
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

LIGHTWEIGHT PREDICTIVE 3D GAUSSIAN SPLATS

Anonymous authors
Paper under double-blind review

3DGS Compact GS Light GS Ours

5,641,234 points 2,215,928 points 1,990,120 points 1,205,064 points

PSNR 27.25↑ PSNR 26.81↑ PSNR 26.73↑ PSNR 27.63↑

Figure 1: Top: We show point clouds of the Garden scene (Barron et al., 2022a) obtained using
different methods, where we feature the smallest number of points to store. Bottom: Images rendered
using the compared methods. Ours shows the best PSNR. We magnify a region highlighted with
blue, showing that despite significantly smaller storage requirements, we achieve the highest fidelity
and can reconstruct the detailed structure of the image. Zoom-in for greater detail.

ABSTRACT

Recent approaches representing 3D objects and scenes using Gaussian splats show
increased rendering speed across a variety of platforms and devices. While ren-
dering such representations is indeed extremely efficient, storing and transmitting
them is often prohibitively expensive. To represent large-scale scenes, one often
needs to store millions of 3D Gaussian, which can occupy up to gigabytes of stor-
age. This creates a significant practical barrier, preventing widespread adoption on
resource-constrained devices. In this work, we propose a new representation that
dramatically reduces the hard drive footprint while featuring similar or improved
quality when compared to the standard 3D Gaussian splats. This representation
leverages the inherent feature sharing among splats in the close proximity using a
hierarchical tree structure, with which only the parent splats need to be stored. We
present a method for constructing tree structures from naturally unstructured point
clouds. Additionally, we propose the adaptive tree manipulation to prune the re-
dundant trees in the space, while spawn new ones from the significant children
splats during the optimization process. On the benchmark datasets, we achieve
20× storage reduction in hard-drive footprint with improved fidelity compared to
the vanilla 3DGS and 2×-5× reduction compared to the exiting compact solu-
tions. More importantly, we demonstrate the practical application of our method
in real-world rendering on mobile devices and AR glasses in our Webpage.

1 INTRODUCTION

Gaussian Splatting (3DGS)-based methods are taking the graphics and vision communities by a
storm (Luiten et al., 2023; Wu et al., 2023; Yang et al., 2023). They strike the right balance be-
tween high-fidelity rendering, fast convergence, and efficient inference (Kerbl et al., 2023). The
latter two benefits make 3DGS-based methods superior to Neural Radiance Fields (NeRFs)-based
techniques (Mildenhall et al., 2020; Martin-Brualla et al., 2021; Barron et al., 2022b). Indeed, while

1

https://anonymous0submissions.github.io/LPGS/

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

NeRFs (Barron et al., 2022a) show high-fidelity renderings too, apart from several exceptions (Cao
et al., 2023; Wang et al., 2022; Chen et al., 2023b; Müller et al., 2022a), their training and inference
time is often prohibiting real-time and edge-based applications. 3DGS-based approaches represent
a 3D scene using an explicit, point-based representation (Aliev et al., 2020). The 3D Gaussians are
efficiently rasterized to 2D images, with much faster rendering than neural volumetric rendering ap-
proaches (Kerbl et al., 2023). However, to represent sophisticated geometry and texture, especially
for large-scale scenes, a significant amount of splats along with their attributes need to be stored,
which can amount to even gigabytes of storage.

In a world of connected devices, real-time experiences and applications, this storage requirement
imposes a heavy toll on the hard-drive and the transmission bandwidth. Hence, several initial so-
lutions have been proposed to reduce the storage for 3DGS, such as incorporating a sparse voxel
grid (Lu et al., 2023) or applying more aggressive pruning of the 3D points (Fan et al., 2024; Lee
et al., 2024). Yet, existing studies still suffer either from large storage requirements (Lu et al., 2023)
or inferior rendering quality compared to 3DGS (Fan et al., 2024; Lee et al., 2024).

In this work, we present a lightweight hierarchical Gaussian splats representation that takes advan-
tage of the spatial relationships among unstructured and isolated splats, offering improved rendering
quality while significantly reducing storage requirements. Intuitively, splats in close proximity ex-
hibit similar geometry and texture. Therefore, we leverage feature sharing among nearby splats and
propose structuring them into a hierarchical tree, where the parent splats are employed to neural-
predict splats that share similar features. We call these neural-predicted splats the children splats.
Note that children splats do not have to be stored and can be neural-predicted on-the-fly instead. We
use hash-grid (Müller et al., 2022b) to encode the offsets that are used to estimate the 3D locations
of children splats. In addition, within the same hash grid, we first query the features of both the
parent and children splats and apply an attention-based mechanism to attend to them. This atten-
tion is crucial for facilitating feature sharing within the tree. The attended features are then input
into a shallow MLP to predict the Gaussian attributes. We opt for the hash-grid due to its ability to
facilitate feature sharing in close proximity by interpolating spatially adjacent feature vectors. Our
representation is independent of grid-based structures; any representation that encourages feature
sharing can be utilized (e.g., K-plane (Fridovich-Keil et al., 2023)).

To build such tree structures, we first allow every point obtained from SfM to be considered as
a parent splat, and be used to predict its children splats. Since the splats in our representation are
structured and treated as a cohesive unit, we further introduce the Adaptive Tree Manipulation(ATM)
module to manage the tree during the optimization process. Specifically, we do not impose a limit on
the depth of the tree. This means that a children splat can serve as a parent in the next optimization
iteration and has its own children splats if it is deemed significant. Additionally, insignificant parent
splats are pruned along with their insignificant children. Note that significant children are promoted
to parent regardless of the significance of their parent. For instance, an insignificant parent may be
removed in the next optimization iteration, but it can still have significant children that are promoted
to parent. This flexible tree manipulation enables certain areas with complex geometry to include
more splats for more accurate modeling.

Fig. 1 shows the Garden scene (Barron et al., 2022a) reconstructed by the standard Gaussian
Splats (Kerbl et al., 2023), Compact GS (Lee et al., 2024), Light GS (Fan et al., 2024) and the
proposed approach. First, we observe a significantly reduced density of points in the point cloud
reconstructed by our approach. This, and the predicting of the attributes instead of storing them,
significantly reduces the storage requirement for our method. Second, we show improved PSNR
scores and visual quality, when we zoom-in into the details of the rendered images. We summarize
our contributions as follows:

1. We propose a hierarchical tree structure to model the inherent spatial relationships among splats
and an attention mechanism to enhance the relationship within the hierarchy.

2. We propose Adaptive Tree Manipulation in conjunction with the hierarchical representation to
effectively refine the tree for improved modeling.

3. Our representation achieves 20× reduction on average in hard-drive footprint, with improved
PSNR and comparable SSIM and LPIPS comparing to 3DGS and 2×-5× storage reduction
comparing the exiting works. Additionally, we showcase the practical real-world rendering
applications of our method on mobile devices and AR glasses.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

2 RELATED WORK

Novel View Synthesis. Research on rendering scenes from unseen viewpoints with photorealism
has evolved over several decades (Greene, 1986; Chen & Williams, 2023; Levoy & Hanrahan, 2023;
Buehler et al., 2023; Srinivasan et al., 2019). Traditional approaches typically rely on explicit depth
estimation to warp pixels for generating novel views (Kalantari et al., 2016; Penner & Zhang, 2017;
Choi et al., 2019; Riegler & Koltun, 2021). However, the accuracy of depth estimation algorithms
is critical, and handling disocclusions during rendering adds complexity. An alternative approach
involves Multiplane Images (MPI) (Zhou et al., 2018; Srinivasan et al., 2019; Flynn et al., 2019),
which learn a representation associating objects within the scene with fronto-parallel layers. This
structured representation facilitates efficient rendering from different viewpoints while preserving
depth relationships and occlusions. More recently, Neural Radiance Fields (NeRF) (Mildenhall
et al., 2020) have gained popularity for their ability to achieve highly realistic rendering, even in
scenarios involving complex view-dependent lighting effects such as transparency and reflectance.
However, the weakness of NeRF lies in its volumetric rendering formulation, which necessitates
sampling a large number of points per ray to render a single pixel. This high computational cost
limits the usage of NeRF for real-time or on-device applications. While efforts to reduce computa-
tional requirements for volumetric rendering have been a focus of recent research (Liu et al., 2020;
Neff et al., 2021; Garbin et al., 2021; Reiser et al., 2021; Lindell et al., 2021; Yu et al., 2021; Müller
et al., 2022a; Fridovich-Keil et al., 2022; Lombardi et al., 2021; Cao et al., 2023; Gupta et al., 2024),
point-based rendering, particularly 3D Gaussian Splatting (3DGS) (Kerbl et al., 2023), presents an-
other promising direction for real-time view synthesis.

