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ABSTRACT

Adaptive optimization methods are well known to achieve superior convergence
relative to vanilla gradient methods. The traditional viewpoint in optimization,
particularly in convex optimization, explains this improved performance by arguing
that, unlike vanilla gradient schemes, adaptive algorithms mimic the behavior of a
second-order method by adapting to the global geometry of the loss function. We
argue that in the context of neural network optimization, this traditional viewpoint
is insufficient. Instead, we advocate for a local trajectory analysis. For iterate
trajectories produced by running a generic optimization algorithm OPT, we intro-
duce ROPT

med , a statistic that is analogous to the condition number of the loss Hessian
evaluated at the iterates. Through extensive experiments, we show that adaptive
methods such as Adam bias the trajectories towards regions where RAdam

med is small,
where one might expect faster convergence. By contrast, vanilla gradient methods
like SGD bias the trajectories towards regions where RSGD

med is comparatively large.
We complement these empirical observations with a theoretical result that provably
demonstrates this phenomenon in the simplified setting of a two-layer linear net-
work. We view our findings as evidence for the need of a new explanation of the
success of adaptive methods, one that is different than the conventional wisdom.

1 INTRODUCTION

The efficient minimization of a parameterized loss function is a core primitive in statistics, optimiza-
tion and machine learning. Gradient descent (GD), which iteratively updates a parameter vector
with a step along the gradient of the loss function evaluated at that vector, is a simple yet canonical
algorithm which has been applied to efficiently solve such minimization problems with enormous
success. However, in modern machine learning, and especially deep learning, one frequently en-
counters problems where the loss functions are high dimensional, non-convex and non-smooth. The
optimization landscape of such problems is thus extremely challenging, and in these settings gradient
descent often suffers from prohibitively high iteration complexity.

To deal with these difficulties and improve optimization efficiency, practitioners in recent years have
developed many variants of GD. One prominent class of these GD variants is the family of adaptive
algorithms (Duchi et al., 2011; Tieleman et al., 2012; Kingma & Ba, 2015). At a high level, adaptive
methods scale the gradient with an adpatively selected preconditioning matrix, which is constructed
via a moving average of past gradients. These methods are reminiscent of second order gradient
descent, since they construct approximations to the Hessian of the loss functions, while remaining
computationally feasible since they eschew full computation of the Hessian. A vast line of empirical
work has demonstrated the superiority of adaptive methods over GD to optimize deep neural networks,
especially on Natural Language Processing (NLP) tasks with transformers (Vaswani et al., 2017;
Devlin et al., 2019).

From a theoretical perspective, adaptive methods are well understood in the traditional context of
convex optimization. For instance, Duchi et al. (2011) show that when the loss function is convex,
then the Adagrad algorithm yields regret guarantees that are provably as good as those obtained
by using the best (diagonal) preconditioner in hindsight. The key mechanism that underlies this
improved performance, is that the loss function has some global geometric property (such as sparsity
or a coordinate wise bounded Lipschitz constant), and the algorithm adapts to this global geometry
by adaptively selecting learning rates for features that are more informative.
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However, in non-convex optimization, and deep learning in particular, it is highly unclear whether
this simple characterization is sufficient to explain the superiority of adaptive methods over GD.
Indeed, for large scale neural networks, global guarantees on the geometric properties of the loss
are typically vacuous. For instance, for a 20-layer feedforward neural network, if we scale up the
weights in each layer by a factor of 1.5, then the global Lipschitz constant of the network is scaled up
by a factor of at least e10. Hence it only makes sense to study convergence by looking at the local
geometry of the loss along the trajectory of the optimization algorithm (Arora et al., 2018).
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Figure 1: (left) Training losses of SGD+M starting from xSGD and xAdam.
(right) The 10th largest value over median in the diagonal of loss Hessian
(which can be viewed as a variant of ROPT

med (t) defined in eq. (1)) for Adam
and SGD+M. Since the full Hessian is too big, here we selected several
layers and randomly sampled 200 coordinates per layer to compute.
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Figure 2: Training losses of Adam
and SGD+M on the sentence classifi-
cation task described in Section 4.1.

Moreover, the interaction between an optimization algorithm and neural network geometry is highly
complex — recent work has shown that geometric characteristics of iterates encountered during
optimization is highly dependent on the choice of optimization algorithm and associated hyperparam-
eters (Lewkowycz et al., 2020; Cohen et al., 2021). For instance, Cohen et al. (2021) demonstrate
that while training neural networks with GD, the maximum eigenvalue of the Hessian evaluated at
the GD iterates first increases and then plateaus at a level 2/(step size). The viewpoint from convex
optimization, where a loss function has some (potentially) non-uniform but fixed underlying geometry
that we must adapt to, is thus insufficient for neural networks, since the choice of optimization
algorithm can actually interact with and influence the observed geometry significantly.

To provide another example of this interactive phenomenon, we consider the following experiment.
On the same network training loss function f , we run stochastic gradient descent with momentum
(SGD+M) and Adam to obtain two different trajectories. We select an iterate xAdam from the Adam
trajectory and an iterate xSGD from the SGD trajectory, such that f(xAdam) = f(xSGD). We then run
SGD+M twice, once from xAdam and once from xSGD. If the underlying geometry of the loss function
f was truly fixed, then we would not expect a significant difference in the performance of running
SGD+M from either of the two iterates. However, as shown in Figure 1(left), running SGD+M from
xAdam achieves lower loss than that from xSGD, suggesting that Adam may bias the trajectory towards
a region which is more favorable for rapid training. This motivates the following question.

How does adaptive optimization impact the observed geometry of a neural network loss function,
relative to SGD (with momentum)?

The remainder of this paper is dedicated to answering the above question. To this end, for each iterate
in a trajectory produced by running an optimization algorithm OPT, where the Hessian of the tth
iterate is given by H(t) ∈ Rd×d, we define the second order statistic ROPT

med (t) in the following fashion.
For the tth iterate in the trajectory, let ROPT

med (t) be the ratio of maximum of the absolute entries of the
diagonal of H(t), to the median of the absolute entries of the diagonal of H(t). Concretely, we define

ROPT
med (t) =

max{|H(t)
ii |}di=1

median {|H(t)
ii |}di=1

. (1)

This statistic thus measures the uniformity of the diagonal of Hessian, where a smaller value ofROPT
med (t)

implies that the Hessian has a more uniform diagonal. It can also be viewed as a stable1 variant of
1Consider the case where one parameter has little impact on the loss, then the second derivative w.r.t. this

parameter is almost zero, making max{|H(t)
ii |}

d
i=1

min{|H(t)
ii |}

d
i=1

infinity. So we consider median which is more stable.
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the condition number. Instead of eigenvalues, we choose diagonal entries because adaptive methods
used in practice are coordinate-wise, which can be viewed as the diagonal scaling approaches.2
In Appendix A.9 we discuss this intuition in detail and compare ROPT

med (t) with singular value-
based metrics. As a supplementary result, in Appendix E, we demonstrate that the loss Hessian
approaches diagonal during training for Adam and SGD+M. There has been prior theoretical work
on overparameterized neural networks showing that a smaller condition number of Hessian, Neural
Tangent Kernel (Jacot et al., 2018) etc. could yield to faster convergence rate for (S)GD (Liu et al.,
2022). As for (diagonal) adaptive methods (e.g. Adagrad), they were original designed to adapt to the
nonuniform diagonal geometry. Intuitively, a smaller ROPT

med (t), which implies more uniform diagonal
geometry, could lead to faster convergence.

Armed with this statistic, we make the following contributions:

• On a wide variety of neural network transformer architectures and language modeling
datasets, we conduct experiments to compare how RAdam

med (t) and RSGDM
med (t) evolve over time,

when Adam and SGD+M are run from the same initialization and with their optimal (initial)
learning rates respectively. In each case, we demonstrate that the Adam trajectory attains
RAdam

med (t) values that are significantly smaller than the RSGDM
med (t) values found by SGD+M.

We show a simple example of this phenomenon in Figure 1(right). This suggests that relative
to SGD+M, Adam biases the optimization trajectory to a region where the Hessian diagonal
is more uniform. We call this phenomenon the uniformity of diagonal geometry for adaptive
methods. As an aside, we observe that larger improvements in optimization performance of
Adam over SGD+M are correlated with larger gaps between RAdam

med (t) and RSGDM
med (t). This

suggests that a region where the Hessian diagonal is more uniform is also a region that is
more amenable to rapid optimization.

• We complement our empirical results with a theoretical analysis of this phenomenon in the
simplified setting of large batch Adam and SGD+M, on a two-layer linear network with
d-dimensional input and hidden layer, and one dimensional output. We show that for a wide
range of t, RAdam

med (t) = 1 ± o(1) but RSGDM
med (t) = Ω(log d). Our proof reveals that Adam

induces the weight matrices to have low rank whose leading singular vectors have certain
type of uniformity (see Section 6 for discussion), a fact that we also observe empirically in
large scale neural networks, suggesting that this may be a mechanism by which adaptive
methods bias trajectories to have uniformity of diagonal geometry.

2 RELATED WORK

Existing analyses of adaptive methods. The vast majority of prior theoretical work on adaptive
methods has focused on the blackbox setting (Duchi et al., 2011; Kingma & Ba, 2015; Chen et al.,
2020; Reddi et al., 2018; Ward et al., 2020; Défossez et al., 2020; Ene et al., 2021). These works
make minimal assumptions about the structure of the loss function, beyond (possibly) some global
properties such as convexity or smoothness. These global properties (governed by parameters such
as the smoothness parameter) are assumed to hold over the entire domain. Hence this style of
analysis is worst case, since the resulting convergence bounds depend on polynomially on these
global parameters. However, as we show in Section 3.1, in neural networks these parameters are
prohibitively large. This worst case analysis is hence unlikely to explain the success of adaptive
methods on neural networks. By contrast, our focus is on analyzing the local trajectory that is induced
by running the optimization method.

Existing analyses of (S)GD on neural networks. There is an extensive literature on the analysis of
GD/SGD in the non-blackbox setting, e.g. overparameterized neural networks, (Du et al., 2018; Ji
& Telgarsky, 2020; Allen-Zhu et al., 2019a;b; Arora et al., 2019a; Liu et al., 2022). However, it is
unclear how to translate these analyses of GD/SGD, to an analysis that explains the gap between
GD/SGD and adaptive methods.

Influence of algorithms on the loss geometry. In many simple convex settings, e.g. linear or logistic
regression and the Neural Tangent Kernel (Jacot et al., 2018), the loss geometry is usually fixed
and not influenced by learning algorithms. However, in neural networks the interaction between

2Recall that the main theoretical bound in the original Adagrad paper (Duchi et al., 2011) is in terms of the
diagonal scaling.
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algorithms and loss landscapes is more complicated. Lewkowycz et al. (2020) find a so-called catapult
effect of initial learning rate on the training trajectory of SGD and related loss curvature. Cohen
et al. (2021) demonstrate that while training neural networks with GD, the maximum eigenvalue of
the Hessian evaluated at the GD iterates first increases and then plateaus at a level that is inversely
proportional to the step size. However, Cohen et al. (2021) leave open the problem of whether similar
interactive phenomena occur in algorithms that are not GD, including adaptive methods.

3 OVERVIEW OF RESULTS AND SETUP

3.1 ISSUES OF PRIOR ANALYSES ON ADAPTIVE METHODS

As is mentioned in Section 2, existing work on adaptive algorithms has mainly focused on black-
box analysis assuming some global worst-case parameters. However, these global bounds can be
extremely bad in complicated deep learning models, as is discussed in Section 1. To see this, we
initialized a transformer model3 with default initialization in Pytorch but chose a large gain4, and
computed the smoothness parameter (denoted as l) and the condition number (denoted as κ) of
loss Hessian on one layer. We observed that setting the gain as a large constant (e.g. 800) results
in extremely large l and κ (l ≥ 107 and κ ≥ 1010), which makes the convergence rates in prior
black-box analysis vacuous.

The failure of global worst-case analysis implies that we need to focus on the local trajectory of
algorithms. However, it is unclear that when two optimization algorithms are used, they will have the
same geometry in local trajectory. In particular, although in theory, adaptive algorithms can yield
to a convergence rate with better dependency on certain local geometry of the function comparing
to SGD (with momentum), it could still be the case that the local geometry along the trajectory of
adaptive algorithm can be much worse than that of SGD (with momentum).

That motivates us to study the local geometry, especially that obtained by adaptive methods comparing
to SGD (with momentum) in the paper. Motivated by the diagonal scaling of Adagrad and Adam for
neural network training, we ask the follow main question in our paper:

How does the local diagonal geometry (diagonal of the loss Hessian) along the local trajectory of
adaptive algorithms compare to that of SGD (with momentum)?

3.2 OVERVIEW OF THE EXPERIMENTS

As is discussed in Section 1, we considerROPT
med (t) defined in eq. (1) as a measurement of the uniformity

of the diagonal of the loss Hessian. We conduct experiments on different NLP tasks to examine
ROPT

med (t), as in language models, adaptive methods have shown significantly faster convergence than
SGD (with momentum). The details of these experiments will be shown in Section 4. To explore
potential different patterns of different layers, we do the computation layer by layer. On a wide
variety of transformer architectures and language modeling datasets from the same initialization, we
observe that:

When we train the neural network using Adam, the uniformity of diagonal geometry, mea-
sured by ROPT

med (t) is smaller than that when we train using SGD+M from the same initializa-
tion, except for first several layers.

Table 1 shows a typical example of RAdam
med (t) compared to RSGDM

med (t) on a sentence classification
task using BERT-small (Turc et al., 2019; Bhargava et al., 2021) (See Section 4.1 for details). We
repeated the experiments for 12 times starting from the same initialization. Table 1 shows the
averaged RAdam

med (t) and RSGDM
med (t) in some randomly selected layers (except for the first several). We

also report the averaged RSGDM
med (t)

RAdam
med (t)

and their standard deviations in the brackets.5 Figure 2 shows the
corresponding training losses of one in these 12 experiments.

3https://pytorch.org/tutorials/beginner/transformer_tutorial.html
4This refers to the gain parameter in some commonly used initialization functions of Pytorch, e.g.

torch.nn.init.xavier uniform ().
5RSGDM

med (t) values in Table 1 for most layers are roughly 1.4 to 2 times RAdam
med (t) in corresponding layers. In

practice, it can be considered significant because it might imply 1.4 to 2 times faster convergence.

4
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Table 1: RAdam
med (t) and RSGDM

med (t) in some layers, on the sentence classification task (see Section 4.1).

Layer# Iteration 0 Iteration 750 Iteration 1250
RSGDM

med (t) RAdam
med (t) RSGDM

med (t) RAdam
med (t)

RSGDM
med (t)

RAdam
med (t)

RSGDM
med (t) RAdam

med (t)
RSGDM

med (t)

RAdam
med (t)

9 15.7 15.7 12.76 9.65 1.45 (0.65) 11.43 14.24 0.94 (0.40)

12 22.63 22.63 13.17 7.41 1.92 (0.67) 10.62 9.67 1.33 (0.75)

15 9.35 9.35 80.57 53.52 1.65 (0.65) 100.65 61.80 2.01 (1.00)

17 82.37 82.37 405.02 223.56 1.91 (0.53) 423.28 337.32 1.43 (0.63)

18 31.32 31.32 17.07 13.24 1.43 (0.58) 18.15 15.63 1.21 (0.36)

22 47.13 47.13 233.72 72.67 3.54 (1.21) 158.38 93.13 2.28 (1.18)

24 31.17 31.17 17.52 17.34 1.13 (0.40) 13.51 14.23 1.05 (0.36)

To understand this phenomenon in a more principled point of view, we also provide a formal proof
of the statement in a simplified setting: large batch Adam and SGD+M on a 2-layer linear network.
Although simple, the choice of 2-layer linear network to understand learning dynamics is common in
prior works (e.g. (Tian et al., 2021)). Section 3.3 below describes the theoretical setup.

3.3 SETUP OF THE THEORETICAL ANALYSIS

Notation Let [d] = {1, 2, ..., d}. We use ‖ · ‖2 to denote the l2 norm of a vector, and ‖ · ‖F to
denote the Frobenius norm of a matrix. Let 〈·, ·〉 be the Euclidean inner product between vectors or
matrices. Let N (µ, σ2) be the one-dimensional Gaussian distribution with mean µ and variance σ2.
For a scalar (vector, matrix) A which evolves over time, we use A(t) to denote its value at time t.

Let there be m data points. The data matrix is X ∈ Rdx×m and the label matrix is Y ∈ Rdy×m. We
assume that the input dataset is whitened, i.e. Λxx := 1

mXX
T ∈ Rdx×dx is an identity matrix.

The parameters of a 2-layer linear network are given byW := (W2,W1). AssumeWi ∈ Rdi×di−1 for
i = 1, 2. We have d2 = dy, d0 = dx. We consider the square loss L(W ) := 1

2m‖W2W1X − Y ‖2F .

Denote A := 1
mY X

T ∈ Rdy×dx . Arora et al. (2019b) show that with whitened dataset,

L(W ) :=
1

2m
‖W2W1X − Y ‖2F = L̄(W ) + c, L̄(W ) :=

1

2
‖W2W1 −A‖2F . (2)

where c does not depend on W . We consider the following model with small Gaussian initialization.
Assumption 1 (Setup). The input covariance Λxx := 1

mXX
T ∈ Rdx×dx is an identity matrix. The

input and hidden layers are both of dimension d, i.e. d1 = d0 = d. Without loss of generality, we can
assume that A is a row vector (i.e. d2 = 1) whose coordinates are positive6 and Θ(1) in terms of d.

Assumption 2 (Gaussian Initialization). ∀i, j : w
(0)
2i ∼ N (0, 1

d2α ),W
(0)
1 [i, j] ∼ N (0, 1

d4α ) are
independently initialized with sufficiently large α > 0.

Denote Ã and Λ̃xx as the batch versions ofA and Λxx. We make the following large-batch assumption.
We emphasize that large batches are commonly used in NLP tasks (e.g. (Brown et al., 2020)).

Assumption 3 (Large Batch). For the randomly selected batches, assume E[Ã] = A, E[Λ̃xx] = Λxx.

∀i, j ∈ [d] : E
[
(Ãi −Ai)2

]
≤ σ2, E

[
(Λ̃xx[i, j]− Λxx[i, j])2

]
≤ σ2, and σ2 = O( 1

poly(d) ).

Denote g̃(t) as the batch gradient at time t. The update rules of SGD+M and Adam are given by

SGD+M: u(t+1) = βu(t) + g̃(t), W (t+1) = W (t) − ηu(t),

Adam: ηt = η ·
√

1− βt+1
2 /(1− βt+1

1 ), m(t+1) = β1m
(t) + (1− β1)g̃(t),

v(t+1) = β2v
(t) + (1− β2)g̃(t) � g̃(t), W (t+1) = W (t) − ηt

m(t)

√
v(t) + ξ

,

(3)

where η is the learning rate, β, β1, β2 are momentum parameters, and ξ is for numerical stability.
All operations on vectors are element-wise. Here and throughout, the notation f(x) = O(g(x))

6In Assumption 2 we assume Gaussian initialization. Due to the rotational invariance of Gaussian distribution,
we can assume that all coordinates of A are positive without loss of generality.
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(resp. f(x) = Ω(g(x)), f(x) = Θ(g(x))) means that there exist constants C1, C2 > 0 such that
f(x) ≤ C2g(x) (resp. f(x) ≥ C1g(x), C1g(x) ≤ f(x) ≤ C2g(x)). We will also use the notation
with∼, i.e. Õ(·), Ω̃(·), Θ̃(·) to hide factors that are logarithmic in d. In our theoretical analysis, “with
high probability”, or “w.h.p.” for short, means that with probability at least 1− 1

poly(d) .

4 THE UNIFORMITY OF DIAGONAL GEOMETRY

As is mentioned in Section 3.2, we computed ROPT
med (t) defined in eq. (1) on different language models.

In this section, we present the results of SGD+M and Adam on different architectures and datasets.
In Appendix A, we present the results of other adaptive algorithms.

During training we started from the same initial weights and used the same learning rate schedule
(constant or decreasing) for SGD+M and Adam. We tuned and chose the best (initial) learning rate
of SGD+M. The (initial) learning rate of Adam was set as a value under which Adam converged
faster than SGD+M with its best learning rate. The concrete values will be stated in later parts of this
section. We used large batch sizes to make the training procedure stable. When computing Hessian,
we also used large batch sizes. Due to the extremely large dimension, we did the computation on
some uniformly selected coordinates, more precisely, 200 coordinates per layer.

4.1 EXPERIMENTS ON REAL DATASETS

Sentence classification task on BERT-small We fine-tuned BERT-small (Turc et al., 2019; Bhargava
et al., 2021) on the IMDB dataset (Maas et al., 2011): the task is to classify whether movie reviews
are positive or negative.7 The momentum parameter β in SGD was set as 0.9. The two momentum
parameters (β1, β2) of Adam were set as (0.9, 0.999). We trained the model using linearly decreasing
learning rates for 10 epochs (2500 iterations). The initial learning rates of SGD+M and Adam were
0.001 and 5e-5, respectively. As mentioned in Section 3.2, Figure 2 and Table 1 show the training
losses and the comparison between RAdam

med (t) and RSGDM
med (t), respectively.

Translation task We trained a Seq2Seq network that uses Transformer to solve a machine translation
task on Multi30k (Elliott et al., 2016)(CC BY-NC-SA 4.0): this task is to train a German to English
translation model.8 The momentum parameter β in SGD was set as 0.9. The two momentum
parameters (β1, β2) of Adam were set as (0.9, 0.98). We trained the model using constant learning
rates (0.03 for SGD+M and 1e-4 for Adam) for 60 epochs (1800 iterations). The experiments were
repeated for 8 times starting from the same initialization. Figure 3(left) shows the training losses
for one among them. Table 2a shows the averaged RAdam

med (t), RSGDM
med (t) and RSGDM

med (t)

RAdam
med (t)

(with standard
deviation in the brackets) in some randomly selected layers.
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Figure 3: Training losses of Adam and SGD+M for the translation
task on (left) Multi30k (see Section 4.1) and (right) data with
randomly generated targets (see Section 4.2).
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weight matrix in the 27-th layer on the trans-
lation task (see Section 4.1).

4.2 EXPERIMENTS ON RANDOM DATASETS

We used the same model and momentum parameters as in the translation task described in Section 4.1
but generated random integers as targets. Similar to the setting on real targets, the model was trained

7https://huggingface.co/docs/transformers/v4.16.2/en/training
8https://pytorch.org/tutorials/beginner/translation_transformer.html

6
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Table 2: RAdam
med (t) and RSGDM

med (t) in some layers for the translation task. (a) on Multi30k and (b) on data with
randomly generated targets.

(a)

Layer# Epoch 0 Epoch 30 Epoch 55
RSGDM

med (t) RAdam
med (t) RSGDM

med (t) RAdam
med (t)

RSGDM
med (t)

RAdam
med (t)

RSGDM
med (t) RAdam

med (t)
RSGDM

med (t)

RAdam
med (t)

3 4.27 4.27 5.14 2.41 2.16 (0.75) 3.14 2 1.58 (0.41)

5 7.09 7.09 36.11 18.33 2.00 (0.42) 52.12 16.59 3.16 (0.64)

7 5.79 5.79 5.91 3.87 1.55 (0.32) 7.52 3.08 2.45 (0.56)

9 18.11 18.11 28.93 20.74 1.43 (0.28) 36.67 18 2.05 (0.18)

12 11.1 11.1 6.64 7.25 0.95 (0.21) 9.27 5.06 1.88 (0.54)

15 83.15 83.15 52.41 7.5 7.15 (1.63) 46.27 5.69 8.6 (3.06)

18 14.99 14.99 4.19 4.22 1.17 (0.45) 3.09 2.72 1.2 (0.46)

21 93.5 93.5 30.29 5.36 5.72 (1.05) 19.27 4.8 4.09 (0.86)

24 36.63 36.63 6.14 4.66 1.35 (0.31) 5.02 3.2 1.6 (0.36)

28 18.47 18.47 3.07 1.95 1.58 (0.16) 2.9 1.59 1.83 (0.14)

(b)

Layer# Epoch 0 Epoch 30 Epoch 55
RSGDM

med (t) RAdam
med (t) RSGDM

med (t) RAdam
med (t)

RSGDM
med (t)

RAdam
med (t)

RSGDM
med (t) RAdam

med (t)
RSGDM

med (t)

RAdam
med (t)

3 4.82 4.82 3.98 1.8 2.23 (0.36) 3.79 1.61 2.36 (0.32)

5 8.04 8.04 46.06 45.84 1.01 (0.17) 47.83 34.18 1.41 (0.30)

7 5.69 5.69 44.77 3.92 11.79 (2.37) 46.5 2.74 17.4 (2.99)

9 11.89 11.89 317.34 55.61 5.81 (0.70) 351.85 46.54 7.61 (0.87)

12 19.73 19.73 133.39 3.91 34.17 (4.51) 145.09 2.97 49.49 (13.40)

15 32.12 32.12 462.74 51.53 9.03 (0.91) 492.73 50.57 9.84 (1.03)

18 19.79 19.79 74.6 6.59 11.8 (3.33) 79.02 3.58 22.75 (6.01)

21 26.94 26.94 767.31 48.89 16.4 (3.38) 797.49 36.88 21.98 (3.40)

24 34.72 34.72 467.75 9.15 52.57 (11.16) 602.03 3.51 172.65 (18.85)

28 13.13 13.13 19.8 2.22 8.99 (1.74) 19 1.63 11.7 (1.48)

using constant learning rates (0.015 for SGD+M and 5e-5 for Adam) for 60 epochs (1800 iterations),
and we repeated the experiments for 8 times starting from the same initialization. Figure 3(right)
shows the training losses for one among them. Table 2b shows the averaged RAdam

med (t), RSGDM
med (t) and

RSGDM
med (t)

RAdam
med (t)

(with standard deviation in the brackets) of the same 10 layers as in Table 2a.9

4.3 SUMMARIZATION OF THE EMPIRICAL RESULTS AND DISCUSSION

Overall, through extensive experiments on language models, we demonstrate that starting from
the same initialization, the ROPT

med (t) values found by Adam are smaller than those found by
SGD+M, except for the first several layers. This suggests that Adam is biased towards a region
with more uniform diagonal Hessian than SGD+M. In Appendix A.10 we also validate this observation
on the in-distribution test data.

Positive correlation between uniformity of diagonal Hessian and fast convergence. We observe
that on random dataset, SGD+M plateaus after about 400 steps and thus converges much slower when
compared to Adam than on real dataset (see Figure 3). On the other hand, the gaps of RSGDM

med (t)
and RAdam

med (t) are more significant on random data than on real data (see Table 2b) as well. In
Appendix A.4, we conduct another experiment where we switch from SGD to Adam in the middle
and compare it with the model trained by Adam from the beginning. The observation is that both
the loss gap and the gap of ROPT

med (t) are gradually closed after switching (see Figure 7 and Table 8).
Hence we find a positive correlation between fast convergence and the uniformity of diagonal of
loss Hessian, suggesting that a region with more uniform diagonal of Hessian is also a region that is
more amenable to fast optimization. In Appendix A we study other adaptive algorithms (Adagrad,
RMSprop and AMSGrad) and get similar observation: all these adaptive methods converge faster
than SGD or SGD+M and also bias the trajectory to regions with smaller ROPT

med (t), suggesting that
the uniformity of diagonal Hessian might be a universal mechanism (partially) explaining the faster
optimization of adaptive algorithms than SGD (with momentum).

