 0.841 0.183 411MB 29.41 0.903 0.243 676MB
CompGS (Navaneet et al.) - 27.16 0.808 0.228 50.30MB 23.47 0.840 0.188 27.97MB 29.75 0.903 0.247 42.77MB

Eagles (Girish et al., 2023) ✓ 27.15 0.808 0.238 68.89MB 23.41 0.840 0.200 34MB 29.91 0.910 0.250 62MB
LightGS (Fan et al., 2024) ✓ 28.45 0.857 0.210 42.48MB 22.83 0.807 0.242 22.43MB - - - -
CompactGS (Lee et al., 2024) ✓ 28.60 0.855 0.211 46.98MB 23.32 0.831 0.201 39.43MB 29.79 0.901 0.258 43.21MB
Ours-C1 ✓ 28.45 0.837 0.235 23.40 MB 23.19 0.810 0.239 22.00 MB 29.32 0.895 0.282 22.90MB
Ours-C2 ✓ 28.86 0.851 0.217 29.50 MB 23.47 0.820 0.228 29.05MB 29.61 0.896 0.277 29.15MB
Ours-C3 ✓ 29.11 0.857 0.210 35.60MB 23.82 0.829 0.210 35.32MB 29.89 0.902 0.267 35.40MB

Ground Truth Ours Compact GS Light GS

Figure 4: Visual comparisons with methods offering efficient GS representations (Lee et al. (2024);
Fan et al. (2024)). We magnified regions to show qualitative differences. Our approach (C3) can
render images with high-quality while greatly saving the storage. Zoom-in for greater detail.

rendering. We observe Out-of-Memory error when running all scenes from the three benchmark
datasets for 3DGS and ScaffoldGS, owing to their large number of splats. Our method can success-
fully run on device (as in Fig. 5), and achieves smaller and better rendering quality compared to
LightGS (Fan et al., 2024), CompactGS (Lee et al., 2024) and Eagles (Girish et al., 2023). Check
our Webpage for video demos.
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Table 2: Ablation analysis on core design elements. We report the PSNR for each experiment.

(a) Ablation Study on the propose contributions.
FE stands for frequency encoding. Full refers to the
full settings.

FE w/o Agg. w/o ATM. w/o Contract. Full
Bicycle 19.72 22.80 22.66 22.88 23.68

Playroom 23.36 28.65 28.74 - 29.27

(b) Analysis of self-attention. We use the attention
with different number of heads (H) and attention head
dimension (F), and different λ in Eqn. 1.

H1-F32 H2-F16 H4-F8 λ=0.1 λ=0.5 λ=1.0

Bicycle 23.68 23.31 23.20 23.55 23.68 23.53

Playroom 29.27 29.15 29.10 29.14 29.27 29.22

Figure 5: Demo of running
our method on iPhone 14 and
Snap AR glasses Spectacles.

Storage Analysis. The storage of our method consists of four com-
ponents: the hash-grid, parent splat locations and scales, and MLPs.
The hash-grid is stored in 8 bits, while the other components are
stored in 16 bits. Notably, the hash-grid occupies half of the total
storage. However, our representation is independent of feature en-
coding module (i.e., hash-grid encoding) thus it allows for easy ad-
justments to more efficient representations if necessary. For instance,
in our C1 configuration using the dataset Barron et al. (2022a), the
storage allocation for each component is as follows: 12.5 MB for
the hash-grid, 5.2 MB for the parent splat locations, 5.2 MB for the
scales, and 0.5 MB for the MLPs.

Inference Phase Optimization. Predicting the attributes brings
overheads during the inference. However, we note that only the at-
tribute color is view-dependent and the rest remain the same for all frames. Therefore, to minimize
the computation cost, we opt to run the color prediction (small MLPs) only and the rest of the at-
tributes are retrieved from the first frame. Thus, we get real-time rendering on the mobile phones
and achieve comparable speed as 3DGS (Kerbl et al., 2023). We report two large-scale complex
scenes Bicycle and Garden from Barron et al. (2022a) on Nvidia A100: the rendering FPS are
61, 55 for our method and 77, 63 for 3DGS, respectively.

5.2 ABLATION ANALYSIS

We perform comprehensive analysis on various components of our methods using our C3 config-
uration. Here we choose two representative scenes to perform experiments: one unbounded out-
door scene Bicycle from Mip-NeRF 360◦ dataset (Barron et al., 2022a) and one indoor scene
Playroom from the Deep Blending dataset (Hedman et al., 2018). We report the best PSNR that
is achieved within 10K steps for all experiments.