Efficient Representation for 3D Gaussian Splatting. Despite the benefits of 3DGS (Kerbl et al.,
2023), the disadvantages of bulky storage are noteworthy. As a result, several approaches (Fan et al.,
2024; Lee et al., 2024; Lu et al., 2023; Girish et al., 2023; Niedermayr et al., 2024; Morgenstern
et al., 2023; Navaneet et al.) have been proposed for compressing 3DGS. Several compression tech-
niques have been explored such as pruning the redundant Gaussian (Fan et al., 2024; Lee et al.,
2024) and utilizing codebooks (Fan et al., 2024; Lee et al., 2024; Niedermayr et al., 2024; Navaneet
et al.). LightGS (Fan et al., 2024) introduces a point pruning and recovery process to minimize re-
dundancy in Gaussian splats, utilizes distillation and pseudo-view augmentation to distill spherical
harmonics to a lower degree, and employs quantization to further reduce storage. While LightGS
achieves considerable storage reduction, it results in noticeable fidelity degradation compared to the
original Gaussian splatting due to quantization. CompactGS (Lee et al., 2024) proposes using a
grid-based neural field to implicitly represent view-dependent colors rather than explicitly storing
spherical harmonics per point, offering promising storage efficiency without significant fidelity loss.
Eagles (Girish et al., 2023) utilizes quantized embedding to quantize the per-point attributes and
pruning strategy to remove redundant Gaussian, leading to lower storage memory. ScaffoldGS (Lu
et al., 2023) exploits the spatial feature sharing by distributing local splats using anchor points, re-
parameterizing splats positions relative to these anchors to enable anchor-based point growing and
pruning strategies for redundancy reduction in 3DGS. Our method shares similarities with Com-
pactGS (Lee et al., 2024) and ScaffoldGS (Lu et al., 2023) while exhibits crucial differences. First,
unlike CompactGS, we utilize a combination of neural fields and self-attention layers to predict not
only view-dependent colors but also geometric properties. Second, in contrast to both approaches
which explicitly store the position of every splat in the point cloud, our method only stores a small
subset of splats, referred to as parent , while predicting the remaining points on-the-fly during ren-
dering. This substantially reduces memory footprint. Third, anchor-based representation essentially
creates a tree structure but restricts the depth of the tree to one. The growth strategy focuses solely
on the anchor points, neglecting the growth directly from the splats. In contrast, our hierarchical tree
representation combined with the proposed ATM take into account the significance of both parent
and children splats, allowing for a strategy of sub-tree expansion.

3 PRELIMINARIES

3D Gaussian Splatting (3DGS) (Kerbl et al., 2023) represents a scene with 3D points x. The points
are initialized with a coarse point cloud obtained using Structure-from-Motion (SfM) (Schonberger
& Frahm, 2016). These Gaussians, G(x), serve as the anisotropic volumetric splats defined by their
position (mean µ) and 3D covariance (Σ) as G (x) = e−

1
2 (x−µ)TΣ−1(x−µ). To ensure Σ remaining

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Parent

Displacement
Hash-grid

children Predictive children

Attributes
Hash-grid

 .…

Self
Attention

Scale, rotation
Color
Opacity

MLP

fak

Gaussian mean

faparent

(b) Adaptive Tree Manipulation

Gradient Flow

(a) Pipeline

Adaptive Tree
Manipulation

: children promoted
 to parents∇pos > τ c

pos

α < ϵα

: pruned parent splats

Iteration N Iteration N + 1

Next iteration

Figure 2: Top: Overview of our tree construction pipeline with the initial parent splats derived from
SfM. The children spats are inferred on-the-fly from the parent splats via querying the displacement
hash-grid. To estimate the Gaussian attributes like scale, rotation, color, and opacity, attribute fea-
tures fa and fak obtained on-the-fly from the attributes hash-grid are aggregated with self-attention.
Bottom: Tree manipulation through ATM. The significant children splats are promoted to parent (re-
gardless of the status of their parent, e.g., pruned) such that they have their own children in the next
iteration. Bad trees (e.g., transparent parent) are removed together with the insignificant children.

positive semi-definite during optimization, it is represented with an equivalent yet effective formu-
lation with the scaling matrix S and the rotation matrix R, such that Σ = RSSTRT . The attributes
of the 3D splats (e.g., location, covariance, and opacity) together with the directional appearance of
the radiance filed, represented via the spherical harmonics (SH) (Sara Fridovich-Keil and Alex Yu
et al., 2022), are end-to-end learned using optimization.

To render an image, 3D G(x) are first transformed into 2D Gaussians (denoted as G′(x)) (Zwicker
et al., 2001). 3DGS uses an efficient tiled-based rasterizer that presorts primitives for the entire im-
age, allowing fast α-blending of anisotropic splats. The color C of a pixel is computed by blending
N 2D Gaussians that overlap at the pixel as: C =

∑
i∈N ciαiG

′
i(x)

∏i−1
j=1(1 − αjG

′
j(x)),where ci

represents view-dependent colors for each splat, αi is the opacity. With the highly optimized raster-
izer for modern GPUs, 3DGS render high-fidelity scenes in real-time across many platforms. These
benefits come with a cost. 3DGS require a significant number of 3D Gaussians, sometimes needing
gigabytes for complex large-scale scenes. This requirement limits their application on edge devices,
as downloading gigabytes over the network and storing them is hardly feasible or practical.

4 METHOD

We show a high-level overview of our approach in Fig. 2. Our primary motivation is to use a
hierarchical representation(i.e., tree) to model the spatial relationships among the splats. We show
that the locations of children splats and associated attributes —position, color, scale, etc.— can be
derived from the parent using a small neural network. This allows us to store only the parent splats
along with the weights of the neural network. To achieve this, we initially represent a 3D scene
as a forest of depth-1 tree structures where the parent splats are initialized from SfM (Schönberger
& Frahm, 2016) and the children are neural-predicted on-the-fly. The trees are then refined and
expanded to sub-trees during the optimization process using Adaptive Tree Manipulation. Formally,
we represent a scene using S = {X1,X2, . . .Xn}, where Xi is tree and each node contains the
attributes, such as position (x), color (c), opacity (α), scale (s), and rotation (r). This representation
can be stored very efficiently, as for each tree we need to save only the positions and scales of parent
splats and small neural network shared across the trees, to predict all the other attributes of the tree.

4.1 NEURAL REPRESENTATION FOR LIGHTWEIGHT PREDICTIVE SPLATS

We model close relationship between a parent and children nodes. Specifically, we assume that
the children nodes are in the vicinity of parent node and have similar geometric and appearance at-
tributes such as shape, color and opacity. We satisfy these requirements by using a hash-grid based
approach (Müller et al., 2022b; Chen et al., 2023a) as our representation, which has an inherent

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

property to return similar features when queried with the points located nearby via feature interpo-
lation. Below we describe how a tree (Xi) can be represented in storage efficient manner. In what
follows we drop the index i. We use the notation node to refer the splat in the context of a tree.

For a hash-grid H(·) shared across the trees and parent node positions xp, we query the features as
f = H(xp) and use them to predict the displacement of children and attributes of the tree. We divide
f into two halves f ≡ {f∆ ∈ RD/2, fa ∈ RD/2}, where the first half (f∆) represents displacement
and is used to predict the position of children. The second half (fa) is used to predict other attributes.

