
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

LOST-IN-DISTANCE: IMPACT OF CONTEXTUAL PROX-
IMITY ON LLM PERFORMANCE IN GRAPH TASKS

Anonymous authors
Paper under double-blind review

ABSTRACT

Despite significant advancements, Large Language Models (LLMs) exhibit blind
spots that impair their ability to retrieve and process relevant contextual data effec-
tively. We demonstrate that LLM performance in graph tasks with complexities
beyond the “needle-in-a-haystack” scenario—where solving the problem requires
cross-referencing and reasoning across multiple subproblems jointly—is influ-
enced by the proximity of relevant information within the context, a phenomenon
we term “lost-in-distance”. We examine two fundamental graph tasks: identify-
ing common connections between two nodes and assessing similarity among three
nodes, and show that the model’s performance in these tasks significantly depends
on the relative positioning of common edges. We evaluate three publicly available
LLMs—Llama-3-8B, Llama-3-70B, and GPT-4—using various graph encoding
techniques that represent graph structures for LLM input. We propose a formu-
lation for the lost-in-distance phenomenon and demonstrate that lost-in-distance
and lost-in-the middle phenomenas occur independently. Results indicate that
model accuracy can decline by up to 6x as the distance between node connections
increases, independent of graph encoding and model size.

1 INTRODUCTION

Large Language Models (LLMs) have attained an unprecedented level of generality by leverag-
ing scale and attention-based architectures (Kaplan et al., 2020; Vaswani, 2017). These models
exhibit remarkable, often superhuman, capabilities across a diverse range of tasks, including lan-
guage translation, reading comprehension, and question answering (Costa-jussà et al., 2022; Sanh
et al., 2021). Additionally, LLMs are increasingly serving as essential and flexible building blocks
for various user-facing machine learning and artificial intelligence applications beyond traditional
language processing domains, such as recommendation systems (Geng et al., 2022), graph-related
tasks (Wang et al., 2024), knowledge bases (AlKhamissi et al., 2022; Petroni et al., 2019), and more.
These applications highlight the versatility of LLMs but also expose new challenges in handling
domain-specific data encoded as textual input.

Particularly, by leveraging the extensive common knowledge and powerful semantic comprehension
abilities of LLMs, recent research has aimed to apply them to tasks related to graph structures (Wang
et al., 2024). LLMs are increasingly being adopted for a variety of tasks that involve graph structures,
such as planning in robotics (Andreas, 2022), knowledge extraction using knowledge graphs (Shen
et al., 2020; Saxena et al., 2020), and multi-hop question answering (Creswell et al., 2022; Fang
et al., 2019). For instance, they have been used to guide agents through structured graph-based
environments (Huang et al., 2022). Building upon these applications, recent works by Sanford
et al. (2024), Perozzi et al. (2024), and Agarwal et al. (2020) have demonstrated that graph tasks
can be encoded into textual formats that allow pre-trained LLMs to solve them as out-of-domain
tasks. This innovative approach effectively transforms graph problems into a language that LLMs
can understand and process.

While LLMs are being expanded in many applications, they suffer from certain blind spots that
significantly affect their performance. In particular, how these models process information in their
context and retrieve relevant data to solve the task at hand remains an active area of research (Kad-
dour et al., 2023). Understanding these limitations is crucial for extending context length (Gemini
et al., 2023; Xu et al., 2023; Chen et al., 2023) and improving in-context learning (Zhou et al.,

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

2022; Wei et al., 2023; An et al., 2024). Recent works have shown that the performance of LLMs
depends on the location of information in their context. Primarily, Liu et al. (2023) introduces the
“lost-in-the-middle” phenomenon, where information placed in the middle of a prompt is less effec-
tively utilized by the model compared to information at the beginning or end, resulting in significant
performance degradation when the position of relevant information in the context changes.

Unlike these previous works which mainly focus on shortcomings of LLMs in NLP tasks, e.g. lost-
in-the-middle, we focus on the deficiency of these models in tasks beyond natural language process-
ing, specifically solving fundamental graph problems. This area is heavily under-explored and has
wide practical applications (Perozzi et al., 2024; Colon-Hernandez et al., 2021; Xie et al., 2023).
Since these tasks require understanding graph structure and relationship between objects, they pro-
vide us with great insights into model’s blind spots. Through our analysis, we provide insight that
LLMs not only have blind spots regarding where information exists in the context, but their per-
formance in solving complex tasks also depends on the relative position of information within the
context.

Particularly, we look into Common Connection and Similarity tasks, which are the main algorithms
used as the backbone of many applications such as molecular design (Tan et al., 2023; Xia et al.,
2023), social network analysis (Gao et al., 2024), and recommendation systems (Li et al., 2023).
For example, these tasks are the main algorithms in “user-user” and “user-item” recommendations
in large industry recommendation products (Xie et al., 2023; Huang et al., 2015; Wu et al., 2022).
These tasks not only require understanding of subgraph structures but also demand integration of
information and reasoning across subgraphs. We demonstrate that strong, publicly available LLMs
universally degrade in performance as when relevant pieces of information are distant from each
other. Our analysis shows that this effect is present even when one controls for the effects absolute
position of the relevant information in the context. To summarize

• For tasks that require cross-subgraph information lookup, such as identifying common con-
nections or measuring similarity, model performance not only degrades due to the “lost-
in-the-middle” effect based on the absolute positions but is also affected by the relative
distance between pieces of information in the context—a phenomenon we term “lost-in-
distance”. The further apart the information is, the more the model’s performance deterio-
rates.

• We demonstrate these shortcomings across different graph encoding algorithms and various
publicly available LLMs such as Llama-3-8B, Llama-3-70B (Dubey et al., 2024) and GPT-
4 (Achiam et al., 2023) indicating a universal limitation in current architectures.

Our findings suggest that current LLMs have inherent limitations in processing contextual informa-
tion that is not sequentially localized or is widely dispersed within the input. This has significant
implications for their application in domains that require complex reasoning over structured data,
such as graph analysis.

1.1 NOTATIONS AND DEFINITIONS

We define a graph G = (V, E), where V = {v1, v2, . . . , vn} and E represent the sets of nodes and
edges, respectively. If nodes vi and vj are directly connected, we denote the edge between them
as eij ∈ E . The neighbors of node vi are defined as N (vi) = {vk ∈ V | eik ∈ E}. A subgraph
associated with node vi is defined as Gvi = ({vi} ∪ N (vi), Evi), where Evi = {eij | eij ∈ E , vj ∈
N (vi)}.

We define the distance between a common node v within two subgraphs Gu and Gz as the number of
tokens separating the two occurrences of node v in the context (i.e., the textual representation of the
subgraphs). The overall distance between relevant information for common connections between
the two subgraphs is defined as the median of all such distances computed for each common node.
Throughout the paper, we use p to indicate position and d to indicate distance.

We use accuracy, as defined below, to measure the performance of an LLM model in solving a given
task:

Accuracy =
1

N

N∑
i=1

1{yi=ŷi} × 100%, (1)

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

where N is the total number of samples in the task, and yi and ŷi denote the true answer and the
model’s answer for the ith sample, respectively. If the output of the LLM for sample i is degener-
ate—such as not following instructions or hallucinating—we consider it an incorrect answer, i.e.,
yi ̸= ŷi.