More discussions on the trajectory difference. Considering the fact that our comparison between
RAdam

med (t) and RSGDM
med (t) is conditioned on the same iteration when SGD+M has larger training loss

than Adam, there is a potential alternative explanation of the Hessian diagonal uniformity. That is,
the global minimum has uniform Hessian, and Adam simply converges faster to it than SGD+M.
To rule out this possibility, in Appendix A.3 we add a comparison of our measurements RAdam

med (t)
and RSGDM

med (t′), where t, t′ are picked such that tth Adam iterate and t′th SGD+M iterate have the
same training loss. The results (in Table 7) show that RAdam

med (t) < RSGDM
med (t′) for most layers, thus

demonstrating that the trajectories of Adam and SGD+M are truly different and that the difference is
because Adam biases the local geometry (as opposed to faster convergence).

Adding regularization. People in practice usually add weight decay (equivalent to l2 regularization)
to encourage better generalization ability. In Appendix A.7 we compare SGD+M and Adam when
both using small weight decay values (0.001). The results in Figure 13a and Table 9 suggest that
in this case, the positive correlation between ROPT

med (t) and convergence speed still holds: Adam
converges faster than SGD+M and in most of the layers except for the first several, RAdam

med (t) values

9To prevent ROPT
med (t) from getting too large due to tiny median, we added an additional term

0.001max{|H(t)
ii |}

d
i=1 to the denominator of eq. (1) when computing.
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are smaller than RSGDM
med (t). This reveals the robustness of our observation under weak regularization.

However, under large weight decay parameters, we observed cases where Adam still converged faster
but RAdam

med (t) values were larger rather than smaller. In the case of strong regularization, the adaptivity
of Adam requires further exploration and we hope to find new mechanisms in the future.

Image tasks. Although in this paper we focus on language models where Adam shows significant
fast convergence, we also add supplementary results in Appendix A.8 on image tasks where SGD+M
performs better. On a residual network trained on CIFAR-10, we observed that Adam did not converge
faster than SGD+M (see Figure 13b) and in the meantime, RAdam

med (t) values were no longer smaller
than RSGDM

med (t) during training (see Table 10). This reveals the connection between the local diagonal
geometry and the convergence speed from another perspective. That is, when the diagonal of Hessian
of Adam is not more uniform than SGD+M, its convergence speed is not better, either.

5 THEORETICAL ANALYSIS

In Section 4, we empirically demonstrate the uniformity of diagonal geometry. In this section, we
theoretically analyze this property for large batch Adam and SGD+M on a two-layer linear network
with 1-dimensional output.

Since the weights and Hessians in different layers may have different magnitudes, we compute the
ROPT

med (t) layer by layer. We denote RSGDM
med,k (t) (resp. RAdam

med,k(t)) as the ROPT
med (t) found by SGD+M

(resp. Adam) w.r.t. Wk at time t where k = 1, 2.

Theorem 1. Under Assumption 1, 2 and 3, consider the weights
{
W

(t)
SGD

}
t≥0

(resp.
{
W

(t)
Adam

}
t≥0

)

obtained by SGD+M (resp. Adam) defined in (3).

1. For any p > 0, pick 0 < ε < 1
dp , η ≤ O

(
ε

d7α/4+4

)
and α ≥ 4(p+ 2). Suppose σ ≤ η3/2

dα/2+1 , then

there exists TSGD,1, TSGD,2 such that w.h.p., L̄
(
W

(TSGD,1)
SGD

)
= Θ(d), L̄

(
W

(TSGD,2)
SGD

)
≤ Õ

(
1
dp

)
, and

∀t ∈ [TSGD,1, TSGD,2] : RSGDM
med,k (t) = Ω(log d), k = 1, 2.

2. For any p > 0, pick η ≤ O
(

1
d3α

)
, ξ ≤

√
η

d3α−1 , α ≥ p+4
3 and β2 = β2

1 . Suppose σ ≤ η3/2ξ2

d13/4
,

Then ∃TAdam,1, TAdam,2 such that w.h.p., L̄
(
W

(TAdam,1)
Adam

)
= Θ(d), L̄

(
W

(TAdam,2)
Adam

)
≤ Õ

(
1
dp

)
, and

∀t ∈ [TAdam,1, TAdam,2] : RAdam
med,k(t) = 1± Õ

(
η

1
4 +

1

d
α
2−

1
4

)
, k = 1, 2.

An immediate corollary of this theorem below gives the difference between iterates of Adam and
SGD+M that have the same loss.
Corollary 1. Under the setup in Theorem 1, w.h.p., for any t ∈ [TSGD,1, TSGD,2] and t′ ∈
[TAdam,1, TAdam,2] such that L̄

(
W

(t)
SGD

)
= L̄

(
W

(t′)
Adam

)
∈
[
Ω̃
(

1
dp

)
,Θ(d)

]
, we have

RSGDM
med,k (t) = Ω(log d), RAdam

med,k(t′) = 1± Õ
(
η

1
4 +

1

d
α
2−

1
4

)
, k = 1, 2.

Theorem 1 and Corollary 1 tell us that during a long training period when the loss decreases from
Θ(d) to Õ

(
1
dp

)
, the diagonal of loss Hessian for Adam keeps nice uniformity in the sense that for

each layer, its diagonal elements have roughly the same value, i.e. RAdam
med,k(t) = 1± o(1), k = 1, 2.

On the other hand, the diagonal of loss Hessian for SGD+M is less uniform. Appendix B gives a
proof sketch of Theorem 1. The detailed proof can be found in Appendix C and D.

6 THE LOW RANK STRUCTURE OF WEIGHT MATRICES AND UNIFORMITY OF
LEADING SINGULAR VECTORS

The proof sketch in Appendix B highlights one crucial intuition of Theorem 1: After TSGD,1 (resp.
TAdam,1) steps, W1 of SGD+M (resp. Adam) becomes an approximately rank-1 matrix. Consider

8
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the left singular vector u := [u1, u2, ..., ud]
T which corresponds to the leading singular value σ1.

We can show that the distribution of u21, u
2
2, ..., u

2
d for Adam is more uniform than that of SGD+M.

This property, we call the uniformity of the leading singular vector, is related to the uniformity of the
diagonal of loss Hessian, see Appendix F for more details.

Similar low rank bias after training has been studied in prior works (e.g. (Gunasekar et al., 2017;
Li et al., 2018; Chou et al., 2020)). For more complicated models, we want to check whether the
weight matrices also have low rank structures and if so, whether we can still observe the uniformity
of leading singular vectors. More formally, consider the weight matrix in some layer W ∈ Rm×n,
we want to check

(A) Whether W ∈ Rm×n is approximately a rank k matrix with k � min{m,n}, and

(B) If (A) is true, then consider the top k singular values σ1, ..., σk and corresponding left singular
vectors u1,u2, ...uk. Define a new vector ũ :=

∑k
i=1 σ

2
iui � ui := [ũ1, ũ2, ..., ũd]

T and compute

Ru := maxi ũi
median ũi

, which is a generalized version of maxi u
2
i

median u2
i

in the rank 1 case. We want to see whether
Ru obtained by Adam is smaller than that of SGD+M.

After reviewing the weight matrices we got in different settings, we observed that (A) and (B) hold
for many layers in those models. For example, on the translation task mentioned in Section 4.1, we
found 12 layers which had approximately low rank structures and for 10 of them, Ru values (defined
in (B)) obtained by Adam were smaller than those found by SGD+M. Figure 4 shows the result on
one typical layer. Results of more layers can be found in Appendix A.5.

Remarks 1. The definition of Ru is based on the connection between diagonal of loss Hes-
sian and weight matrices. Appendix F shows that for a 2-layer linear network, ROPT

med,2(t) =

maxi ‖W (t)
1 [i,:]‖22

median‖W (t)
1 [i,:]‖22

. When W1 ∈ Rm×n is approximately rank k, i.e. W1 ≈
∑k
i=1 σiuiv

T
i , de-

note ui = [ui1, ui2, ..., uim]T and vi = [vi1, vi2, ..., vin]T , we have that for the j-th row,

‖W1[j, :]‖22 ≈
∥∥∥∑k

i=1 σiuijv
T
i

∥∥∥2
2

=
∑k
i=1 σ

2
i u

2
ij . By defining ũ = [ũ1, ũ2, ..., ũd]

T :=∑k
i=1 σ

2
iui � ui, we have that ‖W1[j, :]‖22 ≈ ũj . Although in multi-layer nonlinear neural net-

works, the connection between diagonal of loss Hessian and the weight matrices is more complicated
and ROPT

med,2(t) may depend on the product of many weight matrices rather than one single matrix, we
still believe that this definition of Ru is a reasonable ratio to consider.

2. We may also want to consider the right singular vectors v1,v2, ...vk and corresponding ṽ =

[ṽ1, ṽ2, ..., ṽd]
T :=

∑k
i=1 σ

2
i vi � vi and compute Rv := maxi ṽi

median ṽi
for Adam and SGD+M. However,

on this translation task, among the 12 layers which were approximately low rank, for only 6 of them,
Rv of Adam were smaller, i.e. we did not observe uniformity of the leading right singular vector
for Adam. Results of Rv can be found in Appendix A.5. One possible reason is that for a weight
matrix, its right singular vectors are closer to the input data than left singular vectors and more easily
influenced by the data, therefore may not show uniformity.

7 CONCLUSION AND FUTURE WORK

We demonstrate that adaptive optimization methods bias the training trajectory towards a region
where the diagonal of loss Hessian is more uniform, through extensive experiments on language
models and theoretical analysis in a simplified setting of two-layer linear networks. Although our
findings may not directly lead to an improved algorithm for practical use, they provide a new way of
thinking when designing new algorithms: in contrast with the traditional view which tries to design
a method that performs better in the bad loss geometry, our findings suggest that we can design
algorithms which implicitly avoid regions with bad geometry. There are a lot of future directions
along this line. For example, our theoretical results on the two-layer linear networks may be able to
generalize to multi-layer networks. In fact, people conjecture that the key-value-query structure in
language models can be approximated by a three-layer linear network. Hence the generalization to
multi-layer networks might provide more connection to real deep models and could be an interesting
and challenging future direction. Moreover, it is also possible to relax our large-batch assumption
(Assumption 3) and prove similar results in the general stochastic setting.

9
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REPRODUCIBILITY STATEMENT

The training details (e.g. hyperparameters) of experiments are specified in Section 4. The source
code is provided in the supplemental material. For the theoretical results, Section 3.3 states the full
set of assumptions. Section C and Section D in the appendix provide complete proofs.
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A MORE EXPERIMENTS OF THE UNIFORMITY OF DIAGONAL GEOMETRY

A.1 VANILLA SGD VS. ADAGRAD

In this section, we present the ROPT
med (t) values defined in eq. (1) obtained by vanilla SGD and Adagrad

on a language modeling task10. The task is to assign a probability for the likelihood of a given word
(or a sequence of words) to follow a sequence of words. We trained a transformer model to solve this
problem on both Wikitext-2 (Merity et al., 2017)(CC BY-SA 3.0) and random dataset (generating
random integers as targets). This model has roughly 8 layers (not counting normalization and dropout
layers)

The setup is the same as in Section 3.2. We used the same learning rate schedule (constant or
decreasing) for SGD and Adagrad. We tuned and chose the best (initial) learning rate of SGD. The
(initial) learning rate of Adagrad was set as a value under which Adagrad converged faster than
SGD with its best (initial) learning rate. We used large batch sizes to make the training procedure
more stable. When computing Hessian, we also used large batch sizes. Due to the extremely large
dimension, we did the computation on some uniformly selected coordinates, more precisely, 200
coordinates per layer.

We tried different initialization (normal and uniform) by using different gains of the Pytorch initial-
ization schedule.

A.1.1 EXPERIMENTS ON REAL DATASET

Figure 5a shows the training losses on real dataset (wikitext-2). Table 3 (resp. Table 4) shows the
ROPT

med (t) for Adagrad and SGD under uniform (resp. normal) initialization with different gains.
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Figure 5: Training losses of Adagrad and SGD on wikitext-2 (left) and random data (right)

Table 3: ROPT
med (t) of Adagrad and SGD under uniform initialization with different gains

(a) Gain = 2

Layer# Epoch 1 Epoch 20 Epoch 40
SGD Adagrad SGD Adagrad SGD Adagrad

1 6.07 6.77 5.91 9.77 5.16 10.37

2 4.60 6.26 3.43 1.66 3.44 1.88

3 5.15 6.84 4.35 4.34 4.84 3.60

4 9.47 10.78 9.76 3.54 8.67 3.14

5 12.54 13.96 10.31 6.59 9.79 6.98

6 4.92 5.25 7.21 2.33 7.94 2.28

7 5.73 5.45 40.56 4.57 21.24 4.76

8 9.39 8.87 37.95 4.50 46.03 3.19

(b) Gain = 0.5

Layer# Epoch 1 Epoch 20 Epoch 40
SGD Adagrad SGD Adagrad SGD Adagrad

1 69.36 78.60 15.26 7.74 18.22 7.23

2 24.12 24.36 4.05 2.30 3.70 2.04

3 2.83 2.85 3.78 4.98 3.56 4.40

4 5.25 4.74 3.83 5.68 3.11 4.81

5 66.49 67.83 88.75 19.31 63.01 15.64

6 6.54 6.91 3.57 2.08 3.50 1.97

7 3.22 3.73 13.03 3.97 9.55 4.07

8 6.12 5.99 6.73 7.82 5.43 6.98

10https://pytorch.org/tutorials/beginner/transformer_tutorial.html
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Table 4: ROPT
med (t) of Adagrad and SGD under normal initialization with different gains

(a) Gain = 1

Layer# Epoch 1 Epoch 20 Epoch 40
SGD Adagrad SGD Adagrad SGD Adagrad

1 6.76 6.06 8.27 12.28 9.69 11.17

2 9.51 6.61 3.19 1.87 3.21 1.73

3 7.38 7.35 8.61 3.38 9.25 3.94

4 18.02 15.63 6.45 4.86 7.49 4.44

5 12.70 9.35 11.69 11.23 15.07 12.18

6 12.76 11.86 3.84 2.32 3.20 2.09

7 11.79 8.58 17.95 4.32 14.99 4.50

8 17.09 12.73 26.70 5.16 26.91 6.73

(b) Gain = 0.5

Layer# Epoch 1 Epoch 20 Epoch 40
SGD Adagrad SGD Adagrad SGD Adagrad

1 9.12 14.46 10.90 8.00 10.19 8.55

2 10.70 15.42 8.52 2.12 8.88 2.04

3 5.73 5.94 10.16 2.80 6.05 2.99

4 16.62 12.94 8.90 3.91 8.12 4.14

5 15.98 16.98 42.57 10.76 18.45 10.16

6 4.84 6.46 7.92 2.66 5.30 2.46

7 6.52 6.55 107.51 3.14 136.38 2.73

8 8.39 8.20 337.34 5.18 315.21 4.48

A.1.2 EXPERIMENTS ON RANDOM DATASET

Figure 5b shows the training losses on random dataset and Table 5 shows the ROPT
med (t) in different

layers.

Table 5: ROPT
med (t) of Adagrad and SGD for random data

Layer# Epoch 1 Epoch 20 Epoch 40
SGD Adagrad SGD Adagrad SGD Adagrad

1 10.88 10.98 9.99 18.66 9.67 22.37

2 9.47 12.15 14.98 4.43 13.01 3.99

3 7.45 8.52 459.71 6.09 451.16 5.11

4 9.84 10.42 135.37 7.22 126.91 6.04

5 7.09 7.88 103.60 353.89 184.61 190.17

6 7.68 8.58 18.38 4.08 18.69 2.73

7 7.81 5.40 294.68 62.72 229.25 29.76

8 13.51 9.16 329.12 20.59 203.70 9.57

A.2 RMSPROP AND AMSGRAD

In this section, we present the results of RMSprop and AMSGrad and compare them with SGD+M.
The experiments were conducted on the translation task described in Section 4.1. The learning rates
we used were 2.5e-5 for RMSprop, 0.0005 for AMSGrad and 0.03 for SGD+M. Both RMSprop and
SGD+M used momentum parameter 0.9. The two momentum parameters (β1, β2) of AMSGrad were
(0.9, 0.98). Figure 6 shows the training losses and Table 6 shows the corresponding ROPT

med (t).
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Figure 6: Training losses of RMSprop, AMSGrad and SGD+M on the translation task described in Section 4.1.
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Table 6: RRMSprop
med (t), RAMSGrad

med (t) and RSGDM
med (t) in some layers, on the translation task described in Section 4.1

.

Layer# Epoch 10 Epoch 20 Epoch 40
RSGDM

med (t) RRMSprop
med (t) RAMSGrad

med (t) RSGDM
med (t) RRMSprop

med (t) RAMSGrad
med (t) RSGDM

med (t) RRMSprop
med (t) RAMSGrad

med (t)

3 3.97 2.69 2.56 2.33 1.89 1.68 2.83 1.62 1.56

5 26.17 21.19 11.36 37.11 17.83 10.85 51.94 10.22 12.31

7 4.10 6.98 6.12 3.94 4.95 2.92 7.58 2.29 2.58

9 29.41 35.72 25.86 37.81 19.89 16.90 30.68 16.24 9.97

12 4.93 6.20 12.67 4.63 6.61 4.64 6.44 5.13 4.06

15 85.06 33.63 19.51 140.99 12.22 6.72 44.07 6.98 5.37

18 8.71 2.99 9.48 3.86 2.44 4.16 3.51 2.10 2.35

21 95.34 11.68 6.62 47.20 6.37 4.74 22.20 4.58 3.58

24 8.70 5.67 6.95 8.13 3.59 5.13 6.46 2.30 2.83

28 4.44 2.42 2.64 4.67 1.85 1.81 2.63 1.46 2.13

A.3 COMPARISON CONDITIONED ON THE SAME LOSS

In this section, we compare RSGDM
med (t) and RAdam

med (t) conditioned on the same training loss. More
precisely, we make comparison of RAdam

med (t) and RSGDM
med (t′), where t, t′ are picked such that tth Adam

iterate and t′th SGD+M iterate have the same training loss. The details of the tasks are described in
in Section 4.1. Table 7 shows the results of RAdam

med (t) and RSGDM
med (t′) in some layers.

Table 7: RAdam
med (t) and RSGDM

med (t′) in some layers. Dataset and task: (a) sentence classification task on BERT-
small, (b) translation task on Multi30k.

(a)

Layer# Loss 0.251 Loss 0.170 Loss 0.133
RSGDM

med (t′) RAdam
med (t) RSGDM

med (t′) RAdam
med (t) RSGDM

med (t′) RAdam
med (t)

9 16.77 13.69 14.14 12.71 15.17 9.86

12 16.68 8.29 9.98 8.31 8.90 5.42

15 18.64 7.79 51.39 46.43 80.82 40.97

17 208.29 381.05 464.37 315.58 498.26 313.99

18 14.43 23.56 19.17 19.26 15.76 12.99

22 257.32 88.47 188.55 110.87 197.79 139.48

24 34.22 16.34 16.42 18.08 14.04 15.97

(b)

Layer# Loss 3.72 Loss 2.78 Loss 1.90
RSGDM

med (t′) RAdam
med (t) RSGDM

med (t′) RAdam
med (t) RSGDM

med (t′) RAdam
med (t)

3 4.01 4.45 5.80 3.02 2.44 2.28

5 31.19 27.50 44.29 21.46 57.83 19.52

7 5.80 4.38 7.51 3.71 5.25 2.87

9 21.23 53.65 28.99 20.92 44.26 28.13

13 53.18 17.77 51.17 20.64 35.80 35.49

15 82.30 186.41 34.17 13.76 33.87 5.31

21 100.43 23.66 23.45 5.12 12.96 5.35

26 7.45 3.48 4.69 3.10 3.33 2.83

30 19.14 9.54 10.46 5.48 9.56 5.33
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Figure 7: Training losses of SGD, Adam after SGD
and Adam for the translation task

Table 8: ROPT
med (t) of SGD, Adam after SGD and Adam

in some layers after roughly 2160 iterations

Layer# SGD Adam Adam after SGD Adam

13 294.76 150.02 332.96 150.02

14 14.34 5.84 5.33 5.84

15 36.38 16.66 11.86 16.66

16 6.47 7.05 3.76 7.05

17 17.17 6.05 4.76 6.05

26 5.68 3.53 2.30 3.53

27 14.33 15.93 21.76 15.93

28 9.10 1.71 1.71 1.71

29 8.22 3.04 2.82 3.04

30 11.39 5.12 5.29 5.12

A.4 EXPERIMENTS OF SWITCHING FROM SGD TO ADAM

In this section we describe another learning schedule: the “Adam after SGD” schedule, where we
switch from SGD to Adam in the middle to see whether the loss and ROPT

med (t) can catch up with the
model trained by Adam from the very beginning. Again, we used the same model as in the translation
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task in Section 4.1. In this section, we did not add momentum term to SGD in order to get a larger
gap between SGD and Adam than the case using momentum. We want to see whether this larger gap
can be closed after switching to Adam in the middle.

As is shown in Figure 7 and Table 8, both the loss gap and the gap of ROPT
med (t) were closed after a

period of training after switching algorithms, which provides evidence of the connection between
convergence speed and uniformity of diagonal of loss Hessian.

A.5 THE LOW RANK STRUCTURE

In this section, we present more results for the experiments in Section 6.

We examined the weights of the model trained for the translation task in Section 4.1. Among roughly
30 layers, we observed that for 12 layers, at least the weight matrices obtained by Adam after training
have approximately low rank structures.

Figure 8 shows the examples of layers with or without the low rank structure.
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Figure 8: Examples of layers with approximately low rank structure (right) and without low rank structure (left)

We then studied the uniformity of leading singular vectors of these 12 layers, i.e. computed Ru and
Rv defined in (B) and the second remark of Section 6. The observation is that for 10 out of these 12
layers, Ru values of Adam were smaller those of SGD, which implies the uniformity of leading left
singular vectors of Adam. However, we did not observe significant uniformity for Adam in terms of
leading right singular vectors (Rv). The second remark of Section 6 discusses possible reasons.

Figure 9 shows how Ru and Rv changed over time in some layers.
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Figure 9: Ru and Rv for Adam and SGD with momentum in some layers
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A.6 HOW THE (ADAPTIVE) GRADIENT ALIGNS WITH DIAGONAL OF LOSS HESSIAN

In this section we present the uniformity of diagonal geometry of adaptive methods from another
perspective. Denote Hii as the (i, i)-th element of the loss Hessian H and gi as the i-th element of the
gradient. It is conjectured that when |Hii| is large, the corresponding |gi| is usually large as well. For
adaptive methods, we can regard the update per step as the learning rate times the “adaptive gradient”.
Let’s use gadapt,i to represent the i-th component of the adaptive gradient. Through experiments on
language models, we found that |gadapt,i| for different i are quite uniform and do not align with |Hii|
as the true gradient |gi| does.

In the experiments, we first sorted |Hii| in the ascent order: |Hi1,i1 | ≤ |Hi2,i2 | ≤ ... ≤ |Hid,id |
(suppose H ∈ Rd×d), and then plotted the corresponding |gik | and |gadapt,ik | for k ∈ [d].

A.6.1 SGD VS. ADAGRAD

Here we compare SGD and Adagrad on the language modeling task on wikitext-2 described in
Section A.1. We observed that the figures of all layers are quite similar so we select one layer as an
example, as is shown in Figure 10.
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Figure 10: How the true gradient ({|gik |}
d
k=1) and “adaptive gradient” ({|gadapt,ik |}

d
k=1) align with diagonal of

Hessian ({|Hik,ik |}
d
k=1). Here coordinates are sorted such that |Hi1,i1 | ≤ |Hi2,i2 | ≤ ... ≤ |Hid,id | (suppose

H ∈ Rd×d). Experiments were conducted on the model described in Section A.1. This figure shows the results
on the 12-th layer.

A.6.2 SGD WITH MOMENTUM VS. ADAM

Here we compare Adam and SGD+M on the tasks described in Section 4.1. Again, we select one
layer as an example for each task. Figure 11 shows the results on the sentence classification task and
Figure 12 shows the results on the translation task.

A.7 ADDING REGULARIZATION AND OTHER TRICKS

In this section, we add weight decay to both Adam and SGD+M on the translation task described
in Section 4. The momentum parameter β in SGD was set as 0.9. The two momentum parameters
(β1, β2) of Adam were set as (0.9, 0.98). For both algorithms, we set the weight decay parameter as
0.001. We trained the model using constant learning rates for 60 epochs (1800 iterations). We tuned
and chose the best learning rate 0.03 for SGD+M. The learning rate of Adam was set as 0.0001, under
which Adam converged faster than SGD+M with its best learning rate 0.03. Figure 13a shows the
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Figure 11: How the true gradient ({|gik |}
d
k=1) and “adaptive gradient” ({|gadapt,ik |}

d
k=1) align with diagonal of

Hessian ({|Hik,ik |}
d
k=1). Here coordinates are sorted such that |Hi1,i1 | ≤ |Hi2,i2 | ≤ ... ≤ |Hid,id | (suppose

H ∈ Rd×d). Experiments were conducted on the sentence classification task described in Section 4.1. This
figure shows the results on the 12-th layer.
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Figure 12: How the true gradient ({|gik |}
d
k=1) and “adaptive gradient” ({|gadapt,ik |}

d
k=1) align with diagonal of

Hessian ({|Hik,ik |}
d
k=1). Here coordinates are sorted such that |Hi1,i1 | ≤ |Hi2,i2 | ≤ ... ≤ |Hid,id | (suppose

H ∈ Rd×d). Experiments were conducted on the translation task described in Section 4.1. This figure shows the
results on the 5-th layer.

training losses and Table 9 shows the values of RAdam
med (t), RSGDM

med (t) and RSGDM
med (t)

RAdam
med (t)

in some randomly
selected layers.

A.8 RESULTS ON IMAGE TASKS

We trained a ResNet11 on CIFAR-10 dataset and compared the convergence speed and ROPT
med (t) of

SGD+M and Adam. The momentum parameter β in SGD was set as 0.9. The two momentum
parameters (β1, β2) of Adam were set as (0.9, 0.98). The model was trained using constant learning

11We borrowed the implementation here https://pytorch-tutorial.readthedocs.io/en/
latest/tutorial/chapter03_intermediate/3_2_2_cnn_resnet_cifar10/ and replace
the “layers” array [2,2,2] with [1,1,1].
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Figure 13: (a) Training losses of Adam and SGD+M for the translation task, both with weight decay. (b) Training
losses of Adam and SGD+M for a ResNet trained on CIFAR-10.

Table 9: RAdam
med (t) and RSGDM

med (t) (both using weight decay) in some layers for the translation task.