Predicting Position. We want children and parent nodes to represent similar geometry and appear-
ance. Hence, children should be located in the vicinity of the parents nodes. We model the position
of children as their displacement from their parent nodes. For the parent we predict the position of
kth child using xk = xp + gpos(f∆)[k] where gpos is an MLP with output shape K × 3.

Having the positions of all nodes in the tree, we can predict the rest of the attributes, such as scale,
rotation, color, and opacity. We reuse the hash-grid to get the attribute feature (fak) for kth child
node using H(xk). A naive approach to extract the remaining attributes using fa and fak is to pass
the latter to an MLP get scale, rotation, color and opacity. We found such approach to be sub optimal.
A hash-grid representation implicitly makes the representation of spatially points similar. There
is no mechanism to share information between the features after they are computed. Since there
is relation between physical attributes of the parent and children nodes, having such information
sharing mechanism is beneficial. To this end, we propose a modified self-attention mechanism to
better capture the inter-dependencies between children and parent nodes. To do so, we first obtain
the aggregated feature Fa ∈ RK+1×D/2 by concatenating features of all the nodes in the tree, such
as Fa = Concat({fa, (fa1, . . . , faK}), where Concat is a concatenation operation. We then
apply a modified self-attention operation on Fa to get the final feature F ′

a:

F ′
a = Fa + λσ(

P1(Fa) ∗ P2(Fa)
T

√
d

) ∗ Fa, (1)

where σ(·) is a Softmax function, Pi(·) is a projection matrix, d is a scaling factor set as D/2, λ
is a hyper-parameter for balancing the information trade-off from the attention mechanism and ∗
denotes the matrix multiplication. Different from vanilla attention (Vaswani et al., 2017), we do not
apply positional embedding, so that Eq. 1 is permutation invariant which is an important property to
maintain while working with point clouds (Qi et al., 2016). Further, we use the unprojectedFa when
multiplying with σ(·), since we empirically found no performance gain by projecting Fa. Next, we
split F ′

a in K+1 attribute feature vector to predict the remaining attributes for each node in the tree.

Predicting Scale and Rotation. It is vital to properly initialize the scale of Gaussians for stable
training. For instance, Gaussians with small scales make minimal contributions to the rendering
quality, mainly because of their limited volume. In contrast, large Gaussians can potentially con-
tribute to every pixel during rasterization, leading to a significant amount of GPU memory. Hence,
to make training stable and minimize storage needs at the same time, we adopt a middle-ground
strategy. More specifically, we represent the scales of children as a scaled version of their parents
(sp): sk = ŝk sp where ŝk is predicted by an MLP. In case of rotation, we directly regress it for both
parents and children nodes using the corresponding attribute feature vector. We share the weights
of the MLP to regress both scale and rotation. We experimentally found, that including position of
node (xk), the distance of the point to the center of the axis aligned bounding box (bk) along with
attribute feature ((f ′

ak) improves performance: ŝk, rk = grs(f
′
ak, xk, bk).

Predicting Color and Opacity. 3DGS uses degree-3 spherical harmonics (SH) for view-dependent
color representation (Kerbl et al., 2023). However, we find such design is unnecessary and the
color can be directly predicted using from feature vectors and a viewing direction. We use an MLP
that takes them as an input and directly predicts the color as output, ck = gc(f

′
ak, dk) where dk is

the viewing direction of the node in the tree. This reduces the storage by a significant amount as
previously each splat storing the spherical harmonics individually. To predict opacity, we use another
MLP with inputs as f ′

ak and the position of the node to get corresponding opacity, ok = go(f
′
ak, xk).

We described all the operations above for a single tree. The same operation is extended for all the
trees. Further, the neural networks for all the operations share their weights across all the trees. To
summarize, the proposed representation efficiently represents the tree structure with hash-grid based
neural representations H(·) and a few MLPs. We only store position and scale of parent nodes and
the weights of our neural networks, while the rest of the properties is regressed as described above.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

4.2 ADAPTIVE TREE MANIPULATION

3DGS (Kerbl et al., 2023) starts by using an initial point cloud from SfM. To allow for some flex-
ibility in the point cloud structure they propose several techniques to add and delete the Gaussians
during optimization. These techniques work effectively for individual splats, but naively applying
them to our tree (i.e., applying directly to the parent nodes of a tree) results in sub-optimal or in-
correct outcomes(see Tab. 2a and Fig. 8). This is because such an approach implicitly limits the
depth of all trees to one, overlooking the significance of the children nodes and preventing sub-tree
expansion and consequently hindering the quality. This consideration necessitate a new strategy that
incorporates the importance of the children into the process. On the other hand, a structural repre-
sentation facilitates feature sharing, while simultaneously entangling the parent and children nodes
into a cohesive unit due to the nature of the tree. Consequently, operations on the parent directly
affect the children (e.g., pruning the parent results in the removal of the children). Considering these
factors, we propose the following strategy (see Fig. 2):

• Promotion A children can become a parent if it is deemed significant during training, and it
can have its own children in the next iteration.

• Pruning Removing or pruning the parent operates only on itself and its insignificant children.
Significant children are unaffected.

• Cloning Cloning the parent operates on the entire tree (i.e., all children are cloned as well).

To determine the significance of a children, we track the position gradient of all the children splats.
When the gradient of a child node is above a certain threshold τ cpos (i.e., ∇c

pos > τ cpos) where τ cpos
is a hyper-parameter, we consider the children significant. Then we promote the children node to
become a new parent in next training iteration (satisfying Promotion). This is crucial to represent
complicated regions in the scene where there might not be many parent nodes. Once the children
has been promoted to parent node we apply clone and split operations to all the parents following
similar practices in 3DGS (satisfying Cloning). To address Pruning, we first check if any nodes
meet the criteria outlined in Promotion and promote them if needed. Then to delete the tree we only
rely on the statistics of parent node. This is because we assume if a children node was important
then it would have been already promoted to become a new parent. Hence, we can safely delete the
current parent that will in turn delete all the corresponding insignificant children nodes. Specifically,
for deleting the trees we track the scale and opacity of the parent nodes and delete them if they are
below a certain threshold similar to 3DGS.

4.3 TRAINING

Our model, including the hash-grid and MLPs, is end-to-end learnable guided by the L1 loss be-
tween the rendered images and ground-truth images along with a D-SSIM loss, such that:

L = (1− β)L1 + βLD−SSIM, (2)

where β is set as 0.2 following the setting in (Kerbl et al., 2023).

We use a warm-up training scheme that helps in convergence of the model (Kerbl et al., 2023). The
warm-up consists of training the model in a low resolution setting, eventually moving to higher
resolution after a certain number of steps have been completed. We found that the warm-up strat-
egy is crucial to correctly position the splats and densify the regions. Without the warm-up, the
model struggles to populate enough splats in the background area, despite the importance of the
area resulting in substandard performance. Please refer to Appendix material for details.

5 EXPERIMENTS

Dataset and Metrics. We evaluate our method using seven scenes from the Mip-NeRF 360◦

dataset (Barron et al., 2022b), two scenes from Tank&Temples (Knapitsch et al., 2017), and two
scenes from Deep Blending (Hedman et al., 2018). We use the widely adopted metrics like PSNR,
SSIM (Wang et al., 2004), and LPIPS (Zhang et al., 2018) to assess the quality for image recon-
struction. We also report the storage size (in MB) for various methods along with their on-device
capabilities. We benchmark the Gaussian Splatting based methods on iPhone 14 with our imple-
mentation of the mobile application. We report three configurations of our method named C1, C2,
and C3 by varying feature dimension D of the hash-grid H. C1 is our smallest model with D = 32

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

followed by C2 with D = 48 and C3 is largest with D = 64. Since our framework adds and re-
moves points during optimization, the final storage for each model can vary. For each dataset we
report the average size of all the scenes within one configuration. The metrics, too, are averaged
over all scenes of each dataset. Per-scene quantitative results are in the Appendix.

