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Abstract

Existing evaluation benchmarks of language models of code (code LMs)
focus almost exclusively on whether the LMs can generate functionally-
correct code. In real-world software engineering, developers think beyond
functional correctness. They have requirements on “how” a functionality
should be implemented to meet overall system design objectives like effi-
ciency, security, and maintainability. They would also trust the code LMs
more if the LMs demonstrate robust understanding of such requirements.
We propose a new benchmark NoFunEval to evaluate code LMs on non-
functional requirements and simple classification instances for both func-
tional and non-functional requirements. We propose a prompting method,
Coding Concepts (CoCo), as a way for a developer to communicate the do-
main knowledge to the LMs. We conduct an extensive evaluation of 27
code LMs. Our finding is that LMs generally falter when tested on our
benchmark, hinting at fundamental blindspots in their training setups.
Surprisingly, even the classification accuracy on functional-correctness in-
stances derived from the popular HumanEval benchmark is low, calling in
question the depth of their comprehension and the source of their success
in generating functionally-correct code in the first place. We release our
benchmark and evaluation scripts publicly at https://aka.ms/NoFunEval.

1 Introduction

There has been dazzling progress in the development of newer and more capable language
models (LMs) of code (Chen et al., 2021; Austin et al., 2021; Fried et al., 2022; Nijkamp
et al., 2023; Li et al., 2023b; Wang et al., 2023; OpenAI, 2023b; Luo et al., 2023; Muennighoff
et al., 2023). Simultaneously, the community has been actively designing benchmarks
(Hendrycks et al., 2021; Chen et al., 2021; Austin et al., 2021; Puri et al., 2021; Li et al., 2022a;
Liu et al., 2023b) with emphasis on generating code for a given problem specification of what
functionality to achieve, e.g., writing a Python function to sort an array.

This is but a narrow slice of application of LMs in software engineering pipelines where the
tasks are often not as straight-forward. Developers must consider the overall requirements
of the system (e.g., an Android application) to which the code belongs. So, a problem
instance in the real-world would be closer to editing Java code to optimize for resource usage
on a low-memory Android device than to generating a functionally-correct sort. Such
non-functional requirements guide the design decisions and constrain how the functionality
may be realized (Landes & Studer, 1995), and play a central role in real-world software
engineering (Chung et al., 2012). The premise of our work is that while satisfying functional
requirements (“what” to implement) is necessary, it is not sufficient.

In this work, we forefront the above-identified significant gap in the current evaluation
suites, and introduce a complementary benchmark NoFunEval in a first attempt to bridge the
gap. We identify a set of five broad non-functional requirements: latency, resource utilization,
runtime efficiency, maintainability, and security. We construct code-editing problem in-
stances spanning these non-functional requirements and refer to them as NoFunEdit. As LMs
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(a) Composition of NoFunEval (b) Functional correctness (c) Non-functional requirements

Figure 1: (a) NoFunEval contributes edit and comprehension tasks, NoFunEdit and NoFun-
Classify, for non-functional requirements, and complements HumanEval and HumanEvalFix
with a comprehension task HumanEvalClassify. (b)–(c): Performance of LMs on NoFunEval,
HumanEval, and HumanEvalFix benchmarks (metrics, full results in § 4). For consistency, in
plot (c), we include only those instances with a binary evaluation oracle.

are finding increasing use in code generation and editing, it is imperative to test whether
they have robust comprehension of the requirements and code semantics. We therefore propose
classification instances for both functional-correctness, derived from the HumanEvalFix
dataset (Muennighoff et al., 2023), and non-functional requirements, from NoFunEdit.

Figure 1(a) shows the three distinct subsets, NoFunEdit, NoFunClassify and HumanEvalClassify,
of our NoFunEval benchmark and how they complement existing generation and edit
benchmarks HumanEval (Chen et al., 2021) and HumanEvalFix (Muennighoff et al., 2023)
focused on functional correctness. Our benchmark consists of 958 problem instances in
multiple programming languages sourced from public repositories and existing datasets.

Two key challenges in our benchmark design are: (1) how do we convey notions like latency
and efficiency that tend to be relative unlike functional correctness that is absolute? Simply
describing the requirement in the prompt often fails because LMs may lack the necessary do-
main knowledge, unlike in the case of functional correctness where the problem description
is usually sufficient. To this end, we design a new prompting strategy Coding Concepts (CoCo)
which allows a developer to succinctly communicate actionable domain knowledge to LMs;
(2) how do we evaluate the output of LMs? We employ a combination of functional (i/o
specification) and non-functional (static analysis tools, execution time) oracles. In addition,
we consider a DiffBLEU (Bairi et al., 2023), a metric defined on code diffs to capture the
closeness of predicted edits with the ground-truth edits.

We present a comprehensive evaluation of 27 code LMs. A key takeaway of our work, be-
sides the benchmark itself, is that existing code LMs (spanning different training strategies,
instruction tuning paradigms, and model sizes) falter when we test them on requirements
beyond functional correctness. This is highlighted in Figures 1(b)–1(c) by (1) their surpris-
ingly low performance on classification (yellow) compared to generation (green) and editing
(blue) tasks in both functional and non-functional requirements, and (2) the generally low
performance on tasks related to non-functional requirements compared to relatively higher per-
formances on tasks related to functional correctness.

Contributions: To the best of our knowledge, no prior work comprehensively evaluates
code language models for multiple non-functional requirements in the context of code-
editing and code-comprehension tasks. Our study is the first to observe that most code LMs
typically fail to “discriminate” between buggy code and correct code, despite their ability
to “generate” the correct fixes for the buggy code. In summary, we (1) identify the almost
exclusive focus on functional correctness in existing benchmarks of code LMs; (2) prepare a
benchmark to evaluate non-functional requirements and comprehension ability of code LMs;
(3) extensively evaluate 27 code LMs and find there is much room to improve comprehension
of requirements and code semantics; (4) release our benchmark and evaluation scripts at
aka.ms/NoFunEval.
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Figure 2: Overview of the NoFunEval benchmark. NoFunEval consists of three subtasks,
NoFunEdit, NoFunClassify, HumanEvalClassify, spanning multiple programming languages.
NoFunEdit (§ 2.1) involves editing a given source code as per a user-specified non-functional
requirement (e.g., improving memory usage). We design four prompting techniques (§ 2.2)
for eliciting LMs to perform the required editing, ranging from minimal task-related infor-
mation (“Base”) to guiding with high-level hints (“Coding Concepts”). NoFunClassify (§ 2.3)
involves distinguishing between two code snippets based on a non-functional property
(e.g., selecting the code with lower memory utilization). We construct it by reformulating
problems in NoFunEdit. Similarly, we construct HumanEvalClassify (§ 2.4) by reformulating
HumanEvalFix (Muennighoff et al., 2023), which involves distinguishing two code snippets
based on their functional correctness (i.e., bug detection).

2 The NoFunEval Benchmark

Our NoFunEval benchmark (Figure 2) comprises one edit and two classification tasks. In
this section, we describe these tasks, the design of the datasets, and the evaluation metrics
(summarized in Tables A1 and A2 in Appendix A.1).

2.1 NoFunEdit

As shown in the LHS of Figure 2, each problem instance in NoFunEdit consists of an instruc-
tion specifying the non-functional requirement for code editing, a prompting strategy, and
the source code that forms the input to the LM, along with the ground-truth code as the
desired output. We consider five non-functional coding aspects: (1) Latency: Optimizing
code for response times in applications, (2) Resource Utilization: Optimizing for resource
utilization like memory, energy or bandwidth, (3) Runtime Efficiency: Improving algorith-
mic runtime complexity of code, (4) Maintainability: Enhancing code readability and style
as per the best programming practices, and (5) Security: Resolving security vulnerabilities
in code. Prior works have studied some of these aspects in isolation (§ 5). In contrast,
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NoFunEdit attempts to unify these tasks under a general framework of editing the code to
satisfy non-functional requirements. Below, we describe the design of NoFunEdit in detail.