Importance of Hash Grid. We replace the hash grid with the frequency encoding of the 3D position
followed by a 2-layer MLP to output a D = 64-dimensional feature vector, which has the same
dimension as the one from hash grid. We denote the setting as FE. Without hash-grid we see a
significant drop in the performance, highlighting the importance of the feature alignment encoded
within the spatial hash grid.

Importance of Attention Mechanism. When we remove self attention mechanism between the
nodes of the tree, it is detrimental to the performance (Tab. 2a w/o Attn). This validates our motiva-
tion that there is relation between various physical attributes of the nodes of tree hence there needs to
be a mechanism to facilitate the sharing of information. Additionally, adding attention mechanism
reduces the number of parent splats making our method storage efficient: 884K v.s 1.06M averaged
across all scenes in dataset (Barron et al., 2022a). We hypothesise that a configuration with attention
can pull information from nearby splats, allowing the method to reduce the number of splats to store
and represent the scene efficiently. Additionally, we ablated various configurations by varying λ in
Eq. 1 and the number of heads in attention to find the best configuration (Tab. 2b). We see a right
balance between the input features and attention features is important for best performance.

Adaptive Tree Manipulation (ATM). We remove Adaptive Tree Manipulation (ATM) and add or
delete the trees based only on parent nodes statistics and observe a drop in PSNR (Tab. 2a) also
visible in rendered images Fig. 8. This is because there is no mechanism to promote important
children to parent that might hinder in populating trees correctly and failing to represent complex
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Without ATM Without ATMWith ATM With ATM

Figure 6: Visual comparison of model trained with and without ATM. We can see that model trained
without ATM fails to model intricate details in the scene.

Bicycle Playroom Garden

837,357 total parents
658,672 from children

1,036,417 total parents
760,905 from children

1,260,027 total parents
1,082,578 from children

Figure 7: The effect of Adaptive Tree Manipulation (ATM). Yellow points indicate the splats who
have not changed the parent status during entire optimization. Green points represent former chil-
dren that have been promoted to parents. Around 80% of parents are from our ATM operation.

scenes effectively. On the other hand, this might also lead to deletion of important children nodes
when deleting a parent. Our proposed ATM method can effectively alleviate these issues.

Additionally, in Fig. 7 we show the point clouds of three scenes. Green points represent parents
promoted from children during the optimization. Yellow points show parents that stayed parents
during entire optimization. It is clearly seen that the majority of the parent nodes are formed by
promoting children nodes. Further note that parts with relatively flat geometry exhibit more yellow,
while sophisticated geometry with high frequency details contain more green. Hence, ATM brings
a further benefit of being able to fit sophisticated geometry better.

Table 3: Analysis of the inputs used for
attributes prediction.

w/o Distance w/o Position SH D1 SH D2 SH D3

Bicycle 23.32 9.72 23.05 23.60 23.68

Playroom 29.18 6.19 29.23 29.15 29.27

Inputs of MLP for attribute prediction. Tab. 3 shows the
analysis for the inputs used to predict the attributes. We
conduct the experiments of without using the distance from
points to the center of AABB (denoted as w/o Distance) and
without using the 3D position information (denoted as w/o
Position) to predict attributes. Position is very crucial for
training while distance further improves the performance. We also analyze the degrees of the SH
encoding on the view directions by performing degree from 1 to 3 (denoted as SH D1 to SH D3).
Degree of 3 gives the best performance as it has more capacity to model complicated light effects.

6 CONCLUSION

This paper introduces predictive 3D Gaussian splats, a lightweight representation that dramatically
reduces storage for large-scale scenes compared to 3DGS, while maintaining high-fidelity rendering
results. We propose an efficient structural representation, i.e., parent-children structure to model the
inherent spatial relationship among nearby splats. The children splats and most Gaussian attributes
can be estimated during rendering by utilizing parent. Additionally, we leverage a hash grid and
self-attention on aggregated features to enforce connectivity for parent and children nodes. We
conduct extensive experiments on benchmark datasets to validate our design and demonstrate the
our advantages of storage saving and high-quality novel view synthesis. For future work, since
our representation is orthogonal to other compression techniques, we can combine it with methods
like adaptive Gaussian pruning to achieve greater efficiency. This integration could enhance storage
performance and reduce computational overhead, making our system more robust and scalable.
Exploring these synergies will be a valuable direction for optimizing representation and improving
overall efficiency in various applications.
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A APPENDIX

A.1 ADAPTIVE TREE MANIPULATION

Significant Child

Promotion

Iteration N + 1 Iteration N

Pruning

Iteration N + 1Iteration N
insignificant Child

Cloning
Duplicate

Iteration N Iteration N + 1

: children promoted to parents (significant): pruned parent splats

Figure 8: Demonstration of Promotion, Pruning, and Cloning operations in ATM.