2 GRAPH ENCODING AND GRAPH TASKS

2.1 GRAPH ENCODING FOR LLM

Representing graph-structured data as text is an important step in enabling LLMs to understand
graph structures and provide accurate answers to questions. Encoding graphs as text involves repre-
senting both nodes and edges. Different graph encodings can lead to varying performance of LLMs
in graph reasoning tasks (Agarwal et al., 2020; Fatemi et al., 2024; Zhang et al., 2024a). In this
work, we encode nodes as integers, where each node is represented by a unique integer, such that
vi ∈ {0, 1, . . . , n− 1}.

We experiment with three encoding functions from Fatemi et al. (2024) to encode edges in the graph,
investigating whether patterns are consistently observed across different encoding functions. More
specifically, we consider the following edge encoding functions:

• Incident: Given a source node vi, the edge information for node vi is encoded as an
adjacency list in natural language. For example, “node vi is connected to nodes vj , vk”.

• Adjacency: Given a source node vi and a target node vj , the edge is encoded as (vi, vj).

• Expert: Given a source node vi and a target node vj , the edge is encoded as vi → vj .

Since the graph tasks considered in this paper only require access to the subgraph and the subgraph
structure, we encode only the edge information for the nodes of interest. This is a common practice
where a subgraph is extracted from a database before being processed by a compute engine (Shao
et al., 2013). Figure 1 shows an example about only including a subgraph with three encoding
functions in the prompt. In this example, node 0 and node 1 are nodes of interest so we only encode
their subgraph in the prompt.

0

4

5
7

8
3

2

1
6

Incident:
In this undirected graph:

Node 0 is connected to nodes 1, 2, 4.
Node 1 is connected to nodes 0, 3, 4.

Adjacency:
The edges in this undirected graph are

(0, 1) (0, 2) (0, 4) (1, 3) (1, 4).

Expert:
The edges in this undirected graph are
0 -> 1, 0 -> 2, 0 -> 4, 1 -> 3, 1 -> 4.

Figure 1: Three graph encoding functions, with node 0 and node 1 serving as the nodes of interest.
The figure is inspired by Fatemi et al. (2024).

2.2 GRAPH GENERATION

In this paper, we build upon previous studies (Huang et al., 2022; Fatemi et al., 2024; Zhang et al.,
2024b) by conducting experiments on randomly generated graphs. We utilize the Erdős–Rényi (ER)
graph generator (Erdős & Rényi, 1959) to create undirected graphs. We experiment with relatively
large graphs comprising n = 1000 nodes. The undirected edge eij between nodes vi and vj is
generated with probability P (eij ∈ E). We set P (eij ∈ E) = 0.1 throughout the main manuscript,
and results for other values of P (eij ∈ E) are presented in the Appendix for brevity.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

2.3 GRAPH TASKS

We aim to analyze the performance of LLMs in three fundamental graph problems which require
models to have thorough understanding of the input graph structure.

1. Edge Existence: Given two nodes vi and vj sampled from a graph G, node vi and node vj
are directly connected if eij ∈ E . The edge existence task is to ask LLMs whether node vi
and node vj are directly connected.

2. Common Connection: Given two nodes vi and vj sampled from a graph G, the common
connection between two nodes are N (vi) ∩N (vj). For this task, we ask LLMs to find the
number of common connections between node vi and node vj , denoted as |N (vi)∩N (vj)|.

3. Similarity: Given three nodes vi, vj and vk sampled from a graph G, we let vj be the source
node and vi and vk be the target nodes. The task for LLMs is to compare the number of
common connections |N (vi) ∩N (vj)| and |N (vj) ∩N (vk)|.

Note that these tasks are roughly ordered in terms of general complexity. For example, solving
the edge existence only depends on the model being able to retrieve the edge information from the
representation. One step further, in finding the number of common connections, models needs to
first identify the set of shared connections between two nodes and then calculate the size of that set.
Finally, the similarity task is more complex than the common connection task, as it requires LLMs
to consider three nodes and identify two sets of common connections and then compare their sizes.
As a result, these tasks are a good representative set to evaluate LLMs since they require LLMs to
both retrieve and reason about the graph information. Furthermore, these tasks are also essential and
the building blocks for solving practical problems in applications such as recommendation systems
(Ying et al., 2018), protein folding (Strokach et al., 2020), bad actor detection (Papegnies et al.,
2017) or any other task that requires graph understanding.

3 LOST-IN-THE-MIDDLE FOR EDGE EXISTENCE

The edge existence task is analogous to the needle-in-a-haystack problem (Ivgi et al., 2023) and the
document question-answering task (Liu et al., 2023), as it requires the LLM to retrieve the answer
from the prompt without performing any computation. Building upon prior work in the literature
by Liu et al. (2023), this study demonstrates the impact of the position of relevant information on
the performance of LLMs. Specifically, it is shown that the accuracy in the edge existence task
decreases when the information about the edge in question is placed in the middle of the prompt.

The prompt structure is constructed using the following procedure, which enables controlling the
location of information within the prompt:

1. Randomly sample two nodes from a graph along with their corresponding connections.

2. Randomly select nine additional nodes as noise nodes and incorporate their textual sub-
graph encodings into the prompt. This step is necessary to examine the impact of the
position of relevant information.

3. Group the subgraph structures of the two nodes of interest and position them at the begin-
ning, middle, or end of the input context.

4. Query the model to determine whether an edge exists between the two nodes of interest.

An example of a prompt with different positions for the two nodes of interest is illustrated in Fig-
ure 2.

3.1 EXPERIMENTAL RESULTS

Lost-in-the-middle can happen in the edge existence task. To demonstrate the lost-in-the-middle
phenomena in edge existence task, we experiment with the state of the art model as of writing this
paper GPT-4. The experiment results are averaged over twenty randomly generated graph where
from each graph we randomly select two nodes and form the edge existence prompt as described in
previous section.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

(c)(b)(a)

You are given a graph structure in an
adjacency list format.
Your task is to determine whether two given
nodes are directly connected.

In this graph:
Node 208 is connected to nodes ...
Node 358 is connected to nodes ...
...
Node 425 is connected to nodes ...
Node 400 is connected to nodes ...
...
Node 714 is connected to nodes ...
Node 368 is connected to nodes ...

Question: Is node 208 directly connected to
node 358?
Respond in JSON format with keys ‘answer’.

You are given a graph structure in an
adjacency list format.
Your task is to determine whether two given
nodes are directly connected.

In this graph:
Node 425 is connected to nodes ...
Node 400 is connected to nodes ...
...
Node 208 is connected to nodes ...
Node 358 is connected to nodes ...
...
Node 714 is connected to nodes ...
Node 368 is connected to nodes ...

Question: Is node 208 directly connected to
node 358?
Respond in JSON format with keys ‘answer’.

You are given a graph structure in an
adjacency list format.
Your task is to determine whether two given
nodes are directly connected.

In this graph:
Node 425 is connected to nodes ...
Node 400 is connected to nodes ...
...
Node 714 is connected to nodes ...
Node 368 is connected to nodes ...
…
Node 208 is connected to nodes ...
Node 358 is connected to nodes ...

Question: Is node 208 directly connected to
node 358?
Respond in JSON format with keys ‘answer’.

Figure 2: Example of the edge existence task, illustrating the placement of the nodes of interest
subgraph (nodes 208 and 358) at (a) the beginning, (b) the middle, and (c) the end of the graph
structure.

Figure 3 shows that all encodings can cause the LLM to lose the information in the middle of the
prompt. The best performance occurs when the relevant information is either at the beginning or the
end of the entire subgraph structure. Even for the incident encoding which has the best performance
among all encodings, the LLM still has the worst performance when the answer is located in the
middle of the prompt.