Latency and Resource Utilization: Real-world software systems are often optimized for
latency (e.g., network delays) and resource utilization (e.g., memory, energy) on edge
devices. We turn to open-source Android applications that have commits optimizing latency
and resource utilization. We derive such examples from Callan et al. (2022) and Moura
et al. (2015), where they mine GitHub commits involving non-functional aspects of Android
applications. The mining process involves keyword-based filters, manual selection, and
learned classifiers, resulting in 931 examples covering latency (execution time and frame rate)
and resource utilization (memory, bandwidth, and energy) properties. For our benchmark,
we retain only commits from repositories with permissive licenses and targeting a single file.
From the commits, we extract the pre-commit code as the input and the post-commit code
as the target output. Based on the typical context size of 8192 tokens in many code-LMs, and
the prompt lengths in our benchmark, we further filter out instances where the input source
code length exceeds 3K tokens (using the StarCoder tokenizer). This results in a total of 114
examples, from which we manually discard 11 examples that do not conform to the commit
message. Of the remaining 103, we reserve 5 examples for prompt construction (§ 2.2). The
resulting 98 examples are then grouped based on their non-functional property – latency
(47) and resource utilization (51). For evaluation, directly comparing latency or resource
utilization is challenging, as examples vary in their target platforms (devices) and run time
requirements (OS). So, we use the DiffBLEU score (Bairi et al., 2023) as our evaluation metric.
DiffBLEU is designed to capture the similarity of edits made by the LM w.r.t. the target edits.

Runtime Efficiency: For assessing the ability to optimize code runtime, we derive examples
from the Python test split of the PIE dataset (Madaan et al., 2023), which comprises 1K pairs
of slow-code and fast-code for problems in the CodeNet challenge (Puri et al., 2021). We
retain functionally-correct example pairs with at least two test cases (to ensure functional
correctness). Further, we ensure (1) that each selected pair represents a unique CodeNet
problem (to mitigate biases); (2) the target code is statistically significantly faster than the
slower code in each selected pair, and (3) manually verify if the target edit is indeed a
reasonable edit that can explain the observed speedup. This filtering results in 113 examples.
We choose one example from the validation split of Madaan et al. (2023) for prompts (§ 2.2).
For evaluation, we measure the average runtimes of the model-edited code and the target
code over the test cases and over 25 repeated runs, and report the relative speedup. If the
model-edited code is functionally incorrect or slower than the original code, we discard
the model edits and assume the original code as output (i.e., a speedup of 1). We conduct
experiments on Azure VM NC16 .

Maintainability: We derive examples corresponding to various maintainability-related
issues from Sahu et al. (2024), which was in turn sourced from real-world git reposito-
ries (Raychev et al., 2016). We select 29 static checks that inspect code maintainability using
CodeQL (Cod), a widely-used static analysis tool. We sample 5 examples per check (from
thousands) from Sahu et al. (2024) for coverage, diversity, and economy. We ensure each
selected code has token length less than 3K (as above). This results in a total of 145 instances,
each with at least one maintainability-related issue flagged, and for which we manually
write a valid target code. For evaluation, we test LM-edited outputs using the CodeQL tool.
If CodeQL flags a warning related to the issue of interest, the LM output is considered a
failure. On the other hand, absence of CodeQL warnings does not imply that the code is
necessarily improved. LM could simply output empty code or delete offending lines of
code, which suppresses warnings. So, to reward LM edits that are closer to the ground-truth
edits, we weigh the binary CodeQL success/failure scores with the continuous DiffBLEU
scores. We denote this metric by DiffBLEU×CodeQL.

Security: For evaluating an LM’s ability to fix security vulnerabilities, we repurpose the
Pearce et al. (2022) dataset which covers 18 out of the top 25 Common Weakness Errors (CWE,
2021) scenarios. We use upto 2 generations from GitHub Copilot per CWE in the dataset
with at least one security issue flagged by CodeQL. This results in total 41 examples across
13 CWEs. We manually write the reference code that addresses the flagged vulnerabilities.
For evaluation, we use the DiffBLEU×CodeQL metric as above.
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Overall, the raw datasets from where we derive NoFunEdit have many more examples.
However, to ensure the reliability of the evaluation, we only retained the examples that were
strictly consistent with the non-functional requirements. Further, we prioritized inclusion of
examples that are diverse and cover more types of non-functional requirements than having
a greater number of similar examples.

Use of DiffBLEU for Evaluation: Our benchmark partly derives examples from files of end-
to-end applications designed for diverse platforms like mobile devices, web applications,
etc. Thus, setting up execution environments for such tasks is not scalable and expensive
to run for the benchmark users. We therefore use the DiffBLEU (Bairi et al., 2023) metric,
designed to specifically compare the “edits” generated by the model with the ground truth
edits. DiffBLEU addresses the limitations of prior surface-level metrics like Code-BLEU (Ren
et al., 2020) that do not explicitly focus on the edits made to the input file. We also observe a
high correlation between DiffBLEU and execution-based metrics like accuracy as well as
static-analysis based CodeQL scores (§ 4.5). Thus, DiffBLEU serves as a reasonable light-
weight alternative to heavy-weight execution or static-analysis based oracles. Moreover,
oracles can also be imperfect. For instance, test-cases or the CodeQL static checks though
expert-designed, may not cover all the corner cases. Thus, we augment our oracles for
Security and Maintainability by combining them with DiffBLEU scores, as described earlier.

2.2 Crafting LM Prompts for NoFunEdit

We design four types of prompts to elicit editing abilities in code-LMs (Figure 2). These vary
from a minimalist specification of task requirements (“Base”) to more comprehensive speci-
fication leveraging domain expertise (“Coding Concepts”) as described below. Examples of
all the prompt templates are given in Appendix A.2.

Base Prompt: For each non-functional requirement in NoFunEdit, we write a simple instruc-
tion that conveys the requirement at a high level. The (Base) example in Figure 2 shows how
we specify the requirement of optimizing the resource (memory) utilization. Depending
on the problem instance, resource utilization prompt specifies one of memory, bandwidth,
or energy. Similarly, the prompt for improving latency uses the keywords frame-rate or
execution time; and for runtime efficiency, execution time. The prompts for maintainability
and security requirements utilize the title of CodeQL warnings flagged for the input code or
the common weakness enumeration (CWE) respectively.

1-Shot Prompt: We expand on the Base prompt above, which is zero-shot, to include
an example that shows how to implement the desired non-functional requirement. In
particular, we give a pair of the original source code and the edited source code, as illus-
trated in the 1-Shot prompt of Figure 2. Considering very limited data available for each
non-functional requirement, limited context lengths supported by various LMs, and each
example containing code from entire file, we do not explore multi-shot prompts.

Chain-of-Thought (CoT) Prompt: Combining reasoning with few-shot examples via chain-
of-thought has led to improved results across many tasks (Wei et al., 2022). This is partic-
ularly appealing for code rewrite tasks that require multiple levels of reasoning – under-
standing the implementation of the functionality (i.e., the what); the nature of the issue (e.g.,
memory leak); the source of the issue (i.e., localization); how the issue can be tackled (i.e.,
the exact code edit necessary). Considering these requirements, we manually augment each
example in 1-Shot prompts with explanations (thoughts) eliciting such reasoning steps. As
shown in the CoT prompt in Figure 2, the LM first generates a thought by attending to the
thought-augmented example in the prompt, and then outputs its response conditioned on
the reasoning steps in the generated thought.