Layer# Epoch 0 Epoch 30 Epoch 55
RSGDM

med (t) RAdam
med (t) RSGDM

med (t) RAdam
med (t)

RSGDM
med (t)

RAdam
med (t)

RSGDM
med (t) RAdam

med (t)
RSGDM

med (t)

RAdam
med (t)

3 73.09 73.09 17.65 13.11 1.35 13.38 6.28 2.13

5 469.88 469.88 293.48 310.85 0.94 601.68 588.12 1.02

7 80.78 80.78 8.22 39.65 0.21 13.65 4.85 2.81

9 494.27 494.27 150.14 123.79 1.21 301.89 119.53 2.53

15 632.10 632.10 277.18 175.34 1.58 334.48 282.88 1.18

18 55.08 55.08 6.56 4.45 1.47 23.88 4.52 5.29

21 549.62 549.62 257.89 44.78 5.76 515.99 53.79 9.59

24 107.51 107.51 8.54 3.64 2.34 53.79 3.32 16.20

28 13.77 13.77 4.74 2.37 2.00 15.60 2.15 7.24

30 491.62 491.62 6.91 2.66 2.60 9.60 2.02 4.77

rates for 41 epochs (2050 iterations). We tuned and chose the best learning rates for both algorithms:
0.5 for SGD+M and 0.005 for Adam. Figure 13b shows the training losses and Table 10 shows the
values of RAdam

med (t), RSGDM
med (t) and RSGDM

med (t)

RAdam
med (t)

.

Table 10: RAdam
med (t) and RSGDM

med (t) for ResNet on CIFAR-10.

Layer# Epoch 10 Epoch 20 Epoch 40
RSGDM

med (t) RAdam
med (t)

RSGDM
med (t)

RAdam
med (t)

RSGDM
med (t) RAdam

med (t)
RSGDM

med (t)

RAdam
med (t)

RSGDM
med (t) RAdam

med (t)
RSGDM

med (t)

RAdam
med (t)

1 6.88 25.34 0.27 3.74 39.35 0.09 4.39 15.80 0.28

2 110.19 35.93 3.07 32.97 36.27 0.91 60.69 28.06 2.16

3 40.89 16.92 2.42 13.98 15.92 0.88 11.70 37.01 0.32

4 28.56 23.66 1.21 11.48 13.04 0.88 7.99 14.51 0.55

5 13.47 23.78 0.57 8.64 12.07 0.72 6.52 14.23 0.46

6 18.72 12.49 1.50 12.19 8.80 1.38 8.96 21.69 0.41

7 18.85 39.25 0.48 9.00 12.81 0.70 13.87 11.42 1.22

8 13.79 19.91 0.69 8.87 11.72 0.76 7.48 9.34 0.80

9 12.50 14.85 0.84 9.62 8.06 1.19 11.35 8.08 1.41

10 14.89 14.53 1.02 8.15 5.80 1.41 6.21 8.89 0.70

A.9 COMPARISON BETWEEN ROPT
MED (t) AND SINGULAR VALUE-BASED METRICS

In Section 4, through extensive experiments on language models, we demonstrate that when we
train the neural network using Adam, the uniformity of diagonal geometry, measured by ROPT

med (t) is
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smaller than that when we train using SGD+M from the same initialization, for most of the layers.
We are aware that people also usually consider Hessian singular values instead of diagonal entries to
measure the loss geometry. Hence in this section we make a comparison between our diagonal-based
metric and singular value-based metrics.

First, we believe that our metric has a natural connection to the mechanism that underlies adaptive
methods. Adaptive methods in practice choose coordinate-wise adaptive learning rates. From a
high-level perspective, this procedure can be viewed as adapting to the loss smoothness with respect
to each coordinate. The smoothness of certain coordinate is measured by the second derivative with
respect to this coordinate and therefore corresponds to the diagonal entries of loss Hessian. Our
metric, which measures these diagonal entries, is thus fundamentally intertwined with the mechanism
that underlies adaptive methods.

Next, we empirically demonstrate that our metric ROPT
med (t) is a reasonable proxy of singular value-

based metrics. Define a singular value-based metric SOPT
med (t) :=

max{σi(t)}di=1

median {σi(t)}di=1

as an analogy of

our diagonal-based metric ROPT
med (t), where {σi(t)}di=1 denotes the singular values of loss Hessian

H(t) ∈ Rd×d at the tth iterate. We compare SOPT
med (t) along the trajectories of Adam and SGD+M in

the translation task described in Section 4.1. Table 11 suggests that if measured by singular values,
Adam is also biased to a region with smaller SOPT

med (t) than SGD+M, similar to the observation for
ROPT

med (t). This is expected because in Appendix E, we demonstrate that the loss Hessian approaches
diagonal during training. The fact that our diagonal-based metric and singular value-based metric give
the same result also reveals the robustness of our observation to the choice of metric, demonstrating
that there does exist some geometry bias of Adam towards more uniform regions even when measured
by different metrics.

Finally, there is strong reason why our metric is often easier to compute empirically and analyze
theoretically than singular value-based metrics such as SOPT

med (t).

1. From the empirical computation perspective, suppose the loss Hessian is d × d. Then
computing its singular values, in general, requires computing the whole matrix with d2
elements. However, our metric only requires computing the d diagonal entries.

2. From the theoretical analysis perspective, in Appendix F, we show that the diagonal of
loss Hessian in linear networks can be connected to weight matrices by simple formulas.
These straightforward formulas simplify the analysis and allow us to connect our metric
to the low-rank structure of weight matrices and the uniformity of their leading singular
vectors (see Section 6 for more discussions). However, all these nice connections fail to
hold for singular value-based metrics. The formulas of singular values are very complicated
even in linear networks, making it almost impossible to theoretically analyze any singular
value-based metrics.

Table 11: SAdam
med (t) and SSGDM

med (t) in some layers for the translation task.

Layer# Epoch 0 Epoch 30 Epoch 55
SSGDM

med (t) SAdam
med (t) SSGDM

med (t) SAdam
med (t)

SSGDM
med (t)

SAdam
med (t)

SSGDM
med (t) SAdam

med (t)
SSGDM

med (t)

SAdam
med (t)

3 4.53 4.53 6.08 2.87 2.12 5.92 2.58 2.30

5 14.64 14.64 40.01 15.38 2.60 52.28 15.05 3.47

7 6.91 6.91 9.84 5.06 1.94 12.25 4.22 2.90

9 24.12 24.12 42.02 30.89 1.36 33.20 21.54 1.54

12 19.07 19.07 32.41 24.84 1.30 28.83 14.23 2.03

15 47.03 47.03 69.97 11.54 6.06 42.71 7.19 5.94

18 15.96 15.96 26.03 29.73 0.88 18.46 17.94 1.03

21 31.03 31.03 25.84 7.92 3.26 19.71 7.06 2.79

24 35.42 35.42 21.31 18.08 1.18 14.62 10.33 1.41

28 55.38 55.38 6.18 2.77 2.23 4.84 2.01 2.41
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A.10 THE UNIFORMITY OF DIAGONAL GEOMETRY ON IN-DISTRIBUTION TEST DATA

In this section we compare RAdam
med (t) and RSGDM

med (t) on the in-distribution test data. The task is the
translation task described in Section 4.1. Table 12 validates that on in-distribution test data, Adam is
also biased to a region with smaller ROPT

med (t) than SGD+M, similar to what happens on the training
data shown in Table 2a. This is expected because of the same distribution. One other thing we want
to emphasize is that, in real language tasks, the dataset is typically very large and the model see each
training example only once. Hence the training behavior usually implies similar in-distribution test
behavior.

Table 12: RAdam
med (t) and RSGDM

med (t) in some layers for the translation task.

Layer# Epoch 0 Epoch 30 Epoch 55
RSGDM

med (t) RAdam
med (t) RSGDM

med (t) RAdam
med (t)

RSGDM
med (t)

RAdam
med (t)

RSGDM
med (t) RAdam

med (t)
RSGDM

med (t)

RAdam
med (t)

3 4.39 4.39 5.80 3.06 1.89 6.79 2.81 2.42

5 7.90 7.90 38.01 11.71 3.24 41.40 10.21 4.06

7 5.77 5.77 6.00 4.61 1.30 5.53 3.20 1.73

9 25.09 25.09 28.81 17.17 1.68 16.67 14.85 1.12

12 10.24 10.24 9.13 8.63 1.06 13.78 9.09 1.52

15 79.71 79.71 77.18 13.56 5.69 37.93 9.91 3.83

18 14.78 14.78 3.94 7.15 0.55 5.42 6.04 0.90

21 83.25 83.25 26.04 5.44 4.79 13.11 5.57 2.36

24 29.91 29.91 6.89 5.42 1.27 6.51 7.16 0.91

28 22.57 22.57 5.39 3.94 1.37 6.13 2.14 2.87

B PROOF SKETCH OF THEOREM 1

Now we give a proof sketch of Theorem 1, which contains three major steps. The detailed proof can
be found in Appendix F, C and D.

First we relate the diagonal of Hessian to weight matrices W1,W2. Under Assumption 1, denote
W1[i, :] as the i-th row of W1 and W2 := [w2i, w22, ..., w2d]. Since the input dataset is whitened, we
can show that

ROPT
med,1(t) =

maxi

(
w

(t)
2i

)2
median

(
w

(t)
2i

)2 , ROPT
med,2(t) =

maxi

∥∥∥W (t)
1 [i, :]

∥∥∥2
2

median
∥∥∥W (t)

1 [i, :]
∥∥∥2
2

.

Next, due to the one-dimensional output, we can prove that W1 converges to an approximately rank-1
matrix. More precisely, we have

W
(t)
1 = u(t)v(t)T +R

(t)
1 ,

W
(t)
2 = c(t)u(t)T +R

(t)T
2 .

where c(t) is a scalar, u(t),v(t), R
(t)
2 ∈ Rd and R

(t)
1 ∈ Rd×d.Denote the i-th coordinate of

u(t),v(t), R
(t)
2 as u(t)i , v

(t)
i , R

(t)
2i , respectively. Denote the (i, j)-th element of R(t)

1 as R(t)
1 [i, j].

We have that ∀i, j ∈ [d] :
∣∣∣R(t)

2i

∣∣∣� c(t)
∣∣∣u(t)i ∣∣∣ and

∣∣∣R(t)
1 [i, j]

∣∣∣� ∣∣∣u(t)i v
(t)
i

∣∣∣.
Using the rank 1 structure, we can further simplify ROPT

med,1(t) and ROPT
med,2(t) by

ROPT
med,k(t) ≈

maxi

(
u
(t)
i

)2
median

(
u
(t)
i

)2 , k = 1, 2. (4)
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The final step is the detailed analysis of u(t).

For SGD+M, we can prove that u(t) ≈ C(t)[X1, X2, ..., Xd]
T where C(t) ∈ R and Xi, i ∈ [d] are

i.i.d. Gaussian variables. Then we have with high probability,
maxi

(
u
(t)
i

)2

median
(
u
(t)
i

)2 = Ω(log d). For Adam,

we can prove that ∀i ∈ [d] : u
(t)
i ∈ {±1}, which gives us

maxi
(
u
(t)
i

)2

median
(
u
(t)
i

)2 = 1. Substituting into eq. (4)

completes the proof.

C ANALYSIS OF SGD+M

Note that A = 1
mY X

T , Λxx := 1
mXX

T . Denote g(t)k := ∇Wk
L(W (t)), k = 1, 2. We have that

g
(t)
1 = W

(t)T
2

(
W

(t)
2 W

(t)
1 −A

)
, g

(t)
2 =

(
W

(t)
2 W

(t)
1 −A

)
W

(t)T
1 .

Let Ã(t), Λ̃
(t)
xx and g̃

(t)
k , k = 1, 2 be the corresponding batch versions at time t. Let E(t) :=

W
(t)
2 W

(t)
1 −A, and use E(t)

i , Ai and
(
W

(t)
2 W

(t)
1

)
i

to represent the i-th coordinates of E(t), A and

W
(t)
2 W

(t)
1 , respectively. By eq. (2), the update rules of W1 and W2 for SGD+M are given by:

W
(t+1)
1 = W

(t)
1 − η

t∑
τ=0

βt−τW
(τ)T
2

(
W

(τ)
2 W

(τ)
1 −A

)
− η

t∑
τ=0

βt−τDg
(τ)
1 ,

W
(t+1)
2 = W

(t)
2 − η

t∑
τ=0

βt−τ
(
W

(τ)
2 W

(τ)
1 −A

)
W

(τ)T
1 − η

t∑
τ=0

βt−τDg
(τ)
2 ,

where

Dg
(t)
1 := g̃

(t)
1 − g

(t)
1 = W

(t)T
2

(
W

(t)
2 W

(t)
1

(
Λ̃(t)
xx − Λxx

)
−
(
Ã(t) −A

))
,

Dg
(t)
2 := g̃

(t)
2 − g

(t)
2 =

(
W

(t)
2 W

(t)
1

(
Λ̃(t)
xx − Λxx

)
−
(
Ã(t) −A

))
W

(t)T
1 .

Based on the magnitude of W2 and W1, we can intuitively divide the training procedure into 2 phases.

1. First phase: the first several iterations when W1 and W2 are “small” so that W2W1 −A ≈
−A.

2. Second phase: later iterations when W2W1 cannot be ignored.

More formally, the boundary between the first and second phase is defined below.
Definition 1 (End of the first phase). The end of the first phase (denoted as T1) is defined as
T1 := inf

{
t ≥ 0 : ∃i, j ∈ [d] :

∣∣∣w(t)
2i

∣∣∣ ≥ 1

d
α
2

or
∣∣∣W (t)

1 [i, j]
∣∣∣ ≥ 1

d
α
2

}
.

By Assumption 2 and the assumption that ∀j ∈ [d] : Aj > 0, Aj = Θ(1), at the beginning, w.h.p.,
∀j ∈ [d] : (W2W1)j − Aj < 0. During the training, each (W2W1)j increases and approaches Aj .
We hope that by choosing a small learning rate, when (W2W1)j overshoots for some coordinate j, i.e.
(W2W1)j > Aj , it will be close to convergence. To analyze this overshooting issue more carefully,
let’s first define the following “almost overshooting time”.

Definition 2 (Almost overshooting time). For ε > 0, denote ε0 := 1

d
1
4
α−1

+ ε log
√

d
ε . Define

T2 := inf

{
t ≥ 0 : ∃j ∈ [d] :

(
W

(t)
2 W

(t)
1

)
j
−Aj ≥ −

√
ε0

}
.

Definition 3 (Convergence time). For ε > 0, we define the “convergence time”
T3 := inf

{
t ≥ 0 :

∥∥E(t)
∥∥2
2
≤ ε
}

.

We can first show that after the first phase, i.e. when t = T1, W1 will become an approximately
rank-1 matrix, as described in the following lemma.
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Lemma 1. Under Assumption 1, 2 and 3, suppose σ ≤ η3/2

dα/2+1 . By picking η ≤ O
(

1
dα

)
, we have

that when t = T1, L̄
(
W (T1)

)
= Θ(d), and that

W
(T1)
1 = R

(T1)
1 + u(T1)v(T1)T ,

W
(T1)
2 = R

(T1)T
2 + c(T1)u(T1)T ,

where c(T1) ∈ R, u(T1),v(T1), R
(T1)
2 ∈ Rd and R

(T1)
1 ∈ Rd×d. Denote the i-th coordinate

of u(T1),v(T1), R
(T1)
2 as u(T1)

i , v
(T1)
i , R

(T1)
2i , respectively, and the (i, j)-th element of R(T1)

1 as
R

(T1)
1 [i, j]. Then w.h.p.,

∀1 ≤ i, j ≤ d :

∣∣∣R(T1)
1 [i, j]

∣∣∣∣∣∣u(T1)
i v

(T1)
j

∣∣∣ ≤ Õ
(

1

d
1
4α−1

)
,

∣∣∣R(T1)
2i

∣∣∣∣∣∣c(T1)u
(T1)
i

∣∣∣ ≤ Õ
(

1

d
1
4α−1

)
.

The following lemma tells us that this approximate rank-1 structure is preserved when T1 ≤ t ≤
min{T2, T3}.

Lemma 2. Under Assumption 1, 2 and 3, suppose σ ≤ η3/2

dα/2+1 . By picking η ≤ O
(

ε

d
7α
4

+4

)
, we

have that w.h.p. for T1 ≤ t ≤ min{T2, T3},

W
(t)
1 = u(T1)v(t)T +R

(t)
1 ,

W
(t)
2 = c(t)u(T1)T +R

(t)T
2 .

where

∀1 ≤ i, j ≤ d :

∣∣∣R(t)
1 [i, j]

∣∣∣∣∣∣u(T1)
i v

(t)
j

∣∣∣ ≤ Õ(ε0),

∣∣∣R(t)
2i

∣∣∣∣∣∣c(t)u(T1)
i

∣∣∣ ≤ Õ(ε0),

and ε0 is defined in Definition 2. Moreover, when t = min{T2, T3}, L̄
(
W (t)

)
= O(ε0d).

The following lemma gives us a more detailed description of u(T1).

Lemma 3. The u(T1) in Lemma 1 and 2 can be written as u(T1) = X + Y where Xi, i ∈ [d] are

i.i.d Gaussian random variables and that w.h.p. ∀i ∈ [d] : |Yi||Xi| ≤ Õ
(

1

d
1
4
α− 1

2

)
.

Now we are ready to prove the SGD+M part of Theorem 1.

C.1 PROOF OF THE SGD+M PART OF THEOREM 1

Define TSGD,1 = T1, TSGD,2 = min{T2, T3}. By picking η ≤ O
(

ε

d
7α
4

+4

)
, we can apply Lemma 1

and 2 to conclude that L̄
(
W (TSGD,1)

)
= Θ(d) and L̄

(
W (TSGD,2)

)
= O(ε0d). For any p > 0, by

picking 0 < ε < 1
dp and α ≥ 4(p+ 2), we have L̄

(
W (TSGD,2)

)
= O(ε0d) ≤ Õ

(
1
dp

)
.

Moreover, when t ∈ [TSGD,1, TSGD,2], the conditions in Lemma 30 are satisfied with δ = Õ(ε0).
Then we can apply Lemma 30 and get that

RSGDM
med,1 (t), RSGDM

med,2 (t) ≥

(
1− Õ(ε0)

1 + Õ(ε0)

)2

·
maxi

(
u
(T1)
i

)2
median

(
u
(T1)
i

)2 .
By Lemma 3, u(T1) = X + Y where w.h.p. ∀i ∈ [d] : |Yi||Xi| ≤ Õ

(
1

d
1
4
α− 1

2

)
. This fact yields

∀i ∈ [d] :
maxi

(
u
(T1)
i

)2
median

(
u
(T1)
i

)2 ≥
1− Õ

(
1

d
1
4
α− 1

2

)
1 + Õ

(
1

d
1
4
α− 1

2

)
2

maxiX
2
i

median X2
i

.
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Here Xi, i ∈ [d] are i.i.d Gaussian random variables by Lemma 3. To prove the concentration of
median X2

i , we borrow the Proposition 12 in Chapter 2.3 of (Lerasle, 2019). By setting K = N = d
in this proposition, we have

P
(∣∣median X2

i − E[X2
1 ]
∣∣ > 2

√
Var(X2

1 )

)
≤ e− d8 .

Denote σ2 as the variance of Xi, i ∈ [d]. Then E[X2
i ] = σ2 and Var(X2

i ) = 2σ4. Hence

P
(∣∣median X2

i − σ2
∣∣ > 2

√
2σ2
)
≤ e− d8 .

That means with high probability, median X2
i ≤ Cσ2 for some C > 0. By Lemma 34 in Appendix G,

we know that w.h.p.
max
1≤i≤d

X2
i = σ2Ω(log d),

which gives us w.h.p.
max1≤i≤dX

2
i

median X2
i

= Ω(log d).

Hence we have proved that RSGDM
med,1 (t), RSGDM

med,2 (t) ≥ Ω(log d).

C.2 PROOF OF LEMMA 1

In the first phase, W2W1 is “small”, and we write the update equations in the following way

W
(t+1)
1 = W

(t)
1 − η

t∑
τ=0

βt−τW
(τ)T
2

(
W

(τ)
2 W

(τ)
1 −A

)
− η

t∑
τ=0

βt−τDg
(τ)
1

= W
(t)
1 + η

t∑
τ=0

βt−τW
(τ)T
2 A− η

t∑
τ=0

βt−τW
(τ)T
2 W

(τ)
2 W

(τ)
1 − η

t∑
τ=0

βt−τDg
(τ)
1

= W
(t)
1 + ηW

(t)T
2 A

t∑
τ=0

βt−τ + η

t∑
τ=0

βt−τ
(
W

(τ)T
2 −W (t)T

2

)
A

− η
t∑

τ=0

βt−τW
(τ)T
2 W

(τ)
2 W

(τ)
1 − η

t∑
τ=0

βt−τDg
(τ)
1

= W
(t)
1 +

η

1− β
W

(t)T
2 A+

η

1− β
r
(t)
1 ,

(5)

where

r
(t)
1 = −βt+1W

(t)T
2 A+ (1− β)

t∑
τ=0

βt−τ
(
W

(τ)T
2 −W (t)T

2

)
A

− (1− β)

t∑
τ=0

βt−τW
(τ)T
2 W

(τ)
2 W

(τ)
1 − (1− β)

t∑
τ=0

βt−τDg
(τ)
1 .

Similarly, we have

W
(t+1)
2 = W

(t)
2 −η

t∑
τ=0

βt−τ
(
W

(τ)
2 W

(τ)
1 −A

)
W

(τ)T
1 = W

(t)
2 +

η

1− β
AW

(t)T
1 +

η

1− β
r
(t)
2 , (6)

where

r
(t)
2 = −βt+1AW

(t)T
1 + (1− β)

t∑
τ=0

βt−τA
(
W

(τ)T
1 −W (t)T

1

)
− (1− β)

t∑
τ=0

βt−τW
(τ)
2 W

(τ)
1 W

(τ)T
1 − (1− β)

t∑
τ=0

βt−τDg
(τ)
2 .

The following lemma gives us an explicit formula of W (t)
2 .
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Lemma 4. Let λ1 < λ2 be the two roots of the quadratic equation x2 − 2x+ 1− η2

(1−β)2 ‖A‖
2
2 = 0.

Pick η < 1−β
‖A‖2 , then we have that

W
(t)
2 = C1λ

t
1 +

(
C2 + r

(t)
5

)
λt2,

where C1 = −W
(1)
2 −λ2W

(0)
2

λ2−λ1
, C2 =

W
(1)
2 −λ1W

(0)
2

λ2−λ1
. r(t)5 will be specified in the proof.

We can prove that in the first phase, r(t)5 is “small”. More specifically, denote its i-th coordinate as

r
(t)
5i , and the i-th coordinate of C2 as C2i. Then the following lemmas tell us that ∀i ∈ [d],

∣∣∣r(t)5i

∣∣∣ ≤
O
(

1
dp(α)

)
, where w.h.p. O

(
1

dp(α)

)
� mini∈[d] |C2i|.

We first have the following bounds of
∣∣∣r(t)1i

∣∣∣ , ∣∣∣r(t)2i

∣∣∣ and
∣∣∣r(t)5i

∣∣∣ for i ∈ [d].

Lemma 5. Under Assumption 1, 2 and 3, suppose σ ≤ η3/2

dα/2+1 and pick η ≤ O
(

1
dα

)
. We have w.h.p.

for all t ≤ T1, ∀i ∈ [d] :
∣∣∣r(t)1 [i, j]

∣∣∣ ≤ Õ ( 1

d
3
2
α−1

)
,
∣∣∣r(t)2i

∣∣∣ ≤ Õ ( 1

d
3
2
α−2

)
.

Lemma 6. Under conditions of Lemma 5, we have that w.h.p. for all t ≤ T1, ∀i ∈ [d] :
∣∣∣r(t)5i

∣∣∣ ≤
Õ
(

1

d
3
2
α−1

)
.

Next we prove upper and lower bounds of |C1i| and |C2i| for i ∈ [d].

Lemma 7. Under Assumption 1, 2 and 3, suppose σ ≤ η3/2

dα/2+1 . Pick η < 1−β
‖A‖2 , we have that

i) w.h.p., ∀i ∈ [d] : |C1i| ≤ Õ
(

1
dα

)
, |C2i| ≤ Õ

(
1
dα

)
;

ii) C2 can be written as C2 := 1
2 (C3 + C4) where C3i, i ∈ [d] are i.i.d Gaussian random variables

and that w.h.p. ∀i ∈ [d] : |C4i|
|C3i| ≤ Õ

(
1

d
1
4
α− 1

2

)
;

iii) w.h.p., ∀i ∈ [d], |C1i| ≥ Ω̃
(

1

d
5
4
α

)
, |C2i| ≥ Ω̃

(
1

d
5
4
α

)
.

Now we are ready to prove Lemma 1. Lemma 4 tells us that

W
(t)
2 = C1λ

t
1 +

(
C2 + r

(t)
5

)
λt2,

where λ1 = 1− η
1−β ‖A‖2 and λ2 = 1 + η

1−β ‖A‖2.

Under the conditions of Theorem 1 and pick η ≤ O
(

1
dα

)
, by Lemma 6 and 7, we know that w.h.p.

∀t ≤ T1,∀1 ≤ i ≤ d,

∣∣∣r(t)5i

∣∣∣ ≤ Õ( 1

d
3
2α−1

)
, |C2i| ≥ Ω̃

(
1

d
5
4α

)
, |C2i| ≤ Õ

(
1

dα

)
,

∣∣∣r(t)5i

∣∣∣
|C2i|

≤ Õ
(

1

d
1
4α−1

)
.

(7)
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We first prove that
∣∣∣w(t)

2i

∣∣∣ reaches 1
dα/2

for some coordinate i before
∣∣∣W (t)

1 [k, j]
∣∣∣ for ∀k, j ∈ [d]. To

see this, first note that

W
(t)
1 = W

(t−1)
1 +

η

1− β
W

(t−1)T
2 A+

η

1− β
r
(t−1)
1

= W
(0)
1 +

η

1− β

t−1∑
τ=0

W
(τ)T
2 A+

η

1− β

t−1∑
τ=0

r
(τ)
1

= W
(0)
1 +

η

1− β

(
C1

t−1∑
τ=0

λτ1 + C2

t−1∑
τ=0

λτ2 +

t−1∑
τ=0

λτ2r
(τ)
5

)T
A+

η

1− β

t−1∑
τ=0

r
(τ)
1

= W
(0)
1 +

η

1− β

t−1∑
τ=0

r
(τ)
1 +

η

1− β

(
C1

t−1∑
τ=0

λτ1 +

t−1∑
τ=0

λτ2r
(τ)
5

)T
A+

η

1− β

t−1∑
τ=0

λτ2C
T
2 A

:= W
(0)
1 +

η

1− β

t−1∑
τ=0

r
(τ)
1 +

(
C1

t−1∑
τ=0

λτ1 +

t−1∑
τ=0

λτ2r
(τ)
5

)T
v(t)T + u(t)v(t)T ,

where v(t)T = η
1−βA and

u(t) =

t−1∑
τ=0

λτ2C
T
2 . (8)

Moreover, we have that

W
(t)
2 = C1λ

t
1 +

(
C2 + r

(t)
5

)
λt2 := C1λ

t
1 + r

(t)
5 λt2 + c(t)u(t)T , c(t) =

λt2∑t−1
τ=0 λ

τ
2

.

For t ≤ T1, by eq. (7), we get that w.h.p.,

∀1 ≤ i, j ≤ d :

∣∣∣∑t−1
τ=0 λ

τ
2r

(τ)
5i v

(t)
j

∣∣∣∣∣∣u(t)i v
(t)
j

∣∣∣ ≤
Õ
(

1

d
3
2
α−1

)∑t−1
τ=0 λ

τ
2

Ω̃
(

1

d
5
4
α

)∑t−1
τ=0 λ

τ
2

≤ Õ
(

1

d
1
4α−1

)
,

∣∣∣λt2r(t)5i

∣∣∣∣∣∣c(t)u(t)i ∣∣∣ =

∣∣∣r(t)5i

∣∣∣
|C2i|

≤ Õ
(

1

d
1
4α−1

)
.