Beginning Middle End
Position of edge information of node of interests

65

70

75

80

85

90

95

100

Ac
cu

ra
cy

Edge Existence
GPT-4

adjacency
incident
expert

Figure 3: The effect of the position of the relevant information on the edge existence task.

4 LOST-IN-DISTANCE

Tasks such as the edge existence require LLMs to perform needle-in-a-haystack retrieval, which, as
previously shown, suffers from the lost-in-the-middle phenomenon in long contexts. However, in
many tasks, the model not only needs to look up relevant information in the context but also requires
to perform cross-referencing between retrieved information. For example, tasks like the common
connection require the model to retrieve connections that jointly appear in both subgraphs.

We hypothesize that for tasks requiring cross-referenced retrieval, the model’s performance is also
impacted by the distance between relevant pieces of information, a phenomenon we term lost-in-
distance. Specifically, for these tasks, the model’s performance is influenced by two compounding

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

phenomena: lost-in-the-middle when retrieving relevant information and lost-in-distance when per-
forming a join between retrieved information.

To explore this, we define G(p) as the model’s performance when the relevant information is at
position p. Similarly, we define F (p1, p2) as the model’s performance when the relevant information
is at positions (p1, p2). The value of F (p1, p2) is estimated based on the accuracy of model in
a complex task that requires cross-referencing. We hypothesize that F and G have the following
relationship:

F (p1, p2) = γ G(p1)G(p2)H(d), (2)

where d = |p2 − p1| represents the distance between relevant information in the prompt and H(d)
represents the effect of lost-in-distance.

In the experimental section, by studying LLM performance on common connection and similarity
tasks, we first demonstrate that lost-in-the-middle alone cannot explain the model’s performance
degradation in solving tasks that require joint reasoning across multiple subgraphs, and that it is af-
fected by another factor, lost-in-distance. Then, by leveraging the experimental results, we measure
the goodness of fit for Equation 2 in Section 6.

5 EXPERIMENTATION

In our initial experiments, we focused on the common connection task. This task requires the model
to determine the number of common connections between two nodes by joining information across
two subgraphs. Our results demonstrate that the models’ performance degrades as the distance
between the relevant pieces of information in the two subgraphs increases. Specifically, when the
information about each node’s connections is placed further apart in the context, the models struggle
to effectively retrieve and integrate this information to compute the correct number of common
connections.

We then investigated how the lost-in-distance impacts tasks that require multiple cross-referencing
steps, such as the similarity task. In the similarity task, the model needs to first identify the common
connections between each of the two nodes and a reference node, and then compare these sets to
determine the degree of similarity. Our findings reveal that performance degradation is even more
pronounced in this case, as the task requires the model to perform multiple join operations over
dispersed pieces of information within the context.

5.1 EXPERIMENTAL SETUP

Leveraging in-context learning (Dong et al., 2022; Wei et al., 2023), we conducted experiments
using both closed-source models (GPT-4) and open-source models (Llama-3-8B-Instruct and Llama-
3-70B-Instruct). For all models, we set the decoding temperature to zero to ensure the generation
of deterministic answers. In each sample, we randomly selected two or three nodes as the nodes of
interest for the common connection and similarity tasks, respectively. We performed experiments
on hundreds of thousands of randomly generated graphs to draw statistically significant conclusions
regarding LLM behavior. The experimental results were then averaged across multiple samples.

5.2 COMMON CONNECTION TASK

In this section, we demonstrate the effect of increased distance on solving the common connec-
tion task. To create an input prompt for this task and to control the relative distance of relevant
information (common neighbors), we use the following methodology:

1. Sample two nodes from a given graph and extract their corresponding subgraphs.

2. Within each subgraph, group the common connections.

3. Within each subgraph, position the common connections at the beginning, middle, or end
of the textual encoding of the subgraph.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

The above recipe, specifically the grouping of relevant information into three positions—beginning,
middle, and end (as illustrated in Figure 4 for adjacency encoding)—enables us to control the relative
distance between common connections within the prompt. This allows us to investigate the effects
on the model’s performance when the relative distance is small, medium, or large. We denote the
positions of relevant information within the first and second subgraphs as (p1, p2), where p1 ∈
{0, 1, 2} and p2 ∈ {3, 4, 5}, respectively, for the sake of brevity.

0 1 2

Edge information
node 257

Prompt
You are given a graph. In the graph, (i, j) means that
node i and node j are connected with an undirected
edge.
Your task is to find the number of common connections
between two given nodes.

The edges in this graph are:
(257, 172) (257, 717) (257, 818) (257, 659) (257, 214)
(257, 760) (257, 891) (257, 740) (257, 741) … (462,
797) (462, 801) (462, 172) (462, 717) (462, 818) (462,
659) (462, 214) (462, 760) (462, 891).

Question: How many common connections are there
between node 257 and node 462?
Respond in JSON format with keys ‘answer’ and your
answer must be a number only.

3 4 5

Edge information
node 462

0 1 2

Edge information
node 257

Prompt
You are given a graph. In the graph, (i, j) means that
node i and node j are connected with an undirected
edge.
Your task is to find the number of common connections
between two given nodes.

The edges in this graph are:
(257, 740) (257, 741) …(257, 172) (257, 717) (257,
818) (257, 659) (257, 214) (257, 760) (257, 891) (462,
172) (462, 717) (462, 818) (462, 659) (462, 214) (462,
760) (462, 891) …(462, 797) (462, 801).

Question: How many common connections are there
between node 257 and node 462?
Respond in JSON format with keys ‘answer’ and your
answer must be a number only.

3 4 5

Edge information
node 462

Figure 4: An example illustrating the placement of relevant information, highlighted in blue and
red, at different positions using the adjacency encoding function for the common connection task.
Relevant information is grouped at positions 0, 1, or 2 within the first node’s (node 257) subgraph
and at positions 3, 4, or 5 within the second node’s (node 462) subgraph. The left plot depicts the
smallest distance between relevant information, while the right plot shows the largest distance.

5.2.1 LOST-IN-DISTANCE IN COMMON CONNECTION TASK

The results presented in Figure 5 illustrate the impact of varying the positions of common edges
within each subgraph (following the methodology outlined in the previous section) on the model’s
performance in the common connection task. Unlike the edge existence task, the model’s perfor-
mance is influenced not only by the lost-in-the-middle phenomenon but also by the relative distance
between common connections.

