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ABSTRACT

Despite significant advancements, Large Language Models (LLMs) exhibit blind
spots that impair their ability to retrieve and process relevant contextual data effec-
tively. We demonstrate that LLM performance in graph tasks with complexities
beyond the “needle-in-a-haystack” scenario—where solving the problem requires
cross-referencing and reasoning across multiple subproblems jointly—is influ-
enced by the proximity of relevant information within the context, a phenomenon
we term “lost-in-distance”. We examine two fundamental graph tasks: identify-
ing common connections between two nodes and assessing similarity among three
nodes, and show that the model’s performance in these tasks significantly depends
on the relative positioning of common edges. We evaluate three publicly available
LLMs—Llama-3-8B, Llama-3-70B, and GPT-4—using various graph encoding
techniques that represent graph structures for LLM input. We propose a formu-
lation for the lost-in-distance phenomenon and demonstrate that lost-in-distance
and lost-in-the middle phenomenas occur independently. Results indicate that
model accuracy can decline by up to 6x as the distance between node connections
increases, independent of graph encoding and model size.

1 INTRODUCTION

Large Language Models (LLMs) have attained an unprecedented level of generality by leverag-
ing scale and attention-based architectures (Kaplan et al., 2020; Vaswani, 2017). These models
exhibit remarkable, often superhuman, capabilities across a diverse range of tasks, including lan-
guage translation, reading comprehension, and question answering (Costa-jussà et al., 2022; Sanh
et al., 2021). Additionally, LLMs are increasingly serving as essential and flexible building blocks
for various user-facing machine learning and artificial intelligence applications beyond traditional
language processing domains, such as recommendation systems (Geng et al., 2022), graph-related
tasks (Wang et al., 2024), knowledge bases (AlKhamissi et al., 2022; Petroni et al., 2019), and more.
These applications highlight the versatility of LLMs but also expose new challenges in handling
domain-specific data encoded as textual input.

Particularly, by leveraging the extensive common knowledge and powerful semantic comprehension
abilities of LLMs, recent research has aimed to apply them to tasks related to graph structures (Wang
et al., 2024). LLMs are increasingly being adopted for a variety of tasks that involve graph structures,
such as planning in robotics (Andreas, 2022), knowledge extraction using knowledge graphs (Shen
et al., 2020; Saxena et al., 2020), and multi-hop question answering (Creswell et al., 2022; Fang
et al., 2019). For instance, they have been used to guide agents through structured graph-based
environments (Huang et al., 2022). Building upon these applications, recent works by Sanford
et al. (2024), Perozzi et al. (2024), and Agarwal et al. (2020) have demonstrated that graph tasks
can be encoded into textual formats that allow pre-trained LLMs to solve them as out-of-domain
tasks. This innovative approach effectively transforms graph problems into a language that LLMs
can understand and process.

While LLMs are being expanded in many applications, they suffer from certain blind spots that
significantly affect their performance. In particular, how these models process information in their
context and retrieve relevant data to solve the task at hand remains an active area of research (Kad-
dour et al., 2023). Understanding these limitations is crucial for extending context length (Gemini
et al., 2023; Xu et al., 2023; Chen et al., 2023) and improving in-context learning (Zhou et al.,
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2022; Wei et al., 2023; An et al., 2024). Recent works have shown that the performance of LLMs
depends on the location of information in their context. Primarily, Liu et al. (2023) introduces the
“lost-in-the-middle” phenomenon, where information placed in the middle of a prompt is less effec-
tively utilized by the model compared to information at the beginning or end, resulting in significant
performance degradation when the position of relevant information in the context changes.

Unlike these previous works which mainly focus on shortcomings of LLMs in NLP tasks, e.g. lost-
in-the-middle, we focus on the deficiency of these models in tasks beyond natural language process-
ing, specifically solving fundamental graph problems. This area is heavily under-explored and has
wide practical applications (Perozzi et al., 2024; Colon-Hernandez et al., 2021; Xie et al., 2023).
Since these tasks require understanding graph structure and relationship between objects, they pro-
vide us with great insights into model’s blind spots. Through our analysis, we provide insight that
LLMs not only have blind spots regarding where information exists in the context, but their per-
formance in solving complex tasks also depends on the relative position of information within the
context.