For t ≤ T1, by Lemma 5, ∀1 ≤ i, j ≤ d :
∣∣∣r(t)1 [i, j]

∣∣∣ ≤ Õ ( 1

d
3
2
α−1

)
. Then we have that w.h.p.∣∣∣ η

1−β
∑t−1
τ=0 r

(τ)
1 [i, j]

∣∣∣∣∣∣u(t)i v
(t)
j

∣∣∣ =

∣∣∣∑t−1
τ=0 r

(τ)
1 [i, j]

∣∣∣∣∣∣∑t−1
τ=0 λ

τ
2C2iAj

∣∣∣ ≤
∣∣∣∑t−1

τ=0 r
(τ)
1 [i, j]

∣∣∣∣∣∣∑t−1
τ=0 C2iAj

∣∣∣ ≤
∑t−1
τ=0 Õ

(
1

d
3
2
α−1

)
∑t−1
τ=0 Ω̃

(
1

d
5
4
α

)
= Õ

(
1

d
1
4α−1

)
.

Here we used ∀i ∈ [d] : Ai = Θ(1) by Assumption 1.

Since λ1 = 1− η
1−β ‖A‖2, we have that |C1iλ

t
1| ≤ |C1i| ≤ Õ

(
1
dα

)
and that∣∣∣∣∣C1i

t−1∑
τ=0

λτ1v
(t)
j

∣∣∣∣∣ =
ηAj

1− β

∣∣∣∣∣C1i

t−1∑
τ=0

λτ1

∣∣∣∣∣ ≤ ηAj |C1i|
(1− β)(1− λ1)

≤ Aj |C1i|
‖A‖2

≤ Õ
(

1

dα+
1
2

)
.

Using the Gaussian tail bound and union bound, we have w.h.p. ∀1 ≤ i, j ≤ d :
∣∣∣W (0)

1 [i, j]
∣∣∣ =

Õ
(

1
d2α

)
. Combining the above bounds together yields that for t ≤ T1 and ∀i, j ∈ [d],

W
(t)
1 [i, j] = R

(t)
11 [i, j] + u

(t)
i v

(t)
j (1 + e

(t)
1 [i, j]),

w
(t)
2i = R

(t)
21,i + c(t)u

(t)
i (1 + e

(t)
2i ).

(9)
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where for ∀i, j ∈ [d].
∣∣∣R(t)

11 [i, j]
∣∣∣ ≤ Õ ( 1

dα+1
2

)
,
∣∣∣R(t)

21,i

∣∣∣ ≤ Õ ( 1
dα

)
and

∣∣∣e(t)1 [i, j]
∣∣∣ , ∣∣∣e(t)2i

∣∣∣ ≤
Õ
(

1

d
1
4
α−1

)
.

Further we notice that for t ≤ T1, we have ∀j ∈ [d],∣∣∣v(t)j ∣∣∣∣∣c(t)∣∣ =
ηAj

1− β
·
∑t−1
τ=0 λ

τ
2

λt2
=

ηAj
1− β

λt2 − 1

λt2(λ2 − 1)
=
Aj (λt2 − 1)

λt2‖A‖2
≤ Aj
‖A‖2

= O
(

1√
d

)
.

which yields that
∣∣∣u(t)i v

(t)
j

∣∣∣ ≤ O
(

1√
d

) ∣∣∣c(t)u(t)i ∣∣∣. Together with eq. (9) gives us that∣∣∣w(t)
2i

∣∣∣ reaches 1
dα/2

for some i ∈ [d] before
∣∣∣W (t)

1 [k, j]
∣∣∣ for ∀k, j ∈ [d], i.e. T1 =

inf
{
t ≥ 0 : ∃i ∈ [d] :

∣∣∣w(t)
2i

∣∣∣ ≥ 1

d
α
2

}
.

Further, we know that at time T1,
∣∣∣c(T1)u

(T1)
i0

∣∣∣ = |C2i0 |λ
T1
2 = Θ

(
1

dα/2

)
for some i0 ∈ [d], which

means w.h.p.

Θ
(

1

d
α
2

)
Õ
(

1
dα

) ≤ λT1
2 ≤

Θ
(

1

d
α
2

)
Ω̃
(

1

d
5
4
α

) , ⇒ Ω̃
(
d
α
2

)
≤ λT1

2 =

(
1 +

η

1− β
‖A‖2

)T1

≤ Õ
(
d

3
4α
)
,

⇒ T1 = Θ

(
log d

η‖A‖2

)
.

(10)
This is the length of the first phase. As for c(T1)u

(T1)
i and u(T1)

i v
(T1)
j for other coordinates, we have

that w.h.p. ∀1 ≤ i, j ≤ d,

∣∣∣u(T1)
i v

(T1)
j

∣∣∣ =
η

1− β

T1−1∑
τ=0

λτ2 |C2iAj | =
η

1− β
· λ

T1
2 − 1

λ2 − 1
|C2iAj |

(i)
=
λT1
2 − 1

‖A‖2
|C2iAj |

≥
Ω̃
(
dα/2

)
Θ
(√

d
) Ω̃

(
1

d
5
4α

)
= Ω̃

(
1

d
3
4α+

1
2

)
,

∣∣∣c(T1)u
(T1)
i

∣∣∣ = |C2i|λT1
2 ≥ Ω̃

(
dα/2

)
Ω̃

(
1

d
5
4α

)
= Ω̃

(
1

d
3
4α

)
.

Here in (i) we used λ2 = 1 + η
1−β ‖A‖2. Then we have at time T1, ∀i, j ∈ [d],

∣∣∣R(T1)
11 [i,j]

∣∣∣∣∣∣u(T1)
i v

(T1)
j

∣∣∣ ≤
Õ
(

1

d
1
4
α

)
and that

∣∣∣R(T1)
21,i

∣∣∣∣∣∣c(T1)u
(T1)
i

∣∣∣ ≤ Õ
(

1

d
1
4
α

)
. Together with eq. (9), we have the following weight

structure:

W
(T1)
1 = R

(T1)
1 + u(T1)v(T1)T ,

W
(T1)
2 = R

(T1)T
2 + c(T1)u(T1)T ,

where w.h.p.,

∀1 ≤ i, j ≤ d :

∣∣∣R(T1)
1 [i, j]

∣∣∣∣∣∣u(T1)
i v

(T1)
j

∣∣∣ ≤ Õ
(

1

d
1
4α−1

)
,

∣∣∣R(T1)
2i

∣∣∣∣∣∣c(T1)u
(T1)
i

∣∣∣ ≤ Õ
(

1

d
1
4α−1

)
.

Finally, we consider the loss. Since ∀j ∈ [d] :
(
W

(T1)
2 W

(T1)
1

)
j
− Aj = −Θ(1), we know that

L̄
(
W (T1)

)
= Θ(d).
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C.3 PROOF OF LEMMA 3

Eq. (8) tells us that u(T1) =
∑T1−1
τ=0 λτ2C

T
2 . Lemma 7 tells us that C2 can be written as C2 :=

1
2 (C3 + C4) where C3i, i ∈ [d] are i.i.d Gaussian random variables and that w.h.p. ∀i ∈ [d] : |C4i|

|C3i| ≤

Õ
(

1

d
1
4
α− 1

2

)
. Combining these two facts together finishes the proof.

C.4 PROOF OF LEMMA 4

Replacing t by t− 1 in eq. (6), we get

W
(t)
2 = W

(t−1)
2 +

η

1− β
AW

(t−1)T
1 +

η

1− β
r
(t−1)
2 . (11)

Eq. (6)-(11) and substituting eq. (5) yield

W
(t+1)
2 −W (t)

2 = W
(t)
2 −W (t−1)

2 +
η2

(1− β)2
‖A‖22W

(t−1)
2 +

η2

(1− β)2
Ar

(t−1)T
1

+
η

1− β

(
r
(t)
2 − r

(t−1)
2

)
,

⇒ W
(t+1)
2 = 2W

(t)
2 −

(
1− η2

(1− β)2
‖A‖22

)
W

(t−1)
2 + r

(t)
3 ,

where r3(t) := η2

(1−β)2Ar
(t−1)T
1 + η

1−β

(
r
(t)
2 − r

(t−1)
2

)
.

For the equation x2 − 2x + 1 − η2

(1−β)2 ‖A‖
2
2 = 0, the roots are λ1 = 1 − η

1−β ‖A‖2 and λ2 =

1 + η
1−β ‖A‖2. We have that

W
(t+1)
2 − λ2W (t)

2 = λ1

(
W

(t)
2 − λ2W (t−1)

2

)
+ r

(t)
3

⇒ W
(t)
2 − λ2W (t−1)

2 = λt−11

(
W

(1)
2 − λ2W (0)

2

)
+

t−1∑
τ=1

λt−1−τ1 r
(τ)
3

:= λt−11

(
W

(1)
2 − λ2W (0)

2

)
+ r

(t)
4 .

We further have

W
(t)
2 = λt2W

(0)
2 +

t−1∑
τ=0

λt−1−τ2 λτ1

(
W

(1)
2 − λ2W (0)

2

)
+

t∑
τ=1

λt−τ2 r
(τ)
4

= λt2W
(0)
2 +

λt2 − λt1
λ2 − λ1

(
W

(1)
2 − λ2W (0)

2

)
+

t∑
τ=1

λt−τ2 r
(τ)
4

= C1λ
t
1 + C2λ

t
2 +

t∑
τ=1

λt−τ2 r
(τ)
4

= C1λ
t
1 +

(
C2 + r

(t)
5

)
λt2,

where r(t)5 =
∑t
τ=1 λ

−τ
2 r

(τ)
4 , C1 = −W

(1)
2 −λ2W

(0)
2

λ2−λ1
and C2 =

W
(1)
2 −λ1W

(0)
2

λ2−λ1
.

C.5 PROOF OF LEMMA 5

Write r
(t)
1 = −βt+1W

(t)T
2 A + q

(t)
12 + q

(t)
13 + q

(t)
14 where q

(t)
12 = (1 −

β)
∑t
τ=0 β

t−τ
(
W

(τ)T
2 −W (t)T

2

)
A, q

(t)
13 = −(1 − β)

∑t
τ=0 β

t−τW
(τ)T
2 W

(τ)
2 W

(τ)
1 and

q
(t)
14 = −(1 − β)

∑t
τ=0 β

t−τDg
(τ)
1 . And write r(t)2 = −βt+1AW

(t)T
1 + q

(t)
22 + q

(t)
23 + q

(t)
24 , where

q
(t)
22 = (1 − β)

∑t
τ=0 β

t−τA
(
W

(τ)T
1 −W (t)T

1

)
, q(t)23 = −(1 − β)

∑t
τ=0 β

t−τW
(τ)
2 W

(τ)
1 W

(τ)T
1

and q(t)24 = −(1− β)
∑t
τ=0 β

t−τDg
(τ)
2 .
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Let’s first try to bound
∣∣∣q(t)12 [i, j]

∣∣∣ and
∣∣∣q(t)22,i

∣∣∣. For any τ ≤ T1, we have that

∀i ∈ [d] :
∣∣∣(W (τ)

2 W
(τ)
1

)
i

∣∣∣ =

∣∣∣∣∣∣
d∑
j=1

w
(τ)
2j W

(τ)
1 [j, i]

∣∣∣∣∣∣ ≤
d∑
j=1

∣∣∣w(τ)
2j

∣∣∣ ∣∣∣W (τ)
1 [j, i]

∣∣∣ ≤ d∑
i=1

1

dα
=

1

dα−1
,

and thus ∀i ∈ [d] :
∣∣∣E(τ)

i

∣∣∣ = O(1). Then we have for all i, j ∈ [d],

∣∣∣W (τ+1)
1 [i, j]−W (τ)

1 [i, j]
∣∣∣ ≤ η τ∑

k=0

βτ−k
∣∣∣w(k)

2i E
(k)
j

∣∣∣ ≤ η τ∑
k=0

βτ−kO
(

1

dα/2

)
= ηO

(
1

dα/2

)
,

∣∣∣w(τ+1)
2i − w(τ)

2i

∣∣∣ ≤ η τ∑
k=0

βτ−k
d∑
j=1

∣∣∣E(k)
j W

(k)
1 [i, j]

∣∣∣ ≤ η τ∑
k=0

βτ−kO
(

1

dα/2−1

)

= ηO
(

1

dα/2−1

)
.

That gives us ∀i, j ∈ [d],

∣∣∣q(t)12 [i, j]
∣∣∣ ≤ (1− β)

t∑
τ=0

βt−τ
∣∣∣(w(τ)

2i − w
(t)
2i

)
Aj

∣∣∣ ≤ η(1− β)

t∑
τ=0

O
(
βt−τ (t− τ)

dα/2−1

)
= O

( η

dα/2−1

)
,∣∣∣q(t)22,i

∣∣∣ ≤ (1− β)

t∑
τ=0

βt−τ
d∑
j=1

∣∣∣Aj (W (τ)
1 [i, j]−W (t)

1 [i, j]
)∣∣∣

≤ η(1− β)

t∑
τ=0

O
(
βt−τ (t− τ)

dα/2−1

)
= O

( η

dα/2−1

)
.

Then we bound
∣∣∣q(t)13 [i, j]

∣∣∣ and
∣∣∣q(t)23,i

∣∣∣. We have for ∀i, j ∈ [d],

∣∣∣q(t)13 [i, j]
∣∣∣ ≤ (1− β)

t∑
τ=0

βt−τ
∣∣∣∣w(τ)

2i

(
W

(τ)
2 W

(τ)
1

)
j

∣∣∣∣ ≤ (1− β)

t∑
τ=0

βt−τ
1

d
α
2
· 1

dα−1

= O
(

1

d
3
2α−1

)
,

∣∣∣q(t)23,i

∣∣∣ ≤ (1− β)

t∑
τ=0

βt−τ
d∑
j=1

∣∣∣∣(W (t)
2 W

(t)
1

)
j
W

(t)
1 [i, j]

∣∣∣∣
≤ (1− β)

t∑
τ=0

βt−τ
d∑
i=1

1

dα−1+
α
2

= O
(

1

d
3
2α−2

)
.

Finally we use Lemma 31 to bound
∣∣∣q(t)14 [i, j]

∣∣∣ and
∣∣∣q(t)24,i

∣∣∣. For t ≤ T1, the M (t)
1 ,M

(t)
2 in Lemma 31

are upper bounded by 1

d
α
2

. In the theorem we consider the training period before TSGD,2 so the
time T in Lemma 31 is set as TSGD,2. In the following sections, we will prove that TSGD,2 ≤

O
(
dα log(

√
d/ε)

η

)
. Then by Lemma 31, we have with probability at least 1 − 1

d , for ∀t ≤ T1 and
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∀i, j ∈ [d],∣∣∣Dg(t)1 [i, j]
∣∣∣ =

∣∣∣g̃(t)1 [i, j]− g(t)1 [i, j]
∣∣∣ ≤ O( 1

d
3α
2 −3

σ

√
dα+1

η
log

d

ε

)
+O

(
1

d
α
2
σ

√
dα+2

η
log

d

ε

)

≤ Õ

(
1

d
α
2
σ

√
dα+2

η

)
,

∣∣∣Dg(t)2i

∣∣∣ =
∣∣∣g̃(t)2i − g

(t)
2i

∣∣∣ ≤ O( 1

d
3α
2 −4

σ

√
dα+1

η
log

d

ε

)
+O

(
1

d
α
2−1

σ

√
dα+2

η
log

d

ε

)

≤ Õ

(
1

d
α
2−1

σ

√
dα+2

η

)
.

By picking σ ≤ η3/2

dα/2+1 , we have w.h.p. for ∀t ≤ T1 and ∀i, j ∈ [d],
∣∣∣Dg(t)1 [i, j]

∣∣∣ ≤ ηÕ
(

1

d
α
2

)
and∣∣∣Dg(t)2i

∣∣∣ ≤ ηÕ ( 1

d
α
2
−1

)
, which yields

∣∣∣q(t)14 [i, j]
∣∣∣ ≤ (1− β)

t∑
τ=0

βt−τ
∣∣∣Dg(τ)1 [i, j]

∣∣∣ ≤ (1− β)

t∑
τ=0

βt−τηÕ
(

1

d
α
2

)
= ηÕ

(
1

d
α
2

)
,

∣∣∣q(t)24,i

∣∣∣ ≤ (1− β)

t∑
τ=0

βt−τ
∣∣∣Dg(τ)2i

∣∣∣ ≤ (1− β)

t∑
τ=0

βt−τηÕ
(

1

d
α
2−1

)
= ηÕ

(
1

d
α
2−1

)
.

Combining all the above bounds and substituting η ≤ O
(

1
dα

)
gives us for ∀t ≤ T1 and ∀i, j ∈ [d],

∣∣∣r(t)1 [i, j]
∣∣∣ ≤ βt+1

∣∣∣w(t)
2i Aj

∣∣∣+ Õ
(

1

d
3
2α−1

)
,
∣∣∣r(t)2i

∣∣∣ ≤ βt+1

∣∣∣∣∣∣
d∑
j=1

AjW
(t)
1 [i, j]

∣∣∣∣∣∣+ Õ
(

1

d
3
2α−2

)
.

(12)
For t ≤ T1, we have ∀i, j ∈ [d],

∣∣∣w(t)
2i Aj

∣∣∣ ≤ O ( 1
dα/2

)
and

∣∣∣∑d
j=1AjW

(t)
1 [i, j]

∣∣∣ ≤ O ( 1
dα/2−1

)
,

which gives us
∣∣∣r(t)1 [i, j]

∣∣∣ ≤ O ( 1
dα/2

)
and

∣∣∣r(t)2i

∣∣∣ ≤ O ( 1
dα/2−1

)
. Substituting into eq. (5) and eq. (6)

yields that for t ≤ T1 and ∀i, j ∈ [d],∣∣∣W (t+1)
1 [i, j]−W (t)

1 [i, j]
∣∣∣ ≤ O ( η

dα/2

)
,
∣∣∣w(t+1)

2i − w(t)
2i

∣∣∣ ≤ O ( η

dα/2−1

)
.

Hence for t ≤ min
{

α log d
log(1/β) , T1

}
, we have ∀i, j ∈ [d],∣∣∣W (t)

1 [i, j]
∣∣∣ ≤ ∣∣∣W (0)

1 [i, j]
∣∣∣+

α log d

log(1/β)
O
( η

dα/2

)
≤ Õ

(
1

d
3α
2

)
,∣∣∣w(t)

2i

∣∣∣ ≤ ∣∣∣w(0)
2i

∣∣∣+
α log d

log(1/β)
O
( η

dα/2−1

)
≤ Õ

(
1

d
3α
2 −1

)
.

Then we know that T1 > α log d
log(1/β) and also get tighter bounds of

∣∣∣W (t)
1 [i, j]

∣∣∣ , ∣∣∣w(t)
2i

∣∣∣ for t ≤ α log d
log(1/β) .

Now we use these new bounds to analyze
∣∣∣r(t)1 [i, j]

∣∣∣ and
∣∣∣r(t)2i

∣∣∣ again.

When t ≤ α log d
log(1/β) , we have for all i, j ∈ [d], βt+1

∣∣∣w(t)
2i Aj

∣∣∣ ≤ ∣∣∣w(t)
2i Aj

∣∣∣ ≤ Õ ( 1

d
3α
2
−1

)
and

βt+1
∣∣∣∑d

j=1AjW
(t)
1 [i, j]

∣∣∣ ≤ ∣∣∣∑d
j=1AjW

(t)
1 [i, j]

∣∣∣ ≤ Õ ( 1

d
3α
2
−1

)
. When α log d

log(1/β) < t ≤ T1, we

have βt+1 ≤ 1
dα , suggesting that ∀i, j ∈ [d], βt+1

∣∣∣w(t)
2i Aj

∣∣∣ ≤ 1
dα Õ

(
1

d
α
2

)
≤ Õ

(
1

d
3α
2

)
and

βt+1
∣∣∣∑d

j=1AjW
(t)
1 [i, j]

∣∣∣ ≤ 1
dα Õ

(
1

d
α
2
−1

)
≤ Õ

(
1

d
3α
2
−1

)
. Substituting into (12) completes the

proof.
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C.6 PROOF OF LEMMA 6

Based on the bound in Lemma 5, we have∣∣∣r(t)3i

∣∣∣ =

∣∣∣∣∣∣ η2

(1− β)2

d∑
j=1

Ajr
(t−1)
1 [i, j] +

η

1− β

(
r
(t)
2i − r

(t−1)
2i

)∣∣∣∣∣∣
≤ η2

(1− β)2

d∑
j=1

∣∣∣Ajr(t−1)1 [i, j]
∣∣∣+

η

1− β

∣∣∣r(t)2i

∣∣∣+
η

1− β

∣∣∣r(t−1)2i

∣∣∣
≤ η2Õ

(
1

d
3
2α−2

)
+ 2ηÕ

(
1

d
3
2α−2

)
= ηÕ

(
1

d
3
2α−2

)
.

Since λ1 = 1− η
1−β ‖A‖2, λ2 = 1 + η

1−β ‖A‖2, and note that ‖A‖2 = Θ
(√

d
)

, we have that∣∣∣r(t)4i

∣∣∣ =

∣∣∣∣∣
t−1∑
τ=1

λt−1−τ1 r
(τ)
3i

∣∣∣∣∣ ≤
t−1∑
τ=1

λt−1−τ1 Õ
(

η

d
3
2α−2

)
≤ η

1− λ1
Õ
(

1

d
3
2α−2

)
= Õ

(
1

d
3
2 (α−1)

)
,

∣∣∣r(t)5i

∣∣∣ =

∣∣∣∣∣
t∑

τ=1

λ−τ2 r
(τ)
4i

∣∣∣∣∣ ≤ η
t∑

τ=1

λ−τ2 Õ
(

1

d
3
2 (α−1)

)
≤ η

λ2 − 1
Õ
(

1

d
3
2 (α−1)

)
= Õ

(
1

d
3
2α−1

)
.

C.7 PROOF OF LEMMA 7

For the equation x2 − 2x + 1 − η2

(1−β)2 ‖A‖
2
2 = 0, the roots are λ1 = 1 − η

1−β ‖A‖2 and λ2 =

1 + η
1−β ‖A‖2, which gives us

C2 =
W

(1)
2 − λ1W (0)

2

λ2 − λ1

=
W

(0)
2 + ηAW

(0)T
1 + ηr̃

(0)
2 −W

(0)
2 + η

1−β ‖A‖2W
(0)
2

2η
1−β ‖A‖2

=
1

2
W

(0)
2 +

1− β
2‖A‖2

AW
(0)T
1 +

1− β
2‖A‖2

r̃
(0)
2 ,

(13)

where r̃(0)2 = −W (0)
2 W

(0)
1 W

(0)T
1 −Dg(0)2 . Note that this is slightly different from the definition of

r
(0)
2 in eq. (6). Now let’s bound the i-th coordinate of r̃(0)2 .

In Section C.5 we have shown that w.h.p. for ∀t ≤ T1 and ∀i, j ∈ [d],
∣∣∣Dg(t)2i

∣∣∣ ≤ ηÕ
(

1

d
α
2
−1

)
=

Õ
(

1

d
3α
2
−1

)
, which also applies to t = 0. Using the Gaussian tail bound and union bound, w.p. at

least 1− δ, for ever 1 ≤ i, j ≤ d, we have that∣∣∣w(0)
2i

∣∣∣ ≤√ 2

d2α
log

2d

δ
,
∣∣∣W (0)

1 [i, j]
∣∣∣ ≤√ 2

d4α
log

2d2

δ
.

Then we have that w.p. at least 1− δ, ∀1 ≤ i, j ≤ d :,∣∣∣(W (0)
2 W

(0)
1

)
i

∣∣∣ =

∣∣∣∣∣∣
d∑
j=1

w
(0)
2j W

(0)
1 [j, i]

∣∣∣∣∣∣ ≤
d∑
j=1

∣∣∣w(0)
2j

∣∣∣ ∣∣∣W (0)
1 [j, i]

∣∣∣
≤

d∑
i=1

√
2

d2α
log

2d

δ

√
2

d4α
log

2d2

δ
≤ 2

d3α−1
log

2d2

δ
,

⇒
∣∣∣r̃(0)2i

∣∣∣ ≤ d∑
j=1

∣∣∣∣(W (0)
2 W

(0)
1

)
j

∣∣∣∣ ∣∣∣W (0)
1 [i, j]

∣∣∣+
∣∣∣Dg(0)2i

∣∣∣
≤

d∑
i=1

2

d3α−1
log

2d2

δ

√
2

d4α
log

2d2

δ
+ Õ

(
1

d
3α
2 −1

)
= Õ

(
1

d
3α
2 −1

)
.

(14)
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Next, we bound the i-th coordinate of W (0)
2 + 1−β

‖A‖2AW
(0)T
1 , i.e. w(0)

2i + 1−β
‖A‖2A

(
W

(0)
1 [i, :]

)T
.

By independence under Assumption 2, we have that

Var
(
w

(0)
2i +

1− β
‖A‖2

A
(
W

(0)
1 [i, :]

)T)
= Var

(
w

(0)
2i

)
+

(1− β)2

‖A‖22

d∑
j=1

A2
jVar

(
W

(0)
1 [i, j]

)

=
1

d2α
+

(1− β)2

‖A‖22

d∑
i=1

A2
j

1

d4α
= O

(
1

d2α

)
.

Using the Gaussian tail bound and union bound, w.p. at least 1− δ, for ever 1 ≤ i ≤ d, we have that∣∣∣∣w(0)
2i +

1− β
‖A‖2

A
(
W

(0)
1 [i, :]

)T ∣∣∣∣ ≤ O
(√

1

d2α
log

d

δ

)
= Õ

(
1

dα

)
.

Since for X ∼ N (0, σ2), we have that P (|X| ≤ t) ≤ 2t√
2πσ

, then for a fixed i,

P

(∣∣∣∣w(0)
2i +

1− β
‖A‖2

A
(
W

(0)
1 [i, :]

)T ∣∣∣∣ ≤ 1

d
5
4α

)
≤ O

(
2/d

5
4α

√
2π ·

√
1/d2α

)
= Θ

(
1

d
α
4

)
.

Then by union bound, we have that w.p. at least 1− 1

d
α
4
−1 , for every 1 ≤ i ≤ d,∣∣∣∣w(0)

2i +
1− β
‖A‖2

A
(
W

(0)
1 [i, :]

)T ∣∣∣∣ ≥ Θ

(
1

d
5
4α

)
.

Now define C3 := W
(0)
2 + 1−β

‖A‖2AW
(0)T
1 and C4 := 1−β

2‖A‖2 r̃
(0)
2i . We get that C3i, i ∈ [d] are i.i.d

Gaussian random variables and that C2 = 1
2 (C3 + C4), where w.h.p. for all i ∈ [d],

|C3i| ≤ Õ
(

1

dα

)
, |C3i| ≥ Θ

(
1

d
5
4α

)
, |C4i|

(i)

≤ Õ
(

1

d
3α
2 −

1
2

)
, (15)

where (i) follows from eq. (14) and the fact that ‖A‖2 =
√
d. Then we get that w.h.p.

∀i ∈ [d] :
|C4i|
|C3i|

≤
Õ
(

1

d
3α
2
− 1

2

)
Ω
(

1

d
5
4
α

) = Õ
(

1

d
1
4α−

1
2

)
.