Quality vs. Storage. First, we show that our approach provides a practical means of satisfying
diverse technical requirements. We can reduce or increase the feature dimension of the hash-grid
and the number of points, while still maintaining similar or superior rendering quality. In Fig. 3, we
plot PSNR, evaluated on the dataset introduced by (Barron et al., 2022a), for contemporary models
as well as for three configurations of our approach. Our smallest configuration is almost 50% smaller
than the smallest prior work (LightGS (Fan et al., 2024)), and shows the same rendering quality. Our
largest configuration, which is still 32% smaller than the smallest existing work, shows significantly
increased PSNR. To give the reader a better perspective, we also plot conventional works with large
hard-drive footprint (Lu et al., 2023; Kerbl et al., 2023). Our largest configuration, which uses only
20% of ScaffoldGS (Lu et al., 2023) and only 4.5% of 3DGS (Kerbl et al., 2023) storage, shows
higher quality than both of these much larger works. These advantages of our method are crucial
for mobile deployment. Less disk storage also helps in speeding up transmission that significantly
impacts user experience when sharing content.

Ours-C1 (PSNR: 28.45)

Ours-C2 (PSNR: 28.86)

Ours-C3 (PSNR: 29.11)

LightGS (PSNR: 28.45)

CompactGS (PSNR: 28.60)

20 30 40 50
28

28.2

28.4

28.6

28.8

29

29.2

ScaffoldGS (PSNR: 29.02)

155 156 157

3DGS (PSNR: 28.69)

692 693 694

PS
N

R

Storage (MB)

Figure 3: Comparisons of PSNR and storage computed on the dataset from Barron et al. (2022a).

5.1 COMPARISON RESULTS

Quantitative Results. Tab. 1 shows the quantitative results on real-world scenes, spanning from
large-scale urban landscapes to intricate indoor and outdoor environments. We compare our ap-
proach against 3DGS (Kerbl et al., 2023) and concurrent works (i.e., LightGS (Fan et al., 2024),
CompactGS (Lee et al., 2024), Eagles (Girish et al., 2023), CompGS (Navaneet et al.) and Scaf-
foldGS (Lu et al., 2023)). On the Mip-NeRF 360◦ dataset, we achieve the best PSNR among all
the approaches. Compared with 3DGS (Kerbl et al., 2023), we obtain a significant storage reduc-
tion, i.e., 19.5×, and require 3.5× fewer 3D points. On the Tank&Temples (Knapitsch et al., 2017)
dataset, although ScaffoldGS (Lu et al., 2023) has better PSNR than our approach, our storage is
almost 2.4× smaller than ScaffoldGS. Compared with 3DGS (Kerbl et al., 2023) on this dataset, we
require 1.9× fewer 3D points and 11.3× less storage. On the Deep Blending (Hedman et al., 2018)
dataset, our method has higher PSNR and 19× storage reduction than 3DGS (Kerbl et al., 2023).

Fig. 4 demonstrates the high-quality rendering of our method produced using C3 configuration
across 5 example scenes covering all the datasets. We see various examples where our method
outperforms previous compression works. We can see our models can better capture background
details (row 3, 5), better capture reflections (row 2) while being the smallest or of comparable size.
It can also capture intricate details where other methods fail such as ceilings (row 1, 4).

On-Device Capability. We explore the feasibility of running splatting based methods on mobile
devices. We use iPhone14 and Snap AR glasses Spectacles to implement the applications. For fair
comparison, we unpack splats from all methods to a standard 3DGS format (Kerbl et al., 2023) for

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 1: Quantitative comparisons on three widely used benchmark datasets, including Mip-NeRF
360◦ dataset (Barron et al., 2022a), Tanks&Temples (Knapitsch et al., 2017), and Deep Blend-
ing (Hedman et al., 2018). We report the image quality metrics, such as PSNR, SSIM, and LPIPS,
and the required storage. We also report the on-device capability of each Gaussian Splatting based
work (On-Device in the table), where OOM denotes Out-of-Memory error and ✓denotes the real-
time capability (> 30 fps) on our tested device, i.e., iPhone14. and− denotes unknown of on-device
capability. The evaluation results on other works are obtained from their papers. Compared with
the methods that are capable to run on mobile devices, our models (Ours-C1, C2, C3) can obtain
smaller model size with higher rendering quality (i.e., PSNR).

Method On-Device Mip-NeRF 360◦ Dataset Tank&Temples Deep Blending

PSNR ↑ SSIM ↑ LPIPS ↓ Storage ↓ PSNR ↑ SSIM ↑ LPIPS ↓ Storage ↓ PSNR ↑ SSIM ↑ LPIPS ↓ Storage ↓
ScaffoldGS (Lu et al., 2023) OOM 29.02 0.848 0.220 156MB 23.96 0.853 0.177 87MB 30.21 0.906 0.254 66MB
3DGS (Kerbl et al., 2023) OOM 28.69 0.870 0.182 693MB 23.14 0.841 0.183 411MB 29.41 0.903 0.243 676MB
CompGS (Navaneet et al.) - 27.16 0.808 0.228 50.30MB 23.47 0.840 0.188 27.97MB 29.75 0.903 0.247 42.77MB

Eagles (Girish et al., 2023) ✓ 27.15 0.808 0.238 68.89MB 23.41 0.840 0.200 34MB 29.91 0.910 0.250 62MB
LightGS (Fan et al., 2024) ✓ 28.45 0.857 0.210 42.48MB 22.83 0.807 0.242 22.43MB - - - -
CompactGS (Lee et al., 2024) ✓ 28.60 0.855 0.211 46.98MB 23.32 0.831 0.201 39.43MB 29.79 0.901 0.258 43.21MB
Ours-C1 ✓ 28.45 0.837 0.235 23.40 MB 23.19 0.810 0.239 22.00 MB 29.32 0.895 0.282 22.90MB
Ours-C2 ✓ 28.86 0.851 0.217 29.50 MB 23.47 0.820 0.228 29.05MB 29.61 0.896 0.277 29.15MB
Ours-C3 ✓ 29.11 0.857 0.210 35.60MB 23.82 0.829 0.210 35.32MB 29.89 0.902 0.267 35.40MB

Ground Truth Ours Compact GS Light GS

Figure 4: Visual comparisons with methods offering efficient GS representations (Lee et al. (2024);
Fan et al. (2024)). We magnified regions to show qualitative differences. Our approach (C3) can
render images with high-quality while greatly saving the storage. Zoom-in for greater detail.

rendering. We observe Out-of-Memory error when running all scenes from the three benchmark
datasets for 3DGS and ScaffoldGS, owing to their large number of splats. Our method can success-
fully run on device (as in Fig. 5), and achieves smaller and better rendering quality compared to
LightGS (Fan et al., 2024), CompactGS (Lee et al., 2024) and Eagles (Girish et al., 2023). Check
our Webpage for video demos.

8

https://anonymous0submissions.github.io/LPGS/

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 2: Ablation analysis on core design elements. We report the PSNR for each experiment.

(a) Ablation Study on the propose contributions.
FE stands for frequency encoding. Full refers to the
full settings.

FE w/o Agg. w/o ATM. w/o Contract. Full
Bicycle 19.72 22.80 22.66 22.88 23.68

Playroom 23.36 28.65 28.74 - 29.27

(b) Analysis of self-attention. We use the attention
with different number of heads (H) and attention head
dimension (F), and different λ in Eqn. 1.

H1-F32 H2-F16 H4-F8 λ=0.1 λ=0.5 λ=1.0

Bicycle 23.68 23.31 23.20 23.55 23.68 23.53

Playroom 29.27 29.15 29.10 29.14 29.27 29.22

Figure 5: Demo of running
our method on iPhone 14 and
Snap AR glasses Spectacles.

Storage Analysis. The storage of our method consists of four com-
ponents: the hash-grid, parent splat locations and scales, and MLPs.
The hash-grid is stored in 8 bits, while the other components are
stored in 16 bits. Notably, the hash-grid occupies half of the total
storage. However, our representation is independent of feature en-
coding module (i.e., hash-grid encoding) thus it allows for easy ad-
justments to more efficient representations if necessary. For instance,
in our C1 configuration using the dataset Barron et al. (2022a), the
storage allocation for each component is as follows: 12.5 MB for
the hash-grid, 5.2 MB for the parent splat locations, 5.2 MB for the
scales, and 0.5 MB for the MLPs.