With the position of relevant information fixed in one subgraph, we observe that the model’s perfor-
mance degrades when the other subgraph is positioned closer to the middle of the prompt, influenced
by the lost-in-the-middle phenomenon. For example, in adjacency encodings (Figure 5, middle plot),
when the first node’s common connection is at position 0 (the beginning of the prompt), the model’s
performance deteriorates from 40% to 20% as the second node’s common connection shifts from
position 5 (the end) to position 3 (the middle). However, in contrast to the lost-in-the-middle phe-
nomenon, Figure 5 demonstrates that across all three graph encodings, the model achieves optimal
performance when relevant information is centrally located, with minimal distance between compo-
nents at positions (2, 3). This illustrates the effect of lost-in-distance. Furthermore, when the first
node’s common connection is at position 2, the model’s accuracy drops by up to 50% as the second
node’s common connection shifts from position 3 (the middle of the prompt) to position 5 (the end
of the prompt), thereby increasing the distance between relevant information. These observations
confirm that the lost-in-distance phenomenon and the lost-in-the-middle effect have independent,
compounding effects on model performance, as hypothesized in Equation 2.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

3 4 5
Position of common connections

(second node)

2
1

0

Po
sit

io
n

of
 c

om
m

on
 c

on
ne

ct
io

ns
(fi

rs
t n

od
e)

65.00
±

10.67

25.00
±

9.68

30.00
±

10.25
0.00

±
0.00

10.00
±

6.71

30.00
±

10.25
0.00

±
0.00

0.00
±

0.00

10.00
±

6.71

Incident Accuracy
GPT-4

0

20

40

60

3 4 5
Position of common connections

(second node)

2
1

0

Po
sit

io
n

of
 c

om
m

on
 c

on
ne

ct
io

ns
(fi

rs
t n

od
e)

80.00
±

8.94

40.00
±

10.95

20.00
±

8.94
30.00

±
10.25

20.00
±

8.94

0.00
±

0.00
20.00

±
8.94

25.00
±

9.68

40.00
±

10.95

Adjacency Accuracy
GPT-4

0

20

40

60

80

3 4 5
Position of common connections

(second node)

2
1

0

Po
sit

io
n

of
 c

om
m

on
 c

on
ne

ct
io

ns
(fi

rs
t n

od
e)

80.00
±

8.94

30.00
±

10.25

25.00
±

9.68
40.00

±
10.95

20.00
±

8.94

10.00
±

6.71
35.00

±
10.67

35.00
±

10.67

30.00
±

10.25

Expert Accuracy
GPT-4

20

40

60

80

Figure 5: The effect of lost-in-distance on the common connection task. The number in each block
is accuracy ± standard deviation.

Table 1: Thresholds of each distance group for three graph encoding functions where distance is
measured in number of tokens.

Graph Encoding Small Distance Medium Distance Large Distance
Incident ≤ 219 219 ∼ 399 > 399

Adjacency ≤ 425 425 ∼ 785 > 785
Expert ≤ 354 354 ∼ 654 > 654

5.3 SIMILARITY TASK

Solving the similarity between three nodes vi, vj , and vk requires the model to perform two common
connection tasks, |N (vi)∩N (vj)| and |N (vj)∩N (vk)|, and subsequently compare the results. As
a result, the model needs to execute two cross-referencing operations between the subgraphs: one
between Gvi and Gvj , and the other between Gvj and Gvk . Therefore, as we will demonstrate in this
section, solving the similarity task inherently suffers from the lost-in-distance phenomenon.

To measure the effect of the lost-in-distance phenomenon, we select three nodes—vi, vj , and
vk—from a given graph and randomly shuffle the edges within each node’s subgraph. We desig-
nate vj as the source node for the similarity task, vi as the first target node, and vk as the second
target node. In all scenarios, to mitigate the influence of the lost-in-the-middle effect and highlight
the effect of lost-in-distance, the textual encoding of the source node vj’s subgraph (Gvj) is posi-
tioned at the center of the prompt, while the subgraphs of the other two nodes are placed one before
and one after it.

We quantify the lost-in-distance effect by calculating the median distance, measured in terms of
tokens, between the common connections of the two subgraphs, specifically |N (vi) ∩ N (vj)| and
|N (vj)∩N (vk)|. The distance distribution is illustrated in Figure 6 for three different graph encod-
ings. We utilize the thresholds presented in Table 1 to categorize the distances into small, medium,
and large groups. Furthermore, in order to make sure more uniform coverage, we employ rejection
sampling to ensure that each distance group contains one hundred samples with balanced responses.

100 200 300 400 500
Median distance

0

50

100

150

Fr
eq

ue
nc

y

Incident

250 500 750 1000
Median distance

0

50

100

150

Fr
eq

ue
nc

y

Adjacency

200 400 600 800
Median distance

0

50

100

150

Fr
eq

ue
nc

y

Expert

Figure 6: The distribution of median distance, in number of tokens, for three graph encoding func-
tions.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Small Medium Large
Median distance

between source and target 2

Sm
al

l
M

ed
iu

m
La

rg
eM

ed
ia

n
di

st
an

ce
be

tw
ee

n
so

ur
ce

 a
nd

 ta
rg

et
 1 79.00

±
3.91

68.00
±

4.72

77.00
±

4.28

71.00
±

4.49

73.00
±

4.27

67.00
±

4.50

65.00
±

4.66

70.00
±

4.69

67.00
±

4.60

Incident Accuracy
GPT-4o

66
68
70
72
74
76
78

Small Medium Large
Median distance

between source and target 2

Sm
al

l
M

ed
iu

m
La

rg
eM

ed
ia

n
di

st
an

ce
be

tw
ee

n
so

ur
ce

 a
nd

 ta
rg

et
 1 43.00

±
5.04

44.00
±

4.81

42.00
±

4.89

38.00
±

4.91

43.00
±

4.95

39.00
±

4.80

39.00
±

4.90

40.00
±

4.92

38.00
±

4.82

Incident Accuracy
Llama-3-8B-Instruct

38

39

40

41

42

43

44

Small Medium Large
Median distance

between source and target 2

Sm
al

l
M

ed
iu

m
La

rg
eM

ed
ia

n
di

st
an

ce
be

tw
ee

n
so

ur
ce

 a
nd

 ta
rg

et
 1 61.00

±
4.79

52.00
±

5.09

54.00
±

4.92

56.00
±

4.92

52.00
±

4.91

51.00
±

5.02

53.00
±

5.15

56.00
±

5.03

49.00
±

4.94

Expert Accuracy
Llama-3-70B-Instruct

50

52

54

56

58

60

Figure 7: The effect of lost-in-distance on the similarity task is illustrated. As the distance between
target node 1 and target node 2 increases, the model’s performance degrades accordingly. The num-
bers in each block represent the accuracy ± standard deviation obtained through bootstrap sampling.

To eliminate potential biases, for the three subgraphs Gvi , Gvj , and Gvk , where vj is the source node
for similarity, we generate questions randomly chosen from the following two templates:

• Is the number of common connections between node vj and node vk greater than the
number of common connections between node vi and node vj?

• Is the number of common connections between node vi and node vj greater than the
number of common connections between node vj and node vk?

An example of the prompt for the similarity task is presented in Appendix C.1. Since the simi-
larity task inherently involves solving two common connection tasks and a comparison task, we
adopt Chain-of-Thought prompting (Wei et al., 2022) to guide the model in solving the task step by
step, thereby obtaining the most accurate answers. Detailed descriptions of the prompts and further
analysis of the LLMs’ failure rates in following CoT instructions, along with examples of answer de-
generation, are provided in Appendix A.2. GPT-4 and Llama-3-70B exhibit low failure rates, while
Llama-3-8B demonstrates a high failure rate across all graph encodings, including a 69% failure rate
in expert encodings.

5.3.1 LOST-IN-DISTANCE IN SIMILARITY TASK

For brevity, we present the results of one encoding for each model in Figure 7, with all results
summarized in Appendix C.2. Our findings indicate that when both distances are minimal, GPT-
4 and Llama-3-70B-Instruct exhibit the best performance. Llama-3-8B-Instruct, which has a high
failure rate in following instructions as described in Appendix A.2, demonstrates the second-best
performance, though it is not significantly different from the top performers.