Substituting eq. (15) into eq. (13), we get that w.h.p.,

|C2i| = Θ

(∣∣∣∣w(0)
2i +

1− β
‖A‖2

A
(
W

(0)
1 [i, :]

)T ∣∣∣∣) ∈ [Ω̃( 1

d
5
4α

)
, Õ
(

1

dα

)]
.

Similarly, note that

C1 = −W
(1)
2 − λ2W (0)

2

λ2 − λ1

= −
W

(0)
2 + ηAW

(0)T
1 + ηr̃

(0)
2 −W

(0)
2 − η

1−β ‖A‖2W
(0)
2

2η
1−β ‖A‖2

=
1

2
W

(0)
2 − 1− β

2‖A‖2
AW

(0)T
1 − 1− β

2‖A‖2
r̃
(0)
2 ,

we can use the same techniques to get that i) w.p. at least 1− δ, ∀i ∈ [d] : |C1i| ≤ Õ
(

1
dα

)
, ii) w.p.

at least 1− δ − 1

d
α
4
−1 , ∀i ∈ [d], |C1i| ≥ Ω̃

(
1

d
5
4
α

)
.
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C.8 PROOF OF LEMMA 2

The proof in Section C.2 tells us that at the end of the first phase (when t = T1),

W
(T1)
1 = u(T1)v(T1)T +R

(T1)
1 ,

W
(T1)
2 = c(T1)u(T1)T +R

(T1)T
2 ,

where v(T1)T =
ηA

1− β
, c(T1) =

λT1
2∑T1−1

τ=0 λτ2
.

(16)

Denote the i-th coordinate of u(t),v(t), R
(t)
2 as u(t)i , v

(t)
i , R

(t)
2i , respectively. Denote the (i, j)-th

element of R(t)
1 as R(t)

1 [i, j]. For t ≥ T1, we prove by induction that,

W
(t)
1 = u(T1)v(t)T +R

(t)
1 ,

W
(t)
2 = c(t)u(T1)T +R

(t)T
2 ,

(17)

where

v(t+1)T = v(t)T − ηtc(t)E(t),

R
(t+1)
1 = R

(t)
1 − ηtR

(t)
2 E(t) + r

(t)
1 ,

c(t+1) = c(t) − ηtE(t)v(t),

R
(t+1)T
2 = R

(t)T
2 − ηtE(t)R

(t)T
1 + r

(t)
2 ,

with r(t)1 := η
∑t
τ=0 β

t−τ
(
W

(t)T
2 E(t) −W (τ)T

2 E(τ)
)
−η
∑t
τ=0 β

t−τDg
(τ)
1 ,E(t) := W

(t)
2 W

(t)
1 −

A, ηt = η
∑t
τ=0 β

t−τ and r(t)2 = η
∑t
τ=0 β

t−τ
(
E(t)W

(t)T
1 − E(τ)W

(τ)T
1

)
−η

∑t
τ=0 β

t−τDg
(τ)
2 .

Note that the r(t)1 and r(t)2 here are different from those defined in Section C.2, but we abuse the
notation and still use r(t)1 and r(t)2 to represent the error terms.

The base case is already given by eq. (16).

Suppose our lemma holds for t, then for t+ 1, using the same techniques as in eq. (5) and eq. (6), we
have that

W
(t+1)
1 = W

(t)
1 − η

t∑
τ=0

βt−τW
(τ)T
2 E(τ) − η

t∑
τ=0

βt−τDg
(τ)
1

= W
(t)
1 − ηtW (t)T

2 E(t) + r
(t)
1 ,

W
(t+1)
2 = W

(t)
2 − η

t∑
τ=0

βt−τE(τ)W
(τ)T
1 − η

t∑
τ=0

βt−τDg
(τ)
2

= W
(t)
2 − ηtE(t)W

(t)T
1 + r

(t)
2 ,

Plugging in the inductive hypothesis yields

W
(t+1)
1 = W

(t)
1 − ηtW (t)T

2 E(t) + r
(t)
1

= u(T1)v(t)T +R
(t)
1 − ηt

(
c(t)u(T1) +R

(t)
2

)
E(t) + r

(t)
1

= u(T1)
(
v(t)T − ηtc(t)E(t)

)
+R

(t)
1 − ηtR

(t)
2 E(t) + r

(t)
1 ,

W
(t+1)
2 = W

(t)
2 − ηtE(t)W

(t)T
1 + r

(t)
2

= c(t)u(T1)T +R
(t)T
2 − ηtE(t)

(
v(t)u(T1)T +R

(t)T
1

)
+ r

(t)
2

=
(
c(t) − ηtE(t)v(t)

)
u(T1)T +R

(t)T
2 − ηtE(t)R

(t)T
1 + r

(t)
2 .
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It implies that our lemma holds for t+ 1, which completes the proof.

Now we analyze the error terms
∣∣∣R(t)

1 [i, j]
∣∣∣ and

∣∣∣R(t)
2i

∣∣∣. Eq. (16) tells us that c(T1) and ∀i ∈ [d], v
(T1)
i

are all positive. We first prove by induction that for all T1 ≤ t ≤ T2, c(t) > 0,∀i ∈ [d], v
(t)
i > 0.

The above discussion already proves the base case. Suppose at time t, we have c(t) > 0,∀i ∈
[d], v

(t)
i > 0. Note that when T1 ≤ t < T2, ∀i ∈ [d] : E

(t)
i ≤ 0, then for t+ 1,

v
(t+1)
i = v

(t)
i − ηtc

(t)E
(t)
i > 0,

c(t+1) = c(t) − ηt
d∑
i=1

E
(t)
i v

(t)
i > 0.

Therefore by induction, we have proved that for all T1 ≤ t ≤ T2, c(t) > 0,∀i ∈ [d], v
(t)
i > 0.

Now we prove that for all T1 ≤ t ≤ T2,

∀1 ≤ i, j ≤ d : 0 ≤

∣∣∣R(t)
1 [i, j]

∣∣∣∣∣∣u(T1)
i

∣∣∣ v(t)j ≤ δi +
t−1∑
τ=T1

ε
(τ)
i , 0 ≤

∣∣∣R(t)
2i

∣∣∣
c(t)
∣∣∣u(T1)
i

∣∣∣ ≤ δi +

t−1∑
τ=T1

ε
(τ)
i , (18)

where

δi := max

max
j

∣∣∣R(T1)
1 [i, j]

∣∣∣∣∣∣u(T1)
i

∣∣∣ v(T1)
j

,

∣∣∣R(T1)
2i

∣∣∣
c(T1)

∣∣∣u(T1)
i

∣∣∣
 , ε

(t)
i := max

max
j

∣∣∣r(t)1 [i, j]
∣∣∣∣∣∣u(T1)

i

∣∣∣ v(t)j ,

∣∣∣r(t)2i

∣∣∣
c(t)
∣∣∣u(T1)
i

∣∣∣
 .

The left hand sides of the inequalities are trivial since we have proved that c(t) > 0,∀i ∈ [d], v
(t)
i > 0

for all T1 ≤ t ≤ T2. Now we prove the right hand sides by induction.

The base case is already verified by the definition of δi. Suppose eq.(18) holds for T1 ≤ t < T2. Then
for t+ 1, using ∀i ∈ [d] : E

(t)
i ≤ 0 and v(t+1) ≥ v(t), c(t+1) ≥ c(t), we can get that ∀1 ≤ i, j ≤ d∣∣∣R(t+1)

1 [i, j]
∣∣∣∣∣∣u(T1)

i

∣∣∣ v(t+1)
j

≤

∣∣∣R(t)
1 [i, j]

∣∣∣ 1∣∣∣u(T1)
i

∣∣∣ + ηt

∣∣∣R(t)
2i

∣∣∣ 1∣∣∣u(T1)
i

∣∣∣
(
−E(t)

j

)
v
(t)
j + ηtc(t)

(
−E(t)

j

) +

∣∣∣r(t)1 [i, j]
∣∣∣∣∣∣u(T1)

i

∣∣∣ v(t)j
≤

(
δi +

∑t−1
τ=T1

ε
(τ)
i

)
v
(t)
j + ηt

(
δi +

∑t−1
τ=T1

ε
(τ)
i

)
c(t)
(
−E(t)

j

)
v
(t)
j + ηtc(t)

(
−E(t)

j

) + ε
(t)
i

= δi +

t∑
τ=T1

ε
(τ)
i .

Similarly, we have that ∀1 ≤ i ≤ d∣∣∣R(t+1)
2i

∣∣∣
c(t+1)

∣∣∣u(T1)
i

∣∣∣ ≤
∣∣∣R(t)

2i

∣∣∣ 1∣∣∣u(T1)
i

∣∣∣ + ηt
∑d
j=1

(
−E(t)

j

) ∣∣∣R(t)
1 [i, j]

∣∣∣ 1∣∣∣u(T1)
i

∣∣∣
c(t) + ηt

∑d
j=1

(
−E(t)

j

)
v
(t)
j

+

∣∣∣r(t)2i

∣∣∣∣∣∣u(T1)
i

∣∣∣ c(t)
≤

(
δi +

∑t−1
τ=T1

ε
(τ)
i

)
c(t) + ηt

(
δi +

∑t−1
τ=T1

ε
(τ)
i

)∑d
j=1

(
−E(t)

j

)
v
(t)
j

c(t) + ηt
∑d
j=1

(
−E(t)

j

)
v
(t)
j

+ ε
(t)
i

= δi +

t∑
τ=T1

ε
(τ)
i .

Therefore by induction, eq. (18) holds for all t in the second phase.

So far we have proved the rank 1 structure stated in Lemma 2. The remaining part of the proof is
given by the following lemma, whose proof is deferred to Section C.9.
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Lemma 8. Under Assumption 1, 2 and 3, suppose σ ≤ η3/2

dα/2+1 . By picking η ≤ O
(

ε

d
7α
4

+4

)
, we

have that w.h.p. for T1 ≤ t ≤ min{T2, T3},

∀1 ≤ i, j ≤ d : 0 ≤

∣∣∣R(t)
1 [i, j]

∣∣∣∣∣∣u(T1)
i

∣∣∣ v(t)j ≤ Õ(ε0), 0 ≤

∣∣∣R(t)
2i

∣∣∣
c(t)
∣∣∣u(T1)
i

∣∣∣ ≤ Õ(ε0), (19)

and that when t = min{T2, T3}, we have
∥∥E(t)

∥∥2
2

= O(ε0d).

C.9 PROOF OF LEMMA 8

We first have the following lemma which describes the structure of v(t) for t ≥ T1.

Lemma 9. Under Assumption 1, 2 and 3, for t ≥ T1, we can write v(t)T as v(t)T = a(t)A+R
(t)T
v ,

with a(T1) = η
1−β , R

(T1)T
v = [0, 0, ..., 0], and

a(t+1) =
(

1− ηtc(t)d(t)
)
a(t) + ηtc

(t),

R(t+1)
v =

(
1− ηtc(t)d(t)

)
R(t)
v − ηtc(t)R

(t)
3 ,

where d(t) := c(t)
∥∥∥u(T1)

∥∥∥2 +R
(t)T
2 u(T1), R

(t)T
3 := c(t)u(T1)TR

(t)
1 +R

(t)T
2 R

(t)
1 .

Moreover, we have that

W
(t)
2 W

(t)
1 = d(t)v(t)T +R

(t)T
3 = d(t)a(t)A+ d(t)R(t)T

v +R
(t)T
3 . (20)

We prove Lemma 8 by induction. Denote the i-th coordinate of R(t)
3 and R(t)

v as R(t)
3i and R(t)

vi ,
respectively. The following lemmas constitute the inductive part.

Lemma 10. Under Assumption 1, 2 and 3, suppose σ ≤ η3/2

dα/2+1 and pick η ≤ O
(

1
dα

)
. Con-

sider any t such that T1 ≤ t < min{T2, T3}. Suppose for all T1 ≤ τ ≤ t, we have ∀i, j ∈
[d] :

∣∣∣w(τ)
2i

∣∣∣ ≤ O (d1/4) , ∣∣∣W (τ)
1 [i, j]

∣∣∣ ≤ O ( 1
d1/4

)
, then we have that ∀i, j ∈ [d] :

∣∣∣r(t)1 [i, j]
∣∣∣ =

Õ
(
η2d11/4

)
,
∣∣∣r(t)2i

∣∣∣ = Õ
(
η2d13/4

)
. Moreover, we can get that ∀i ∈ [d] : ε

(t)
i = Õ

(
η2d

3
4α+

13
4

)
,

where ε(t)i is defined in eq. (18).

Lemma 11. Under the conditions of Lemma 10 and pick η ≤ O
(

ε

d
7α
4

+4

)
, we have that at time

t+ 1,

∀1 ≤ i, j ≤ d : 0 ≤

∣∣∣R(t+1)
1 [i, j]

∣∣∣∣∣∣u(T1)
i

∣∣∣ v(t+1)
j

≤ Õ(ε0), 0 ≤

∣∣∣R(t+1)
2i

∣∣∣
c(t+1)

∣∣∣u(T1)
i

∣∣∣ ≤ Õ(ε0).

where ε0 is defined in Definition 2.

Lemma 12. Under the conditions of Lemma 10 and pick η ≤ O
(

ε

d
7α
4

+4

)
, we have that at time

t+ 1,

0 ≤

∣∣∣R(t+1)T
2 u(T1)

∣∣∣
c(t+1)

∥∥u(T1)
∥∥2 ≤ Õ(ε0), ∀j ∈ [d] : 0 ≤

∣∣∣R(t+1)
3j

∣∣∣
c(t+1)

∥∥u(T1)
∥∥2 v(t)j ≤ Õ(ε0).

Moreover,

∀j ∈ [d] :

∣∣∣R(t+1)
3j

∣∣∣
Aj

≤ Õ(ε0). (21)

Lemma 13. Under the conditions of Lemma 10 and pick η ≤ O
(

ε

d
7α
4

+4

)
, if we further suppose that

∀j ∈ [d] :
v
(t)
j

c(t)
= Θ

(
1√
d

)
,

∣∣∣R(t)
3j

∣∣∣
Aj

and

∣∣∣R(t)
vj

∣∣∣
a(t)Aj

are of order Õ(ε0), then we have that at time t+ 1,
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(A) ∀i, j ∈ [d] :
E

(t)
j

E
(t)
i

= Θ(1),

(B) ∀j ∈ [d] :
v
(t+1)
j

c(t+1) = Θ
(

1√
d

)
,

(C) ∀i, j ∈ [d] :
∣∣∣w(t+1)

2i

∣∣∣ ≤ O (d1/4) , ∣∣∣W (t+1)
1 [i, j]

∣∣∣ ≤ O ( 1
d1/4

)
,

(D) ∀j ∈ [d],

∣∣∣R(t+1)
3j

∣∣∣
Aj

and

∣∣∣R(t+1)
vj

∣∣∣
a(t+1)Aj

are of order Õ(ε0).

By combining Lemma 10, 11 and 13, we can prove by induction that for all T1 ≤ t ≤ min{T2, T3},
eq. (19) holds (which follows from Lemma 11), and

∀i, j ∈ [d] :
E

(t)
j

E
(t)
i

= Θ(1), (22)

which follows from the part (A) of Lemma 13. Now the only thing to verify is the base case, i.e. when
t = T1. More specifically, we want to prove that 1) ∀i, j ∈ [d] :

∣∣∣w(T1)
2i

∣∣∣ ≤ O (d1/4) , ∣∣∣W (T1)
1 [i, j]

∣∣∣ ≤
O
(

1
d1/4

)
and that 2) ∀j ∈ [d] :

v
(T1)
j

c(T1) = Θ
(

1√
d

)
, and that 3)

∣∣∣R(T1)
3j

∣∣∣
Aj

and

∣∣∣R(T1)
vj

∣∣∣
a(T1)Aj

are of order Õ(ε0).

All of them can be verified by the proof in Section C.2 and the definition of R(t)
v , R

(t)
3 .

So far we have proved eq. (19) in Lemma 8. Now let’s prove when t = min{T2, T3}, we have that∥∥E(t)
∥∥2
2

= O(ε0d).

If min{T2, T3} = T3, by Definition 3, we have
∥∥E(t)

∥∥2
2
≤ ε. If min{T2, T3} = T2, by Definition 2,

there exists j ∈ [d] such that E(t)
j = −Θ

(√
ε0
)
. Combining with eq. (22) gives us ∀i ∈ [d] :

E
(t)
i = −Θ

(√
ε0
)
. Combining these two cases, we get that when t = min{T2, T3},

∥∥E(t)
∥∥2
2
≤

max{ε,Θ (ε0d)} = O (ε0d).

C.10 PROOF OF LEMMA 9

We prove this lemma by induction. The base case (t = T1) of v(t) is verified by eq. (16).

Suppose at time t, v(t)T = a(t)A+R
(t)T
v , then by eq. 17, we have that

W
(t)
2 W

(t)
1 =

(
c(t)u(T1)T +R

(t)T
2

)(
u(T1)v(t)T +R

(t)
1

)
=

(
c(t)
∥∥∥u(T1)

∥∥∥2 +R
(t)T
2 u(T1)

)
v(t) + c(t)u(T1)TR

(t)
1 +R

(t)T
2 R

(t)
1

= d(t)v(t)T +R
(t)T
3

= d(t)a(t)A+ d(t)R(t)T
v +R

(t)T
3 ,

where d(t) := c(t)
∥∥u(T1)

∥∥2 +R
(t)T
2 u(T1), R

(t)T
3 := c(t)u(T1)TR

(t)
1 +R

(t)T
2 R

(t)
1 . That gives us

v(t+1)T = v(t)T − ηtc(t)E(t)

= a(t)A+R(t)T
v − ηtc(t)

(
d(t)a(t)A+ d(t)R(t)T

v +R
(t)T
3 −A

)
=
((

1− ηtc(t)d(t)
)
a(t) + ηtc

(t)
)
A+

(
1− ηtc(t)d(t)

)
R(t)T
v − ηtc(t)R(t)T

3

:= a(t+1)A+R(t+1)T
v .

Therefore we have proved by induction that for t in the second phase, v(t) = a(t)A + R
(t)T
v . The

above steps also proved eq. (20).
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C.11 PROOF OF LEMMA 10

Write r(t)1 = q
(t)
11 + q

(t)
12 where we have q(t)11 = η

∑t
τ=0 β

t−τ
(
W

(t)T
2 E(t) −W (τ)T

2 E(τ)
)

,

q
(t)
12 = −η

∑t
τ=0 β

t−τDg
(τ)
1 . Write r(t)2 = q

(t)
21 + q

(t)
22 where q(t)22 = −η

∑t
τ=0 β

t−τDg
(τ)
2 , q(t)21 =

η
∑t
τ=0 β

t−τ
(
E(t)W

(t)T
1 − E(τ)W

(τ)T
1

)
.

Let’s first bound
∣∣∣q(t)11 [i, j]

∣∣∣ and
∣∣∣q(t)21,i

∣∣∣. By definition of T2, we know that for T1 ≤ τ ≤ t, ∀i ∈ [d] :∣∣∣E(τ)
i

∣∣∣ = O(1). Then we have for all i, j ∈ [d],

∣∣∣W (τ+1)
1 [i, j]−W (τ)

1 [i, j]
∣∣∣ ≤ η τ∑

k=0

βτ−k
∣∣∣w(k)

2i E
(k)
j

∣∣∣ ≤ η τ∑
k=0

βτ−kO
(
d1/4

)
= ηO

(
d1/4

)
,

∣∣∣w(τ+1)
2i − w(τ)

2i

∣∣∣ ≤ η τ∑
k=0

βτ−k
d∑
j=1

∣∣∣E(k)
j W

(k)
1 [j, i]

∣∣∣ ≤ η τ∑
k=0

βτ−kO
(
d3/4

)
= ηO

(
d3/4

)
.

(23)
Note that∣∣∣E(τ+1)

j − E(τ)
j

∣∣∣ =

d∑
i=1

((
w

(τ+1)
2i − w(τ)

2i

)
W

(τ)
1 [i, j] + w

(τ)
2i

(
W

(τ+1)
1 [i, j]−W (τ)

1 [i, j]
))

+

d∑
i=1

((
w

(τ+1)
2i − w(τ)

2i

)(
W

(τ+1)
1 [i, j]−W (τ)

1 [i, j]
))

.

We can further get that for ∀j ∈ [d],∣∣∣E(τ+1)
j − E(τ)

j

∣∣∣ ≤ ηdO (d3/4)O (d−1/4)+ ηdO
(
d1/4

)
O
(
d1/4

)
+ η2dO

(
d3/4

)
O
(
d1/4

)
= O

(
ηd3/2 + η2d2

)
= O

(
ηd3/2

)
.

Combining the above inequalities gives us ∀i, j ∈ [d],∣∣∣q(t)11 [i, j]
∣∣∣ = η

∣∣∣∣∣
t∑

τ=0

βt−τ
(
w

(t)
2i E

(t)
j − w

(τ)
2i E

(τ)
j

)∣∣∣∣∣
≤ η

t∑
τ=0

βt−τ
(∣∣∣w(t)

2i − w
(τ)
2i

∣∣∣ ∣∣∣E(t)
j

∣∣∣+
∣∣∣w(τ)

2i

∣∣∣ ∣∣∣E(t)
j − E

(τ)
j

∣∣∣)
≤ η2

t∑
τ=0

βt−τ (t− τ)
(
O
(
d3/4

)
O(1) +O

(
d1/4

)
O
(
d3/2

))
= O

(
η2d7/4

)
,

∣∣∣q(t)12,i

∣∣∣ = η

∣∣∣∣∣∣
t∑

τ=0

βt−τ
d∑
j=1

(
E

(t)
j W

(t)
1 [i, j]− E(τ)

j W
(τ)
1 [i, j]

)∣∣∣∣∣∣
≤ η

t∑
τ=0

βt−τ
d∑
j=1

(∣∣∣E(t)
j

∣∣∣ ∣∣∣W (t)
1 [i, j]−W (τ)

1 [i, j]
∣∣∣+
∣∣∣E(t)

j − E
(τ)
j

∣∣∣ ∣∣∣W (τ)
1 [i, j]

∣∣∣)

≤ η2d
t∑

τ=0

βt−τ (t− τ)
(
O(1)O

(
d1/4

)
+O

(
d3/2

)
O
(
d−1/4

))
= O

(
η2d9/4

)
.

Next let’s bound
∣∣∣q(t)12 [i, j]

∣∣∣ and
∣∣∣q(t)22,i

∣∣∣. By the assumption of this lemma and the analysis before

T1, we know that for all τ ≤ t, the M (τ)
1 ,M

(τ)
2 in Lemma 31 are upper bounded by O

(
1

d1/4

)
and

O
(
d1/4

)
, respectively. In the theorem we consider the training period before TSGD,2 so the time T in
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Lemma 31 is set as TSGD,2. In the following sections, we will prove that TSGD,2 ≤ O
(
dα log(

√
d/ε)

η

)
.

Then by Lemma 31, we have with probability at least 1− 1
d , for ∀τ ≤ t and ∀i, j ∈ [d],

∣∣∣Dg(τ)1 [i, j]
∣∣∣ =

∣∣∣g̃(τ)1 [i, j]− g(τ)1 [i, j]
∣∣∣ ≤ O(d 13

4 σ

√
dα+1

η
log

d

ε

)
+O

(
d

1
4σ

√
dα+2

η
log

d

ε

)

≤ Õ

(
d

13
4 σ

√
dα+1

η

)
,

∣∣∣Dg(τ)2i

∣∣∣ =
∣∣∣g̃(τ)2i − g

(τ)
2i

∣∣∣ ≤ O(d 15
4 σ

√
dα+1

η
log

d

ε

)
+O

(
d

3
4σ

√
dα+2

η
log

d

ε

)

= Õ

(
d

15
4 σ

√
dα+1

η

)
.

By picking σ ≤ η3/2

dα/2+1 , we have
∣∣∣Dg(τ)1 [i, j]

∣∣∣ ≤ ηÕ (d 11
4

)
and

∣∣∣Dg(τ)2i

∣∣∣ ≤ ηÕ (d 13
4

)
, which yields

∣∣∣q(t)12 [i, j]
∣∣∣ ≤ η t∑

τ=0

βt−τ
∣∣∣Dg(τ)1 [i, j]

∣∣∣ ≤ Õ (η2d 11
4

)
,

∣∣∣q(t)22,i

∣∣∣ ≤ η t∑
τ=0

βt−τ
∣∣∣Dg(τ)2i

∣∣∣ ≤ Õ (η2d 13
4

)
.

Combining the above bounds, we get that ∀i, j ∈ [d],∣∣∣r(t)1 [i, j]
∣∣∣ ≤ Õ (η2d 11

4

)
,
∣∣∣r(t)2i

∣∣∣ ≤ Õ (η2d 13
4

)
.

By the analysis in Section C.2, we know that at time T1, for some i0 ∈ [d], c(T1)
∣∣∣u(T1)
i0

∣∣∣ = Θ
(

1

d
α
2

)
,

and for ∀i, j ∈ [d], we have c(T1)
∣∣∣u(T1)
i

∣∣∣ = Ω̃
(

1

d
3α
4

)
and

∣∣∣u(T1)
i

∣∣∣ v(T1)
j = Ω̃

(
1

d
3α
4

+ 1
2

)
, which gives

us ∀i, j ∈ [d],∣∣∣r(t)1 [i, j]
∣∣∣∣∣∣u(T1)

i

∣∣∣ v(t)j ≤

∣∣∣r(t)1 [i, j]
∣∣∣∣∣∣u(T1)

i

∣∣∣ v(T1)
j

= Õ
(
η2d

3
4α+

13
4

)
,

∣∣∣r(t)2i

∣∣∣
c(t)
∣∣∣u(T1)
i

∣∣∣ ≤
∣∣∣r(t)2i

∣∣∣
c(T1)

∣∣∣u(T1)
i

∣∣∣ = Õ
(
η2d

3
4α+

13
4

)
.

Hence we get the bound ∀i ∈ [d] : ε
(t)
i ≤ Õ

(
η2d

3
4α+

13
4

)
.

C.12 PROOF OF LEMMA 11

Let’s first try to bound the length of min{T2, T3}. More formally, we prove that under the conditions

of Lemma 10 and pick η ≤ O
(

ε

d
7α
4

+4

)
, we have that min{T2, T3} ≤ O

(
dα log(

√
d/ε)

η

)
.

Under the conditions of Lemma 10, we know that

∀j ∈ [d] :

∣∣∣∣(r(t)2 W
(t)
1

)
j

∣∣∣∣ ≤ d∑
i=1

∣∣∣r(t)2i W
(t)
1 [i, j]

∣∣∣ = O
(
η2d4

)
,

∣∣∣∣(W (t)
2 r

(t)
1

)
j

∣∣∣∣ ≤ d∑
i=1

∣∣∣w(t)
2i r

(t)
1 [i, j]

∣∣∣ = O
(
η2d4

)
.
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Combining with eq. (23), we get

E(t+1)

=E(t) +
(
W

(t+1)
2 −W (t)

2

)
W

(t)
1 +W

(t)
2

(
W

(t+1)
1 −W (t)

1

)
+
(
W

(t+1)
2 −W (t)

2

)(
W

(t+1)
1 −W (t)

1

)
=E(t) − ηtE(t)W

(t)T
1 W

(t)
1 + r

(t)
2 W

(t)
1 − ηtW (t)

2 W
(t)T
2 E(t) +W

(t)
2 r

(t)
1 +O

(
η2d
)

=E(t)

(
I − ηtW (t)T

1 W
(t)
1 − ηt

∥∥∥W (t)
2

∥∥∥2
2
I

)
+O

(
η2d4

)
+O

(
η2d4

)
+O

(
η2d
)
.