Inference Phase Optimization. Predicting the attributes brings
overheads during the inference. However, we note that only the at-
tribute color is view-dependent and the rest remain the same for all frames. Therefore, to minimize
the computation cost, we opt to run the color prediction (small MLPs) only and the rest of the at-
tributes are retrieved from the first frame. Thus, we get real-time rendering on the mobile phones
and achieve comparable speed as 3DGS (Kerbl et al., 2023). We report two large-scale complex
scenes Bicycle and Garden from Barron et al. (2022a) on Nvidia A100: the rendering FPS are
61, 55 for our method and 77, 63 for 3DGS, respectively.

5.2 ABLATION ANALYSIS

We perform comprehensive analysis on various components of our methods using our C3 config-
uration. Here we choose two representative scenes to perform experiments: one unbounded out-
door scene Bicycle from Mip-NeRF 360◦ dataset (Barron et al., 2022a) and one indoor scene
Playroom from the Deep Blending dataset (Hedman et al., 2018). We report the best PSNR that
is achieved within 10K steps for all experiments.

Importance of Hash Grid. We replace the hash grid with the frequency encoding of the 3D position
followed by a 2-layer MLP to output a D = 64-dimensional feature vector, which has the same
dimension as the one from hash grid. We denote the setting as FE. Without hash-grid we see a
significant drop in the performance, highlighting the importance of the feature alignment encoded
within the spatial hash grid.

Importance of Attention Mechanism. When we remove self attention mechanism between the
nodes of the tree, it is detrimental to the performance (Tab. 2a w/o Attn). This validates our motiva-
tion that there is relation between various physical attributes of the nodes of tree hence there needs to
be a mechanism to facilitate the sharing of information. Additionally, adding attention mechanism
reduces the number of parent splats making our method storage efficient: 884K v.s 1.06M averaged
across all scenes in dataset (Barron et al., 2022a). We hypothesise that a configuration with attention
can pull information from nearby splats, allowing the method to reduce the number of splats to store
and represent the scene efficiently. Additionally, we ablated various configurations by varying λ in
Eq. 1 and the number of heads in attention to find the best configuration (Tab. 2b). We see a right
balance between the input features and attention features is important for best performance.

Adaptive Tree Manipulation (ATM). We remove Adaptive Tree Manipulation (ATM) and add or
delete the trees based only on parent nodes statistics and observe a drop in PSNR (Tab. 2a) also
visible in rendered images Fig. 8. This is because there is no mechanism to promote important
children to parent that might hinder in populating trees correctly and failing to represent complex

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Without ATM Without ATMWith ATM With ATM

Figure 6: Visual comparison of model trained with and without ATM. We can see that model trained
without ATM fails to model intricate details in the scene.

Bicycle Playroom Garden

837,357 total parents
658,672 from children

1,036,417 total parents
760,905 from children

1,260,027 total parents
1,082,578 from children

Figure 7: The effect of Adaptive Tree Manipulation (ATM). Yellow points indicate the splats who
have not changed the parent status during entire optimization. Green points represent former chil-
dren that have been promoted to parents. Around 80% of parents are from our ATM operation.

scenes effectively. On the other hand, this might also lead to deletion of important children nodes
when deleting a parent. Our proposed ATM method can effectively alleviate these issues.

Additionally, in Fig. 7 we show the point clouds of three scenes. Green points represent parents
promoted from children during the optimization. Yellow points show parents that stayed parents
during entire optimization. It is clearly seen that the majority of the parent nodes are formed by
promoting children nodes. Further note that parts with relatively flat geometry exhibit more yellow,
while sophisticated geometry with high frequency details contain more green. Hence, ATM brings
a further benefit of being able to fit sophisticated geometry better.

Table 3: Analysis of the inputs used for
attributes prediction.

w/o Distance w/o Position SH D1 SH D2 SH D3

Bicycle 23.32 9.72 23.05 23.60 23.68

Playroom 29.18 6.19 29.23 29.15 29.27

Inputs of MLP for attribute prediction. Tab. 3 shows the
analysis for the inputs used to predict the attributes. We
conduct the experiments of without using the distance from
points to the center of AABB (denoted as w/o Distance) and
without using the 3D position information (denoted as w/o
Position) to predict attributes. Position is very crucial for
training while distance further improves the performance. We also analyze the degrees of the SH
encoding on the view directions by performing degree from 1 to 3 (denoted as SH D1 to SH D3).
Degree of 3 gives the best performance as it has more capacity to model complicated light effects.

6 CONCLUSION

This paper introduces predictive 3D Gaussian splats, a lightweight representation that dramatically
reduces storage for large-scale scenes compared to 3DGS, while maintaining high-fidelity rendering
results. We propose an efficient structural representation, i.e., parent-children structure to model the
inherent spatial relationship among nearby splats. The children splats and most Gaussian attributes
can be estimated during rendering by utilizing parent. Additionally, we leverage a hash grid and
self-attention on aggregated features to enforce connectivity for parent and children nodes. We
conduct extensive experiments on benchmark datasets to validate our design and demonstrate the
our advantages of storage saving and high-quality novel view synthesis. For future work, since
our representation is orthogonal to other compression techniques, we can combine it with methods
like adaptive Gaussian pruning to achieve greater efficiency. This integration could enhance storage
performance and reduce computational overhead, making our system more robust and scalable.
Exploring these synergies will be a valuable direction for optimizing representation and improving
overall efficiency in various applications.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Kara-Ali Aliev, Artem Sevastopolsky, Maria Kolos, Dmitry Ulyanov, and Victor Lempitsky. Neural
point-based graphics. In Computer Vision–ECCV 2020: 16th European Conference, Glasgow,
UK, August 23–28, 2020, Proceedings, Part XXII 16, pp. 696–712. Springer, 2020.

Jonathan T Barron, Ben Mildenhall, Dor Verbin, Pratul P Srinivasan, and Peter Hedman. Mip-nerf
360: Unbounded anti-aliased neural radiance fields. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 5470–5479, 2022a.

Jonathan T. Barron, Ben Mildenhall, Dor Verbin, Pratul P. Srinivasan, and Peter Hedman. Mip-nerf
360: Unbounded anti-aliased neural radiance fields. CVPR, 2022b.

Chris Buehler, Michael Bosse, Leonard McMillan, Steven Gortler, and Michael Cohen. Unstruc-
tured lumigraph rendering. In Seminal Graphics Papers: Pushing the Boundaries, Volume 2, pp.
497–504. 2023.

Junli Cao, Huan Wang, Pavlo Chemerys, Vladislav Shakhrai, Ju Hu, Yun Fu, Denys Makoviichuk,
Sergey Tulyakov, and Jian Ren. Real-time neural light field on mobile devices. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8328–8337, 2023.

Anpei Chen, Zexiang Xu, Xinyue Wei, Siyu Tang, Hao Su, and Andreas Geiger. Dictionary fields:
Learning a neural basis decomposition. ACM Transactions on Graphics (TOG), 42(4):1–12,
2023a.

Shenchang Eric Chen and Lance Williams. View interpolation for image synthesis. In Seminal
Graphics Papers: Pushing the Boundaries, Volume 2, pp. 423–432. 2023.

Yihang Chen, Qianyi Wu, Weiyao Lin, Mehrtash Harandi, and Jianfei Cai. Hac: Hash-grid as-
sisted context for 3d gaussian splatting compression, 2024. URL https://arxiv.org/
abs/2403.14530.

Zhiqin Chen, Thomas Funkhouser, Peter Hedman, and Andrea Tagliasacchi. Mobilenerf: Exploit-
ing the polygon rasterization pipeline for efficient neural field rendering on mobile architectures.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
16569–16578, 2023b.