Particularly, we look into Common Connection and Similarity tasks, which are the main algorithms
used as the backbone of many applications such as molecular design (Tan et al., 2023; Xia et al.,
2023), social network analysis (Gao et al., 2024), and recommendation systems (Li et al., 2023).
For example, these tasks are the main algorithms in “user-user” and “user-item” recommendations
in large industry recommendation products (Xie et al., 2023; Huang et al., 2015; Wu et al., 2022).
These tasks not only require understanding of subgraph structures but also demand integration of
information and reasoning across subgraphs. We demonstrate that strong, publicly available LLMs
universally degrade in performance as when relevant pieces of information are distant from each
other. Our analysis shows that this effect is present even when one controls for the effects absolute
position of the relevant information in the context. To summarize

• For tasks that require cross-subgraph information lookup, such as identifying common con-
nections or measuring similarity, model performance not only degrades due to the “lost-
in-the-middle” effect based on the absolute positions but is also affected by the relative
distance between pieces of information in the context—a phenomenon we term “lost-in-
distance”. The further apart the information is, the more the model’s performance deterio-
rates.

• We demonstrate these shortcomings across different graph encoding algorithms and various
publicly available LLMs such as Llama-3-8B, Llama-3-70B (Dubey et al., 2024) and GPT-
4 (Achiam et al., 2023) indicating a universal limitation in current architectures.

Our findings suggest that current LLMs have inherent limitations in processing contextual informa-
tion that is not sequentially localized or is widely dispersed within the input. This has significant
implications for their application in domains that require complex reasoning over structured data,
such as graph analysis.

1.1 NOTATIONS AND DEFINITIONS

We define a graph G = (V, E), where V = {v1, v2, . . . , vn} and E represent the sets of nodes and
edges, respectively. If nodes vi and vj are directly connected, we denote the edge between them
as eij ∈ E . The neighbors of node vi are defined as N (vi) = {vk ∈ V | eik ∈ E}. A subgraph
associated with node vi is defined as Gvi = ({vi} ∪ N (vi), Evi), where Evi = {eij | eij ∈ E , vj ∈
N (vi)}.

We define the distance between a common node v within two subgraphs Gu and Gz as the number of
tokens separating the two occurrences of node v in the context (i.e., the textual representation of the
subgraphs). The overall distance between relevant information for common connections between
the two subgraphs is defined as the median of all such distances computed for each common node.
Throughout the paper, we use p to indicate position and d to indicate distance.

We use accuracy, as defined below, to measure the performance of an LLM model in solving a given
task:

Accuracy =
1

N

N∑
i=1

1{yi=ŷi} × 100%, (1)
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where N is the total number of samples in the task, and yi and ŷi denote the true answer and the
model’s answer for the ith sample, respectively. If the output of the LLM for sample i is degener-
ate—such as not following instructions or hallucinating—we consider it an incorrect answer, i.e.,
yi ̸= ŷi.

2 GRAPH ENCODING AND GRAPH TASKS

2.1 GRAPH ENCODING FOR LLM

Representing graph-structured data as text is an important step in enabling LLMs to understand
graph structures and provide accurate answers to questions. Encoding graphs as text involves repre-
senting both nodes and edges. Different graph encodings can lead to varying performance of LLMs
in graph reasoning tasks (Agarwal et al., 2020; Fatemi et al., 2024; Zhang et al., 2024a). In this
work, we encode nodes as integers, where each node is represented by a unique integer, such that
vi ∈ {0, 1, . . . , n− 1}.

We experiment with three encoding functions from Fatemi et al. (2024) to encode edges in the graph,
investigating whether patterns are consistently observed across different encoding functions. More
specifically, we consider the following edge encoding functions:

• Incident: Given a source node vi, the edge information for node vi is encoded as an
adjacency list in natural language. For example, “node vi is connected to nodes vj , vk”.

• Adjacency: Given a source node vi and a target node vj , the edge is encoded as (vi, vj).

• Expert: Given a source node vi and a target node vj , the edge is encoded as vi → vj .

Since the graph tasks considered in this paper only require access to the subgraph and the subgraph
structure, we encode only the edge information for the nodes of interest. This is a common practice
where a subgraph is extracted from a database before being processed by a compute engine (Shao
et al., 2013). Figure 1 shows an example about only including a subgraph with three encoding
functions in the prompt. In this example, node 0 and node 1 are nodes of interest so we only encode
their subgraph in the prompt.

0

4

5
7

8
3

2

1
6

Incident:
In this undirected graph:

Node 0 is connected to nodes 1, 2, 4. 
Node 1 is connected to nodes 0, 3, 4.

Adjacency:
The edges in this undirected graph are 

(0, 1) (0, 2) (0, 4) (1, 3) (1, 4).

Expert:
The edges in this undirected graph are 
0  -> 1, 0 -> 2, 0 -> 4, 1 -> 3, 1 -> 4.