Specifically, performance at the largest distances is significantly worse compared to that at the small-
est distances. As the distances increase (i.e., along the diagonal elements), the performance of all
models deteriorates. In Llama-3-70B, we observe a 12% drop in model accuracy when the distance
between common connections for both |N (vi) ∩ N (vj)| and |N (vj) ∩ N (vk)| increases, shifting
from the (Small,Small) index to the (Large,Large) index in the heatmap plot. These results high-
light that the lost-in-distance phenomenon adversely affects model performance in similarity tasks.

6 GOODNESS OF FIT FOR LOST-IN-DISTANCE

In this section, we employ the Equation 2 function to capture the effects of the lost-in-distance
phenomenon and to separate its impact from that of the lost-in-the-middle effect. To evaluate the
goodness of fit for the lost-in-distance function defined in Equation 2, we compare it to a simpler
function that accounts solely for the lost-in-the-middle effect as follows:

E[F (p1, p2)|G(p1), G(p2)] = γG(p1)G(p2), (3)

E[F (p1, p2)|γ,G(p1), G(p2)] = γG(p1)G(p2)H(|p2 − p1|), (4)

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Table 2: RMSE for lost-in-the-middle only and Equation 2 functions with three encodings.

Encoding Model RMSE (train) RMSE (test)

Incident Lost-in-the-middle only 22.42 27.09
Equation 2 10.04 14.50

Adjacency Lost-in-the-middle only 21.43 22.36
Equation 2 15.16 13.61

Expert Lost-in-the-middle only 24.50 26.69
Equation 2 12.84 17.42

where H(|p2 − p1|)) is the effect of lost-in-distance d = |p2 − p1|.
To measure the goodness of fit we leverage results and output of common connection experiments
but the result and findings here are extendable to similarity task as well. We randomly split samples
into training and test sets of equal size. Using the training set, we first estimate Ĝ(·) using interpo-
lation based on the accuracy observed in the edge existence task. Then, we estimate γ by regressing
F (p1, p2) onto Ĝ(p1)Ĝ(p2). Finally, given the estimated γ̂ and Ĝ(·), we estimate H(·) using

Ĥ(d) =
1

|Dd|
∑

(p1,p2)∈Dd

F (p1, p2)

γ̂Ĝ(p1)Ĝ(p2)
, (5)

where Dd = {(p1, p2)||p2 − p1| = d}.

We evaluate the goodness of fit for both functions using the root mean squared error (RMSE) be-
tween the predicted and observed accuracy in the test set.

Table 2 shows that Equation 2 function, which includes the lost-in-distance effect, has a smaller
RMSE compared to the lost-in-the-middle only function. Moreover, Ĥ(·) in Figure 8 indicates that
smaller distance results in better performance, up to 3x, after accounting for the lost-in-the-middle
effect.

Figure 8: The left plot is Ĝ(·) and the right plot is Ĥ(·). To better visualize the error bars in Ĥ(·)
estimation, we slightly shift the adjacency encoding to the left and the expert encoding to the right.
Numbers in x-axis are normalized to the prompt length.

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
report. arXiv preprint arXiv:2303.08774, 2023.

Oshin Agarwal, Heming Ge, Siamak Shakeri, and Rami Al-Rfou. Knowledge graph based syn-
thetic corpus generation for knowledge-enhanced language model pre-training. arXiv preprint
arXiv:2010.12688, 2020.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Badr AlKhamissi, Millicent Li, Asli Celikyilmaz, Mona Diab, and Marjan Ghazvininejad. A review
on language models as knowledge bases. arXiv preprint arXiv:2204.06031, 2022.

Shengnan An, Zexiong Ma, Zeqi Lin, Nanning Zheng, and Jian-Guang Lou. Make your llm fully
utilize the context. arXiv preprint arXiv:2404.16811, 2024.

Jacob Andreas. Language models as agent models. arXiv preprint arXiv:2212.01681, 2022.

Shouyuan Chen, Sherman Wong, Liangjian Chen, and Yuandong Tian. Extending context window
of large language models via positional interpolation. arXiv preprint arXiv:2306.15595, 2023.

Pedro Colon-Hernandez, Catherine Havasi, Jason Alonso, Matthew Huggins, and Cynthia
Breazeal. Combining pre-trained language models and structured knowledge. arXiv preprint
arXiv:2101.12294, 2021.

Marta R Costa-jussà, James Cross, Onur Çelebi, Maha Elbayad, Kenneth Heafield, Kevin Heffernan,
Elahe Kalbassi, Janice Lam, Daniel Licht, Jean Maillard, et al. No language left behind: Scaling
human-centered machine translation. arXiv preprint arXiv:2207.04672, 2022.

Antonia Creswell, Murray Shanahan, and Irina Higgins. Selection-inference: Exploiting large lan-
guage models for interpretable logical reasoning. arXiv preprint arXiv:2205.09712, 2022.

Qingxiu Dong, Lei Li, Damai Dai, Ce Zheng, Zhiyong Wu, Baobao Chang, Xu Sun, Jingjing Xu,
and Zhifang Sui. A survey on in-context learning. arXiv preprint arXiv:2301.00234, 2022.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783, 2024.

Paul Erdős and Alfréd Rényi. On random graphs. Publicationes Mathematicae Debrecen, 6:290–
297, 1959.

Yuwei Fang, Siqi Sun, Zhe Gan, Rohit Pillai, Shuohang Wang, and Jingjing Liu. Hierarchical graph
network for multi-hop question answering. arXiv preprint arXiv:1911.03631, 2019.

Bahare Fatemi, Jonathan Halcrow, and Bryan Perozzi. Talk like a graph: Encoding graphs for large
language models. In The Twelfth International Conference on Learning Representations, 2024.

Zhangyang Gao, Daize Dong, Cheng Tan, Jun Xia, Bozhen Hu, and Stan Z Li. A graph is worth k
words: Euclideanizing graph using pure transformer. arXiv preprint arXiv:2402.02464, 2024.

Gemini, Rohan Anil, Sebastian Borgeaud, Yonghui Wu, Jean-Baptiste Alayrac, Jiahui Yu, Radu
Soricut, Johan Schalkwyk, Andrew M Dai, Anja Hauth, et al. Gemini: a family of highly capable
multimodal models. arXiv preprint arXiv:2312.11805, 2023.

Shijie Geng, Shuchang Liu, Zuohui Fu, Yingqiang Ge, and Yongfeng Zhang. Recommendation as
language processing (rlp): A unified pretrain, personalized prompt & predict paradigm (p5). In
Proceedings of the 16th ACM Conference on Recommender Systems, pp. 299–315, 2022.

Shangrong Huang, Jian Zhang, Lei Wang, and Xian-Sheng Hua. Social friend recommendation
based on multiple network correlation. IEEE transactions on multimedia, 18(2):287–299, 2015.

Wenlong Huang, Pieter Abbeel, Deepak Pathak, and Igor Mordatch. Language models as zero-shot
planners: Extracting actionable knowledge for embodied agents. In International conference on
machine learning, pp. 9118–9147. PMLR, 2022.

Maor Ivgi, Uri Shaham, and Jonathan Berant. Efficient long-text understanding with short-text
models. Transactions of the Association for Computational Linguistics, 11:284–299, 2023.

Jean Kaddour, Joshua Harris, Maximilian Mozes, Herbie Bradley, Roberta Raileanu, and
Robert McHardy. Challenges and applications of large language models. arXiv preprint
arXiv:2307.10169, 2023.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child,
Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language
models. arXiv preprint arXiv:2001.08361, 2020.