Inchang Choi, Orazio Gallo, Alejandro Troccoli, Min H Kim, and Jan Kautz. Extreme view synthe-
sis. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 7781–
7790, 2019.

Zhiwen Fan, Kevin Wang, Kairun Wen, Zehao Zhu, Dejia Xu, and Zhangyang Wang. Lightgaussian:
Unbounded 3d gaussian compression with 15x reduction and 200+ fps, 2024.

John Flynn, Michael Broxton, Paul Debevec, Matthew DuVall, Graham Fyffe, Ryan Overbeck,
Noah Snavely, and Richard Tucker. Deepview: View synthesis with learned gradient descent.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
2367–2376, 2019.

Sara Fridovich-Keil, Alex Yu, Matthew Tancik, Qinhong Chen, Benjamin Recht, and Angjoo
Kanazawa. Plenoxels: Radiance fields without neural networks. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 5501–5510, 2022.

Sara Fridovich-Keil, Giacomo Meanti, Frederik Rahbæk Warburg, Benjamin Recht, and Angjoo
Kanazawa. K-planes: Explicit radiance fields in space, time, and appearance. In CVPR, 2023.

Stephan J Garbin, Marek Kowalski, Matthew Johnson, Jamie Shotton, and Julien Valentin. Fast-
nerf: High-fidelity neural rendering at 200fps. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pp. 14346–14355, 2021.

Sharath Girish, Kamal Gupta, and Abhinav Shrivastava. Eagles: Efficient accelerated 3d gaussians
with lightweight encodings. arXiv preprint arXiv:2312.04564, 2023.

11

https://arxiv.org/abs/2403.14530
https://arxiv.org/abs/2403.14530

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Ned Greene. Environment mapping and other applications of world projections. IEEE computer
graphics and Applications, 6(11):21–29, 1986.

Aarush Gupta, Junli Cao, Chaoyang Wang, Ju Hu, Sergey Tulyakov, Jian Ren, and László Jeni.
Lightspeed: Light and fast neural light fields on mobile devices. Advances in Neural Information
Processing Systems, 36, 2024.

Peter Hedman, Julien Philip, True Price, Jan-Michael Frahm, George Drettakis, and Gabriel Bros-
tow. Deep blending for free-viewpoint image-based rendering. 37(6):257:1–257:15, 2018.

Nima Khademi Kalantari, Ting-Chun Wang, and Ravi Ramamoorthi. Learning-based view synthesis
for light field cameras. ACM Transactions on Graphics (TOG), 35(6):1–10, 2016.

Bernhard Kerbl, Georgios Kopanas, Thomas Leimkühler, and George Drettakis. 3d gaussian splat-
ting for real-time radiance field rendering. ACM Transactions on Graphics, 42(4), 2023.

Arno Knapitsch, Jaesik Park, Qian-Yi Zhou, and Vladlen Koltun. Tanks and temples: Benchmarking
large-scale scene reconstruction. ACM Transactions on Graphics, 36(4), 2017.

Joo Chan Lee, Daniel Rho, Xiangyu Sun, Jong Hwan Ko, and Eunbyung Park. Compact 3d gaussian
representation for radiance field, 2024.

Marc Levoy and Pat Hanrahan. Light field rendering. In Seminal Graphics Papers: Pushing the
Boundaries, Volume 2, pp. 441–452. 2023.

David B Lindell, Julien NP Martel, and Gordon Wetzstein. Autoint: Automatic integration for fast
neural volume rendering. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 14556–14565, 2021.

Lingjie Liu, Jiatao Gu, Kyaw Zaw Lin, Tat-Seng Chua, and Christian Theobalt. Neural sparse voxel
fields. Advances in Neural Information Processing Systems, 33:15651–15663, 2020.

Stephen Lombardi, Tomas Simon, Gabriel Schwartz, Michael Zollhoefer, Yaser Sheikh, and Jason
Saragih. Mixture of volumetric primitives for efficient neural rendering. ACM Transactions on
Graphics (ToG), 40(4):1–13, 2021.

Tao Lu, Mulin Yu, Linning Xu, Yuanbo Xiangli, Limin Wang, Dahua Lin, and Bo Dai. Scaffold-gs:
Structured 3d gaussians for view-adaptive rendering, 2023.

Jonathon Luiten, Georgios Kopanas, Bastian Leibe, and Deva Ramanan. Dynamic 3d gaussians:
Tracking by persistent dynamic view synthesis. arXiv preprint arXiv:2308.09713, 2023.

Ricardo Martin-Brualla, Noha Radwan, Mehdi SM Sajjadi, Jonathan T Barron, Alexey Dosovitskiy,
and Daniel Duckworth. Nerf in the wild: Neural radiance fields for unconstrained photo collec-
tions. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pp. 7210–7219, 2021.

Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik, Jonathan T. Barron, Ravi Ramamoorthi, and
Ren Ng. Nerf: Representing scenes as neural radiance fields for view synthesis. In ECCV, 2020.

Wieland Morgenstern, Florian Barthel, Anna Hilsmann, and Peter Eisert. Compact 3d scene repre-
sentation via self-organizing gaussian grids. arXiv preprint arXiv:2312.13299, 2023.

Thomas Müller, Alex Evans, Christoph Schied, and Alexander Keller. Instant neural graphics prim-
itives with a multiresolution hash encoding. ACM Transactions on Graphics (ToG), 41(4):1–15,
2022a.

Thomas Müller, Alex Evans, Christoph Schied, and Alexander Keller. Instant neural graphics prim-
itives with a multiresolution hash encoding. ACM Transactions on Graphics (ToG), 41(4):1–15,
2022b.

KL Navaneet, Kossar Pourahmadi Meibodi, Soroush Abbasi Koohpayegani, and Hamed Pirsiavash.
Compgs: Smaller and faster gaussian splatting with vector quantization.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Thomas Neff, Pascal Stadlbauer, Mathias Parger, Andreas Kurz, Joerg H Mueller, Chakravarty
R Alla Chaitanya, Anton Kaplanyan, and Markus Steinberger. Donerf: Towards real-time render-
ing of compact neural radiance fields using depth oracle networks. In Computer Graphics Forum,
volume 40, pp. 45–59. Wiley Online Library, 2021.

Simon Niedermayr, Josef Stumpfegger, and Rüdiger Westermann. Compressed 3d gaussian splatting
for accelerated novel view synthesis. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 10349–10358, 2024.

Eric Penner and Li Zhang. Soft 3d reconstruction for view synthesis. ACM Transactions on Graphics
(TOG), 36(6):1–11, 2017.

Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas. Pointnet: Deep learning on point sets
for 3d classification and segmentation. arXiv preprint arXiv:1612.00593, 2016.

Christian Reiser, Songyou Peng, Yiyi Liao, and Andreas Geiger. Kilonerf: Speeding up neural
radiance fields with thousands of tiny mlps. In Proceedings of the IEEE/CVF International Con-
ference on Computer Vision, pp. 14335–14345, 2021.

Gernot Riegler and Vladlen Koltun. Stable view synthesis. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pp. 12216–12225, 2021.

Sara Fridovich-Keil and Alex Yu, Matthew Tancik, Qinhong Chen, Benjamin Recht, and Angjoo
Kanazawa. Plenoxels: Radiance fields without neural networks. In CVPR, 2022.

Johannes L Schonberger and Jan-Michael Frahm. Structure-from-motion revisited. In Proceedings
of the IEEE conference on computer vision and pattern recognition, pp. 4104–4113, 2016.

Johannes Lutz Schönberger and Jan-Michael Frahm. Structure-from-Motion Revisited. In Confer-
ence on Computer Vision and Pattern Recognition (CVPR), 2016.

Pratul P Srinivasan, Richard Tucker, Jonathan T Barron, Ravi Ramamoorthi, Ren Ng, and Noah
Snavely. Pushing the boundaries of view extrapolation with multiplane images. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 175–184, 2019.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural informa-
tion processing systems, 30, 2017.