We add the visual explanation of the three operations discussed in the Adaptive Tree Manipulation
(ATM) (Sec. 4.2). As illustrated in Fig. 8, a significant child splat is promoted to the parent in the
next iteration (i.e., N + 1) if satisfying the criterion (i.e., ∇c

pos > τ cpos ). In the iteration N + 1, the
newly promoted parent has its own children splats (e.g., the green node in the tree). When pruning
the parent splats, significant splats (e.g., the green node) and insignificant splats (e.g., the red node)
are handled differently, where the insignificant splats are pruned together with the parent whereas
the significant splat turns to a new tree in iteration N + 1. Lastly, the cloning operates on the tree
level where children splats are also cloned.

A.2 DISCUSSION OF MORE ANCHOR-BASED METHODS

HAC (Chen et al., 2024) closely builds upon the anchor-based method ScaffoldGS (Lu et al., 2023),
leveraging a hash-grid context model with an underlying anchor representation. As outlined in
Sec. 2, our hierarchical tree representation fundamentally differs from the anchor representation
used in HAC in several significant ways. Unlike anchors, which capture only a single level of con-
nectivity between splats, our hierarchical tree representation imposes no constraints on the number
of connectivity levels. This flexibility enables the modeling of sophisticated and complex regions
where strong, multi-level connectivity is essential. To further enhance the hierarchical structure, our
proposed Adaptive Tree Manipulation (ATM) entangles the parent and children nodes into a cohe-
sive unit by accounting for the significance of both in growing and pruning processes. This enables
a robust strategy of sub-tree expansion, allowing our tree representation to dynamically adapt to
the structural complexity of different regions. In contrast, anchor-based methods (Lu et al., 2023;
Chen et al., 2024) implicitly impose constraints on tree depth, limiting all trees to a single level and
overlooking the critical role of children nodes in capturing intricate hierarchical relationships.

A.3 IMPLEMENTATION DETAILS

In this section, we provide more details for our training. We first provide the hyper-parameters used
during the training in A.3.1. We discuss the architecture and training details in A.3.2. Next we
show the visual illustration and the implementation details of the contraction in Sec. A.3.3. Then,
we analyze the effectiveness of the warm-up training strategy employed in our method in Sec. A.3.4
and the convergence in Sec. A.3.5. Lastly, we discuss the pre-filtering of parent points and its
implementation in Sec. A.3.6.

A.3.1 SETTINGS OF HYPER-PARAMETERS

We employ different learning schedules for different modules. For the hash grid, we start with a
learning rate of 2e−3 and end with a rate of 2e−5. For opacity, we start with 1e−3 and end with
2e−5. The scale and rotation parameters utilize a constant learning rate of 1e−4. Additionally, we
maintain a constant learning rate of 2e−4 for the attention module. We apply a standard exponential
decay scheduling (Kerbl et al., 2023; Sara Fridovich-Keil and Alex Yu et al., 2022) to all modules.
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A.3.2 ARCHITECTURE AND TRAINING DETAILS

We use Instant-NGP (Müller et al., 2022b) as our hash-grid owing to its compact and efficient design
and 2 layers MLP for all the MLPs. Following the practices in (Barron et al., 2022a; Müller et al.,
2022b) we use scene contraction to map the position into [0, 1] before feeding it to the Instant-NGP.
This helps bring the splats that are occasionally outside the Axis-Aligned-Bounding-Box (AABB)
due to the densification of splatsalong with the position updates. We estimate the AABB with the
initial COLMAP (Schönberger & Frahm, 2016) point cloud. We set λ = 0.5 for all the experi-
ments and train the model for 30K steps with 7.5K steps warm-up stage. In our experiments, we
initially use lower resolution images to train the model 7.5K steps for warm-up, after which we
transit to high-resolution images. More precisely, following the setting from 3DGS (Kerbl et al.,
2023), we employ 32× downsampling for the Mip-NeRF 360◦ dataset and 4× downsampling for
the Tank&Temples (Knapitsch et al., 2017) and Deep Blending (Hedman et al., 2018) datasets in
the warm-up stage. The number of children splats (K) used in our experiment varies across scenes.
We empirically found that 2 children are enough for most scenes and we believe this is because our
sub-tree expansion allows the tree to grow deeper and compensate the breadth requirement. Please
refer to A.5 material for details.