Xiao Li, Li Sun, Mengjie Ling, and Yan Peng. A survey of graph neural network based recommen-
dation in social networks. Neurocomputing, 549:126441, 2023.

Nelson F. Liu, Kevin Lin, John Hewitt, Ashwin Paranjape, Michele Bevilacqua, Fabio Petroni, and
Percy Liang. Lost in the middle: How language models use long contexts. Transactions of the
Association for Computational Linguistics, 12:157–173, 2023.

OpenAI. Gpt-4o. https://openai.com/index/hello-gpt-4o/, 2023a. Accessed:
2024-04-27.

OpenAI. tiktoken: Fast bpe tokeniser for use with openai’s models. https://github.com/
openai/tiktoken, 2023b. Accessed: 2024-04-27.

Etienne Papegnies, Vincent Labatut, Richard Dufour, and Georges Linares. Graph-based features
for automatic online abuse detection. In Statistical Language and Speech Processing: 5th In-
ternational Conference, SLSP 2017, Le Mans, France, October 23–25, 2017, Proceedings 5, pp.
70–81. Springer, 2017.

Bryan Perozzi, Bahare Fatemi, Dustin Zelle, Anton Tsitsulin, Mehran Kazemi, Rami Al-Rfou, and
Jonathan Halcrow. Let your graph do the talking: Encoding structured data for llms. arXiv
preprint arXiv:2402.05862, 2024.

Fabio Petroni, Tim Rocktäschel, Patrick Lewis, Anton Bakhtin, Yuxiang Wu, Alexander H Miller,
and Sebastian Riedel. Language models as knowledge bases? arXiv preprint arXiv:1909.01066,
2019.

Clayton Sanford, Bahare Fatemi, Ethan Hall, Anton Tsitsulin, Mehran Kazemi, Jonathan Halcrow,
Bryan Perozzi, and Vahab Mirrokni. Understanding transformer reasoning capabilities via graph
algorithms. arXiv preprint arXiv:2405.18512, 2024.

Victor Sanh, Albert Webson, Colin Raffel, Stephen H Bach, Lintang Sutawika, Zaid Alyafeai, An-
toine Chaffin, Arnaud Stiegler, Teven Le Scao, Arun Raja, et al. Multitask prompted training
enables zero-shot task generalization. arXiv preprint arXiv:2110.08207, 2021.

Apoorv Saxena, Aditay Tripathi, and Partha Talukdar. Improving multi-hop question answering
over knowledge graphs using knowledge base embeddings. In Proceedings of the 58th annual
meeting of the association for computational linguistics, pp. 4498–4507, 2020.

Bin Shao, Haixun Wang, and Yatao Li. Trinity: A distributed graph engine on a memory cloud. In
Proceedings of the 2013 ACM SIGMOD International Conference on Management of Data, pp.
505–516, 2013.

Tao Shen, Yi Mao, Pengcheng He, Guodong Long, Adam Trischler, and Weizhu Chen. Ex-
ploiting structured knowledge in text via graph-guided representation learning. arXiv preprint
arXiv:2004.14224, 2020.

Alexey Strokach, David Becerra, Carles Corbi-Verge, Albert Perez-Riba, and Philip M Kim. Fast
and flexible protein design using deep graph neural networks. Cell systems, 11(4):402–411, 2020.

Cheng Tan, Zhangyang Gao, and Stan Z Li. Target-aware molecular graph generation. In Joint
European Conference on Machine Learning and Knowledge Discovery in Databases, pp. 410–
427. Springer, 2023.

A Vaswani. Attention is all you need. Advances in Neural Information Processing Systems, 2017.

Heng Wang, Shangbin Feng, Tianxing He, Zhaoxuan Tan, Xiaochuang Han, and Yulia Tsvetkov.
Can language models solve graph problems in natural language? Advances in Neural Information
Processing Systems, 36, 2024.

12

https://openai.com/index/hello-gpt-4o/
https://github.com/openai/tiktoken
https://github.com/openai/tiktoken

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824–24837, 2022.

Jerry Wei, Jason Wei, Yi Tay, Dustin Tran, Albert Webson, Yifeng Lu, Xinyun Chen, Hanxiao Liu,
Da Huang, Denny Zhou, et al. Larger language models do in-context learning differently. arXiv
preprint arXiv:2303.03846, 2023.

Shiwen Wu, Fei Sun, Wentao Zhang, Xu Xie, and Bin Cui. Graph neural networks in recommender
systems: a survey. ACM Computing Surveys, 55(5):1–37, 2022.

Jun Xia, Chengshuai Zhao, Bozhen Hu, Zhangyang Gao, Cheng Tan, Yue Liu, Siyuan Li, and Stan Z
Li. Mole-bert: Rethinking pre-training graph neural networks for molecules. 2023.

Han Xie, Da Zheng, Jun Ma, Houyu Zhang, Vassilis N Ioannidis, Xiang Song, Qing Ping, Sheng
Wang, Carl Yang, Yi Xu, et al. Graph-aware language model pre-training on a large graph corpus
can help multiple graph applications. In Proceedings of the 29th ACM SIGKDD Conference on
Knowledge Discovery and Data Mining, pp. 5270–5281, 2023.

Peng Xu, Wei Ping, Xianchao Wu, Lawrence McAfee, Chen Zhu, Zihan Liu, Sandeep Subramanian,
Evelina Bakhturina, Mohammad Shoeybi, and Bryan Catanzaro. Retrieval meets long context
large language models. arXiv preprint arXiv:2310.03025, 2023.

Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L Hamilton, and Jure Leskovec.
Graph convolutional neural networks for web-scale recommender systems. In Proceedings of the
24th ACM SIGKDD international conference on knowledge discovery & data mining, pp. 974–
983, 2018.

Mengmei Zhang, Mingwei Sun, Peng Wang, Shen Fan, Yanhu Mo, Xiaoxiao Xu, Hong Liu, Cheng
Yang, and Chuan Shi. Graphtranslator: Aligning graph model to large language model for open-
ended tasks. In Proceedings of the ACM on Web Conference 2024, pp. 1003–1014, 2024a.

Zeyang Zhang, Xin Wang, Ziwei Zhang, Haoyang Li, Yijian Qin, and Wenwu Zhu. Llm4dyg: Can
large language models solve spatial-temporal problems on dynamic graphs? In Proceedings of
the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, pp. 4350–4361,
2024b.

Yongchao Zhou, Andrei Ioan Muresanu, Ziwen Han, Keiran Paster, Silviu Pitis, Harris Chan,
and Jimmy Ba. Large language models are human-level prompt engineers. arXiv preprint
arXiv:2211.01910, 2022.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A ANALYSIS

A.1 CONTEXT LENGTH

Table 3 summarizes the average context length (i.e., the number of tokens) for each task and each
graph encoding. We use the tokenizer of Llama-3 to calculate the context length for Llama-3-8B-
Instruct and Llama-3-70B-Instruct and use the tiktoken library (OpenAI, 2023b) to calculate the
context length for GPT-4 and GPT-4o. The incident encoding produces the shortest context length,
while the adjacency encoding results in the longest context length.

Table 3: Input and output context length in each encoding and each task.