Coding Concepts (CoCo) Prompt: CoT prompts rely on the LM’s ability to generate reason-
ing steps for the required edits. This could potentially lead to poor judgements in terms of
code localization and resolution, depending on the LM’s generative abilities as well as its
domain knowledge about the non-functional requirement. Often, developers have some
idea of what they expect in the edits and can provide the domain knowledge they possess
with respect to their codebase, such as what libraries to import for optimizing the code, or
which part of code requires the edits, etc. To this end, we propose a simple and fairly general
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prompting strategy – Coding Concepts (CoCo), that gives the LM hints on the programming
concepts to use for the task. As shown in the middle pane of Figure 2, we first provide a
legend of concepts and their descriptions. Then, for the problem instance, we give candidate
values for the applicable concepts, serving as directions to the LM for how to implement the
edits. The LM has to figure out how to compose the concepts to accomplish the desired task.
To ensure high quality, we manually create the CoCo prompts for each problem instance,
while also ensuring that hints in these prompts do not reveal the actual edits.

2.3 NoFunClassify

To study comprehension of non-functional requirements in code LMs, we repurpose the
NoFunEdit task into a code-classification task called NoFunClassify; it involves distinguishing
between two code snippets based on a non-functional property (e.g., selecting the code
snippet with lower memory usage). The upper right of Figure 2 shows an example. We
use standard accuracy as the evaluation metric for this task. However, to be agnostic to the
ordering of code snippets in the prompt, we prompt the code LM using both the orderings
separately. An LM is considered correct on the example only if both the orderings result in
correct outputs. While NoFunEdit tests for code editing abilities, NoFunClassify tests only for
code comprehension; thus, one would anticipate NoFunClassify to be easier than NoFunEdit.

2.4 HumanEvalClassify

Similar to NoFunClassify, we design HumanEvalClassify, but to test the comprehension of
functional correctness in code LMs. We construct HumanEvalClassify by repurposing the
Python split of HumanEvalFixDocs dataset from Muennighoff et al. (2023), which we refer
to simply as HumanEvalFix. HumanEvalFix contains functionally incorrect and correct pairs
of code, where the incorrect code is obtained by introducing synthetic bugs in the original
examples of HumanEval dataset. To convert HumanEvalFix into a code comprehension task,
we prompt LMs to select the incorrect code from the two code snippets (as in the bottom
right of Figure 2). We use the same evaluation methodology as for NoFunClassify (§ 2.3).

3 Experimental Details

We evaluate multiple open and closed-weight code LMs: GPT-4 (OpenAI, 2023b), GPT-3.5-
Turbo (OpenAI, 2023a), WizardCoder (Luo et al., 2023), StarCoder (Li et al., 2023b), CodeL-
lama (Roziere et al., 2023), Mistral (Jiang et al., 2023), DeepSeekCoder (Guo et al., 2024),
CodeGemma (CodeGemma, 2024), and Llama3 (Dubey et al., 2024) model families. The
open-weight models were downloaded from Huggingface; the model sizes vary from 1B to
70B parameters. We cover a total of 27 LMs in our study.
Generating LM Outputs: To decode LM outputs for NoFunEdit and HumanEvalFix, we
use two sampling mechanisms: (1) sample 20 generations (per problem instance) with a
temperature of 0.8, and (2) greedy sampling with temperature 0. We utilize top-k (Fan et al.,
2018) and nucleus sampling (Holtzman et al., 2019), with the default values of p = 0.95 and
k = 50. All the LMs in our evaluation support context size of 8192 tokens. For the instances
corresponding to runtime efficiency and security, which are of relatively shorter length, we
restrict the maximum number of sampled tokens to 1200, as in Madaan et al. (2023), and to
1500 for CoT prompting to accommodate thoughts. For NoFunClassify and HumanEvalClassify,
we do greedy sampling to generate output labels. We utilize the vLLM library (Kwon et al.,
2023) for generating LM outputs for tasks in NoFunEval. For HumanEvalFix, we use BigCode’s
evaluation harness (Ben Allal et al., 2022).
Evaluating LM Outputs: We design evaluation metrics specific to each non-functional
requirement as detailed in Section 2 and summarized in Table A1. For NoFunEdit, since we
sample n = 20 candidate outputs per input, we report expected scores using the score@k, n
function (Agrawal et al., 2023), a generalization of the pass@k, n function (Chen et al., 2021),
that accounts for continuous metrics like DiffBLEU or average speed-up, in addition to
discrete metrics. We primarily use score@1, 20 for reporting our observations in Section 4.
Similarly, for HumanEvalFix, we report pass@1, 20 scores. For NoFunClassify and HumanEval-
Classify, we report classification accuracy.
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Models Latency Resource Util. Runtime Efficiency Maintainability Security HumanEvalFix

Min Max Min Max Min Max Min Max Min Max Base Prompt

GPT-3.5-Turbo 12.2 1S 31.3 CoCo 10.8 B 29.9 CoCo 1.302 B 1.774 CoCo 21.0 B 40.3 CoCo 39.3 B 55.6 1S 72.3
GPT-4 14.2 B 35.9 CoCo 10.7 B 26.3 CoCo 1.303 B 2.380 CoCo 33.2 B 51.1 CoCo 41.5 B 64.3 CoT/1S 90.2

StarCoder-1B 1.9 1S 4.5 CoCo 1.3 1S 4.8 CoCo 1.004 1S 1.009 CoT 1.3 B 2.2 CoT 1.3 B 14.4 1S 7.7
WizardCoder-1B 0.2 CoT 5.6 CoCo 0.9 CoT 3.9 CoCo 1.002 1S 1.008 CoCo 1.7 CoT 2.9 CoCo 7.7 B 26.7 1S 19.6
StarCoder-15.5B 3.4 1S 7.6 CoT/B 5.0 CoCo 8.0 CoT 1.033 B 1.056 CoCo 4.5 B 6.1 CoT 16.5 B 47.8 1S 40.9
WizardCoder-15.5B 3.9 1S 16.1 CoCo 5.7 1S 15.3 CoCo 1.031 B 1.183 CoCo 6.8 B 13.0 CoCo 25.6 B 51.7 1S 51.6

Mistral-7B 4.4 1S 12.0 CoCo 4.7 1S 9.3 CoCo 1.010 1S 1.132 CoCo 4.6 B 8.6 CoCo 21.8 B 42.5 1S 28.3
Mistral-7B-Inst 6.6 1S 12.7 CoCo 6.0 1S 9.5 CoCo 1.011 B 1.118 CoCo 4.6 B 8.0 CoCo 23.0 B 41.6 1S 10.9

CodeLlama-7B 2.2 1S 10.1 CoCo 2.8 1S 7.6 CoCo 1.020 1S 1.079 CoCo 2.7 B 6.6 CoCo 13.2 B 46.1 1S 30.0
CodeLlama-7B-Inst 3.7 1S 12.0 CoCo 4.3 1S 9.1 CoCo 1.029 1S 1.103 CoCo 4.8 B 12.3 CoCo 19.3 B 45.9 1S 20.6
CodeLlama-13B 3.9 1S 9.5 CoCo 3.3 B 8.5 CoCo 1.051 B 1.224 CoCo 3.7 B 7.2 CoCo 14.6 B 46.6 1S 33.1
CodeLlama-13B-Inst 3.6 1S 13.9 CoCo 4.0 B 11.6 CoCo 1.037 1S 1.259 CoCo 5.5 B 13.7 CoCo 22.7 B 48.8 CoT 30.5
CodeLlama-34B 1.1 1S 13.3 CoCo 3.3 B 8.2 CoCo 1.064 B 1.512 CoCo 7.8 B 15.8 CoCo 23.2 B 52.7 1S 55.9
CodeLlama-34B-Inst 2.4 1S 20.2 CoCo 3.9 B 11.3 CoCo 1.052 B 1.510 CoCo 9.7 1S 23.4 CoCo 24.5 B 54.7 1S 47.6
Phind-CodeLlama-34B 4.7 1S 29.2 CoCo 5.0 1S 21.5 CoCo 1.148 B 2.155 CoCo 15.7 CoT 38.8 CoCo 33.0 B 59.1 1S 77.3
WizardCoder-Py-34B 12.7 CoT 28.9 CoCo 11.0 1S 23.8 CoCo 1.076 B 1.421 CoCo 11.2 B 19.8 CoCo 31.5 B 45.5 1S 75.6