A.3.3 DETAILS FOR CONTRACTION

Contract

Contract

: Initial AABB from COLMAP

: Inner Sphere

: Outer Sphere

: Estimated AABB

: Points fall outside of AABB

: Centroid

Figure 9: Illustration for our implemented contraction.

We illustrate the process of contraction (described in Sec. 3.5 of the main paper) in Fig. 9 and Alg. 1.
We calculate the inscribed and circumscribed spheres (i.e., Sinner and Souter) with radius Rinner

and Router of the initialized Axis-Aligned Bounding Box (AABB), which is estimated from the
point cloud generated from COLMAP (Schönberger & Frahm, 2016). The estimated AABB is the
circumscribed cube of the outer sphere Souter. Points falling outside of the outer sphere are brought
back to Souter.

A.3.4 ANALYSIS OF WARM-UP

We run two experiments on the Garden (Barron et al., 2022a) scene in 10K steps to show the
effectiveness of the warm-up in our method.

We have found that using warm-up in training with low resolution images at early stages helps
the points populate the empty areas, especially when the COLMAP (Schönberger & Frahm, 2016)
initialization is poor. Fig. 10 shows the point cloud and corresponding rendered images from
different training approaches. As can be seen, the warm-up training (second row) has a better
reconstruction and rendering quality for the background scene, which is poorly initialized from
COLMAP (Schönberger & Frahm, 2016).
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Algorithm 1 AABB Estimation and Contraction

Require: Initialized AABB: AABBinit, point cloud: PC
Sinner ← Inscribed sphere of AABBinit ▷ centered at O
Rinner ← Radius of Sinner

Souter ← Circumscribed sphere of AABBinit ▷ centered at O
Router ← Radius of Souter

AABBest ← Circumscribed cube of Souter

for p in PC do ▷ contract the points
if ∥p−O∥ ≤ Rinner then

p← p
else if ∥p−O∥ > Rinner then

p←
(
Router − 1

∥p−O∥

)(
p−O

∥p−O∥

)
+O ▷ infinity is on Souter

end if
end for

No Warm-up

Warm-up

Figure 10: Analysis of warm-up. First row:training without warm-up. Second row: training with
warm-up. Left column: points distribution. Right column: rendered images with the point cloud.

A.3.5 ANALYSIS OF CONVERGENCE

Leveraging the hash-grid structure increases the per-step training time compared to 3DGS (Kerbl
et al., 2023). For example, 3DGS requires approximately 23 minutes to reach a PSNR of 30.63
at 30K steps on scene room from MipNeRF-360 (Barron et al., 2022a) dataset, our method takes
about 27.6 minutes, and HAC (Chen et al., 2024) requires a similar training time of 27.1 minutes.
Nonetheless, our approach strikes a good balance between size, speed, and quality. Furthermore,
thanks to our inference phase optimization strategy in Sec. 5.1, the hash-grid structure has a minimal
impact on inference time, allowing our approach to run in real-time on mobile devices.

A.3.6 VIEW FRUSTUM CULLING

We apply pre-filtering on the parent points before querying features for attributes prediction by
culling the view frustum with depth, leading to the computation reduction and the training speedup.
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We empirically observe that 15% - 25% points are removed across scenes. The implementation is
shown in Alg. 2.

Algorithm 2 View Frustum Culling

Require: points P : N × 3, view matrix M : 4× 4
Phomo ← Concat(P, ones) ▷ Phomo : N × 4
Pview ←M ∗ (Phomo)

T ▷ ∗ is matrix multiplication
mask ← Pview[2, :] > 0.201 ▷ depth > 0.201
Pfiltered ← P [mask]

A.4 MORE ABLATION STUDY

Scene Contraction. We analyze the proposed contraction technique applied on the unbounded scene
(Tab. 3 w/o Contract.). Compared with Full, we get inferior performance (0.8 PSNR drop), and tend
to have training instability issues because the points occasionally move outside the Axis-Aligned
Bounding box.

A.5 PER-SCENE QUANTITATIVE RESULTS

We provide the per-scene results on the benchmark datasets. Tab. 4 shows the results on the Mip-
NeRF 360◦ dataset (Barron et al., 2022a). Tab. 5 demonstrates the results on the Tank&Temples
dataset (Knapitsch et al., 2017) and the Deep Blending dataset (Hedman et al., 2018). We report the
per-scene storage (in MB), the number of parents and children, and the metrics for image quality
evaluation.
Table 4: Per-scene metrics for our approach on the Mip-NeRF 360◦ dataset Barron et al. (2022a).