Figure 1: Three graph encoding functions, with node 0 and node 1 serving as the nodes of interest.
The figure is inspired by Fatemi et al. (2024).

2.2 GRAPH GENERATION

In this paper, we build upon previous studies (Huang et al., 2022; Fatemi et al., 2024; Zhang et al.,
2024b) by conducting experiments on randomly generated graphs. We utilize the Erdős–Rényi (ER)
graph generator (Erdős & Rényi, 1959) to create undirected graphs. We experiment with relatively
large graphs comprising n = 1000 nodes. The undirected edge eij between nodes vi and vj is
generated with probability P (eij ∈ E). We set P (eij ∈ E) = 0.1 throughout the main manuscript,
and results for other values of P (eij ∈ E) are presented in the Appendix for brevity.
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2.3 GRAPH TASKS

We aim to analyze the performance of LLMs in three fundamental graph problems which require
models to have thorough understanding of the input graph structure.

1. Edge Existence: Given two nodes vi and vj sampled from a graph G, node vi and node vj
are directly connected if eij ∈ E . The edge existence task is to ask LLMs whether node vi
and node vj are directly connected.

2. Common Connection: Given two nodes vi and vj sampled from a graph G, the common
connection between two nodes are N (vi) ∩N (vj). For this task, we ask LLMs to find the
number of common connections between node vi and node vj , denoted as |N (vi)∩N (vj)|.

3. Similarity: Given three nodes vi, vj and vk sampled from a graph G, we let vj be the source
node and vi and vk be the target nodes. The task for LLMs is to compare the number of
common connections |N (vi) ∩N (vj)| and |N (vj) ∩N (vk)|.

Note that these tasks are roughly ordered in terms of general complexity. For example, solving
the edge existence only depends on the model being able to retrieve the edge information from the
representation. One step further, in finding the number of common connections, models needs to
first identify the set of shared connections between two nodes and then calculate the size of that set.
Finally, the similarity task is more complex than the common connection task, as it requires LLMs
to consider three nodes and identify two sets of common connections and then compare their sizes.
As a result, these tasks are a good representative set to evaluate LLMs since they require LLMs to
both retrieve and reason about the graph information. Furthermore, these tasks are also essential and
the building blocks for solving practical problems in applications such as recommendation systems
(Ying et al., 2018), protein folding (Strokach et al., 2020), bad actor detection (Papegnies et al.,
2017) or any other task that requires graph understanding.

3 LOST-IN-THE-MIDDLE FOR EDGE EXISTENCE

The edge existence task is analogous to the needle-in-a-haystack problem (Ivgi et al., 2023) and the
document question-answering task (Liu et al., 2023), as it requires the LLM to retrieve the answer
from the prompt without performing any computation. Building upon prior work in the literature
by Liu et al. (2023), this study demonstrates the impact of the position of relevant information on
the performance of LLMs. Specifically, it is shown that the accuracy in the edge existence task
decreases when the information about the edge in question is placed in the middle of the prompt.

The prompt structure is constructed using the following procedure, which enables controlling the
location of information within the prompt:

1. Randomly sample two nodes from a graph along with their corresponding connections.

2. Randomly select nine additional nodes as noise nodes and incorporate their textual sub-
graph encodings into the prompt. This step is necessary to examine the impact of the
position of relevant information.

3. Group the subgraph structures of the two nodes of interest and position them at the begin-
ning, middle, or end of the input context.

4. Query the model to determine whether an edge exists between the two nodes of interest.

An example of a prompt with different positions for the two nodes of interest is illustrated in Fig-
ure 2.

3.1 EXPERIMENTAL RESULTS

Lost-in-the-middle can happen in the edge existence task. To demonstrate the lost-in-the-middle
phenomena in edge existence task, we experiment with the state of the art model as of writing this
paper GPT-4. The experiment results are averaged over twenty randomly generated graph where
from each graph we randomly select two nodes and form the edge existence prompt as described in
previous section.
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(c)(b)(a)

You are given a graph structure in an 
adjacency list format. 
Your task is to determine whether two given 
nodes are directly connected.

In this graph:
Node 208 is connected to nodes ...
Node 358 is connected to nodes ...
...
Node 425 is connected to nodes ...
Node 400 is connected to nodes ...
...
Node 714 is connected to nodes ...
Node 368 is connected to nodes ...

Question: Is node 208 directly connected to 
node 358?
Respond in JSON format with keys ‘answer’.

You are given a graph structure in an 
adjacency list format. 
Your task is to determine whether two given 
nodes are directly connected.