Llama-3-8B-Inst 0.1 1S 6.3 CoCo 0.51S 4.4 CoCo 1.062 CoCo 1.128 B 7.0 B 11.7 CoCo 22.9B 53.6 CoT 41.5
Llama-3-70B-Inst 13.2B 34.6 CoCo 10.71S 27.6 CoCo 1.172B 2.335 CoCo 27.1B 44.4 CoCo 37.2B 57.9 1S 81.7

CodeGemma-2B 0.0CoT 7.1 B 2.3CoT 7.6 1S 1.0021S 1.004CoCo/B 2.2B 3.3 CoCo 3.9B 47.0 CoT 22.7
CodeGemma-7B 0.5CoT 9.1 CoCo 1.31S 6.1CoCo 1.006 CoT 1.115 CoCo 5.6B 12.0 CoCo 28.5B 54.3 1S 11.7
CodeGemma-7B-Inst 3.6CoT 21.0 CoCo 2.9CoT 12.8B 1.031B 1.642CoCo 6.5CoT 21.7 CoCo 42.4B 67.2 1S 72.4

DeepSeekCoder-1.3B 2.1 1S 4.7 CoCo 3.0 1S 3.9 CoCo 1.007 B 1.046 CoCo 1.2 B 3.3 CoT 4.4 B 24.2 CoT 16.4
DeepSeekCoder-1.3B-Inst 7.4 1S 12.0 CoCo 5.8 B 6.6 CoCo 1.064 B 1.184 CoCo 3.7 CoT 8.6 CoCo 20.0 B 32.7 CoCo 48.9
DeepSeekCoder-6.7B 3.0 1S 13.8 CoCo 4.5 1S 14.6 CoCo 1.150 B 1.404 CoCo 5.1 1S 12.5 CoCo 20.2 B 51.3 1S 45.4
DeepSeekCoder-6.7B-Inst 8.6 1S 22.0 CoCo 7.5 1S 19.6 CoCo 1.413 CoT 1.810 CoCo 16.1 CoT 29.7 CoCo 32.9 B 53.7 CoT 73.3
DeepSeekCoder-33B 3.6 1S 19.7 CoCo 5.2 1S 16.2 CoCo 1.321 B 1.524 CoCo 10.6 B 19.7 CoCo 29.7 B 52.4 1S 61.6
DeepSeekCoder-33B-Inst 10.7 1S 28.7 CoCo 8.7 1S 20.8 CoCo 1.548 B 2.269 CoCo 18.7 B 32.2 CoCo 29.5 B 47.3 1S 81.0

Ground-truth Score 100 100 3.7 100 100 100

Table 1: Performance of code LMs on the NoFunEdit dataset by different non-functional
requirements (§ 4.1, § 4.2). LMs from the same family or sharing the same base model are
grouped together. For brevity, we only report the performance of the worst (Min) and the
best (Max) performing prompt, with prompt type in the superscript abbreviated as Base (B),
1-Shot (1S), Chain-of-Thought (CoT), Coding Concepts (CoCo). The numbers correspond
to the metrics discussed in Section 2 (higher is better; highest in bold; second-highest
underlined). We present results for all the prompts in Appendix, Figure A.4. Additionally,
we report results on HumanEvalFix for studying its difficulty relative to NoFunEdit.

4 Evaluation Results

4.1 Summary of Results: Two Key Takeaways

Tables 1 and 2 provide performance of all the LMs over code-editing (NoFunEdit) and
code-classification tasks (NoFunClassify, HumanEvalClassify) respectively. We also report the
performance of these LMs on HumanEvalFix for reference in Table 1. Overall, we find:

(1) Code LMs struggle to edit code for satisfying non-functional requirements (inferred
from Table 1). This is evidenced by the gap between the scores received by them compared
to the ground-truth score (the last row in Table 1). This suggests that the LMs have weak
understanding of the non-functional requirements of code. Note that since the metrics vary
as per the requirements, we cannot compare performances across requirements directly.
(2) Code LMs fail to sufficiently comprehend code they can otherwise synthesize or edit
(inferred from Table 2). The accuracy of the LMs over NoFunClassify ranges from 0–42%
and 0–95.7% for HumanEvalClassify, continuing the trend that non-functional requirements
pose a challenge. GPT-4, the best performing model overall, performs much worse on
three of the five non-functional tasks; on the other hand, it achieves 95.7% classification
accuracy over functional tasks (i.e., HumanEvalClassify). To our surprise, we find that given
an incorrect and a corresponding correct code snippet, many code LMs fail to distinguish
between the two, but can successfully edit and fix the incorrect code snippet. For instance,
DeepSeekCoder-33B-Inst fixes bugs in HumanEvalFix 81% of times (Table 1), but can distinguish
between the incorrect and the correct code only 20.7% of times in HumanEvalClassify (Table 2).
We observe similar trends across the LMs except GPT-4 (Figure A.10).
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4.2 How Well do LMs Perform on NoFunEdit?

Larger instruction-tuned models and CoCo prompts offer superior performance. First,
in accordance with the scaling laws (Kaplan et al., 2020; Hoffmann et al., 2022), we ob-
serve that larger models are consistently better than their smaller variants. Second, our
proposed CoCo prompt is often the highest scoring prompting strategy (99 out of 27×5=135
cases). Figure A.7 in Appendix A.6 presents an example where GPT-4 utilizes hints in the
CoCo prompt to arrive at the correct output, while all other prompts including CoT lead
to undesired code edits. Third, instruction-tuning in general helps improve the model
performance across all the prompts. For instance, compare the scores of StarCoder-15.5B
(row 5) with that of its instruction-tuned version WizardCoder-15.5B (row 6). We also note
that CoCo prompting strategy may lead to much larger improvements in instruction-tuned
models compared to their base-variants — owing to the ability of the former models to
follow the instructions encoding the domain knowledge in the CoCo prompt. For instance,
on four out of five requirements, CoCo offers greater improvements over the Base prompt
for DeepSeekCoder-33B-Inst, when compared to DeepSeekCoder-33B.

Zero-shot base prompts outperform 1-shot prompts in several cases. Initially, we an-
ticipated higher performance using 1-Shot prompts given the in-context learning ability
of LMs. Counter-intuitively, zero-shot base prompts offer superior results compared to
1-Shot prompts in several cases. A notable exception is the Security task, where 1-Shot
prompts usually emerge the winner. This is not surprising given that there are at most
one or two test instances per security vulnerability, and the 1-Shot example (derived from
official CWE or CodeQL web pages) often captures the nature of the required edits. For
the other non-functional requirements, while we could improve the choice of the example
we pick for 1-Shot with additional efforts, we hypothesize that conditioning on 1-Shot
examples may introduce unintended biases thereby restricting LMs to generalize beyond
the provided example. Figure A.8 in Appendix A.6 provides a supporting anecdote. We
expect multi-shot prompts with diverse examples to overcome this limitation. However, as
discussed in Section 2.2, we could not explore multi-shot prompts due to limited data, and
limited context lengths in LMs to support multiple file-sized prompts.