Then we have∥∥∥E(t+1)
∥∥∥
2
≤
∥∥∥E(t)

∥∥∥
2

∥∥∥∥I − ηtW (t)T
1 W

(t)
1 − ηt

∥∥∥W (t)
2

∥∥∥2
2
I

∥∥∥∥
2

+O
(
η2d4

)
≤
(

1− ηt
∥∥∥W (t)

2

∥∥∥2
2

)∥∥∥E(t)
∥∥∥
2

+O
(
η2d4

)
.

When T1 ≤ t < T2, we have proved that c(t) is increasing over time in Section C.8, which implies

that
∥∥∥W (t)

2

∥∥∥2
2
≥ C

∥∥∥W (T1)
2

∥∥∥2
2

since c(t)u(T1)T is the leading term of W (t)
2 . Combining with ηt ≥ η

gives us∥∥∥E(t+1)
∥∥∥
2
≤
(

1− ηC
∥∥∥W (T1)

2

∥∥∥2
2

)∥∥∥E(t)
∥∥∥
2

+O
(
η2d4

)
,

⇒
∥∥∥E(t)

∥∥∥
2
≤

O
(
η2d4

)
ηC
∥∥∥W (T1)

2

∥∥∥2
2

+

(
1− ηC

∥∥∥W (T1)
2

∥∥∥2
2

)t−T1

∥∥∥E(T1)
∥∥∥
2
−

O
(
η2d4

)
ηC
∥∥∥W (T1)

2

∥∥∥2
2


(i)

≤ O

 ηd4∥∥∥W (T1)
2

∥∥∥2
2

+ exp

(
−ηC

∥∥∥W (T1)
2

∥∥∥2
2

(t− T1)

)
O
(√

d
)
,

where (i) uses
∥∥E(T1)

∥∥
2

= O(
√
d). By picking η ≤ O

(
ε

d
7α
4

+4

)
and noticing that

∥∥∥W (T1)
2

∥∥∥2
2
≥

Ω
(

1
dα

)
, we have ηd4∥∥∥W (T1)

2

∥∥∥2
2

<
√
ε

2 . Hence when t− T1 ≥ Θ

(
log
(√

d/ε
)

η
∥∥∥W (T1)

2

∥∥∥2
2

)
, we have that

∥∥E(t)
∥∥
2
≤

√
ε, i.e.

∥∥E(t)
∥∥2
2
≤ ε.

That means after at most O

(
log
(√

d/ε
)

η
∥∥∥W (T1)

2

∥∥∥2
2

)
steps from T1, either t ≥ T2, or we have

∥∥E(t)
∥∥2
2
≤ ε. In

other words, min{T2, T3} ≤ T1 +O

(
log
(√

d/ε
)

η
∥∥∥W (T1)

2

∥∥∥2
2

)
≤ O

(
dα log

(√
d/ε
)

η

)
.

Now we are ready to bound eq. 18.

Combining min{T2, T3} ≤ O
(
dα log(

√
d/ε)

η

)
and Lemma 10 yields that for t+ 1 ≤ min{T2, T3},

∀i ∈ [d],

t+1∑
τ=T1

ε
(τ)
i ≤ (t+ 1− T1) Õ

(
η2d

3
4α+

13
4

)
≤ Õ

(
ηd

7
4α+

13
4 log

√
d

ε

)
= Õ

(
ε log

√
d

ε

)
.

Lemma 1 tells us that δi = Õ
(

1

d
1
4
α−1

)
. Substituting these bounds into eq. (18) completes the proof.
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C.13 PROOF OF LEMMA 12

The proof in Section C.8 tells us that for T1 ≤ τ ≤ T2, c(τ) > 0,∀j ∈ [d] : v
(τ)
j > 0, which gives us

0 ≤
∣∣∣R(t+1)T

2 u(T1)
∣∣∣

c(t+1)‖u(T1)‖2 and 0 ≤
∣∣∣R(t+1)

3j

∣∣∣
c(t+1)‖u(T1)‖2v(t+1)

j

. By Lemma 11, we have that

∀1 ≤ i, j ≤ d : 0 ≤

∣∣∣R(t+1)
1 [i, j]

∣∣∣∣∣∣u(T1)
i

∣∣∣ v(t+1)
j

≤ Õ(ε0), 0 ≤

∣∣∣R(t+1)
2i

∣∣∣
c(t+1)

∣∣∣u(T1)
i

∣∣∣ ≤ Õ(ε0),

which gives us∣∣∣R(t+1)T
2 u(T1)

∣∣∣
c(t+1)

∥∥u(T1)
∥∥2 ≤

∑d
i=1

∣∣∣u(T1)
i

∣∣∣ ∣∣∣R(t+1)
2i

∣∣∣
c(t+1)

∑d
i=1

∣∣∣u(T1)
i

∣∣∣2 ≤
Õ(ε0)c(t+1)

∑d
i=1

∣∣∣u(T1)
i

∣∣∣2
c(t+1)

∑d
i=1

∣∣∣u(T1)
i

∣∣∣2 = Õ(ε0).

Lemma 9 tells us that

R
(t+1)T
3 = c(t+1)u(T1)TR

(t+1)
1 +R

(t+1)T
2 R

(t+1)
1 .

And we have that∣∣∣∣(c(t+1)u(T1)TR
(t+1)
1

)
j

∣∣∣∣
c(t+1)

∥∥u(T1)
∥∥2 v(t+1)

j

≤
c(t+1)

∑d
i=1

∣∣∣u(T1)
i

∣∣∣ ∣∣∣R(t+1)
1 [i, j]

∣∣∣
c(t+1)

∑d
i=1

∣∣∣u(T1)
i

∣∣∣2 v(t+1)
j

≤
Õ(ε0)c(t+1)

∑d
i=1

∣∣∣u(T1)
i

∣∣∣2 v(t+1)
j

c(t+1)
∑d
i=1

∣∣∣u(T1)
i

∣∣∣2 v(t+1)
j

= Õ(ε0),

∣∣∣∣(R(t+1)T
2 R

(t+1)
1

)
j

∣∣∣∣
c(t+1)

∥∥u(T1)
∥∥2 v(t+1)

j

≤

∑d
i=1

∣∣∣R(t+1)
2i

∣∣∣ ∣∣∣R(t+1)
1 [i, j]

∣∣∣
c(t+1)

∑d
i=1

∣∣∣u(T1)
i

∣∣∣2 v(t+1)
j

≤
Õ
(
ε20
)
c(t+1)

∑d
i=1

∣∣∣u(T1)
i

∣∣∣2 v(t+1)
j

c(t+1)
∑d
i=1

∣∣∣u(T1)
i

∣∣∣2 v(t+1)
j

= Õ
(
ε20
)
.

Therefore ∣∣∣R(t+1)
3j

∣∣∣
c(t+1)

∥∥u(T1)
∥∥2 v(t+1)

j

≤

∣∣∣∣(c(t+1)u(T1)TR
(t+1)
1

)
j

∣∣∣∣
c(t+1)

∥∥u(T1)
∥∥2 v(t+1)

j

+

∣∣∣∣(R(t+1)T
2 R

(t+1)
1

)
j

∣∣∣∣
c(t+1)

∥∥u(T1)
∥∥2 v(t+1)

j

≤ Õ(ε0).

By Lemma 9,

W
(t+1)
2 W

(t+1)
1 = c(t+1)

∥∥∥u(T1)
∥∥∥2 v(t+1)T +R

(t+1)T
2 u(T1)v(t+1)T +R

(t+1)T
3 .

Then we have that ∀j ∈ [d],(
W

(t+1)
2 W

(t+1)
1

)
j

= c(t+1)
∥∥∥u(T1)

∥∥∥2 v(t+1)
j

(
1 + e

(t+1)
j

)
, where

∣∣∣e(t+1)
j

∣∣∣ ≤ Õ(ε0). (24)

Since t < T2, we have ∀j ∈ [d] :

(
W

(t+1)
2 W

(t+1)
1

)
j

Aj
= O(1), which yields

0 ≤
c(t+1)

∥∥u(T1)
∥∥2 v(t+1)

j

Ai
≤ O(1), (25)

which proves eq. (21), since ∀j ∈ [d] : 0 ≤
∣∣∣R(t+1)

3j

∣∣∣
c(t+1)‖u(T1)‖2v(t+1)

j

≤ Õ(ε0).
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C.14 PROOF OF LEMMA 13

(A) Under the conditions of Lemma 10 and pick η ≤ O
(

ε

d
7α
4

+4

)
, we can apply the technique when

proving eq. (24) to show that eq. (24) also holds at time t. Since

∣∣∣R(t)
vj

∣∣∣
a(t)Aj

≤ Õ(ε0), we get that

v
(t)
j = a(t)Aj +R

(t)
vj = a(t)Aj

(
1 + e

(t)
vj

)
, where

∣∣∣e(t)vj ∣∣∣ ≤ Õ(ε0).

Substituting into the time t version of eq.(24) yields

∀j ∈ [d] :
(
W

(t)
2 W

(t)
1

)
j

= a(t)c(t)
∥∥∥u(T1)

∥∥∥2Aj (1 + ẽ
(t)
j

)
, where

∣∣∣ẽ(t)j ∣∣∣ ≤ Õ(ε0),

That gives us

∀j ∈ [d] : E
(t)
j = Aj

(
a(t)c(t)

∥∥∥u(T1)
∥∥∥2 − 1 + a(t)c(t)

∥∥∥u(T1)
∥∥∥2 ẽ(t)j ) .

Since t < T2, we have E(t)
j < −√ε0. Combining with Aj = Θ(1), gives us a(t)c(t)

∥∥u(T1)
∥∥2− 1 =

−Ω
(√
ε0
)
. Then we can rewrite E(t)

j as ∀j ∈ [d],

E
(t)
j = Aj

(
a(t)c(t)

∥∥∥u(T1)
∥∥∥2 − 1

)(
1 +

a(t)c(t)
∥∥u(T1)

∥∥2
a(t)c(t)

∥∥u(T1)
∥∥2 − 1

ẽ
(t)
j

)

:= Aj

(
a(t)c(t)

∥∥∥u(T1)
∥∥∥2 − 1

)(
1 + e

(t)
Ej

)
,

where
∣∣∣e(t)Ej∣∣∣ = Õ(

√
ε0). Hence ∀i, j ∈ [d] :

E
(t)
j

E
(t)
i

= Θ(1).

(B) Note that we assume ∀j ∈ [d] :
v
(t)
j

c(t)
= Θ

(
1√
d

)
, then we have for j ∈ [d],

−E(t)v(t)

c(t)
(
−E(t)

j

) =

∑d
i=1

(
−E(t)

i

)
v
(t)
i

c(t)
(
−E(t)

j

) =

d∑
i=1

E
(t)
i

E
(t)
j

· v
(t)
i

c(t)
=

d∑
i=1

Θ

(
1√
d

)
= Θ

(√
d
)
,

⇒
c(t)
(
−E(t)

j

)
−E(t)v(t)

= Θ

(
1√
d

)
.

Then for t+ 1, we have that for j ∈ [d],

v
(t+1)
j

c(t+1)
=
v
(t)
j + ηtc

(t)
(
−E(t)

j

)
c(t) + ηt

(
−E(t)

)
v(t)

= Θ

(
1√
d

)
.

(C) Combining eq. (25) and ∀j ∈ [d] : Aj = Θ(1), we know that

c(t+1)
∥∥∥u(T1)

∥∥∥2 v(t+1)
j ≤ O(1),

which yields ∀j ∈ [d],∥∥∥u(T1)
∥∥∥2 (v(t+1)

j

)2
≤
v
(t+1)
j

c(t+1)
O(1) = O

(
1√
d

)
,
(
c(t+1)

)2 ∥∥∥u(T1)
∥∥∥2 ≤ c(t+1)

v
(t+1)
j

O(1) = O
(√

d
)
.

(26)
Hence ∀i, j ∈ [d],

c(t+1)
∣∣∣u(T1)
i

∣∣∣ = O
(
d1/4

)
⇒
∣∣∣w(t+1)

2i

∣∣∣ ≤ c(t+1)
∣∣∣u(T1)
i

∣∣∣+
∣∣∣R(t+1)

2i

∣∣∣ (i)= O
(
d1/4

)
,∣∣∣u(T1)

i

∣∣∣ v(t+1)
j = O

(
1

d1/4

)
⇒
∣∣∣W (t+1)

1 [i, j]
∣∣∣ ≤ ∣∣∣u(T1)

i

∣∣∣ v(t+1)
j +

∣∣∣R(t+1)
1 [i, j]

∣∣∣ (ii)= O
(

1

d1/4

)
,
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where (i) and (ii) use Lemma 11.

(D) The fact that ∀j ∈ [d] :

∣∣∣R(t+1)
3j

∣∣∣
Aj

≤ Õ(ε0) was already proved in Lemma 12 in eq.(21). To analyze∣∣∣R(t+1)
vi

∣∣∣
a(t+1)Ai

, we first prove that 1− ηtc(t)d(t) > 0.

It is not hard to prove that eq.(26) also holds for time t. Recall that d(t) = c(t)
∥∥u(T1)

∥∥2 +R
(t)T
2 u(T1)

and Lemma 12 tells us that 0 ≤
∣∣∣R(t)T

2 u(T1)
∣∣∣

c(t)‖u(T1)‖2 ≤ Õ(ε0), then we have

c(t)d(t) =
(
c(t)
)2 ∥∥∥u(T1)

∥∥∥2 + c(t)R
(t)T
2 u(T1) ≤ O

(√
d
)
.

Under the conditions of Lemma 10, and pick η ≤ O
(

ε

d
7α
4

+4

)
, we have that 1 − ηtc

(t)d(t) ≥
1− ηc(t)d(t) > 0.

The assumption ∀j ∈ [d] :

∣∣∣R(t)
3j

∣∣∣
Aj
≤ Õ(ε0) together with c(t) > 0 gives us

ηtc
(t)
∣∣∣R(t)

3j

∣∣∣
ηtc(t)Aj

≤ Õ(ε0).

Combining with the assumption

∣∣∣R(t)
vi

∣∣∣
a(t)Ai

≤ Õ(ε0) yields

∀i ∈ [d] :

∣∣∣R(t+1)
vi

∣∣∣
a(t+1)Ai

≤

(
1− ηtc(t)d(t)

) ∣∣∣R(t)
v

∣∣∣+ ηtc
(t)
∣∣∣R(t)

3i

∣∣∣(
1− ηtc(t)d(t)

)
a(t)Ai + ηtc(t)Ai

≤ Õ(ε0).

D ANALYSIS OF ADAM

Note that A = 1
mY X

T , Λxx := 1
mXX

T . Denote g(t)k := ∇Wk
L(W (t)), k = 1, 2. We have that

g
(t)
1 = W

(t)T
2

(
W

(t)
2 W

(t)
1 −A

)
, g

(t)
2 =

(
W

(t)
2 W

(t)
1 −A

)
W

(t)T
1 .

Let Ã(t), Λ̃
(t)
xx and g̃

(t)
k , k = 1, 2 be the corresponding batch versions at time t. Let E(t) :=

W
(t)
2 W

(t)
1 −A, and denote E(t)

j as the j-th component of E(t). We also denote ∆w
(t)
2i := w

(t+1)
2i −

w
(t)
2i , ∆W

(t)
1 [i, j] := W

(t+1)
1 [i, j]−W (t)

1 [i, j]. By eq. (2), the update equations of Adam are given
by

ηt = η ·

√
1− βt+1

2

1− βt+1
1

, g
(t)
1 [i, j] = w

(t)
2i E

(t)
j , g

(t)
2i =

〈
E(t),W

(t)
1 [i, :]

〉
,

W
(t+1)
1 [i, j]−W (t)

1 [i, j] = −ηt
m

(t)
1 [i, j]√
v
(t)
1 [i, j]

= −ηt
(1− β1)

∑t
τ=0 β

t−τ
1 g̃

(τ)
1 [i, j]√

(1− β2)
∑t
τ=0 β

t−τ
2

(
g̃
(τ)
1 [i, j]

)2
+ ξ

= −ηt
(1− β1)

∑t
τ=0 β

t−τ
1 g

(τ)
1 [i, j] + r

(t)
1n [i, j]√

(1− β2)
∑t
τ=0 β

t−τ
2

(
g
(τ)
1 [i, j]

)2
+ r

(t)
1d [i, j] + ξ

,

w
(t+1)
2i − w(t)

2i = −ηt
m

(t)
2i√
v
(t)
2i

= −ηt
(1− β1)

∑t
τ=0 β

t−τ
1 g̃

(τ)
2i√

(1− β2)
∑t
τ=0 β

t−τ
2

(
g̃
(τ)
2i

)2
+ ξ

= −ηt
(1− β1)

∑t
τ=0 β

t−τ
1 g

(τ)
2i + r

(t)
2n,i√

(1− β2)
∑t
τ=0 β

t−τ
2

(
g
(τ)
2i

)2
+ +r

(t)
2d,i + ξ

.

(27)

42



Under review as a conference paper at ICLR 2023

where Dg(t)1 := g̃
(t)
1 − g

(t)
1 and Dg(t)2 := g̃

(t)
2 − g

(t)
2 , and

r
(t)
1n [i, j] := (1− β1)

t∑
τ=0

βt−τ1 Dg
(τ)
1 [i, j],

r
(t)
1d [i, j] = (1− β2)

t∑
τ=0

βt−τ2

(
2g

(τ)
1 [i, j]Dg

(τ)
1 [i, j] +

(
Dg

(τ)
1 [i, j]

)2)
,

r
(t)
2n,i := (1− β1)

t∑
τ=0

βt−τ1 Dg
(τ)
2i ,

r
(t)
2d,i = (1− β2)

t∑
τ=0

βt−τ2

(
2g

(τ)
2i Dg

(τ)
2i +

(
Dg

(τ)
2i

)2)
.

(28)

Denote the i-th coordinate of W2W1 and A as (W2W1)i and Ai, respectively. By Assumption 2
and the assumption that ∀i ∈ [d] : Ai > 0, Ai = Ω(1), at the beginning, w.h.p., ∀i ∈ [d] :
(W2W1)i −Ai < 0. Based on this, we divide the training procedure into two phases (note that these
two phases are different from those of SGD+M).

1. First phase: when the error (W2W1)i −Ai is negative and its absolute value is big for all
i ∈ [d].

2. Second phase: when (W2W1)i −Ai is close to zero for some coordinate i ∈ [d].

More formally, we define the boundary between the two phases below.

Definition 4 (End of the first phase). The end of the first phase (denoted as T1) is defined as
T1 = inf

{
t > 0 : ∃i ∈ [d] : E

(t)
i ≥ −

√
ηd
}

.

In the second phase, we define some time points.

Definition 5. Define Tg := inf
{
t > T1 : ∃i ∈ [d] :

∣∣∣g(t)2i

∣∣∣ ≤ d√η}.

For t < T1, we have ∀i ∈ [d] : E
(t)
i < 0 by Definition 4. For t > T1, some E(t)

i may flip the sign
and become positive. For certain coordinate i, we define the following “flip time”.

Definition 6. Define Tf,i := inf
{
t > T1 : E

(t)
i ≥ −

√
ηd
}

. Define Tf := maxi Tf,i as the largest

“flip time” over all i ∈ [d], i.e. the “flip time” of the last Ei which flips the sign. Moreover, denote
T̃ := min {Tg, Tf}.

We can first show that after a few steps in the first phase, W1 will become an approximately rank-1
matrix, as described in the following lemma.

Lemma 14. Under Assumption 1, 2 and 3, suppose σ ≤ η3/2ξ2

d13/4
. By picking η ≤ O

(
1
d3α

)
, ξ ≤√

η
d3α−1 , and β2 = β2

1 , there exists tinc > 0 such that w.h.p. for tinc ≤ t < T1,

∀i, j ∈ [d] : w
(t)
2i = sign

(
w

(0)
2i

)
η (t− tinc) +R

(t)
2i ,

W
(t)
1 [i, j] = sign

(
w

(0)
2i

)
η (t− tinc) +R

(t)
1 [i, j],

where

∣∣∣R(t)
1 [i,j]

∣∣∣
η(t−tinc)

= Õ
(√

η + 1
η(t−tinc)dα

)
,

∣∣∣R(t)
2i

∣∣∣
η(t−tinc)

= Õ
(√

η + 1
η(t−tinc)dα

)
.

Specially, when t = T1, we have that

∀i, j ∈ [d] : w
(T1)
2i = sign

(
w

(0)
2i

)
η (T1 − tinc) +R

(T1)
2i ,

W
(T1)
1 [i, j] = sign

(
w

(0)
2i

)
η(T1 − tinc) +R

(T1)
1 [i, j],
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where η (T1 − tinc) = Θ
(

1√
d

)
and∣∣∣R(T1)

1 [i, j]
∣∣∣

η (T1 − tinc)
= Õ

(
√
η +

1

dα−
1
2

)
,

∣∣∣R(T1)
2i

∣∣∣
η (T1 − tinc)

= Õ
(
√
η +

1

dα−
1
2

)
.

The following lemma tells us that this approximate rank-1 structure is preserved when T1 ≤ t ≤ T̃ .

Lemma 15. Under Assumption 1, 2 and 3, suppose σ ≤ η3/2ξ2

d13/4
. By picking η ≤ O

(
1
d3α

)
, ξ ≤√

η
d3α−1 , and β2 = β2

1 , we have w.h.p. for T1 ≤ t < T̃ ,

∀i, j ∈ [d] : w
(t)
2i = sign

(
w

(0)
2i

)
c(t) +R

(t)
2i ,

W
(t)
1 [i, j] = sign

(
w

(0)
2i

)
V

(t)
j +R

(t)
1 [i, j],

where

∣∣∣R(t)
2i

∣∣∣∣∣c(t)∣∣ = Õ
(
√
η +

1

dα−1/2

)
,

∣∣∣R(t)
1 [i, j]

∣∣∣∣∣∣V (t)
j

∣∣∣ ≤ Õ
(
η

1
4 +

1

d
α
2−

1
4

)
,

and that L
(
W (T̃ )

)
≤ Õ

(
ηd4
)
.

Now we are ready to prove the Adam part of Theorem 1.

D.1 PROOF OF THE ADAM PART OF THEOREM 1

Define TAdam,1 = tinc + 1

ηd
α
2

. Note that this choice of TAdam,1 gives η (TAdam,1 − tinc) = 1

d
α
2

. By

picking η ≤ O
(

1
d3α

)
, ξ ≤

√
η

d3α−1 and β2 = β2
1 , we can apply Lemma 14 to get that ∀i, j ∈ [d] :∣∣∣w(TAdam,1)

2i

∣∣∣ = Θ
(

1

d
α
2

)
,
∣∣∣W (TAdam,1)

1 [i, j]
∣∣∣ = Θ

(
1

d
α
2

)
, and therefore ∀i ∈ [d] : E

(TAdam,1)
i = −Θ(1)

andL
(
W (TAdam,1)

)
= Θ(d). Define TAdam,2 = T̃ . By Lemma 15, we haveL

(
W (TAdam,2)

)
= Õ

(
ηd4
)
.

For any p > 0, by picking α ≥ p+4
3 , we have L

(
W (TAdam,2)

)
= Õ

(
ηd4
)
≤ Õ

(
1
dp

)
.

Moreover, combining Lemma 14 and 15, we get that when t ∈ [TAdam,1, TAdam,2], the conditions in

Lemma 30 are satisfied with δ = Õ
(
η

1
4 + 1

d
α
2
− 1

4

)
. The i-th component of the u vector (denoted as

ui) is sign
(
w

(0)
2i

)
. That means ∀i ∈ [d] : u2i = 1 and maxi(ui)

2

median(ui)2
= 1. Then we can apply Lemma 30

and get that

RAdam
med,1(t), RAdam

med,2(t) ∈

[(
1− δ
1 + δ

)2
maxi(ui)

2

median(ui)2
,

(
1 + δ

1− δ

)2
maxi(ui)

2

median(ui)2

]

=

[(
1− δ
1 + δ

)2

,

(
1 + δ

1− δ

)2
]
,

⇒ RAdam
med,1(t), RAdam

med,2(t) = 1±O(δ) = 1± Õ
(
η

1
4 +

1

d
α
2−

1
4

)
.

D.2 PROOF OF LEMMA 14

For some time t, we introduce two conditions.
Condition 1.

∀τ ∈ [H] : sign
(
g
(t−τ)
1 [i, j]

)
= s

(t)
1 [i, j], (1− β1)

∣∣∣∣∣
H∑
τ=0

β
(τ)
1 g

(t−τ)
1 [i, j]

∣∣∣∣∣ ≥ Ω(ξ).

Condition 2.

∀τ ∈ [H] : sign
(
g
(t−τ)
2i

)
= s

(t)
2i , (1− β1)

∣∣∣∣∣
H∑
τ=0

β
(τ)
1 g

(t−τ)
2i

∣∣∣∣∣ ≥ Ω(ξ).
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Next prove that, under Assumption 1 and 2, by picking η ≤ O
(

1
d3α

)
, ξ ≤

√
η

d3α−1 , and β2 = β2
1 ,

there exists tinc > 0 such that for tinc ≤ t < T1, the weights can be approximated in the following
way.

W
(t+1)
1 [i, j] = W

(t)
1 [i, j]− η

(
sign

(
g
(t)
1 [i, j]

)
+ e

(t)
1 [i, j]

)
,

w
(t+1)
2i = w

(t)
2i − η

(
sign

(
g
(t)
2i

)
+ e

(t)
2i

)
,

(29)

where
∣∣∣e(t)1 [i, j]

∣∣∣ = Õ
(√
η
)
,
∣∣∣e(t)2i

∣∣∣ = Õ
(√
η
)
.

Before we dive into the proof, let’s introduce some useful lemmas.

The following lemma reflects our key idea: converting the exponential average in Adam to a finite-step
average, and trying to bound the stochastic error terms in eq. (28).

Lemma 16. Under Assumption 1, 2 and 3 and pick β2 = β2
1 . Let M

(t)
1 :=

maxi,j∈[d],τ≤t

∣∣∣W (τ)
1 [i, j]

∣∣∣, M (t)
2 := maxi,j∈[d],τ≤t

∣∣∣w(τ)
2i

∣∣∣, G(t)
1 := maxi,j∈[d],τ≤t

∣∣∣g(τ)1 [i, j]
∣∣∣ and

G
(t)
2 := maxi,j∈[d],τ≤t

∣∣∣g(τ)2i

∣∣∣. We have that w.h.p., for all t ≤ Õ
(

1√
dη

)
and ∀i, j ∈ [d],

∆W
(t)
1 [i, j] = −ηt

(1− β1)
∑H
τ=0 β

τ
1 g

(t−τ)
1 [i, j] + ε

(t)
1n [i, j]√

(1− β2)
∑H
τ=0 β

τ
2

(
g
(t−τ)
1 [i, j]

)2
+ ε

(t)
1d [i, j] + ξ

,

∆w
(t)
2i = −ηt

(1− β1)
∑H
τ=0 β

τ
1 g

(t−τ)
2i + ε

(t)
2n,i√

(1− β2)
∑H
τ=0 β

τ
2

(
g
(t−τ)
2i

)2
+ ε

(t)
2d,i + ξ

,

where H ≥ 1
1−β1

log
max

{
G

(t)
1 ,G

(t)
2 ,
(
G

(t)
1

)2
,
(
G

(t)
2

)2
}

ηξ2 and∣∣∣ε(t)1n [i, j]
∣∣∣ ≤ O(ηξ2) +O

(
D

(t)
1

)
,
∣∣∣ε(t)1d [i, j]

∣∣∣ ≤ O(ηξ2) +O
(
D

(t)
1 G

(t)
1 +

(
D

(t)
1

)2)
,∣∣∣ε(t)2n,i

∣∣∣ ≤ O(ηξ2) +O
(
D

(t)
2

)
,
∣∣∣ε(t)2d,i

∣∣∣ ≤ O(ηξ2) +O
(
D

(t)
2 G

(t)
2 +

(
D

(t)
2

)2)
,

with

D
(t)
1 ≤ Õ

d3M (t)
1

(
M

(t)
2

)2
σ

√
d1/2

η

+ Õ

M (t)
2 σ

√
d3/2

η

 ,

D
(t)
2 ≤ Õ

d4 (M (t)
1

)2
M

(t)
2 σ

√
d1/2

η

+ Õ

dM (t)
1 σ

√
d3/2

η

 .