In this graph:
Node 425 is connected to nodes ...
Node 400 is connected to nodes ...
...
Node 208 is connected to nodes ...
Node 358 is connected to nodes ...
...
Node 714 is connected to nodes ...
Node 368 is connected to nodes ...

Question: Is node 208 directly connected to 
node 358?
Respond in JSON format with keys ‘answer’.

You are given a graph structure in an 
adjacency list format. 
Your task is to determine whether two given 
nodes are directly connected.

In this graph:
Node 425 is connected to nodes ...
Node 400 is connected to nodes ...
...
Node 714 is connected to nodes ...
Node 368 is connected to nodes ...
…
Node 208 is connected to nodes ...
Node 358 is connected to nodes ...

Question: Is node 208 directly connected to 
node 358?
Respond in JSON format with keys ‘answer’.

Figure 2: Example of the edge existence task, illustrating the placement of the nodes of interest
subgraph (nodes 208 and 358) at (a) the beginning, (b) the middle, and (c) the end of the graph
structure.

Figure 3 shows that all encodings can cause the LLM to lose the information in the middle of the
prompt. The best performance occurs when the relevant information is either at the beginning or the
end of the entire subgraph structure. Even for the incident encoding which has the best performance
among all encodings, the LLM still has the worst performance when the answer is located in the
middle of the prompt.

Beginning Middle End
Position of edge information of node of interests

65

70

75

80

85

90

95

100

Ac
cu

ra
cy

Edge Existence
GPT-4

adjacency
incident
expert

Figure 3: The effect of the position of the relevant information on the edge existence task.

4 LOST-IN-DISTANCE

Tasks such as the edge existence require LLMs to perform needle-in-a-haystack retrieval, which, as
previously shown, suffers from the lost-in-the-middle phenomenon in long contexts. However, in
many tasks, the model not only needs to look up relevant information in the context but also requires
to perform cross-referencing between retrieved information. For example, tasks like the common
connection require the model to retrieve connections that jointly appear in both subgraphs.

We hypothesize that for tasks requiring cross-referenced retrieval, the model’s performance is also
impacted by the distance between relevant pieces of information, a phenomenon we term lost-in-
distance. Specifically, for these tasks, the model’s performance is influenced by two compounding
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phenomena: lost-in-the-middle when retrieving relevant information and lost-in-distance when per-
forming a join between retrieved information.

To explore this, we define G(p) as the model’s performance when the relevant information is at
position p. Similarly, we define F (p1, p2) as the model’s performance when the relevant information
is at positions (p1, p2). The value of F (p1, p2) is estimated based on the accuracy of model in
a complex task that requires cross-referencing. We hypothesize that F and G have the following
relationship:

F (p1, p2) = γ G(p1)G(p2)H(d), (2)

where d = |p2 − p1| represents the distance between relevant information in the prompt and H(d)
represents the effect of lost-in-distance.

In the experimental section, by studying LLM performance on common connection and similarity
tasks, we first demonstrate that lost-in-the-middle alone cannot explain the model’s performance
degradation in solving tasks that require joint reasoning across multiple subgraphs, and that it is af-
fected by another factor, lost-in-distance. Then, by leveraging the experimental results, we measure
the goodness of fit for Equation 2 in Section 6.

5 EXPERIMENTATION

In our initial experiments, we focused on the common connection task. This task requires the model
to determine the number of common connections between two nodes by joining information across
two subgraphs. Our results demonstrate that the models’ performance degrades as the distance
between the relevant pieces of information in the two subgraphs increases. Specifically, when the
information about each node’s connections is placed further apart in the context, the models struggle
to effectively retrieve and integrate this information to compute the correct number of common
connections.

We then investigated how the lost-in-distance impacts tasks that require multiple cross-referencing
steps, such as the similarity task. In the similarity task, the model needs to first identify the common
connections between each of the two nodes and a reference node, and then compare these sets to
determine the degree of similarity. Our findings reveal that performance degradation is even more
pronounced in this case, as the task requires the model to perform multiple join operations over
dispersed pieces of information within the context.

5.1 EXPERIMENTAL SETUP

Leveraging in-context learning (Dong et al., 2022; Wei et al., 2023), we conducted experiments
using both closed-source models (GPT-4) and open-source models (Llama-3-8B-Instruct and Llama-
3-70B-Instruct). For all models, we set the decoding temperature to zero to ensure the generation
of deterministic answers. In each sample, we randomly selected two or three nodes as the nodes of
interest for the common connection and similarity tasks, respectively. We performed experiments
on hundreds of thousands of randomly generated graphs to draw statistically significant conclusions
regarding LLM behavior. The experimental results were then averaged across multiple samples.