Compact GS

Metric Garden Bicycle Stump Room Counter Kitchen Bonsai

PSNR 26.81 24.77 26.46 30.88 28.71 30.480 32.08
SSIM 0.832 0.723 0.757 0.919 0.902 0.919 0.939
LPIPS 0.161 0.286 0.278 0.209 0.205 0.131 0.193
Storage (MB) 62.78 62.99 54.66 34.21 34.34 44.45 35.44

Light GS

PSNR 26.73 24.96 26.70 31.27 28.11 30.40 31.01
SSIM 0.836 0.738 0.768 0.926 0.893 0.914 0.944
LPIPS 0.155 0.265 0.261 0.220 0.218 0.147 0.204
Storage (MB) - - - - - - -

Scaffold GS

PSNR 27.17 24.50 26.27 31.93 29.34 31.30 32.70
SSIM 0.842 0.705 0.784 0.925 0.914 0.928 0.946
LPIPS 0.146 0.306 0.284 0.202 0.191 0.126 0.185
Storage (MB) 271.00 248.00 493.00 133.00 194.00 173.00 258.00

3D GS

PSNR 27.25 25.10 26.66 31.50 29.11 31.53 32.16
SSIM 0.856 0.747 0.756 0.925 0.914 0.932 0.946
LPIPS 0.122 0.244 0.243 0.198 0.184 0.117 0.181
Storage (MB) 1331.33 1350.78 1073.60 350.14 276.52 411.76 295.08

Ours-C1

PSNR 27.17 24.32 25.75 31.62 28.54 30.47 31.32
SSIM 0.832 0.672 0.768 0.913 0.889 0.910 0.923
LPIPS 0.169 0.355 0.312 0.229 0.226 0.147 0.206
Storage (MB) 26.90 25.71 34.84 16.85 17.92 23.68 17.74

Ours-C2

PSNR 27.38 24.78 26.41 31.82 28.75 30.71 32.14
SSIM 0.842 0.701 0.751 0.916 0.894 0.913 0.935
LPIPS 0.156 0.325 0.260 0.224 0.218 0.146 0.192
Storage (MB) 33.01 31.72 41.09 23.02 24.04 30.05 23.61

Ours-C3

PSNR 27.63 24.90 26.43 31.84 29.10 31.27 32.67
SSIM 0.847 0.717 0.753 0.917 0.900 0.918 0.941
LPIPS 0.147 0.303 0.267 0.220 0.212 0.137 0.186
Storage (MB) 39.40 37.81 47.24 28.95 30.02 35.92 29.84

# of Parents 1.20M 1.06M 1.86M 330K 419K 913K 403K
# of Children (k) 2 2 2 2 2 1 2
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Table 5: Per-scene metrics for our approach on the Tank&Temples dataset Knapitsch et al. (2017)
and the Deep Blending dataset Hedman et al. (2018).

Compact GS

Metric Tank&Temples Deep Blending

Truck Train Drjohnson Playroom

PSNR 25.070 21.560 29.260 30.320
SSIM 0.871 0.792 0.9000 0.902
LPIPS 0.163 0.240 0.258 0.258
Storage (MB) 41.57 37.29 47.98 38.45

Light GS

PSNR 24.561 21.095 - -
SSIM 0.855 0.760 - -
LPIPS 0.188 0.296 - -
Storage (MB) - - - -

Scaffold GS

PSNR 25.77 22.15 29.80 30.62
SSIM 0.883 0.822 0.907 0.904
LPIPS 0.147 0.206 0.250 0.258
Storage (MB) 107.00 66.00 69.00 63.00

3D GS

PSNR 25.350 22.070 29.060 29.870
SSIM 0.878 0.812 0.899 0.901
LPIPS 0.148 0.208 0.247 0.247
Storage (MB) 608.70 255.82 773.61 553.03

Ours-C1

PSNR 24.93 21.44 28.89 29.75
SSIM 0.856 0.763 0.894 0.895
LPIPS 0.196 0.283 0.280 0.284
Storage (MB) 23.11 20.90 23.59 22.21

Ours-C2

PSNR 25.22 21.72 28.93 30.28
SSIM 0.862 0.777 0.902 0.902
LPIPS 0.184 0.272 0.287 0.268
Storage (MB) 30.73 27.36 29.84 28.46

Ours-C3

PSNR 25.45 22.18 29.34 30.44
SSIM 0.866 0.792 0.898 0.905
LPIPS 0.182 0.240 0.270 0.265
Storage (MB) 36.01 34.63 35.80 35.00

# of Parents 1M 900K 900K 834K
# of Children (k) 1 1 2 2
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