Non-functional improvements may come at the cost of functional correctness. For Run-
time Efficiency tasks, we observe that LMs like GPT-4, GPT-3.5-Turbo, Phind-CodeLlama-34B,
and Llama-3-70B-Inst yield code with significant runtime improvements. However, we also
find that they often make edits that compromise on functional correctness while they im-
prove the runtime (recall that in such cases, we simply ignore the suggested edits, and retain
the input program as mentioned in Section 2.1). Figure A.6 in Appendix A.5 shows one
such output obtained from GPT-4. This observation again points to the lack of fundamental
understanding, e.g., the non-negotiable nature of functional-correctness while aiming for
non-functional improvements, in code LMs. Appendix A.5 presents more detailed obser-
vations comparing run-time improvements with drops in execution accuracy (functional
correctness).

4.3 How Well do LMs Perform on Classification Tasks?

Table 2 shows the results for classification tasks NoFunClassify (§ 2.3) and HumanEvalClassify
(§ 2.4). We discover some counter-intuitive trends: (1) No model is consistently the
best across all the tasks. For instance, GPT-4 is the best model only for Maintainability,
Security, and Bug Detection tasks, and Llama-3-70B-Inst considerably outperforms GPT-4
on the remaining tasks of identifying programs with better Latency (+15.8%), Resource
Utilization (+16.8%), and RunTime Efficiency (39.0%). (2) Larger models or instruction-
tuned variants may not be better than the corresponding smaller or base variants. For
instance, CodeLlama-13B outperforms CodeLlama-34B by 14.3% on the task of identifying code
snippets with lower latency, and DeepSeekCoder-6.7B-Inst outperforms DeepSeekCoder-33B-Inst
by 5.5% on HumanEvalClassify. Comparing between base models and their instruction-
tuned variants, we notice that CodeLlama-34B outperforms CodeLlama-34B-Inst by 16.7% on
identifying code snippets with lower resource utilization. Similarly, DeepSeekCoder-33B
outperforms its instruct version by 22.4% on Latency examples. Worse performance of
instruct models could be attributed to the lack of task diversity in instruction-tuning datasets.
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Models Latency Resource
Util.

RunTime
Efficiency

Maintain-
ability Security NoFun-

Classify
HumanEv-
alClassify

GPT-3.5-Turbo 22.4 9.3 8.0 12.4 26.8 13.4 28.0
GPT-4 20.4 18.5 15.9 63.4 92.7 42.0 95.7

StarCoder-1B 0.0 0.0 0.8 0.0 0.0 0.2 0.0
WizardCoder-1B 0.0 0.0 1.7 0.0 0.0 0.5 0.0
StarCoder-15.5B 2 1.9 5.9 0.0 0.0 2.2 2.4
WizardCoder-15.5B 20.4 5.6 0.8 8.3 0.0 6.4 1.8

Mistral-7B 0.0 11.1 0.0 8.3 7.3 5.2 3.0
Mistral-7B-Inst 8.2 0.0 17.8 9 9.8 10.3 23.8

CodeLlama-7B 0.0 0.0 0.0 0.0 0.0 0.0 10.4
CodeLlama-7B-Inst 4.1 3.7 11 2.8 12.2 6.4 0.0
CodeLlama-13B 20.4 14.8 0.8 6.9 2.4 7.3 1.8
CodeLlama-13B-Inst 2 0.0 2.5 6.2 19.5 5.2 4.9
CodeLlama-34B 6.1 20.4 39 4.1 4.9 16.4 6.1
CodeLlama-34B-Inst 4.1 3.7 55.1 10.3 48.8 25.4 8.5
Phind-CodeLlama-34B 18.4 16.7 22.9 18.6 46.3 22.4 34.1
WizardCoder-Py-34B 10.2 9.3 47.5 15.9 31.7 25.0 15.9

Llama-3-8B-Inst 0.0 0.0 8.0 2.1 7.3 3.8 4.3
Llama-3-70B-Inst 36.2 35.3 54.9 16.6 29.3 33.5 69.5

CodeGemma-2B 4.3 5.9 13.3 4.1 12.2 7.8 12.8
CodeGemma-7B 0.0 0.0 0.0 0.0 0.0 0.0 6.7
CodeGemma-7B-Inst 10.6 33.3 26.5 11 22 19.4 54.3

DeepSeekCoder-1.3B 0.0 0.0 5.9 0.0 0.0 1.7 2.4
DeepSeekCoder-1.3B-Inst 14.3 5.6 16.9 0.0 2.4 7.5 3.0
DeepSeekCoder-6.7B 0.0 0.0 0.8 0.0 0.0 0.2 12.2
DeepSeekCoder-6.7B-Inst 2 3.7 14.4 13.1 0.0 9.6 26.2
DeepSeekCoder-33B 30.6 14.8 0.8 2.1 2.4 6.8 12.8
DeepSeekCoder-33B-Inst 8.2 3.7 2.5 7.6 2.4 5.2 20.7

Average 8.8 6.8 11.8 8.4 13.5 9.7 13.1
Maximum 30.6 20.4 55.1 63.4 92.7 42.0 95.7

Table 2: Accuracy of LMs (highest; second-highest) on the 5 non-functional requirements,
full NoFunClassify (micro-averaged over the 5 requirements), and HumanEvalClassify.

4.4 How do Comprehension Abilities Compare with Edit Abilities?

From Figures 1(b) and 1(c), we find that LMs are relatively more accurate in code editing
compared to the corresponding code comprehension tasks. Notably, this observation holds
not only for non-functional requirements but also for functional correctness. For instance,
DeepSeekCoder-33B-Inst can correctly edit 81% of buggy code in the HumanEvalFix dataset,
but it can discriminate between a buggy and the corresponding correct code only 20.7% of
the times. Figure A.9 in Appendix A.6 shows an example. In Figure A.10 of Appendix A.6,
we present a performance breakdown for all LMs on classification (HumanEvalClassify) and
the corresponding edit instances (HumanEvalFix). A glaring observation from Figure A.10
is that all the open-weight LMs except Llama-3-70B-Inst invariably fail on getting both the
classification and the corresponding edit instance right (red); especially, LMs get the classifi-
cation instance wrong when they get the edit instance right in a significant number of cases
(teal). These observations hint towards poor discriminative abilities in generative language
models (West et al., 2023).

4.5 How Well does DiffBLEU Correlate with Execution-based or Static-analysis Oracles?

Prompt Pearson Coefficient

Maintainability Security

Base 0.9646 0.7401
1-Shot 0.8766 0.7526
CoT 0.8239 0.7211
CoCo 0.9677 0.6638

Average 0.9080 0.7190

Table 3: Correlation be-
tween DiffBLEU and Cod-
eQL scores.

To understand the utility of the DiffBLEU metric and its corre-
lation with execution-based or static-analysis based oracles, we
measure the Pearson coefficients between DiffBLEU and accu-
racy or CodeQL scores across all the models. (1) For the subset
of NoFunEdit tasks where CodeQL metric applies, the results are
shown in Table 3. We observe a high correlation between Diff-
BLEU and CodeQL scores for Maintainability (Pearson=0.908)
and Security subsets (Pearson=0.719) averaged across different
types of prompts. The correlation in the Security subset is rela-
tively lower, possibly due to the open-ended nature of the tasks
that admit multiple ways of fixing the vulnerabilities. (2) Simi-
larly, for HumanEvalFix (not shown in Table 3), where (execution)
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accuracy metric applies, we observe a high Pearson coefficient of 0.978 between DiffBLEU
and accuracy. Thus, DiffBLEU offers a reliable and light-weight alternative to heavy-weight
execution or static-analysis based oracles.