5.2 COMMON CONNECTION TASK

In this section, we demonstrate the effect of increased distance on solving the common connec-
tion task. To create an input prompt for this task and to control the relative distance of relevant
information (common neighbors), we use the following methodology:

1. Sample two nodes from a given graph and extract their corresponding subgraphs.

2. Within each subgraph, group the common connections.

3. Within each subgraph, position the common connections at the beginning, middle, or end
of the textual encoding of the subgraph.

6
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The above recipe, specifically the grouping of relevant information into three positions—beginning,
middle, and end (as illustrated in Figure 4 for adjacency encoding)—enables us to control the relative
distance between common connections within the prompt. This allows us to investigate the effects
on the model’s performance when the relative distance is small, medium, or large. We denote the
positions of relevant information within the first and second subgraphs as (p1, p2), where p1 ∈
{0, 1, 2} and p2 ∈ {3, 4, 5}, respectively, for the sake of brevity.

0 1 2

Edge information 
node 257

Prompt
You are given a graph. In the graph, (i, j) means that 
node i and node j are connected with an undirected 
edge. 
Your task is to find the number of common connections 
between two given nodes.

The edges in this graph are: 
(257, 172) (257, 717) (257, 818) (257, 659) (257, 214) 
(257, 760) (257, 891) (257, 740) (257, 741) … (462, 
797) (462, 801) (462, 172) (462, 717) (462, 818) (462, 
659) (462, 214) (462, 760) (462, 891).

Question: How many common connections are there 
between node 257 and node 462?
Respond in JSON format with keys ‘answer’ and your 
answer must be a number only.

3 4 5

Edge information 
node 462

0 1 2

Edge information 
node 257

Prompt
You are given a graph. In the graph, (i, j) means that 
node i and node j are connected with an undirected 
edge. 
Your task is to find the number of common connections 
between two given nodes.

The edges in this graph are: 
(257, 740) (257, 741) …(257, 172) (257, 717) (257, 
818) (257, 659) (257, 214) (257, 760) (257, 891) (462, 
172) (462, 717) (462, 818) (462, 659) (462, 214) (462, 
760) (462, 891) …(462, 797) (462, 801).

Question: How many common connections are there 
between node 257 and node 462?
Respond in JSON format with keys ‘answer’ and your 
answer must be a number only.

3 4 5

Edge information 
node 462

Figure 4: An example illustrating the placement of relevant information, highlighted in blue and
red, at different positions using the adjacency encoding function for the common connection task.
Relevant information is grouped at positions 0, 1, or 2 within the first node’s (node 257) subgraph
and at positions 3, 4, or 5 within the second node’s (node 462) subgraph. The left plot depicts the
smallest distance between relevant information, while the right plot shows the largest distance.

5.2.1 LOST-IN-DISTANCE IN COMMON CONNECTION TASK

The results presented in Figure 5 illustrate the impact of varying the positions of common edges
within each subgraph (following the methodology outlined in the previous section) on the model’s
performance in the common connection task. Unlike the edge existence task, the model’s perfor-
mance is influenced not only by the lost-in-the-middle phenomenon but also by the relative distance
between common connections.

With the position of relevant information fixed in one subgraph, we observe that the model’s perfor-
mance degrades when the other subgraph is positioned closer to the middle of the prompt, influenced
by the lost-in-the-middle phenomenon. For example, in adjacency encodings (Figure 5, middle plot),
when the first node’s common connection is at position 0 (the beginning of the prompt), the model’s
performance deteriorates from 40% to 20% as the second node’s common connection shifts from
position 5 (the end) to position 3 (the middle). However, in contrast to the lost-in-the-middle phe-
nomenon, Figure 5 demonstrates that across all three graph encodings, the model achieves optimal
performance when relevant information is centrally located, with minimal distance between compo-
nents at positions (2, 3). This illustrates the effect of lost-in-distance. Furthermore, when the first
node’s common connection is at position 2, the model’s accuracy drops by up to 50% as the second
node’s common connection shifts from position 3 (the middle of the prompt) to position 5 (the end
of the prompt), thereby increasing the distance between relevant information. These observations
confirm that the lost-in-distance phenomenon and the lost-in-the-middle effect have independent,
compounding effects on model performance, as hypothesized in Equation 2.
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Figure 5: The effect of lost-in-distance on the common connection task. The number in each block
is accuracy ± standard deviation.

Table 1: Thresholds of each distance group for three graph encoding functions where distance is
measured in number of tokens.