Corollary 2. Under the conditions of Lemma 16 and suppose σ ≤ η3/2ξ2

d13/4
. Consider any t ≤

Õ
(

1√
dη

)
. If M (t)

1 ,M
(t)
2 ≤ Õ

(
1√
d

)
, G(t)

1 ≤ Õ
(

1√
d

)
, G

(t)
2 ≤ Õ

(√
d
)

, then H in Lemma 16 can

be picked as 1
1−β1

log d
ηξ2 and we can get that ∀i, j ∈ [d],

∣∣∣ε(t)1n [i, j]
∣∣∣ , ∣∣∣ε(t)1d [i, j]

∣∣∣ , ∣∣∣ε(t)2n,i

∣∣∣ , ∣∣∣ε(t)2d,i

∣∣∣ ≤
Õ(ηξ2).

The following lemma analyzes the magnitude of weights during a short period at the beginning.

Lemma 17. Under Assumption 1, 2 and 3, suppose σ ≤ η3/2ξ2

d13/4
. Pick ξ ≤ 1

d
3
2
α

, then there exists

some time point tinc ∈ (H,T1), such that w.h.p., for t ≤ tinc, for every i, j ∈ [d],∣∣∣∆W (t)
1 [i, j]

∣∣∣ ≤ Õ(η),
∣∣∣∆w(t)

2i

∣∣∣ ≤ Õ(η),∣∣∣W (t)
1 [i, j]

∣∣∣ ≤ O( 1

d
3
2α+1

)
,Ω

(
1

d
3
2α

)
≤
∣∣∣w(t)

2i

∣∣∣ ≤ O( 1

dα

)
.
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Specifically, when t = tinc, we have sign
(
w

(tinc)
2i

)
= sign

(
W

(tinc)
1 [i, j]

)
= sign

(
w

(0)
2i

)
,∣∣∣W (tinc)

1 [i, j]
∣∣∣ = Θ

(
1

d
3
2
α+1

)
and

∣∣∣g(tinc)
1 [i, j]

∣∣∣ ≥ Ω(ξ),
∣∣∣g(tinc)

2i

∣∣∣ ≥ Ω(ξ). Moreover, Condition 1

and 2 are satisfied for t = tinc. The s(t)1 [i, j] and s(t)2i in the conditions are both −sign
(
w

(0)
2i

)
.

The following lemma gives us lower bounds of
∣∣∣g(t)1 [i, j]

∣∣∣ and
∣∣∣g(t)2i

∣∣∣.
Lemma 18. Under Assumption 1, 2 and 3, suppose σ ≤ η3/2ξ2

d13/4
. Pick ξ ≤

√
η

d3α−1 , η ≤ O
(

1
d3α

)
.

Consider tinc in Lemma 17. We have w.h.p. for any t ∈ [tinc, T1), and for ∀i, j ∈ [d],

sign
(

∆W
(t)
1 [i, j]

)
= sign

(
∆w

(t)
2i

)
= sign

(
w

(0)
2i

)
and that ∀i, j ∈ [d] :

∣∣∣g(t)1 [i, j]
∣∣∣ ≥

Ω̃
(√
η
)
,
∣∣∣g(t)2i

∣∣∣ ≥ Ω̃
(√
ηd
)
. Moreover, we have ∀τ ≤ t, ∀i, j ∈ [d] :

∣∣∣W (τ)
1 [i, j]

∣∣∣ ≤
Õ
(

1√
d

)
,
∣∣∣w(τ)

2i

∣∣∣ ≤ Õ ( 1√
d

)
and

∣∣∣g(τ)1 [i, j]
∣∣∣ ≤ Õ ( 1√

d

)
,
∣∣∣g(τ)2i

∣∣∣ ≤ Õ (√d).

The following lemma shows that when tinc ≤ t < T1, we have ∀i, j ∈ [d] :
∣∣∣g(t)2i

∣∣∣� ∣∣∣g(t)2i − g
(t−1)
2i

∣∣∣
and that

∣∣∣g(t)1 [i, j]
∣∣∣� ∣∣∣g(t)1 [i, j]− g(t−1)1 [i, j]

∣∣∣.
Lemma 19. Under Assumption 1, 2 and 3, suppose σ ≤ η3/2ξ2

d13/4
. Pick ξ ≤

√
η

d3α−1 , η ≤ O
(

1
d3α

)
.

For tinc in Lemma 17, we have that w.h.p. for tinc ≤ t < T1 and τ ≤ t, ∀i, j ∈ [d],∣∣∣g(t)1 [i, j]− g(t−τ)1 [i, j]
∣∣∣∣∣∣g(t)1 [i, j]

∣∣∣ = Õ (
√
ητ) ,

∣∣∣g(t)2i − g
(t−τ)
2i

∣∣∣∣∣∣g(t)2i

∣∣∣ = Õ (
√
ητ) , (30)

∣∣∣∣(g(t)1 [i, j]
)2
−
(
g
(t−τ)
1 [i, j]

)2∣∣∣∣(
g
(t)
1 [i, j]

)2 = Õ (
√
ητ) + Õ

(
ητ2
)
,

∣∣∣∣(g(t)2i

)2
−
(
g
(t−τ)
2i

)2∣∣∣∣(
g
(t)
2i

)2 = Õ (
√
ητ) + Õ

(
ητ2
)
.

(31)

Equipped with these lemmas, now let’s prove eq. (29).

For any t ∈ [tinc, T1), by Lemma 18, we know that M (t)
1 ,M

(t)
2 ≤ Õ

(
1√
d

)
, and that G(t)

1 ≤

Õ
(

1√
d

)
, G

(t)
2 ≤ Õ

(√
d
)

. At the end of the proof for this lemma, we will show that T1 = Θ
(

1√
dη

)
.

Then we can pick H := 1
1−β1

log d
ηξ2 and apply Lemma 16 and Corollary 2 to get that, w.h.p., for all

t ∈ [tinc, T1) and ∀i, j ∈ [d], eq. (27) can be written as

∆W
(t)
1 [i, j] = −ηt

(1− β1)
∑H
τ=0 β

τ
1 g

(t−τ)
1 [i, j] + ε

(t)
1n [i, j]√

(1− β2)
∑H
τ=0 β

τ
2

(
g
(t−τ)
1 [i, j]

)2
+ ε

(t)
1d [i, j] + ξ

,

∆w
(t)
2i = −ηt

(1− β1)
∑H
τ=0 β

τ
1 g

(t−τ)
2i + ε

(t)
2n,i√

(1− β2)
∑H
τ=0 β

τ
2

(
g
(t−τ)
2i

)2
+ ε

(t)
2d,i + ξ

,

(32)

where ∀i, j ∈ [d],
∣∣∣ε(t)1n [i, j]

∣∣∣ , ∣∣∣ε(t)1d [i, j]
∣∣∣ , ∣∣∣ε(t)2n,i

∣∣∣ , ∣∣∣ε(t)2d,i

∣∣∣ ≤ Õ(ηξ2).
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Let’s first look at the update of W (t)
1 [i, j]. For t in the first phase, we write the RHS of eq. (32) as

(1− β1)
∑H
τ=0 β

τ
1 g

(t−τ)
1 [i, j] + ε

(t)
1n [i, j]√

(1− β2)
∑H
τ=0 β

τ
2

(
g
(t−τ)
1 [i, j]

)2
+ ε

(t)
1d [i, j] + ξ

=
(1− β1)g

(t)
1 [i, j]

∑H
τ=0 β

τ
1 + (1− β1)

∑H
τ=0 β

τ
1

(
g
(t−τ)
1 [i, j]− g(t)1 [i, j]

)
+ ε

(t)
1n [i, j]√

(1− β2)
(
g
(t)
1 [i, j]

)2∑H
τ=0 β

τ
2 + (1− β2)

∑H
τ=0 β

τ
2

((
g
(t−τ)
1 [i, j]

)2
−
(
g
(t)
1 [i, j]

)2)
+ ε

(t)
1d [i, j] + ξ

:=
g
(t)
1 [i, j](1− βH+1

1 ) + e
(t)
1n [i, j] + ε

(t)
1n [i, j]√(

g
(t)
1 [i, j]

)2
(1− βH+1

2 ) + e
(t)
1d [i, j] + ε

(t)
1d [i, j] + ξ

,

where

e
(t)
1n [i, j] := (1− β1)

H∑
τ=0

βτ1

(
g
(t−τ)
1 [i, j]− g(t)1 [i, j]

)
,

e
(t)
1d [i, j] := (1− β2)

H∑
τ=0

βτ2

((
g
(t−τ)
1 [i, j]

)2
−
(
g
(t)
1 [i, j]

)2)
.

We have already shown that
∣∣∣ε(t)1n [i, j]

∣∣∣ , ∣∣∣ε(t)1d [i, j]
∣∣∣ ≤ Õ(ηξ2). By Lemma 19, we have that ∀i, j ∈ [d],

∣∣∣e(t)1n [i, j]
∣∣∣ ≤ (1− β1)

H∑
τ=0

βτ1

∣∣∣g(t−τ)1 [i, j]− g(t)1 [i, j]
∣∣∣

≤
∣∣∣g(t)1 [i, j]

∣∣∣ Õ (
√
η) (1− β1)

H∑
τ=0

βτ1 τ =
∣∣∣g(t)1 [i, j]

∣∣∣ Õ (
√
η) .

Similarly, we have ∀i, j ∈ [d],∣∣∣e(t)1d [i, j]
∣∣∣ ≤ (g(t)1 [i, j]

)2
Õ (
√
η) (1− β2)

H∑
τ=0

βτ1 τ +
(
g
(t)
1 [i, j]

)2
Õ (
√
η) (1− β2)

H∑
τ=0

βτ1 τ
2

=
(
g
(t)
1 [i, j]

)2
Õ (
√
η) .

By Lemma 18, we know that
∣∣∣g(t)1 [i, j]

∣∣∣ = Ω
(√
η
)
. Then we have that

∀i, j ∈ [d] :
∣∣∣ε(t)1n [i, j]

∣∣∣ ≤ Õ(ηξ2) ≤ Õ (
√
η)
∣∣∣g(t)1 [i, j]

∣∣∣ , ∣∣∣ε(t)1d [i, j]
∣∣∣ ≤ Õ (

√
η) ξ2.

Therefore by Lemma 33 in Appendix G, we have

g
(t)
1 [i, j]

(
1− βH+1

1

)
+ e

(t)
1n [i, j] + ε

(t)
1n [i, j]√(

g
(t)
1 [i, j]

)2 (
1− βH+1

2

)
+ e

(t)
1d [i, j] + ε

(t)
1d [i, j] + ξ

=
1− βH+1

1√
1− βH+1

2

(
sign

(
g
(t)
1 [i, j]

)
+ ẽ

(t)
1 [i, j]

)
,

where
∣∣∣ẽ(t)1 [i, j]

∣∣∣ = Õ
(√
η
)
.

Since β ∈ (0, 1), we know that log β ≤ β − 1 < 0. Then our choice of H gives us H =

1
1−β1

log d
ηξ2 ≥

log ηξ
2

d

log β1
and H > 1

1−β2
log d

ηξ2 ≥
log ηξ

2

d

log β2
, which implies that βH1 , β

H
2 ≤ ηξ2/d.

Hence for t ≥ tinc > H , ηt
1−βH+1

1√
1−βH+1

2

= η

√
1−βt+1

2√
1−βH+1

2

1−βH+1
1

1−βt+1
1

= η(1±O(η)).
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Combining all of the above yields that

W
(t+1)
1 [i, j] = W

(t)
1 [i, j]− ηt

(1− β1)
∑t
τ=0 β

τ
1 g

(t−τ)
1 [i, j]√

(1− β2)
∑t
τ=0 β

τ
2

(
g
(t−τ)
1 [i, j]

)2
+ ξ

= W
(t)
1 [i, j]− ηt

1− βH+1
1√

1− βH+1
2

(
sign

(
g
(t)
1 [i, j]

)
+ ẽ

(t)
1 [i, j]

)
= W

(t)
1 [i, j]− η

(
sign

(
g
(t)
1 [i, j]

)
+ e

(t)
1 [i, j]

)
,

where
∣∣∣e(t)1 [i, j]

∣∣∣ = Õ
(√
η
)
. The proof for w(t)

2i is similar.

So far we have successfully proved eq. (29). By sign
(

∆W
(t)
1 [i, j]

)
= sign

(
∆w

(t)
2i

)
= sign

(
w

(0)
2i

)
in Lemma 18, we know that sign

(
−g(t)1 [i, j]

)
= sign

(
−g(t)2i

)
= sign

(
w

(0)
2i

)
, which gives us

∀i, j ∈ [d] : w
(t)
2i = sign

(
w

(0)
2i

)
η (t− tinc) +R

(t)
2i ,

W
(t)
1 [i, j] = sign

(
w

(0)
2i

)
η (t− tinc) +R

(t)
1 [i, j],

where

∣∣∣R(t)
1 [i,j]

∣∣∣
η(t−tinc)

= Õ
(
√
η +

∣∣∣W (tinc)
1 [i,j]

∣∣∣
η(t−tinc)

)
and

∣∣∣R(t)
2i

∣∣∣
η(t−tinc)

= Õ
(
√
η +

∣∣∣w(tinc)
2i

∣∣∣
η(t−tinc)

)
. Now it suffices to

show that ∀i, j ∈ [d] :
∣∣∣w(tinc)

2i

∣∣∣ ≤ O ( 1
dα

)
,
∣∣∣W (tinc)

1 [i, j]
∣∣∣ ≤ O ( 1

dα

)
, which is implied by Lemma 17.

Finally to complete the proof, we show that T1 = Θ
(

1√
dη

)
. When t = T1, we have ∀j ∈ [d] :∑d

i=1 w
(T1)
2i W

(T1)
1 [i, j] = Θ(1). Combining with the above results, we know that dη2(T1 − tinc)

2 =

Θ(1), i.e. η(T1 − tinc) = Θ
(

1√
d

)
. In Section D.5, we will prove tinc = Θ

(
1

ηd
3
2
α+1

)
. Then we

have T1 = Θ
(

1√
dη

)
.

D.3 PROOF OF LEMMA 16

For certain t and H , we write eq. (27) as

∆W
(t)
1 [i, j] = −ηt

(1− β1)
∑H
τ=0 β

τ
1 g

(t−τ)
1 [i, j] + ε

(t)
1n [i, j]√

(1− β2)
∑H
τ=0 β

τ
2

(
g
(t−τ)
1 [i, j]

)2
+ ε

(t)
1d [i, j] + ξ

,

∆w
(t)
2i = −ηt

(1− β1)
∑H
τ=0 β

τ
1 g

(t−τ)
2i + ε

(t)
2n,i√

(1− β2)
∑H
τ=0 β

τ
2

(
g
(t−τ)
2i

)2
+ ε

(t)
2d,i + ξ

,
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where

ε
(t)
1n [i, j] := (1− β1)

t∑
τ=H+1

βτ1 g
(t−τ)
1 [i, j]︸ ︷︷ ︸

:=q
(t)
1n [i,j]

+r
(t)
1n [i, j], ε

(t)
2n,i := (1− β1)

t∑
τ=H+1

βτ1 g
(t−τ)
2i︸ ︷︷ ︸

:=q
(t)
2n,i

+r
(t)
2n,i,

ε
(t)
1d [i, j] := (1− β2)

t∑
τ=H+1

βτ2

(
g
(t−τ)
1 [i, j]

)2
︸ ︷︷ ︸

:=q
(t)
1d [i,j]

+r
(t)
1d [i, j],

ε
(t)
2d,i := (1− β2)

t∑
τ=H+1

βτ2

(
g
(t−τ)
2i

)2
︸ ︷︷ ︸

:=q
(t)
2d,i

+r
(t)
2d,i,

and r(t)1n [i, j], r
(t)
1d [i, j], r

(t)
2n,i, r

(t)
2d,i are defined in eq. (28).

Since β2 = β2
1 < β1, then if we pick H ≥ 1

1−β1
log

max

{
G

(t)
1 ,G

(t)
2 ,
(
G

(t)
1

)2
,
(
G

(t)
2

)2
}

ηξ2 , we can get that

H ≥ 1
1−β1

log
G

(t)
1

ηξ2 , H ≥
1

1−β2
log

(
G

(t)
1

)2

ηξ2 , H ≥ 1
1−β1

log
G

(t)
2

ηξ2 , H ≥
1

1−β2
log

(
G

(t)
2

)2

ηξ2 . Hence we

can apply Lemma 32 in Appendix G to get that
∣∣∣q(t)1n [i, j]

∣∣∣ , ∣∣∣q(t)1d [i, j]
∣∣∣ , ∣∣∣q(t)2n,i

∣∣∣ , ∣∣∣q(t)2d,i

∣∣∣ ≤ ηξ2.

Pick T in Lemma 31 as of order Õ
(

1√
dη

)
. By Lemma 31, we have with probability at least 1− 1

d ,
for all t ≤ T , ∀τ ≤ t and ∀i, j ∈ [d],∣∣∣Dg(τ)1 [i, j]

∣∣∣ =
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∣∣∣ ≤ Õ
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1

(
M
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σ

√
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η

+ Õ

M (t)
2 σ

√
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η


:= D

(t)
1 ,∣∣∣Dg(τ)2i

∣∣∣ =
∣∣∣g̃(τ)2i − g

(τ)
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∣∣∣ ≤ Õ
d4 (M (t)

1

)2
M

(t)
2 σ

√
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η

+ Õ
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1 σ

√
d3/2

η

 := D
(t)
2 .

Plugging into eq. (28) gives us∣∣∣r(t)1n [i, j]
∣∣∣ ≤ (1− β1)

t∑
τ=0

βt−τ1

∣∣∣Dg(τ)1 [i, j]
∣∣∣ ≤ O (D(t)

1

)
,

∣∣∣r(t)1d [i, j]
∣∣∣ ≤ (1− β2)

t∑
τ=0

βt−τ2

∣∣∣2g(τ)1 [i, j]Dg
(τ)
1 [i, j]

∣∣∣+
∣∣∣Dg(τ)1 [i, j]

∣∣∣2
≤ O

(
D

(t)
1 G

(t)
1 +

(
D

(t)
1

)2)
,

∣∣∣r(t)2n,i

∣∣∣ ≤ (1− β1)

t∑
τ=0

βt−τ1

∣∣∣Dg(τ)2i

∣∣∣ ≤ O (D(t)
2

)
,

∣∣∣r(t)2d,i

∣∣∣ ≤ (1− β2)

t∑
τ=0

βt−τ2

∣∣∣2g(τ)2i Dg
(τ)
2i

∣∣∣+
∣∣∣Dg(τ)2i

∣∣∣2 ≤ O(D(t)
2 G

(t)
2 +

(
D

(t)
2

)2)
.

D.4 PROOF OF COROLLARY 2

Since G(t)
1 ≤ Õ

(
1√
d

)
, G

(t)
2 ≤ Õ

(√
d
)

, then H := 1
1−β1

log d
ηξ2 is bigger than

1
1−β1

log
max

{
G

(t)
1 ,G

(t)
2 ,
(
G

(t)
1

)2
,
(
G

(t)
2

)2
}

ηξ2 .
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By M (t)
1 ,M

(t)
2 ≤ Õ

(
1√
d

)
, G(t)

1 ≤ Õ
(

1√
d

)
, G

(t)
2 ≤ Õ

(√
d
)

and the assumption σ ≤ η3/2ξ2

d13/4
, we

get that D(t)
1 and D(t)

2 are upper bounded by D(t)
1 ≤ Õ

(
d7/4ση−1/2

)
and D(t)

2 ≤ Õ
(
d11/4ση−1/2

)
,

which yields ∀i, j ∈ [d],
∣∣∣ε(t)1n [i, j]

∣∣∣ , ∣∣∣ε(t)1d [i, j]
∣∣∣ , ∣∣∣ε(t)2n,i

∣∣∣ , ∣∣∣ε(t)2d,i

∣∣∣ ≤ Õ(ηξ2).

D.5 PROOF OF LEMMA 17

The proof is based on the following two lemmas.
Lemma 20. Under Assumption 1 and 2, we have that w.p. at least 1− 1

d
α
2
−1 , for every 1 ≤ i ≤ d,

√
π

d
3
2
α
≤
∣∣∣w(0)

2i

∣∣∣ ≤ √ 2
d2α log 2d

δ , and that w.p. at least 1 − δ for any given δ > 0,
∣∣∣W (0)

1 [i, j]
∣∣∣ ≤√

2
d4α log 2d2

δ .

Lemma 21. Under Assumption 1, 2 and 3, suppose σ ≤ η3/2ξ2

d13/4
. Pick β2 = β2

1 , ξ ∈ (0, 1), η < 1
4 .

Consider any time point t ≤ Õ
(

1√
dη

)
. If ∀τ ≤ t,∀i, j ∈ [d] :

∣∣∣W (τ)
1 [i, j]

∣∣∣ ≤ Õ ( 1√
d

)
,
∣∣∣w(τ)

2i

∣∣∣ ≤
Õ
(

1√
d

)
and

∣∣∣g(τ)1 [i, j]
∣∣∣ ≤ Õ ( 1√

d

)
,
∣∣∣g(τ)2i

∣∣∣ ≤ Õ (√d), we will have∣∣∣∆W (t)
1 [i, j]

∣∣∣ ≤ Õ(η)
∣∣∣∆w(t)

2i

∣∣∣ ≤ Õ(η),

where the Õ notation depends on H = 1
1−β1

log d
ηξ2 .

Furthermore, if for certain i, j ∈ [d], Condition 1 (resp. Condition 2) is satisfied, we will have

sign
(

∆W
(t)
1 [i, j]

)
= −s(t)1 [i, j],

∣∣∣∆W (t)
1 [i, j]

∣∣∣ = Θ̃(η)(
resp. sign

(
∆w

(t)
2i

)
= −s(t)2i ,

∣∣∣∆w(t)
2i

∣∣∣ = Θ̃(η)
)
.

Now we prove Lemma 17. Define td := inf
{
t : ∃i, j :

∣∣∣W (t)
1 [i, j]

∣∣∣ > 1
d or

∣∣∣w(t)
2i

∣∣∣ > 1
d

}
. Now we

want to find a time point tinc before td for the lemma to hold. During the period t < td, we have
∀j ∈ [d], Ej = −Θ(1) (which means td < T1) and therefore for all i, j ∈ [d],

∣∣∣g(t)1 [i, j]
∣∣∣ ≤ 1

d and∣∣∣g(t)2i

∣∣∣ ≤ 1. Then we can use Lemma 21 to get that for t ≤ min
{
td,

1√
dη

}
, we have

∣∣∣∆W (t)
1 [i, j]

∣∣∣ ≤
Õ(η),

∣∣∣∆w(t)
2i

∣∣∣ ≤ Õ(η). Hence td ≥ Ω̃
(

1
ηd

)
.

Define tsign = inf
{
t < min

{
td,

1√
dη

}
: ∃i ∈ [d] :

∣∣∣w(t)
2i

∣∣∣ ≤ 1

d
3
2
α

}
. By Lemma 20, w.h.p. ∀i ∈

[d] :
∣∣∣w(0)

2i

∣∣∣ ≥ √
π

d
3
2
α

, combining with
∣∣∣∆w(t)

2i

∣∣∣ ≤ Õ(η) gives us that w.h.p., tsign ≥
√
π−1
d

3
2
α
/Õ(η) =

Ω̃

(
1

ηd
3
2
α

)
.

Now let’s analyze the behavior of W1 during the period t < tsign. Consider any i, j ∈ [d]. By

definition, sign
(
w

(t)
2i

)
= sign

(
w

(0)
2i

)
. Note that E(t)

j = −Θ(1), then we have sign
(
g
(t)
1 [i, j]

)
=

−sign
(
w

(0)
2i

)
and that

∣∣∣g(t)1 [i, j]
∣∣∣ = Ω

(
1

d
3
2
α

)
= Ω(ξ) by our choice of ξ. Then we know that

Condition 1 is satisfied with s(t)1 [i, j] = −sign
(
w

(0)
2i

)
(for all H < t ≤ tsign), which by Lemma 21

yields sign
(

∆W
(t)
1 [i, j]

)
= sign

(
w

(0)
2i

)
and

∣∣∣∆W (t)
1 [i, j]

∣∣∣ = Θ̃(η).

Lemma 20 tells us that w.h.p., ∀i, j ∈ [d] :
∣∣∣W (0)

1 [i, j]
∣∣∣ = Õ

(
1
d2α

)
. For any i, j, if ini-

tially sign
(
W

(0)
1 [i, j]

)
= sign

(
w

(0)
2i

)
, then for the following steps before tsign, we will have

sign
(
W

(t)
1 [i, j]

)
= sign

(
w

(0)
2i

)
. If initially sign

(
W

(0)
1 [i, j]

)
6= sign

(
w

(0)
2i

)
, then after at most

t0 = Õ
(

1
ηd2α

)
steps, W1[i, j] will flip the sign. Note that t0 = Õ

(
1

ηd2α

)
is smaller than tsign.
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Hence we have shown that at some time point t0, we have ∀i, j ∈ [d] : sign
(
W

(t)
1 [i, j]

)
=

sign
(
w

(t)
2i

)
= sign

(
w

(0)
2i

)
. Now we analyze the period t ≥ t0.

When t0 < t ≤ tsign, we still have sign
(

∆W
(t)
1 [i, j]

)
= sign

(
w

(0)
2i

)
and

∣∣∣∆W (t)
1 [i, j]

∣∣∣ = Θ̃(η).

Combining these two with the fact sign
(
W

(t0)
1 [i, j]

)
= sign

(
w

(0)
2i

)
, we know that for all t ∈

[t0, tsign], sign
(
W

(t)
1 [i, j]

)
= sign

(
w

(0)
2i

)
and that ∀i, j ∈ [d] :

∣∣∣W (t+1)
1 [i, j]

∣∣∣ =
∣∣∣W (t)

1 [i, j]
∣∣∣ +

Θ̃(η). Then at certain step tinc which satisfies tinc = t0 + Θ̃

(
1

ηd
3
2
α+1

)
∈ (H, tsign), we will

have ∀tinc − H ≤ τ ≤ tinc,∀i, j ∈ [d] :
∣∣∣W (τ)

1 [i, j]
∣∣∣ = Θ

(
1

d
3
2
α+1

)
and therefore

∣∣∣g(τ)2i

∣∣∣ =∣∣∣∑d
j=1W

(τ)
1 [i, j]E

(τ)
j

∣∣∣ =
∑d
j=1

∣∣∣W (τ)
1 [i, j]E

(τ)
j

∣∣∣ = Θ
(

1

d
3
2
α

)
= Ω(ξ). For t ≤ tinc, we have

∀i, j ∈ [d] :
∣∣∣W (t)

1 [i, j]
∣∣∣ = O

(
1

d
3
2
α+1

)
.