Huan Wang, Jian Ren, Zeng Huang, Kyle Olszewski, Menglei Chai, Yun Fu, and Sergey Tulyakov.
R2l: Distilling neural radiance field to neural light field for efficient novel view synthesis. In
European Conference on Computer Vision, pp. 612–629. Springer, 2022.

Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Simoncelli. Image quality assessment:
from error visibility to structural similarity. IEEE transactions on image processing, 13(4):600–
612, 2004.

Guanjun Wu, Taoran Yi, Jiemin Fang, Lingxi Xie, Xiaopeng Zhang, Wei Wei, Wenyu Liu, Qi Tian,
and Xinggang Wang. 4d gaussian splatting for real-time dynamic scene rendering. arXiv preprint
arXiv:2310.08528, 2023.

Ziyi Yang, Xinyu Gao, Wen Zhou, Shaohui Jiao, Yuqing Zhang, and Xiaogang Jin. De-
formable 3d gaussians for high-fidelity monocular dynamic scene reconstruction. arXiv preprint
arXiv:2309.13101, 2023.

Alex Yu, Ruilong Li, Matthew Tancik, Hao Li, Ren Ng, and Angjoo Kanazawa. Plenoctrees for
real-time rendering of neural radiance fields. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pp. 5752–5761, 2021.

R. Zhang, P. Isola, A. A. Efros, E. Shechtman, and O. Wang. The unreasonable effectiveness of deep
features as a perceptual metric. In 2018 IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 586–595, jun 2018.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Tinghui Zhou, Richard Tucker, John Flynn, Graham Fyffe, and Noah Snavely. Stereo magnification:
Learning view synthesis using multiplane images. arXiv preprint arXiv:1805.09817, 2018.

Matthias Zwicker, Hanspeter Pfister, Jeroen Van Baar, and Markus Gross. Ewa volume splatting. In
Proceedings Visualization, 2001. VIS’01., pp. 29–538. IEEE, 2001.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A APPENDIX

A.1 ADAPTIVE TREE MANIPULATION

Significant Child

Promotion

Iteration N + 1 Iteration N

Pruning

Iteration N + 1Iteration N
insignificant Child

Cloning
Duplicate

Iteration N Iteration N + 1

: children promoted to parents (significant): pruned parent splats

Figure 8: Demonstration of Promotion, Pruning, and Cloning operations in ATM.

We add the visual explanation of the three operations discussed in the Adaptive Tree Manipulation
(ATM) (Sec. 4.2). As illustrated in Fig. 8, a significant child splat is promoted to the parent in the
next iteration (i.e., N + 1) if satisfying the criterion (i.e., ∇c

pos > τ cpos). In the iteration N + 1, the
newly promoted parent has its own children splats (e.g., the green node in the tree). When pruning
the parent splats, significant splats (e.g., the green node) and insignificant splats (e.g., the red node)
are handled differently, where the insignificant splats are pruned together with the parent whereas
the significant splat turns to a new tree in iteration N + 1. Lastly, the cloning operates on the tree
level where children splats are also cloned.

A.2 DISCUSSION OF MORE ANCHOR-BASED METHODS

HAC (Chen et al., 2024) closely builds upon the anchor-based method ScaffoldGS (Lu et al., 2023),
leveraging a hash-grid context model with an underlying anchor representation. As outlined in
Sec. 2, our hierarchical tree representation fundamentally differs from the anchor representation
used in HAC in several significant ways. Unlike anchors, which capture only a single level of con-
nectivity between splats, our hierarchical tree representation imposes no constraints on the number
of connectivity levels. This flexibility enables the modeling of sophisticated and complex regions
where strong, multi-level connectivity is essential. To further enhance the hierarchical structure, our
proposed Adaptive Tree Manipulation (ATM) entangles the parent and children nodes into a cohe-
sive unit by accounting for the significance of both in growing and pruning processes. This enables
a robust strategy of sub-tree expansion, allowing our tree representation to dynamically adapt to
the structural complexity of different regions. In contrast, anchor-based methods (Lu et al., 2023;
Chen et al., 2024) implicitly impose constraints on tree depth, limiting all trees to a single level and
overlooking the critical role of children nodes in capturing intricate hierarchical relationships.

A.3 IMPLEMENTATION DETAILS

In this section, we provide more details for our training. We first provide the hyper-parameters used
during the training in A.3.1. We discuss the architecture and training details in A.3.2. Next we
show the visual illustration and the implementation details of the contraction in Sec. A.3.3. Then,
we analyze the effectiveness of the warm-up training strategy employed in our method in Sec. A.3.4
and the convergence in Sec. A.3.5. Lastly, we discuss the pre-filtering of parent points and its
implementation in Sec. A.3.6.

A.3.1 SETTINGS OF HYPER-PARAMETERS

We employ different learning schedules for different modules. For the hash grid, we start with a
learning rate of 2e−3 and end with a rate of 2e−5. For opacity, we start with 1e−3 and end with
2e−5. The scale and rotation parameters utilize a constant learning rate of 1e−4. Additionally, we
maintain a constant learning rate of 2e−4 for the attention module. We apply a standard exponential
decay scheduling (Kerbl et al., 2023; Sara Fridovich-Keil and Alex Yu et al., 2022) to all modules.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

A.3.2 ARCHITECTURE AND TRAINING DETAILS

We use Instant-NGP (Müller et al., 2022b) as our hash-grid owing to its compact and efficient design
and 2 layers MLP for all the MLPs. Following the practices in (Barron et al., 2022a; Müller et al.,
2022b) we use scene contraction to map the position into [0, 1] before feeding it to the Instant-NGP.
This helps bring the splats that are occasionally outside the Axis-Aligned-Bounding-Box (AABB)
due to the densification of splatsalong with the position updates. We estimate the AABB with the
initial COLMAP (Schönberger & Frahm, 2016) point cloud. We set λ = 0.5 for all the experi-
ments and train the model for 30K steps with 7.5K steps warm-up stage. In our experiments, we
initially use lower resolution images to train the model 7.5K steps for warm-up, after which we
transit to high-resolution images. More precisely, following the setting from 3DGS (Kerbl et al.,
2023), we employ 32× downsampling for the Mip-NeRF 360◦ dataset and 4× downsampling for
the Tank&Temples (Knapitsch et al., 2017) and Deep Blending (Hedman et al., 2018) datasets in
the warm-up stage. The number of children splats (K) used in our experiment varies across scenes.
We empirically found that 2 children are enough for most scenes and we believe this is because our
sub-tree expansion allows the tree to grow deeper and compensate the breadth requirement. Please
refer to A.5 material for details.

A.3.3 DETAILS FOR CONTRACTION

Contract

Contract

: Initial AABB from COLMAP

: Inner Sphere

: Outer Sphere

: Estimated AABB

: Points fall outside of AABB

: Centroid

Figure 9: Illustration for our implemented contraction.

We illustrate the process of contraction (described in Sec. 3.5 of the main paper) in Fig. 9 and Alg. 1.
We calculate the inscribed and circumscribed spheres (i.e., Sinner and Souter) with radius Rinner

and Router of the initialized Axis-Aligned Bounding Box (AABB), which is estimated from the
point cloud generated from COLMAP (Schönberger & Frahm, 2016). The estimated AABB is the
circumscribed cube of the outer sphere Souter. Points falling outside of the outer sphere are brought
back to Souter.

A.3.4 ANALYSIS OF WARM-UP

We run two experiments on the Garden (Barron et al., 2022a) scene in 10K steps to show the
effectiveness of the warm-up in our method.

We have found that using warm-up in training with low resolution images at early stages helps
the points populate the empty areas, especially when the COLMAP (Schönberger & Frahm, 2016)
initialization is poor. Fig. 10 shows the point cloud and corresponding rendered images from
different training approaches. As can be seen, the warm-up training (second row) has a better
reconstruction and rendering quality for the background scene, which is poorly initialized from
COLMAP (Schönberger & Frahm, 2016).