5 Related Work

Code Generation: Prior work on evaluating code LMs has largely focused on generating
functionally correct code for tasks like basic or algorithmic problem solving (Chen et al.,
2021; Austin et al., 2021; Hendrycks et al., 2021; Li et al., 2022a), data science (Lai et al.,
2022), Text-to-SQL (Yu et al., 2018; Li et al., 2023a), etc. HumanEval (Chen et al., 2021) serves
as a widely used dataset for evaluating generative ability of LMs. HumanEval has been
extended to Multipl-E (Cassano et al., 2023) for multilingual evaluation in eighteen pro-
gramming languages; to HumanEval+ (Liu et al., 2023a) with more test-cases for robustness;
to InstructHumanEval (CodeParrot, 2023) for instruction-following ability.
Code Editing: The majority of software engineering workflows involve code-editing
tasks like bug fixing (Gupta et al., 2017; Muennighoff et al., 2023), performance opti-
mizations (Madaan et al., 2023; Garg et al., 2022), improving readability and maintain-
ability (Al Madi, 2022; Wadhwa et al., 2023; Jain et al., 2023; Loriot et al., 2022), code
migration (Bairi et al., 2023), security-related edits (Perry et al., 2022; Tony et al., 2023; Pearce
et al., 2022; He & Vechev, 2023; Bhatt et al., 2023; Zhuo et al., 2024), etc. More recent works
like SWE-bench (Jimenez et al., 2024) and RepoCoder (Zhang et al., 2023) focus on repository-
level coding tasks. SWE-bench (Jimenez et al., 2024) requires a model to generate patches
(that can edit multiple files) to resolve issues like bug fixes in large Python repositories;
RepoCoder (Zhang et al., 2023) constructs a code completion dataset using repository-level
context under different scenarios like line, API invocation, and method body completion.
CodeReviewer (Li et al., 2022b) curates a dataset of real-world code changes and associated
reviewer comments aimed at automating code review related activities like change quality
estimation, comment generation, and code refinement. Prior work has studied specific
non-functional requirements in isolation. In contrast, with NoFunEval, we attempt to unify
these requirements under a general framework of code-editing, using file-level context.
Code Comprehension: Prior works have considered code-comprehension tasks like clone
detection (Svajlenko et al., 2014; Lu et al., 2021), defect detection (Zhou et al., 2019; Li et al.,
2021; Lu et al., 2021), code explanation (Muennighoff et al., 2023; Leinonen et al., 2023),
and Question-Answering over code (Liu & Wan, 2021; Lee et al., 2022; Sahu et al., 2024).
Evaluating code LMs on NoFunClassify and HumanEvalClassify allowed us to directly compare
and contrast their comprehension abilities with the corresponding edit abilities.

6 Conclusions

Code LMs are assuming an important role in the art and craft of software engineering
and they should be evaluated on scenarios that matter to practitioners. We focus on two
of these in this paper: ability to improve code as per non-functional requirements and
ability to comprehend the relation between requirements and code semantics. Our extensive
experiments found that the LMs falter on both these counts. With the rapid progress in the
field, benchmarks can quickly become irrelevant. A remedy is to continuously improve the
benchmarks. Our future goal is to keep extending NoFunEval by adding more languages,
labeled examples spanning different requirements, and evaluation harnesses.

7 Reproducibility

We have open sourced the code and datasets for reproducibility of our experiments. We
acknowledge that some of the code in our benchmark might have been seen by the LMs
during pre-training. However, the LMs are unlikely to have seen the prompts constructed by
us paired with the expected code revisions during pre-training. We thus observe generally
poor performance on the NoFunEval Benchmark across all the LMs. Note that we do not use
the actual commit messages as instructions in the prompts of our benchmark.
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A Appendix

A.1 Summary of Datasets in NoFunEval as Described in Section 2

Task Type Requirement # Examples Eval Metric

NoFunEdit

Latency 47 DiffBLEU
Resource Utilization 51 DiffBLEU
Runtime Efficiency 113 Average Speed-up
Maintainability 145 DiffBLEU×CodeQL
Security 41 DiffBLEU×CodeQL

NoFunClassify All the above 397 Accuracy

HumanEvalClassify Correctness 164 Accuracy

Table A1: Summary of the datasets comprising the NoFunEval benchmark (§ 2).

Task Type Language # Examples

NoFunEdit and NoFunClassify

Python 277
Java 77
C 28
Kotlin 4
Ino 3
Javascript XML, Scala 2 (each)
Javascript, C++, Assembly, Objective C 1 (each)

HumanEvalClassify Python 164

Table A2: Number of examples from different programming languages present in the
NoFunEval benchmark (§ 2).

A.2 Prompt Templates

Figure A.1: An example Base Prompt for improving bandwidth usage in code for an Android
application (§ 2.2).
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Figure A.2: An example 1-Shot / Chain-of-Thought prompt template for fixing a maintain-
ability issue (“Unguarded next in generator”) as flagged by CodeQL. The underlined texts
are instantiated based on the example. The shaded text denotes the reasoning we include
for the corresponding Chain-of-Thought prompt (§ 2.2).

Figure A.3: An example CoCo prompt template for fixing a security issue (“Deserialization
of Untrusted Data”) as flagged by CodeQL (§ 2.2). The underlined texts are instantiated
based on the example.

Figure A.1 provides an example base prompt used for prompting models with the high-level
non-functional requirement to be achieved in editing the code. Figure A.2 highlights the
template used for prompting models with a single example along with a thought relevant
for the non-functional requirement being addressed. Figure A.3 highlights the template
used for prompting models providing them the coding concepts needed for handling the
non-functional requirement in the example shown (§ 2.2).

A.3 Performance of Different Prompts on NoFunEdit

Figure A.4 provides a summary of all the absolute values of the evaluation numbers obtained
across models and prompts. The darker shades indicating better performance on that specific
task (§ 4.2).
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Base One-shot CoT CoC
Prompts

GPT-4
GPT-3.5-Turbo

Llama-3-70B-Instruct
CodeLlama-34B-Inst

Phind-CodeLlama-34B
CodeLlama-34B

WizardCoder-Py-34B
Deepseek-33B-Inst

Deepseek-33B
WizardCoder-15.5B

Starcoder-15.5B
CodeLlama-13B-Inst

CodeLlama-13B
Llama-3-8B-Instruct

CodeGemma-7B-Instruct
CodeGemma-7B

CodeLlama-7B-Inst
CodeLlama-7B
Mistral-7B-Inst

Mistral-7B
Deepseek-6.7B-Inst

Deepseek-6.7B
CodeGemma-2B

Deepseek-1.3B-Inst
Deepseek-1.3B

WizardCoder-1B
Starcoder-1B

Sc
or

es
@

1,
20

14.2 15.4 16.4 35.9

14.1 12.2 13.5 31.3

13.2 14.7 16.0 34.6

5.2 2.4 9.8 20.2

12.9 4.7 11.6 29.2

3.1 1.1 7.5 13.3

14.4 13.0 12.7

14.2 15.4 16.4 35.9
14.1 12.2 13.5 31.3
13.2 14.7 16.0 34.6
5.2 2.4 9.8 20.2

12.9 4.7 11.6 29.2
3.1 1.1 7.5 13.3

14.4 13.0 12.7 28.9
13.3 10.7 12.2 28.7
9.3 3.6 5.4 19.7
8.2 3.9 8.3 16.1
7.6 3.4 7.6 7.0
4.9 3.6 9.0 13.9
4.9 3.9 7.2 9.5
2.0 0.1 1.0 6.3

11.4 7.3 3.6 21.0
0.9 0.7 0.5 9.1
5.7 3.7 8.3 12.0
4.0 2.2 6.2 10.1
9.1 6.6 9.4 12.7
6.4 4.4 6.3 12.0

12.4 8.6 12.1 22.0
6.4 3.0 5.7 13.8
7.1 8.5 0.0 6.4
8.8 7.4 7.8 12.0
3.5 2.1 2.5 4.7
3.9 3.0 0.2 5.6
4.3 1.9 3.8 4.5