Graph Encoding Small Distance Medium Distance Large Distance
Incident ≤ 219 219 ∼ 399 > 399

Adjacency ≤ 425 425 ∼ 785 > 785
Expert ≤ 354 354 ∼ 654 > 654

5.3 SIMILARITY TASK

Solving the similarity between three nodes vi, vj , and vk requires the model to perform two common
connection tasks, |N (vi)∩N (vj)| and |N (vj)∩N (vk)|, and subsequently compare the results. As
a result, the model needs to execute two cross-referencing operations between the subgraphs: one
between Gvi and Gvj , and the other between Gvj and Gvk . Therefore, as we will demonstrate in this
section, solving the similarity task inherently suffers from the lost-in-distance phenomenon.

To measure the effect of the lost-in-distance phenomenon, we select three nodes—vi, vj , and
vk—from a given graph and randomly shuffle the edges within each node’s subgraph. We desig-
nate vj as the source node for the similarity task, vi as the first target node, and vk as the second
target node. In all scenarios, to mitigate the influence of the lost-in-the-middle effect and highlight
the effect of lost-in-distance, the textual encoding of the source node vj’s subgraph (Gvj ) is posi-
tioned at the center of the prompt, while the subgraphs of the other two nodes are placed one before
and one after it.

We quantify the lost-in-distance effect by calculating the median distance, measured in terms of
tokens, between the common connections of the two subgraphs, specifically |N (vi) ∩ N (vj)| and
|N (vj)∩N (vk)|. The distance distribution is illustrated in Figure 6 for three different graph encod-
ings. We utilize the thresholds presented in Table 1 to categorize the distances into small, medium,
and large groups. Furthermore, in order to make sure more uniform coverage, we employ rejection
sampling to ensure that each distance group contains one hundred samples with balanced responses.
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Figure 6: The distribution of median distance, in number of tokens, for three graph encoding func-
tions.
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Figure 7: The effect of lost-in-distance on the similarity task is illustrated. As the distance between
target node 1 and target node 2 increases, the model’s performance degrades accordingly. The num-
bers in each block represent the accuracy ± standard deviation obtained through bootstrap sampling.

To eliminate potential biases, for the three subgraphs Gvi , Gvj , and Gvk , where vj is the source node
for similarity, we generate questions randomly chosen from the following two templates:

• Is the number of common connections between node vj and node vk greater than the
number of common connections between node vi and node vj?

• Is the number of common connections between node vi and node vj greater than the
number of common connections between node vj and node vk?

An example of the prompt for the similarity task is presented in Appendix C.1. Since the simi-
larity task inherently involves solving two common connection tasks and a comparison task, we
adopt Chain-of-Thought prompting (Wei et al., 2022) to guide the model in solving the task step by
step, thereby obtaining the most accurate answers. Detailed descriptions of the prompts and further
analysis of the LLMs’ failure rates in following CoT instructions, along with examples of answer de-
generation, are provided in Appendix A.2. GPT-4 and Llama-3-70B exhibit low failure rates, while
Llama-3-8B demonstrates a high failure rate across all graph encodings, including a 69% failure rate
in expert encodings.

5.3.1 LOST-IN-DISTANCE IN SIMILARITY TASK

For brevity, we present the results of one encoding for each model in Figure 7, with all results
summarized in Appendix C.2. Our findings indicate that when both distances are minimal, GPT-
4 and Llama-3-70B-Instruct exhibit the best performance. Llama-3-8B-Instruct, which has a high
failure rate in following instructions as described in Appendix A.2, demonstrates the second-best
performance, though it is not significantly different from the top performers.

Specifically, performance at the largest distances is significantly worse compared to that at the small-
est distances. As the distances increase (i.e., along the diagonal elements), the performance of all
models deteriorates. In Llama-3-70B, we observe a 12% drop in model accuracy when the distance
between common connections for both |N (vi) ∩ N (vj)| and |N (vj) ∩ N (vk)| increases, shifting
from the (Small,Small) index to the (Large,Large) index in the heatmap plot. These results high-
light that the lost-in-distance phenomenon adversely affects model performance in similarity tasks.

6 GOODNESS OF FIT FOR LOST-IN-DISTANCE

In this section, we employ the Equation 2 function to capture the effects of the lost-in-distance
phenomenon and to separate its impact from that of the lost-in-the-middle effect. To evaluate the
goodness of fit for the lost-in-distance function defined in Equation 2, we compare it to a simpler
function that accounts solely for the lost-in-the-middle effect as follows:

E[F (p1, p2)|G(p1), G(p2)] = γG(p1)G(p2), (3)

E[F (p1, p2)|γ,G(p1), G(p2)] = γG(p1)G(p2)H(|p2 − p1|), (4)

9
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Table 2: RMSE for lost-in-the-middle only and Equation 2 functions with three encodings.