Graph Task Graph Encoding Average Input Length Average Output Length
GPT-4/4o Llama-3-8B-Instruct Llama-3-70B-Instruct

Edge Existence
Incident 3409.50 13 8 7

Adjacency 6598.10 13 8 7
Expert 5514.75 13 8 7

Common Connection
Incident 662.55 13 8 7

Adjacency 1261.10 13 8 7
Expert 1068.25 13 8 7

Similarity
Incident 1263.37 153.46 695.31 91.76

Adjacency 2164.75 142.32 1126.30 106.86
Expert 1869.29 140.34 1453.97 97.73

A.2 ANSWER DEGENERATION

LLMs sometimes fail to follow instructions and generate responses that do not adhere to the ex-
pected output template. We classify these degenerate responses as incorrect answers, i.e., yi ̸= ŷi
for accuracy calculation in Equation 1. Llama-3-8B-Instruct is less likely to generate a final answer
compared to GPT-4o and Llama-3-70B-Instruct, which explains why it has lowest accuracy in Fig-
ure 7. Table A.2 summarizes the percentage of samples in which models fail to follow instructions.
Generally, the most common patterns of degenerate answers are as follows:

• Repetition: LLMs sometimes repeat the same context until they reach the maximum num-
ber of output tokens, thereby failing to generate a final answer.

• Self-contradiction: In CoT prompting, LLMs are asked to answer the main question based
on their responses to subquestions. However, we find that LLMs sometimes provide an
incorrect final conclusion. For example, as shown in Figure 9 where we ask the LLM
“is the number of common connections between node 658 and node 535 greater than the
number of common connections between node 535 and node 807?”, the LLM determines
that the number of common connections between node 658 and node 535 is 6, and between
node 535 and node 807 is 4, but the final answer is “no” when it should be “yes”.

Model Answer
<sub a>The unique common connections between node 658 and node 535 are 30, 346, 575, 605, 910,
and 642.</sub a>
<sub a>6</sub a>
<sub a>The unique common connections between node 535 and node 807 are 303, 633, 642, and
92.</sub a>
<sub a>4</sub a>
<final a>No</final a>

Figure 9: Example where the answer is self-contradictory. The question in this example is that “is
the number of common connections between node 658 and node 535 greater than the number of
common connections between node 535 and node 807?”.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Table 4: Percentage of samples where each model generates degenerated answer.

Graph Encoding Percentage of not generating the answer
GPT-4o Llama-3-8B-Instruct Llama-3-70B-Instruct

Incident 0.78% 18.78% 0.11%
Adjacency 4.11% 61.11% 0.22%

Expert 4.44% 69.00% 0.22%

B COMMON CONNECTION: MORE RESULT

Figure 10 illustrates the impact of the lost-in-distance phenomenon on the GPT-4o model (OpenAI,
2023a) in solving the common connection task. Although the accuracy metrics slightly differ from
those in Figure 5 for GPT-4, the pattern of the lost-in-distance effect remains consistent.

3 4 5
Position of common connections

(second node)

2
1

0

Po
sit

io
n

of
 c

om
m

on
 c

on
ne

ct
io

ns
(fi

rs
t n

od
e)

50.00
±

11.18

25.00
±

9.68

35.00
±

10.67
0.00

±
0.00

0.00
±

0.00

30.00
±

10.25
5.00

±
4.87

0.00
±

0.00

45.00
±

11.12

Incident Accuracy
GPT-4o

0

10

20

30

40

50

3 4 5
Position of common connections

(second node)

2
1

0

Po
sit

io
n

of
 c

om
m

on
 c

on
ne

ct
io

ns
(fi

rs
t n

od
e)

60.00
±

10.95

10.00
±

6.71

35.00
±

10.67
10.00

±
6.71

15.00
±

7.98

30.00
±

10.25
10.00

±
6.71

15.00
±

7.98

20.00
±

8.94

Adjacency Accuracy
GPT-4o

10

20

30

40

50

60

3 4 5
Position of common connections

(second node)

2
1

0

Po
sit

io
n

of
 c

om
m

on
 c

on
ne

ct
io

ns
(fi

rs
t n

od
e)

65.00
±

10.67

20.00
±

8.94

35.00
±

10.67
5.00

±
4.87

5.00
±

4.87

25.00
±

9.68
5.00

±
4.87

15.00
±

7.98

35.00
±

10.67

Expert Accuracy
GPT-4o

10

20

30

40

50

60

Figure 10: The effect of the position of the relevant information on the GPT-4o model solving the
common connection task.

C SIMILARITY TASK

C.1 PROMPT EXAMPLE

Figure 11 illustrates an example of the similarity task prompt, as described in Section 5.3, along
with GPT-4o’s answer for solving the similarity task using incident graph encoding.

C.2 ALL RESULTS

Figure 12 presents the results of the similarity task at a density of 0.1 across three models (GPT-
4o, Llama-8B, Llama-70B) and three different graph encodings. For all models utilizing the
graph encoding functions, we observe the typical lost-in-distance pattern, where performance at
the (Small,Small) index is better than at the (Large,Large) index.

D EFFECT OF GRAPH DENSITY

The lost-in-distance effect remains consistent across different graph densities, i.e., different values
of P (eij ∈ E) in Erdős–Rényi (ER) randomly generated graphs. Graph density affects the input
sequence length in a linear manner; higher densities result in proportionally longer input sequences,
as demonstrated in Table 5.

Figure 13 illustrates that increasing the context length by raising graph density follows the same
pattern of the lost-in-distance effect in similarity tasks. Specifically, accuracy declines progressively
from top to bottom and left to right as the distances between common edges within each subgraph
increase. Additionally, the figure demonstrates that for smaller context lengths, corresponding to
graphs with low density, the results are noisier and the effect of lost-in-distance diminishes.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Prompt
You are given an undirected graph structure in an adjacency list format.
Given three nodes i, j, and k, your task is to determine if the number of common connections between node i and
node j is greater than the number of common connections between node j and node k.
You MUST first answer several subquestions in '<sub q></sub q>' tags in order and put your answers in '<sub
a></sub a>' tags in order. Finally, answer the question in the '<final q></final q>' tag based on the given graph and
your answers to the subquestions. Put your final answer in the '<final a></final a>' tag.

In this graph:
Node 963 is connected to nodes {neighbors of node 963}.
Node 452 is connected to nodes {neighbors of node 452}.
Node 423 is connected to nodes {neighbors of node 423}.

<sub q>What are the unique common connections between node 963 and node 452? Your answer MUST start with
'The unique common connections between node 963 and node 452 are'.</sub q>
<sub q>How many common connections are there between node 963 and node 452? Your answer MUST be a
number only.</sub q>
<sub q>What are the unique common connections between node 452 and node 423? Your answer MUST start with
'The unique common connections between node 452 and node 423 are'.</sub q>
<sub q>How many common connections are there between node 452 and node 423? Your answer MUST be a
number only.</sub q>
<final q>Based on the given graph and previous answers, is the number of common connections between node 963
and node 452 greater than the number of common connections between node 452 and node 423? Your answer
MUST be 'Yes' or 'No' only.</final q>

Model Answer
<sub a>The unique common connections between node 963 and node 452 are 704, 799, 972, 430, 827, 531, 628,
496, 551, 908, 104.</sub a>
<sub a>11</sub a>
<sub a>The unique common connections between node 452 and node 423 are 104, 832, 496, 906, 824, 470, 550,
766, 634, 740.</sub a>
<sub a>10</sub a>
<final a>Yes</final a>

Figure 11: Example of the CoT prompting for the similarity task.