Latency

Base One-shot CoT CoC
Prompts

GPT-4
GPT-3.5-Turbo

Llama-3-70B-Instruct
CodeLlama-34B-Inst

Phind-CodeLlama-34B
CodeLlama-34B

WizardCoder-Py-34B
Deepseek-33B-Inst
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Starcoder-15.5B
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10.8 10.9 11.3 29.9

13.3 10.7 12.1 27.6

3.9 4.9 8.5 11.3

8.2 5.0 9.5 21.5

3.3 3.7 6.6 8.2

11.7 11.0 11.9

10.7 13.9 13.7 26.3
10.8 10.9 11.3 29.9
13.3 10.7 12.1 27.6
3.9 4.9 8.5 11.3
8.2 5.0 9.5 21.5
3.3 3.7 6.6 8.2

11.7 11.0 11.9 23.8
10.2 8.7 9.8 20.8
7.4 5.2 6.7 16.2
6.6 5.7 8.5 15.3
5.7 6.3 8.0 5.0
4.0 4.4 7.4 11.6
3.3 4.8 7.1 8.5
1.7 0.5 1.5 4.4

12.8 10.4 2.9 8.9
1.7 1.3 5.4 6.1
4.6 4.3 6.9 9.1
3.7 2.8 6.0 7.6
7.0 6.0 7.1 9.5
5.2 4.7 5.4 9.3
9.5 7.5 9.9 19.6
4.7 4.5 6.3 14.6
5.9 7.6 2.3 7.4
5.8 6.1 6.4 6.6
3.7 3.0 3.9 3.9
2.9 3.5 0.9 3.9
4.5 1.3 3.3 4.8

Resource Utilization

Base One-shot CoT CoC
Prompts

GPT-4
GPT-3.5-Turbo

Llama-3-70B-Instruct
CodeLlama-34B-Inst

Phind-CodeLlama-34B
CodeLlama-34B

WizardCoder-Py-34B
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CodeLlama-13B-Inst

CodeLlama-13B
Llama-3-8B-Instruct

CodeGemma-7B-Instruct
CodeGemma-7B

CodeLlama-7B-Inst
CodeLlama-7B
Mistral-7B-Inst

Mistral-7B
Deepseek-6.7B-Inst

Deepseek-6.7B
CodeGemma-2B

Deepseek-1.3B-Inst
Deepseek-1.3B

WizardCoder-1B
Starcoder-1B

Sp
ee

dU
ps

@
1,
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1.302 1.303 1.583 1.774

1.172 1.520 1.603 2.335

1.052 1.061 1.116 1.510

1.148 1.276 1.447 2.155

1.064 1.091 1.148 1.512

1.076 1.162 1.238

1.303 1.839 2.294 2.380
1.302 1.303 1.583 1.774
1.172 1.520 1.603 2.335
1.052 1.061 1.116 1.510
1.148 1.276 1.447 2.155
1.064 1.091 1.148 1.512
1.076 1.162 1.238 1.421
1.548 1.566 1.611 2.269
1.321 1.372 1.367 1.524
1.031 1.060 1.107 1.183
1.033 1.049 1.049 1.056
1.055 1.037 1.058 1.259
1.051 1.052 1.090 1.224
1.128 1.125 1.105 1.062
1.031 1.100 1.046 1.642
1.013 1.051 1.006 1.115
1.031 1.029 1.032 1.103
1.022 1.020 1.026 1.079
1.011 1.016 1.038 1.118
1.022 1.010 1.083 1.132
1.573 1.475 1.413 1.810
1.150 1.338 1.296 1.404
1.004 1.002 1.003 1.004
1.064 1.064 1.069 1.184
1.007 1.022 1.029 1.046
1.005 1.002 1.003 1.008
1.009 1.004 1.009 1.009

Runtime Efficiency

Base One-shot CoT CoC
Prompts
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GPT-3.5-Turbo

Llama-3-70B-Instruct
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21.0 25.4 28.9 40.3

27.1 33.4 34.3 44.4

10.5 9.7 10.8 23.4

17.7 18.6 15.7 38.8

7.8 8.8 8.5 15.8

11.2 13.8 14.4

33.2 42.0 39.5 51.1
21.0 25.4 28.9 40.3
27.1 33.4 34.3 44.4
10.5 9.7 10.8 23.4
17.7 18.6 15.7 38.8
7.8 8.8 8.5 15.8

11.2 13.8 14.4 19.8
18.7 25.8 21.0 32.2
10.6 11.8 11.9 19.7
6.8 7.6 8.8 13.0
4.5 5.0 6.1 5.3
5.5 8.1 9.2 13.7
3.7 5.1 6.9 7.2
7.0 7.3 8.5 11.7

12.5 12.3 6.5 21.7
5.6 5.9 6.2 12.0
4.8 5.6 7.3 12.3
2.7 2.8 4.7 6.6
4.6 5.5 6.1 8.0
4.6 6.0 7.2 8.6

16.9 19.6 16.1 29.7
5.1 6.1 6.1 12.5
2.2 3.2 3.3 3.3
5.9 6.8 3.7 8.6
1.2 2.7 3.3 2.1
2.6 2.3 1.7 2.9
1.3 1.9 2.2 1.7

Maintainability
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37.2 57.9 34.3 51.3

24.5 54.7 45.9 50.4

33.0 59.1 58.4 43.2

23.2 52.7 44.8 43.7

31.5 45.5 44.7

41.5 64.3 64.3 46.0
39.3 55.6 47.6 53.8
37.2 57.9 34.3 51.3
24.5 54.7 45.9 50.4
33.0 59.1 58.4 43.2
23.2 52.7 44.8 43.7
31.5 45.5 44.7 33.5
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25.6 51.7 45.1 38.8
16.5 47.8 45.0 23.8
22.7 48.7 48.8 45.1
14.6 46.6 45.3 40.6
22.9 47.6 53.6 41.0
42.4 67.2 63.8 51.3
28.5 54.3 45.1 37.3
19.3 45.9 44.5 45.3
13.2 46.1 39.7 38.9
23.0 41.6 37.5 38.9
21.8 42.5 39.4 39.8
32.9 51.1 53.7 44.7
20.2 51.3 48.8 42.9
3.9 41.2 47.0 6.5

20.0 32.6 29.4 32.7
4.4 17.0 24.2 14.0
7.7 26.7 15.1 18.0
1.3 14.4 13.6 4.9
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Figure A.4: Performance of code LMs on the NoFunEdit dataset by different non-functional
requirements, for the four prompts (§ 4.2).

A.4 Additional Experiments on Classification Tasks

Observing embarrassingly lower performance on classification compared to the correspond-
ing edit tasks (§ 4.4), led us to try out more prompts to reduce the dependence of key our
observations on a specific prompt format. Thus, we re-ran classification experiments with a
different prompt format. In the main paper, we report numbers for the prompt that asks the
model to select from “Code-A” or “Code-B” (Figure 2, R.H.S.). As an alternate, we tried
prompting the model to output “Yes” or “No” using the prompt format shown in Figure A.5.
This prompt takes two code snippets “Code-A” and “Code-B” as input, claims a hypothesis
(e.g. Code-A is faster than Code-B), and asks the LLM to predict whether the hypothesis is
correct or not by answering in “Yes” or “No”. Table A3 reports numbers for NoFunClassify
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Models Latency Resource
Utilization

RunTime
Efficiency Maintainability Security NoFunClassify HumanEvalClassify

(Bug Detection)

GPT-3.5-Turbo 0.0 9.3 15.0 13.1 24.4 12.8 39.6
GPT-4 4.1 3.7 0.9 49 95.1 28.9 90.9