Encoding Model RMSE (train) RMSE (test)

Incident Lost-in-the-middle only 22.42 27.09
Equation 2 10.04 14.50

Adjacency Lost-in-the-middle only 21.43 22.36
Equation 2 15.16 13.61

Expert Lost-in-the-middle only 24.50 26.69
Equation 2 12.84 17.42

where H(|p2 − p1|)) is the effect of lost-in-distance d = |p2 − p1|.
To measure the goodness of fit we leverage results and output of common connection experiments
but the result and findings here are extendable to similarity task as well. We randomly split samples
into training and test sets of equal size. Using the training set, we first estimate Ĝ(·) using interpo-
lation based on the accuracy observed in the edge existence task. Then, we estimate γ by regressing
F (p1, p2) onto Ĝ(p1)Ĝ(p2). Finally, given the estimated γ̂ and Ĝ(·), we estimate H(·) using

Ĥ(d) =
1

|Dd|
∑

(p1,p2)∈Dd

F (p1, p2)

γ̂Ĝ(p1)Ĝ(p2)
, (5)

where Dd = {(p1, p2)||p2 − p1| = d}.

We evaluate the goodness of fit for both functions using the root mean squared error (RMSE) be-
tween the predicted and observed accuracy in the test set.

Table 2 shows that Equation 2 function, which includes the lost-in-distance effect, has a smaller
RMSE compared to the lost-in-the-middle only function. Moreover, Ĥ(·) in Figure 8 indicates that
smaller distance results in better performance, up to 3x, after accounting for the lost-in-the-middle
effect.

Figure 8: The left plot is Ĝ(·) and the right plot is Ĥ(·). To better visualize the error bars in Ĥ(·)
estimation, we slightly shift the adjacency encoding to the left and the expert encoding to the right.
Numbers in x-axis are normalized to the prompt length.
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A ANALYSIS

A.1 CONTEXT LENGTH

Table 3 summarizes the average context length (i.e., the number of tokens) for each task and each
graph encoding. We use the tokenizer of Llama-3 to calculate the context length for Llama-3-8B-
Instruct and Llama-3-70B-Instruct and use the tiktoken library (OpenAI, 2023b) to calculate the
context length for GPT-4 and GPT-4o. The incident encoding produces the shortest context length,
while the adjacency encoding results in the longest context length.

Table 3: Input and output context length in each encoding and each task.

Graph Task Graph Encoding Average Input Length Average Output Length
GPT-4/4o Llama-3-8B-Instruct Llama-3-70B-Instruct

Edge Existence
Incident 3409.50 13 8 7

Adjacency 6598.10 13 8 7
Expert 5514.75 13 8 7

Common Connection
Incident 662.55 13 8 7

Adjacency 1261.10 13 8 7
Expert 1068.25 13 8 7

Similarity
Incident 1263.37 153.46 695.31 91.76

Adjacency 2164.75 142.32 1126.30 106.86
Expert 1869.29 140.34 1453.97 97.73

A.2 ANSWER DEGENERATION

LLMs sometimes fail to follow instructions and generate responses that do not adhere to the ex-
pected output template. We classify these degenerate responses as incorrect answers, i.e., yi ̸= ŷi
for accuracy calculation in Equation 1. Llama-3-8B-Instruct is less likely to generate a final answer
compared to GPT-4o and Llama-3-70B-Instruct, which explains why it has lowest accuracy in Fig-
ure 7. Table A.2 summarizes the percentage of samples in which models fail to follow instructions.
Generally, the most common patterns of degenerate answers are as follows:

• Repetition: LLMs sometimes repeat the same context until they reach the maximum num-
ber of output tokens, thereby failing to generate a final answer.

• Self-contradiction: In CoT prompting, LLMs are asked to answer the main question based
on their responses to subquestions. However, we find that LLMs sometimes provide an
incorrect final conclusion. For example, as shown in Figure 9 where we ask the LLM
“is the number of common connections between node 658 and node 535 greater than the
number of common connections between node 535 and node 807?”, the LLM determines
that the number of common connections between node 658 and node 535 is 6, and between
node 535 and node 807 is 4, but the final answer is “no” when it should be “yes”.