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Algorithm 1 AABB Estimation and Contraction

Require: Initialized AABB: AABBinit, point cloud: PC
Sinner ← Inscribed sphere of AABBinit ▷ centered at O
Rinner ← Radius of Sinner

Souter ← Circumscribed sphere of AABBinit ▷ centered at O
Router ← Radius of Souter

AABBest ← Circumscribed cube of Souter

for p in PC do ▷ contract the points
if ∥p−O∥ ≤ Rinner then

p← p
else if ∥p−O∥ > Rinner then

p←
(
Router − 1

∥p−O∥

)(
p−O

∥p−O∥

)
+O ▷ infinity is on Souter

end if
end for

No Warm-up

Warm-up

Figure 10: Analysis of warm-up. First row:training without warm-up. Second row: training with
warm-up. Left column: points distribution. Right column: rendered images with the point cloud.

A.3.5 ANALYSIS OF CONVERGENCE

Leveraging the hash-grid structure increases the per-step training time compared to 3DGS (Kerbl
et al., 2023). For example, 3DGS requires approximately 23 minutes to reach a PSNR of 30.63
at 30K steps on scene room from MipNeRF-360 (Barron et al., 2022a) dataset, our method takes
about 27.6 minutes, and HAC (Chen et al., 2024) requires a similar training time of 27.1 minutes.
Nonetheless, our approach strikes a good balance between size, speed, and quality. Furthermore,
thanks to our inference phase optimization strategy in Sec. 5.1, the hash-grid structure has a minimal
impact on inference time, allowing our approach to run in real-time on mobile devices.

A.3.6 VIEW FRUSTUM CULLING

We apply pre-filtering on the parent points before querying features for attributes prediction by
culling the view frustum with depth, leading to the computation reduction and the training speedup.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

We empirically observe that 15% - 25% points are removed across scenes. The implementation is
shown in Alg. 2.

Algorithm 2 View Frustum Culling

Require: points P : N × 3, view matrix M : 4× 4
Phomo ← Concat(P, ones) ▷ Phomo : N × 4
Pview ←M ∗ (Phomo)

T ▷ ∗ is matrix multiplication
mask ← Pview[2, :] > 0.201 ▷ depth > 0.201
Pfiltered ← P [mask]

A.4 MORE ABLATION STUDY

Scene Contraction. We analyze the proposed contraction technique applied on the unbounded scene
(Tab. 3 w/o Contract.). Compared with Full, we get inferior performance (0.8 PSNR drop), and tend
to have training instability issues because the points occasionally move outside the Axis-Aligned
Bounding box.

A.5 PER-SCENE QUANTITATIVE RESULTS

We provide the per-scene results on the benchmark datasets. Tab. 4 shows the results on the Mip-
NeRF 360◦ dataset (Barron et al., 2022a). Tab. 5 demonstrates the results on the Tank&Temples
dataset (Knapitsch et al., 2017) and the Deep Blending dataset (Hedman et al., 2018). We report the
per-scene storage (in MB), the number of parents and children, and the metrics for image quality
evaluation.
Table 4: Per-scene metrics for our approach on the Mip-NeRF 360◦ dataset Barron et al. (2022a).

Compact GS

Metric Garden Bicycle Stump Room Counter Kitchen Bonsai

PSNR 26.81 24.77 26.46 30.88 28.71 30.480 32.08
SSIM 0.832 0.723 0.757 0.919 0.902 0.919 0.939
LPIPS 0.161 0.286 0.278 0.209 0.205 0.131 0.193
Storage (MB) 62.78 62.99 54.66 34.21 34.34 44.45 35.44

Light GS

PSNR 26.73 24.96 26.70 31.27 28.11 30.40 31.01
SSIM 0.836 0.738 0.768 0.926 0.893 0.914 0.944
LPIPS 0.155 0.265 0.261 0.220 0.218 0.147 0.204
Storage (MB) - - - - - - -

Scaffold GS

PSNR 27.17 24.50 26.27 31.93 29.34 31.30 32.70
SSIM 0.842 0.705 0.784 0.925 0.914 0.928 0.946
LPIPS 0.146 0.306 0.284 0.202 0.191 0.126 0.185
Storage (MB) 271.00 248.00 493.00 133.00 194.00 173.00 258.00

3D GS

PSNR 27.25 25.10 26.66 31.50 29.11 31.53 32.16
SSIM 0.856 0.747 0.756 0.925 0.914 0.932 0.946
LPIPS 0.122 0.244 0.243 0.198 0.184 0.117 0.181
Storage (MB) 1331.33 1350.78 1073.60 350.14 276.52 411.76 295.08

Ours-C1

PSNR 27.17 24.32 25.75 31.62 28.54 30.47 31.32
SSIM 0.832 0.672 0.768 0.913 0.889 0.910 0.923
LPIPS 0.169 0.355 0.312 0.229 0.226 0.147 0.206
Storage (MB) 26.90 25.71 34.84 16.85 17.92 23.68 17.74

Ours-C2

PSNR 27.38 24.78 26.41 31.82 28.75 30.71 32.14
SSIM 0.842 0.701 0.751 0.916 0.894 0.913 0.935
LPIPS 0.156 0.325 0.260 0.224 0.218 0.146 0.192
Storage (MB) 33.01 31.72 41.09 23.02 24.04 30.05 23.61

Ours-C3

PSNR 27.63 24.90 26.43 31.84 29.10 31.27 32.67
SSIM 0.847 0.717 0.753 0.917 0.900 0.918 0.941
LPIPS 0.147 0.303 0.267 0.220 0.212 0.137 0.186
Storage (MB) 39.40 37.81 47.24 28.95 30.02 35.92 29.84

of Parents 1.20M 1.06M 1.86M 330K 419K 913K 403K
of Children (k) 2 2 2 2 2 1 2

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Table 5: Per-scene metrics for our approach on the Tank&Temples dataset Knapitsch et al. (2017)
and the Deep Blending dataset Hedman et al. (2018).

Compact GS

Metric Tank&Temples Deep Blending

Truck Train Drjohnson Playroom

PSNR 25.070 21.560 29.260 30.320
SSIM 0.871 0.792 0.9000 0.902
LPIPS 0.163 0.240 0.258 0.258
Storage (MB) 41.57 37.29 47.98 38.45

Light GS

PSNR 24.561 21.095 - -
SSIM 0.855 0.760 - -
LPIPS 0.188 0.296 - -
Storage (MB) - - - -

Scaffold GS

PSNR 25.77 22.15 29.80 30.62
SSIM 0.883 0.822 0.907 0.904
LPIPS 0.147 0.206 0.250 0.258
Storage (MB) 107.00 66.00 69.00 63.00

3D GS

PSNR 25.350 22.070 29.060 29.870
SSIM 0.878 0.812 0.899 0.901
LPIPS 0.148 0.208 0.247 0.247
Storage (MB) 608.70 255.82 773.61 553.03

Ours-C1

PSNR 24.93 21.44 28.89 29.75
SSIM 0.856 0.763 0.894 0.895
LPIPS 0.196 0.283 0.280 0.284
Storage (MB) 23.11 20.90 23.59 22.21

Ours-C2

PSNR 25.22 21.72 28.93 30.28
SSIM 0.862 0.777 0.902 0.902
LPIPS 0.184 0.272 0.287 0.268
Storage (MB) 30.73 27.36 29.84 28.46

Ours-C3

PSNR 25.45 22.18 29.34 30.44
SSIM 0.866 0.792 0.898 0.905
LPIPS 0.182 0.240 0.270 0.265
Storage (MB) 36.01 34.63 35.80 35.00

of Parents 1M 900K 900K 834K
of Children (k) 1 1 2 2

19

	Introduction
	Related Work
	Preliminaries
	Method
	Neural Representation for Lightweight Predictive Splats
	Adaptive Tree Manipulation
	Training

	Experiments
	Comparison Results
	Ablation Analysis

	Conclusion
	Appendix
	Adaptive Tree Manipulation
	Discussion of More Anchor-based Methods
	Implementation Details
	Settings of Hyper-parameters
	Architecture and Training Details
	Details for Contraction
	Analysis of Warm-up
	Analysis of Convergence
	View Frustum Culling

	More Ablation Study
	Per-scene Quantitative Results