StarCoder-1B 2.0 1.9 5.1 1.4 0.0 2.4 0.0
WizardCoder-1B 0.0 0.0 5.1 0.7 2.4 2.0 1.8
StarCoder-15.5B 0.0 0.0 0.0 2.8 0.0 1.0 0.6
WizardCoder-15.5B 0.0 0.0 0.0 8.3 0.0 3.0 0.0

Mistral-7B 0.0 1.9 0.0 3.4 0.0 1.5 0.0
Mistral-7B-Inst 4.1 9.3 4.2 6.9 7.3 6.1 3.0

CodeLlama-7B 0.0 0.0 0.0 0.7 0.0 0.3 0.0
CodeLlama-7B-Inst 2.0 1.9 1.7 0.0 0.0 1.0 0.6
CodeLlama-13B 18.4 9.3 4.2 3.4 0.0 5.8 0.0
CodeLlama-13B-Inst 2.0 7.4 15.3 4.1 0.0 7.0 6.1
CodeLlama-34B 2.0 0.0 0.0 0.0 0.0 0.2 4.3
CodeLlama-34B-Inst 0.0 1.9 11.9 4.8 2.4 5.6 4.3
Phind-CodeLlama-34B 6.1 7.4 10.2 18.6 9.8 12.4 9.8
WizardCoder-Py-34B 2.0 0.0 7.6 4.1 0.0 3.9 1.8

DeepSeekCoder-1.3B 8.2 5.6 0.0 0.0 0.0 1.7 1.8
DeepSeekCoder-1.3B-Inst 0.0 0.0 0.0 4.1 0.0 1.5 0.0
DeepSeekCoder-6.7B 4.1 0.0 0.0 0.7 0.0 0.7 0.0
DeepSeekCoder-6.7B-Inst 0.0 0.0 0.0 0.7 0.0 0.3 1.8
DeepSeekCoder-33B 0.0 0.0 0.0 0.0 2.4 0.2 0.0
DeepSeekCoder-33B-Inst 0.0 3.7 7.6 7.6 2.4 5.7 32.9

Avg 2.5 2.9 4.0 6.1 6.6 4.7 9.1
Max 18.4 9.3 15.3 49 95.1 28.9 90.9

Table A3: Accuracy of LMs (highest in bold; second-highest underlined) on the five non-
functional requirements, entire NoFunClassify (micro-averaged over the five requirements),
and HumanEvalClassify, for the alternate “Yes-No” prompts.

and HumanEvalClassify for this prompt, corresponding to Table 2. Overall, we see that “Yes”
or “No” prompt in Figure A.5 leads to even lower performance for both NoFunClassify and
HumanEvalClassify.

Figure A.5: Prompt Template for alternate classification prompt in ”Yes” or ”No” format.

19

https://platform.openai.com/docs/models/gpt-3-5
https://platform.openai.com/docs/models/gpt-4-and-gpt-4-turbo
https://huggingface.co/bigcode/starcoderbase-1b
https://huggingface.co/WizardLM/WizardCoder-1B-V1.0
https://huggingface.co/bigcode/starcoder
https://huggingface.co/WizardLM/WizardCoder-15B-V1.0
https://huggingface.co/mistralai/Mistral-7B-v0.1
https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1
https://huggingface.co/codellama/CodeLlama-7b-hf
https://huggingface.co/codellama/CodeLlama-7b-Instruct-hf
https://huggingface.co/codellama/CodeLlama-13b-hf
https://huggingface.co/codellama/CodeLlama-13b-Instruct-hf
https://huggingface.co/codellama/CodeLlama-34b-hf
https://huggingface.co/codellama/CodeLlama-34b-Instruct-hf
https://huggingface.co/Phind/Phind-CodeLlama-34B-v2
https://huggingface.co/WizardLM/WizardCoder-Python-34B-V1.0
https://huggingface.co/deepseek-ai/deepseek-coder-1.3b-base
https://huggingface.co/deepseek-ai/deepseek-coder-1.3b-instruct
https://huggingface.co/deepseek-ai/deepseek-coder-6.7b-base
https://huggingface.co/deepseek-ai/deepseek-coder-6.7b-instruct
https://huggingface.co/deepseek-ai/deepseek-coder-33b-base
https://huggingface.co/deepseek-ai/deepseek-coder-33b-instruct


Published as a conference paper at COLM 2024

A.5 Trade-off in Non-functional Improvements and Functional Correctness (§ 4.2)

Model Average SpeedUp @1,20 Execution Accuracy @1,20

GPT-3.5-Turbo

Base Prompt 1.302 69.2
One Shot 1.303 79.5
Chain of Thought 1.583 67.6
Coding Concepts 1.774 48.0

GPT-4

Base Prompt 1.303 67.8
One Shot 1.839 69.3
Chain of Thought 2.294 66.0
Coding Concepts 2.380 59.2

WizardCoder-15.5B

Base Prompt 1.031 65.0
One Shot 1.060 68.1
Chain of Thought 1.107 27.6
Coding Concepts 1.183 54.8

CodeLlama-13B-Inst

Base Prompt 1.055 68.8
One Shot 1.037 67.0
Chain of Thought 1.058 45.6
Coding Concepts 1.259 55.9

Phind-CodeLlama-34B

Base Prompt 1.148 53.1
One Shot 1.276 67.3
Chain of Thought 1.447 37.7
Coding Concepts 2.155 52.7

WizardCoder-Py-34B

Base Prompt 1.076 26.9
One Shot 1.162 25.5
Chain of Thought 1.238 12.7
Coding Concepts 1.421 24.4

DeepSeekCoder-6.7B-Inst

Base Prompt 1.573 58.3
One Shot 1.475 63.8
Chain of Thought 1.413 45.4
Coding Concepts 1.810 61.7

DeepSeekCoder-33B-Inst

Base Prompt 1.548 64.4
One Shot 1.566 69.1
Chain of Thought 1.611 53.4
Coding Concepts 2.269 63.8

Table A4: Trade-off in Non-functional improvements (speed-up) and functional correctness
(execution accuracy).

As discussed in Section 4.2, edits made by the model to satisfy non-functional requirements
may come at the cost of functional correctness. In Table A4, we present results from a few
models which compromise the functional correctness of the input code an in attempt to
improve the runtime. Recall from Section 2.1, that the input code is always functionally
correct (i.e., execution accuracy of 100%). Figure A.6, presents an example where GPT-4
generates an output functionally different from the input code while attempting to its
improve runtime.
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Figure A.6: In an attempt to improve the execution time, GPT-4 makes the output code
functionally different from the input code, resulting in test-case violations. When all the
elements of the array A are odd, the model-generated code (RHS) would print a non-zero
number, while the original code (LHS) would print 0.
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A.6 Anecdotal Examples

Figure A.7: An example where GPT-4 utilizes hints from the CoCo prompt to successfully
produce the ground truth code whereas the CoT and other prompts lead to unnecessary
code edits (highlighted in green).
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Figure A.8: Augmenting the Base prompt with 1-Shot example (1-Shot prompt) often leads
to worse performance. The figure shows an example output from the GPT-4 model. Here, the
Base prompt results in the correct output, even better than the ground truth (more memory
efficient), however, using 1-Shot prompt (base prompt augmented with 1-Shot example)
results in a functionally incorrect output, suggesting that model might learn unintended
edit patterns from the 1-Shot example irrelevant to the non-functional requirement.
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Figure A.9: An example where DeepSeekCoder-33B-Inst successfully fixes the buggy code, but
fails to distinguish between the buggy and the fixed code.
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Figure A.10: Comparing code-editing (HumanEvalFix) and the corresponding code-
classification (HumanEvalClassify) performance of LMs (§ 4.4). LMs fail invariably at getting
both the classification and edit instance correct (red color). For a significant number of
instances where LMs get the editing right, they fail on the classification instance (teal color).
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