Model Answer
<sub a>The unique common connections between node 658 and node 535 are 30, 346, 575, 605, 910,
and 642.</sub a>
<sub a>6</sub a>
<sub a>The unique common connections between node 535 and node 807 are 303, 633, 642, and
92.</sub a>
<sub a>4</sub a>
<final a>No</final a>

Figure 9: Example where the answer is self-contradictory. The question in this example is that “is
the number of common connections between node 658 and node 535 greater than the number of
common connections between node 535 and node 807?”.
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Table 4: Percentage of samples where each model generates degenerated answer.

Graph Encoding Percentage of not generating the answer
GPT-4o Llama-3-8B-Instruct Llama-3-70B-Instruct

Incident 0.78% 18.78% 0.11%
Adjacency 4.11% 61.11% 0.22%

Expert 4.44% 69.00% 0.22%

B COMMON CONNECTION: MORE RESULT

Figure 10 illustrates the impact of the lost-in-distance phenomenon on the GPT-4o model (OpenAI,
2023a) in solving the common connection task. Although the accuracy metrics slightly differ from
those in Figure 5 for GPT-4, the pattern of the lost-in-distance effect remains consistent.
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Figure 10: The effect of the position of the relevant information on the GPT-4o model solving the
common connection task.

C SIMILARITY TASK

C.1 PROMPT EXAMPLE

Figure 11 illustrates an example of the similarity task prompt, as described in Section 5.3, along
with GPT-4o’s answer for solving the similarity task using incident graph encoding.

C.2 ALL RESULTS

Figure 12 presents the results of the similarity task at a density of 0.1 across three models (GPT-
4o, Llama-8B, Llama-70B) and three different graph encodings. For all models utilizing the
graph encoding functions, we observe the typical lost-in-distance pattern, where performance at
the (Small,Small) index is better than at the (Large,Large) index.

D EFFECT OF GRAPH DENSITY

The lost-in-distance effect remains consistent across different graph densities, i.e., different values
of P (eij ∈ E) in Erdős–Rényi (ER) randomly generated graphs. Graph density affects the input
sequence length in a linear manner; higher densities result in proportionally longer input sequences,
as demonstrated in Table 5.

Figure 13 illustrates that increasing the context length by raising graph density follows the same
pattern of the lost-in-distance effect in similarity tasks. Specifically, accuracy declines progressively
from top to bottom and left to right as the distances between common edges within each subgraph
increase. Additionally, the figure demonstrates that for smaller context lengths, corresponding to
graphs with low density, the results are noisier and the effect of lost-in-distance diminishes.
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Prompt
You are given an undirected graph structure in an adjacency list format. 
Given three nodes i, j, and k, your task is to determine if the number of common connections between node i and 
node j is greater than the number of common connections between node j and node k.
You MUST first answer several subquestions in '<sub q></sub q>' tags in order and put your answers in '<sub 
a></sub a>' tags in order. Finally, answer the question in the '<final q></final q>' tag based on the given graph and 
your answers to the subquestions. Put your final answer in the '<final a></final a>' tag. 

In this graph:
Node 963 is connected to nodes {neighbors of node 963}.
Node 452 is connected to nodes {neighbors of node 452}.
Node 423 is connected to nodes {neighbors of node 423}.

<sub q>What are the unique common connections between node 963 and node 452? Your answer MUST start with 
'The unique common connections between node 963 and node 452 are'.</sub q>
<sub q>How many common connections are there between node 963 and node 452? Your answer MUST be a 
number only.</sub q>
<sub q>What are the unique common connections between node 452 and node 423? Your answer MUST start with 
'The unique common connections between node 452 and node 423 are'.</sub q>
<sub q>How many common connections are there between node 452 and node 423? Your answer MUST be a 
number only.</sub q>
<final q>Based on the given graph and previous answers, is the number of common connections between node 963 
and node 452 greater than the number of common connections between node 452 and node 423? Your answer 
MUST be 'Yes' or 'No' only.</final q>

Model Answer
<sub a>The unique common connections between node 963 and node 452 are 704, 799, 972, 430, 827, 531, 628, 
496, 551, 908, 104.</sub a>
<sub a>11</sub a>
<sub a>The unique common connections between node 452 and node 423 are 104, 832, 496, 906, 824, 470, 550, 
766, 634, 740.</sub a>
<sub a>10</sub a>
<final a>Yes</final a>

Figure 11: Example of the CoT prompting for the similarity task.

Table 5: Average Token Length from different Graph Density, P (eij ∈ E), for ER graphs using
expert encoding

Graph Density Average Token Length
0.05 1145
0.10 1869
0.15 2633
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Figure 12: All results in the similarity task with density = 0.1.
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Figure 13: Results from similarity tasks with three different density values, P (eij ∈ E), (left) 0.05 ,
(middle) 0.1, and (right) 0.15.
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