Table 5: Average Token Length from different Graph Density, P (eij ∈ E), for ER graphs using
expert encoding

Graph Density Average Token Length
0.05 1145
0.10 1869
0.15 2633

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Small Medium Large
Median distance

between source and target 2

Sm
al

l
M

ed
iu

m
La

rg
eM

ed
ia

n
di

st
an

ce
be

tw
ee

n
so

ur
ce

 a
nd

 ta
rg

et
 1 79.00

±
3.91

68.00
±

4.72

77.00
±

4.28

71.00
±

4.49

73.00
±

4.27

67.00
±

4.50

65.00
±

4.66

70.00
±

4.69

67.00
±

4.60

Incident Accuracy
GPT-4o

66
68
70
72
74
76
78

Small Medium Large
Median distance

between source and target 2

Sm
al

l
M

ed
iu

m
La

rg
eM

ed
ia

n
di

st
an

ce
be

tw
ee

n
so

ur
ce

 a
nd

 ta
rg

et
 1 59.00

±
4.83

60.00
±

4.97

63.00
±

4.89

61.00
±

4.69

61.00
±

4.72

57.00
±

4.92

56.00
±

4.94

64.00
±

4.79

64.00
±

4.86

Adjacency Accuracy
GPT-4o

56

58

60

62

64

Small Medium Large
Median distance

between source and target 2

Sm
al

l
M

ed
iu

m
La

rg
eM

ed
ia

n
di

st
an

ce
be

tw
ee

n
so

ur
ce

 a
nd

 ta
rg

et
 1 59.00

±
4.83

56.00
±

5.12

63.00
±

4.89

59.00
±

4.84

60.00
±

5.01

57.00
±

4.86

63.00
±

4.58

60.00
±

5.03

44.00
±

4.84

Expert Accuracy
GPT-4o

45

50

55

60

Small Medium Large
Median distance

between source and target 2

Sm
al

l
M

ed
iu

m
La

rg
eM

ed
ia

n
di

st
an

ce
be

tw
ee

n
so

ur
ce

 a
nd

 ta
rg

et
 1 43.00

±
5.04

44.00
±

4.81

42.00
±

4.89

38.00
±

4.91

43.00
±

4.95

39.00
±

4.80

39.00
±

4.90

40.00
±

4.92

38.00
±

4.82

Incident Accuracy
Llama-3-8B-Instruct

38

39

40

41

42

43

44

Small Medium Large
Median distance

between source and target 2

Sm
al

l
M

ed
iu

m
La

rg
eM

ed
ia

n
di

st
an

ce
be

tw
ee

n
so

ur
ce

 a
nd

 ta
rg

et
 1 27.00

±
4.52

22.00
±

4.13

20.00
±

4.00

23.00
±

4.22

16.00
±

3.73

16.00
±

3.67

25.00
±

4.57

15.00
±

3.54

17.00
±

3.62

Adjacency Accuracy
Llama-3-8B-Instruct

16

18

20

22

24

26

Small Medium Large
Median distance

between source and target 2

Sm
al

l
M

ed
iu

m
La

rg
eM

ed
ia

n
di

st
an

ce
be

tw
ee

n
so

ur
ce

 a
nd

 ta
rg

et
 1 20.00

±
3.96

20.00
±

4.04

21.00
±

4.07

13.00
±

3.31

20.00
±

3.84

11.00
±

3.14

15.00
±

3.42

17.00
±

3.73

15.00
±

3.59

Expert Accuracy
Llama-3-8B-Instruct

12

14

16

18

20

Small Medium Large
Median distance

between source and target 2

Sm
al

l
M

ed
iu

m
La

rg
eM

ed
ia

n
di

st
an

ce
be

tw
ee

n
so

ur
ce

 a
nd

 ta
rg

et
 1 56.00

±
4.99

52.00
±

4.95

48.00
±

4.99

59.00
±

4.92

55.00
±

5.07

54.00
±

4.86

51.00
±

5.27

55.00
±

4.95

50.00
±

5.05

Incident Accuracy
Llama-3-70B-Instruct

48

50

52

54

56

58

Small Medium Large
Median distance

between source and target 2

Sm
al

l
M

ed
iu

m
La

rg
eM

ed
ia

n
di

st
an

ce
be

tw
ee

n
so

ur
ce

 a
nd

 ta
rg

et
 1 53.00

±
4.82

52.00
±

5.11

50.00
±

5.08

55.00
±

4.91

53.00
±

4.85

56.00
±

4.83

51.00
±

5.17

57.00
±

4.97

58.00
±

4.97

Adjacency Accuracy
Llama-3-70B-Instruct

50

52

54

56

58

Small Medium Large
Median distance

between source and target 2

Sm
al

l
M

ed
iu

m
La

rg
eM

ed
ia

n
di

st
an

ce
be

tw
ee

n
so

ur
ce

 a
nd

 ta
rg

et
 1 61.00

±
4.79

52.00
±

5.09

54.00
±

4.92

56.00
±

4.92

52.00
±

4.91

51.00
±

5.02

53.00
±

5.15

56.00
±

5.03

49.00
±

4.94

Expert Accuracy
Llama-3-70B-Instruct

50

52

54

56

58

60

Figure 12: All results in the similarity task with density = 0.1.

Small Medium Large
Median distance

between source and target 2

Sm
al

l
M

ed
iu

m
La

rg
eM

ed
ia

n
di

st
an

ce
be

tw
ee

n
so

ur
ce

 a
nd

 ta
rg

et
 1 61.00

±
4.89

61.00
±

4.99

54.00
±

5.03

54.00
±

4.76

57.00
±

5.02

59.00
±

4.88

59.00
±

4.75

61.00
±

4.92

54.00
±

4.78

Expert Accuracy
Llama-3-70B-Instruct

54
55
56
57
58
59
60
61

Small Medium Large
Median distance

between source and target 2

Sm
al

l
M

ed
iu

m
La

rg
eM

ed
ia

n
di

st
an

ce
be

tw
ee

n
so

ur
ce

 a
nd

 ta
rg

et
 1 61.00

±
4.79

52.00
±

5.09

54.00
±

4.92

56.00
±

4.92

52.00
±

4.91

51.00
±

5.02

53.00
±

5.15

56.00
±

5.03

49.00
±

4.94

Expert Accuracy
Llama-3-70B-Instruct

50

52

54

56

58

60

Small Medium Large
Median distance

between source and target 2

Sm
al

l
M

ed
iu

m
La

rg
eM

ed
ia

n
di

st
an

ce
be

tw
ee

n
so

ur
ce

 a
nd

 ta
rg

et
 1 57.00

±
4.97

53.00
±

4.95

46.00
±

5.09

56.00
±

5.07

51.00
±

4.89

46.00
±

4.95

55.00
±

5.08

48.00
±

4.88

49.00
±

4.73

Expert Accuracy
Llama-3-70B-Instruct

46

48

50

52

54

56

Figure 13: Results from similarity tasks with three different density values, P (eij ∈ E), (left) 0.05 ,
(middle) 0.1, and (right) 0.15.

17

	Introduction
	Notations and Definitions

	Graph Encoding and Graph Tasks
	Graph Encoding for LLM
	Graph Generation
	Graph Tasks

	Lost-in-the-middle for Edge Existence
	Experimental Results

	Lost-in-Distance
	Experimentation
	Experimental Setup
	Common Connection Task
	Lost-in-Distance in Common Connection Task

	Similarity Task
	Lost-in-Distance in Similarity Task

	Goodness of Fit for Lost-in-Distance
	Analysis
	Context Length
	Answer degeneration

	Common Connection: More result
	Similarity Task
	Prompt Example
	All results

	Effect of Graph Density