Since tinc < tsign, we have
∣∣wtinc

2i

∣∣ = Ω
(

1

d
3
2
α

)
. For t ≤ tinc, note that

∣∣∣∆w(t)
2i

∣∣∣ ≤ Õ(η), tinc =

t0 + Θ̃

(
1

ηd
3
2
α+1

)
= Θ̃

(
1

ηd
3
2
α+1

)
, combining with the upper bound in Lemma 20 yields∣∣∣w(t)

2i

∣∣∣ ≤ ∣∣∣w(0)
2i

∣∣∣+ tincÕ(η) ≤ Õ
(

1

d
3
2α+1

)
≤ O

(
1

dα

)
.

Moreover, ∀tinc − H ≤ τ ≤ tinc,∀i ∈ [d] : sign
(
g
(τ)
2i

)
= −sign

(
w

(0)
2i

)
. Then Condition 2 is

satisfied with s(t)2i = −sign
(
w

(0)
2i

)
for t = tinc. In the analysis of g(t)1 [i, j], we have already shown

that for all t ≤ tsign (and thus for t = tinc), Condition 1 is satisfied, which completes the proof.

D.6 PROOF OF LEMMA 20

Since for X ∼ N
(
0, σ2

)
, we have that P (|X| ≤ t) ≤ 2t√

2πσ
, then for a fixed i,

P

(∣∣∣w(0)
2i

∣∣∣ ≤ √π
d

3
2α

)
≤ 2

√
π/d

3
2α

√
2π ·

√
2/d2α

=
1

d
α
2
.

Then by union bound, we have that w.p. at least 1− 1

d
α
2
−1 , for every 1 ≤ i ≤ d,

∣∣∣w(0)
2i

∣∣∣ ≥ √
π

d
3
2
α

.

As for the upper bounds, using the Gaussian tail bound and union bound, we have w.p. at least 1− δ,

∀i, j ∈ [d] :
∣∣∣w(0)

2i

∣∣∣ ≤√ 2

d2α
log

2d

δ
,
∣∣∣W (0)

1 [i, j]
∣∣∣ ≤√ 2

d4α
log

2d2

δ
.

D.7 PROOF OF LEMMA 21

Now we analyze the magnitude order of ∆W
(t)
1 [i, j]. The analysis of ∆w

(t)
2i is similar.

For t ≤ Õ
(

1√
dη

)
. By assumption, M (t)

1 ,M
(t)
2 ≤ Õ

(
1√
d

)
, G(t)

1 ≤ Õ
(

1√
d

)
, G

(t)
2 ≤ Õ

(√
d
)

, and

σ ≤ η3/2ξ2

d13/4
. Hence we can pick H := 1

1−β1
log d

ηξ2 and apply Lemma 16 and Corollary 2 to get that,

w.h.p., for all t ≤ Õ
(

1√
dη

)
and ∀i, j ∈ [d], eq. (27) can be written as

∆W
(t)
1 [i, j] = −ηt

(1− β1)
∑H
τ=0 β

τ
1 g

(t−τ)
1 [i, j] + ε

(t)
1n [i, j]√

(1− β2)
∑H
τ=0 β

τ
2

(
g
(t−τ)
1 [i, j]

)2
+ ε

(t)
1d [i, j] + ξ

,

∆w
(t)
2i = −ηt

(1− β1)
∑H
τ=0 β

τ
1 g

(t−τ)
2i + ε

(t)
2n,i√

(1− β2)
∑H
τ=0 β

τ
2

(
g
(t−τ)
2i

)2
+ ε

(t)
2d,i + ξ

,

(33)
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where ∀i, j ∈ [d],
∣∣∣ε(t)1n [i, j]

∣∣∣ , ∣∣∣ε(t)1d [i, j]
∣∣∣ , ∣∣∣ε(t)2n,i

∣∣∣ , ∣∣∣ε(t)2d,i

∣∣∣ ≤ Õ(ηξ2).

On one hand, using
∣∣∣ε(t)1n [i, j]

∣∣∣ , ∣∣∣ε(t)1d [i, j]
∣∣∣ ≤ Õ(ηξ2) and β2 = β2

1 , and
√
x+ y ≥

√
x−

√
|y| when

x ≥ 0, x+ y ≥ 0, we get from eq. (33) that∣∣∣∆W (t)
1 [i, j]

∣∣∣ ≤ ηt (1− β1)
∣∣∣∑H

τ=0 β
τ
1 g

(t−τ)
1 [i, j]

∣∣∣+ Õ(ηξ2)√
(1− β2)

∑H
τ=0

(
βτ1 g

(t−τ)
1 [i, j]

)2
− Õ(

√
ηξ) + ξ

(i)

≤ ηt

(1− β1)
√
H + 1

√∑H
τ=0

(
βτ1 g

(t−τ)
1 [i, j]

)2
+ Õ(ηξ2)√

(1− β2)
∑H
τ=0

(
βτ1 g

(t−τ)
1 [i, j]

)2
+ ξ/2

≤ O
(√

Hη
)

= Õ(η),

where (i) uses Cauchy-Schwarz inequality for the numerator.

On the other hand, when sign
(
g
(t−H)
1 [i, j]

)
= sign

(
g
(t−H+1)
1 [i, j]

)
= ... = sign

(
g
(t)
1 [i, j]

)
=

s
(t)
1 [i, j], we have

sign

(
H∑
τ=0

βτ1 g
(t−τ)
1 [i, j]

)
= s

(t)
1 [i, j],

∣∣∣∣∣
H∑
τ=0

βτ1 g
(t−τ)
1 [i, j]

∣∣∣∣∣ ≥
√√√√ H∑
τ=0

(
βτ1 g

(t−τ)
1 [i, j]

)2
.

If we further have (1 − β1)
∣∣∣∑H

τ=0 β
(τ)
1 g

(t−τ)
1 [i, j]

∣∣∣ ≥ Ω(ξ), then combining with
∣∣∣ε(t)1n [i, j]

∣∣∣ ≤
Õ(ηξ2) < ξ we will get

sign
(

∆W
(t)
1 [i, j]

)
= −sign

(
H∑
τ=0

βτ1 g
(t−τ)
1 [i, j] + ε

(t)
1n [i, j]

)
= −sign

(
H∑
τ=0

βτ1 g
(t−τ)
1 [i, j]

)
= −s(t)1 [i, j].

Using
√
x+ y ≤

√
|x|+

√
|y|, we obtain that∣∣∣∆W (t)

1 [i, j]
∣∣∣ ≥ ηt (1− β1)

∣∣∣∑H
τ=0 β

(τ)
1 g

(t−τ)
1 [i, j]

∣∣∣− Õ(ηξ2)√
(1− β2)

∑H
τ=0

(
βτ1 g

(t−τ)
1 [i, j]

)2
+ Õ(

√
ηξ) + ξ

≥ ηt
1−β1

2

∣∣∣∑H
τ=0 β

(τ)
1 g

(t−τ)
1 [i, j]

∣∣∣
2 max

{√
(1− β2)

∑H
τ=0

(
βτ1 g

(t−τ)
1 [i, j]

)2
, 32ξ

} = Ω(η).

Together with the upper bound completes the proof.

D.8 PROOF OF LEMMA 18

The proof is based on the following lemma, which gives a coarse analysis on the magnitude of
weights and their increments per step during the first phase.

Lemma 22. Under Assumption 1, 2 and 3, suppose σ ≤ η3/2ξ2

d13/4
. Pick ξ ≤ min

{√
η

d3α−1 ,
1

d
3
2
α

}
, for

tinc in Lemma 17, we have that w.h.p. for all tinc ≤ t ≤ T1, ∀i, j ∈ [d].

sign
(

∆W
(t)
1 [i, j]

)
= sign

(
∆w

(t)
2i

)
= sign

(
w

(0)
2i

)
,
∣∣∣∆W (t)

1 [i, j]
∣∣∣ = Θ̃(η),

∣∣∣∆w(t)
2i

∣∣∣ = Θ̃(η),

sign
(
W

(t)
1 [i, j]

)
= sign

(
w

(t)
2i

)
= sign

(
w

(0)
2i

)
,
∣∣∣W (t)

1 [i, j]
∣∣∣ = Õ

(
1√
d

)
,
∣∣∣w(t)

2i

∣∣∣ = Õ
(

1√
d

)
.

Specially, at the end of the first phase (t = T1), we have ∀i, j ∈ [d],
∣∣∣w(T1)

2i

∣∣∣ = Θ̃
(

1√
d

)
and∣∣∣W (T1)

1 [i, j]
∣∣∣ = Θ̃

(
1√
d

)
.

52



Under review as a conference paper at ICLR 2023

Now we go back to the proof of Lemma 18. For tinc ≤ t < T1, since E(t)
j =

(
W

(t)
2 W

(t)
1

)
j
−Aj =∑d

i=1 w
(t)
2i W

(t)
1 [i, j]−Aj , we have,

∆E
(t)
j := E

(t+1)
j − E(t)

j

=

d∑
i=1

(
w

(t+1)
2i W

(t+1)
1 [i, j]− w(t+1)

2i W
(t)
1 [i, j] + w

(t+1)
2i W

(t)
1 [i, j]− w(t)

2i W
(t)
1 [i, j]

)
=

d∑
i=1

(
w

(t+1)
2i ∆W

(t)
1 [i, j] + ∆w

(t)
2i W

(t)
1 [i, j]

)
.

(34)

Combining Lemma 22 and eq. (34) gives us ∀j ∈ [d],

∆E
(t)
j > 0,

∣∣∣∆E(t)
j

∣∣∣ =

d∑
i=1

∣∣∣w(t+1)
2i ∆W

(t)
1 [i, j]

∣∣∣+
∣∣∣∆w(t)

2i W
(t)
1 [i, j]

∣∣∣
≤

d∑
i=1

Õ
(
η

1√
d

)
= Õ

(
η
√
d
)
.

(35)

Let’s first analyze g(t)1 [i, j]. Note that

∆g
(t)
1 [i, j] = w

(t+1)
2i E

(t+1)
j − w(t+1)

2i E
(t)
j + w

(t+1)
2i E

(t)
j − w

(t)
2i E

(t)
j

= w
(t+1)
2i ∆E

(t)
j + ∆w

(t)
2i E

(t)
j ,

(36)

where sign
(
w

(t+1)
2i ∆E

(t)
j

)
= sign

(
w

(0)
2i

)
while sign

(
∆w

(t)
2i E

(t)
j

)
= −sign

(
w

(0)
2i

)
.

Now we analyze the sign of g(t)1 [i, j] when tinc ≤ t < T1. Using
∣∣∣w(tinc+1)

2i

∣∣∣ = Õ
(

1
dα

)
and eq. (35),

we get that
∣∣∣w(tinc+1)

2i ∆E
(tinc)
j

∣∣∣ ≤ Õ ( 1
dα ·
√
dη
)

. While on the other hand,
∣∣∣∆w(tinc)

2i E
(tinc)
j

∣∣∣ = Θ̃(η).

That means sign
(

∆g
(tinc)
1 [i, j]

)
= −sign

(
w

(0)
2i

)
. Note that sign

(
g
(tinc)
1 [i, j]

)
= −sign

(
w

(tinc)
2i

)
=

−sign
(
w

(0)
2i

)
, we know that

∣∣∣g(t)1 [i, j]
∣∣∣ will increase when t = tinc.

In the following steps,
∣∣∣g(t)1 [i, j]

∣∣∣ will keep increasing as long as
∣∣∣∆w(t)

2i E
(t)
j

∣∣∣ > ∣∣∣w(t+1)
2i ∆E

(t)
j

∣∣∣.
Since

∣∣∣W (t)
1 [i, j]

∣∣∣ , ∣∣∣w(t)
2i

∣∣∣ keep increasing while
∣∣∣∆W (t)

1 [i, j]
∣∣∣ , ∣∣∣∆w(t)

2i

∣∣∣ remain Θ̃(η), by eq. (35),

we know that the trend of
∣∣∣∆E(t)

j

∣∣∣ is to increase. On the other hand,
∣∣∣E(t)

j

∣∣∣ keeps decreasing since

E
(t)
j < 0 while ∆E

(t)
j > 0. Then after some time point we will have

∣∣∣∆w(t)
2i E

(t)
j

∣∣∣ < ∣∣∣w(t+1)
2i ∆E

(t)
j

∣∣∣
and in the following steps

∣∣∣g(t)1 [i, j]
∣∣∣ will have the trend to decrease. Specially, when t = T1 − 1, we

have
∣∣∣E(t)

j

∣∣∣ = Θ
(√
ηd
)

and
∣∣∣W (t)

1

∣∣∣ = Θ̃
(

1√
d

)
,
∣∣∣w(t+1)

2i

∣∣∣ = Θ̃
(

1√
d

)
by Lemma 22, which gives us∣∣∣∆E(t)

j

∣∣∣ =

d∑
i=1

∣∣∣w(t+1)
2i ∆W

(t)
1 [i, j]

∣∣∣+
∣∣∣∆w(t)

2i W
(t)
1 [i, j]

∣∣∣ ≤ d∑
i=1

Θ̃

(
η

1√
d

)
= Θ̃

(
η
√
d
)
.

Hence
∣∣∣w(t+1)

2i ∆E
(t)
j

∣∣∣ = Θ̃(η) >
∣∣∣∆w(t)

2i E
(t)
j

∣∣∣ = Θ̃
(
η
√
ηd
)
.

Therefore we have proved that when tinc ≤ t < T1, the trend of
∣∣∣g(t)1 [i, j]

∣∣∣ is to first increase and then

decrease. In order to prove
∣∣∣g(t)1 [i, j]

∣∣∣ = Ω̃
(√
η
)
, it suffices to show that

∣∣∣g(tinc)
1 [i, j]

∣∣∣ = Ω̃
(√
η
)

and∣∣∣g(T1)
1 [i, j]

∣∣∣ = Ω̃
(√
η
)
.

When t = tinc, ∣∣∣g(tinc)
1 [i, j]

∣∣∣ =
∣∣∣w(tinc)

2i

∣∣∣ · ∣∣∣E(tinc)
j

∣∣∣ = Ω

(
1

d
3
2α

)
·Θ(1) = Ω (

√
η) .
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When t = T1, we have∣∣∣g(T1)
1 [i, j]

∣∣∣ =
∣∣∣w(T1)

2i

∣∣∣ · ∣∣∣E(t1)
j

∣∣∣ = Θ̃

(
1√
d
·
√
ηd

)
= Θ̃ (

√
η) .

As for g(t)2i , since for ∀i ∈ [d], W (t)
1 [i, j] for different j have the same sign. Combining with

∀j ∈ [d] : E
(t)
j < 0 gives us

∣∣∣g(t)2i

∣∣∣ =

∣∣∣∣∣∣
d∑
j=1

E
(t)
j W

(t)
1 [i, j]

∣∣∣∣∣∣ =

d∑
j=1

∣∣∣E(t)
j W

(t)
1 [i, j]

∣∣∣ .
Then it suffices to show that for tinc ≤ t < T1,

∣∣∣E(t)
j W

(t)
1 [i, j]

∣∣∣ = Ω̃
(√
η
)
, which can be proven

using the same technique as above.

Finally, for ∀τ ≤ t,∀i, j ∈ [d], note that the upper bounds of
∣∣∣W (τ)

1 [i, j]
∣∣∣ and

∣∣∣w(τ)
2i

∣∣∣ are already given

in Lemma 22. As for
∣∣∣g(τ)1 [i, j]

∣∣∣ and
∣∣∣g(τ)2i

∣∣∣, we have
∣∣∣g(τ)1 [i, j]

∣∣∣ =
∣∣∣w(τ)

2i E
(τ)
j

∣∣∣ = Õ
(

1√
d

)
,
∣∣∣g(τ)2i

∣∣∣ ≤∑d
j=1

∣∣∣E(τ)
j W

(τ)
1 [i, j]

∣∣∣ = Õ
(√

d
)

.

D.9 PROOF OF LEMMA 22

For any i, j ∈ [d], and any t in the interval [tinc, T1], we prove by induction that

(A)
∣∣∣W (t)

1 [i, j]
∣∣∣ = Õ

(
1√
d

)
,
∣∣∣w(t)

2i

∣∣∣ = Õ
(

1√
d

)
.

(B) ∀τ ∈ [t−H, t] : sign
(
W

(τ)
1 [i, j]

)
= sign

(
w

(τ)
2i

)
= sign

(
w

(0)
2i

)
.

(C)
∣∣∣g(t)1 [i, j]

∣∣∣ ≥ Ω(ξ),
∣∣∣g(t)2i

∣∣∣ ≥ Ω(ξ).

The base case t = tinc was already proven by Lemma 17.

For t ∈ [tinc, T1), suppose (B) and (C) hold for time t and (A) holds for all τ ∈ [tinc, t]. From (A),
we get that ∀τ ∈ [tinc, t] :

∣∣∣g(τ)1 [i, j]
∣∣∣ =

∣∣∣w(τ)
2i E

(τ)
j

∣∣∣ = Õ
(

1√
d

)
,
∣∣∣g(τ)2i

∣∣∣ ≤∑d
j=1

∣∣∣E(τ)
j W

(τ)
1 [i, j]

∣∣∣ =

Õ
(√

d
)

. Since when t < T1, ∀j ∈ [d] : E
(t)
j < 0, from (B) we know that ∀τ ∈ [t − H, t] :

sign
(
g
(τ)
1 [i, j]

)
= sign

(
g
(τ)
2i

)
= −sign

(
w

(0)
2i

)
. Combining with (C) tells us that Condition 1 and

2 are satisfied.

In Section D.2 we have shown that T1 = Θ
(

1√
dη

)
. Then for t ∈ [tinc, T1), we can use Lemma 21 to

get that ∀tinc ≤ τ ≤ t, ∀i, j ∈ [d],

sign
(

∆W
(τ)
1 [i, j]

)
= sign

(
∆w

(τ)
2i

)
= sign

(
w

(0)
2i

)
,
∣∣∣∆W (τ)

1 [i, j]
∣∣∣ = Θ̃(η),

∣∣∣∆w(τ)
2i

∣∣∣ = Θ̃(η).

Since when t = tinc, sign
(
W

(tinc)
1 [i, j]

)
= sign

(
w

(tinc)
2i

)
= sign

(
w

(0)
2i

)
. We get that for tinc ≤ τ ≤

t,
∀i, j ∈ [d] :

∣∣∣W (τ+1)
1 [i, j]

∣∣∣ =
∣∣∣W (τ)

1 [i, j]
∣∣∣+ Θ̃(η),

∣∣∣w(τ+1)
2i

∣∣∣ =
∣∣∣w(τ)

2i

∣∣∣+ Θ̃(η).

Now for t+ 1, we have ∀i, j ∈ [d],

sign
(
W

(t+1)
1 [i, j]

)
= sign

(
w

(0)
2i

)
,
∣∣∣W (t+1)

1 [i, j]
∣∣∣ =

∣∣∣W (tinc)
1 [i, j]

∣∣∣+ (t+ 1− tinc) Θ̃(η),

sign
(
w

(t+1)
2i

)
= sign

(
w

(0)
2i

)
,
∣∣∣w(t+1)

2i

∣∣∣ =
∣∣∣w(tinc)

2i

∣∣∣+ (t+ 1− tinc) Θ̃(η).

That means ∀τ ∈ [t+ 1−H, t+ 1] : sign
(
W

(τ)
1 [i, j]

)
= sign

(
w

(τ)
2i

)
= sign

(
w

(0)
2i

)
. This proves

(B) for time t+ 1.
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On the other hand, we get that
∣∣∣W (t+1)

1 [i, j]
∣∣∣ ≥ ∣∣∣W (tinc)

1 [i, j]
∣∣∣ = Θ

(
1

d
3
2
α+1

)
and

∣∣∣w(t+1)
2i

∣∣∣ ≥∣∣∣w(tinc)
2i

∣∣∣ = Ω
(

1

d
3
2
α

)
. Since t+ 1 ≤ T1 which means ∀j ∈ [d] :

∣∣∣E(t+1)
j

∣∣∣ ≥ √ηd. Then∣∣∣g(t+1)
1 [i, j]

∣∣∣ =
∣∣∣w(t+1)

2i E
(t+1)
j

∣∣∣ ≥ Ω

(
1

d
3
2α

)√
ηd = Ω(ξ),

∣∣∣g(t+1)
2i

∣∣∣ =

∣∣∣∣∣∣
d∑
j=1

E
(t+1)
j W

(t+1)
1 [i, j]

∣∣∣∣∣∣ =

d∑
j=1

∣∣∣E(t+1)
j W

(t+1)
1 [i, j]

∣∣∣ ≥ dΘ

(
1

d
3
2α+1

)√
ηd = Ω(ξ).

This proves (C) at time t+ 1.

Since t+ 1 ≤ T1 which means ∀j ∈ [d] :
(
W

(t+1)
2 W

(t+1)
1

)
j
≤ O(1), we obtain that

d∑
i=1

w
(t+1)
2i W

(t+1)
1 [i, j] =

d∑
i=1

∣∣∣w(t+1)
2i

∣∣∣ ∣∣∣W (t+1)
1 [i, j]

∣∣∣
=

d∑
i=1

(∣∣∣w(tinc)
2i

∣∣∣+ (t+ 1− tinc)Θ̃(η)
)(∣∣∣W (tinc)

1 [i, j]
∣∣∣+ (t+ 1− tinc)Θ̃(η)

)
≤ O(1).

Note that
∣∣∣W (tinc)

1 [i, j]
∣∣∣ , ∣∣∣w(tinc)

2i

∣∣∣ < 1
d (since tinc < td), we get that (t + 1 − tinc)Θ̃(η) = O

(
1√
d

)
,

which gives us
∣∣∣w(t+1)

2i

∣∣∣ = Õ
(

1√
d

)
and

∣∣∣W (t+1)
1 [i, j]

∣∣∣ = Õ
(

1√
d

)
and hence (A) holds at time t+ 1.

Therefore by induction, we can prove that (A), (B), (C) hold for all tinc ≤ t ≤ T1. Then applying
Lemma 21, we get that for all tinc ≤ t ≤ T1, ∀i, j ∈ [d] :

∣∣∣∆W (t)
1 [i, j]

∣∣∣ = Θ̃(η),
∣∣∣∆w(t)

2i

∣∣∣ =

Θ̃(η).

Specially, at the end of the first phase, we have ∀j ∈ [d] :
(
W

(t+1)
2 W

(t+1)
1

)
j

= Θ(1). Repeating

the above proof techniques gives us
∣∣∣w(T1)

2i

∣∣∣ = Θ̃
(

1√
d

)
and

∣∣∣W (T1)
1 [i, j]

∣∣∣ = Θ̃
(

1√
d

)
for ∀i, j ∈ [d].

D.10 PROOF OF LEMMA 19

Let’s first prove eq. (30).

By Lemma 18, for tinc ≤ t < T1, we have ∀i, j ∈ [d],
∣∣∣g(t)1 [i, j]

∣∣∣ = Ω̃
(√
η
)
,
∣∣∣g(t)2i

∣∣∣ = Ω̃
(√
ηd
)
.

Then it suffices to show that for tinc ≤ t < T1,
∣∣∣g(t)1 [i, j]− g(t−τ)1 [i, j]

∣∣∣ = τÕ(η) and∣∣∣g(t)2i − g
(t−τ)
2i

∣∣∣ = τÕ(ηd). It suffices to show that when t < T1,
∣∣∣g(t+1)

1 [i, j]− g(t)1 [i, j]
∣∣∣ = Õ(η)

and
∣∣∣g(t+1)

2i − g(t)2i

∣∣∣ = Õ(ηd).

By Lemma 17 and 22, we know that when t < T1, ∀i, j ∈ [d],
∣∣∣∆W (t)

1 [i, j]
∣∣∣ ≤ Õ(η),

∣∣∣∆w(t)
2i

∣∣∣ ≤
Õ(η) and that

∣∣∣W (t)
1 [i, j]

∣∣∣ ≤ Õ ( 1√
d

)
,
∣∣∣w(t)

2i

∣∣∣ ≤ Õ ( 1√
d

)
. Then the bound

∣∣∣∆E(t)
j

∣∣∣ ≤ Õ (η√d) in
eq. (35) hold for all t < T1 (not only tinc ≤ t < T1). Substituting these bounds into eq. (36) gives us
∀t < T1, ∣∣∣g(t+1)

1 [i, j]− g(t)1 [i, j]
∣∣∣ ≤ ∣∣∣w(t+1)

2i

∣∣∣ ∣∣∣∆E(t)
j

∣∣∣+
∣∣∣∆w(t)

2i

∣∣∣ ∣∣∣E(t)
j

∣∣∣
= Õ

(
1√
d

)
Õ
(
η
√
d
)

+ Θ̃(η)O(1) = Õ(η).

Similarly, we have that
∣∣∣g(t+1)

2i − g(t)2i

∣∣∣ = Õ(ηd), which proves eq. (30).

Note that for a, b ∈ R:∣∣a2 − b2∣∣
a2

=

∣∣a2 − (a− b− a)2
∣∣

a2
=

∣∣2a(a− b)− (a− b)2
∣∣

a2
≤ 2
|a− b|
|a|

+

(
|a− b|
|a|

)2

.
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Then eq. (31) immediately follows from eq. (30).

D.11 PROOF OF LEMMA 15

We divide Lemma 15 into the following three lemmas. Combining them together immediately gives
us the whole proof.

The first lemma below gives us the structure of W2 in the second phase and that of W1 under some
conditions.

Lemma 23. Under Assumption 1, 2 and 3, suppose σ ≤ η3/2ξ2

d13/4
. By picking η ≤ O

(
1
d3α

)
, ξ ≤√

η
d3α−1 , and β2 = β2

1 , we have w.h.p. for T1 ≤ t < T̃ ,

∀i ∈ [d] : w
(t+1)
2i = w

(t)
2i − η

(
sign

(
g
(t)
2i

)
+ e

(t)
2i

)
, where

∣∣∣e(t)2i

∣∣∣ = Õ (
√
η) ,

and moreover

∀i ∈ [d] : w
(t)
2i = sign

(
w

(0)
2i

)
c(t) +R

(t)
2i , where

∣∣∣R(t)
2i

∣∣∣
c(t)

= Õ
(
√
η +

1

dα−1/2

)
.

As for W1, if for certain i.j ∈ [d] and certain t ∈ [T1, T̃ ) we have
∣∣∣g(t)1 [i, j]

∣∣∣ = Ω̃
(√
η
)

, then

W
(t+1)
1 [i, j] = W

(t)
1 [i, j]− η

(
sign

(
g
(t)
1 [i, j]

)
+ e

(t)
1 [i, j]

)
, where

∣∣∣e(t)1 [i, j]
∣∣∣ = Õ (

√
η) .

The second lemma below also analyzes the structure of W1 but removes the conditions in Lemma 23.

Lemma 24. Under Assumption 1, 2 and 3, suppose σ ≤ η3/2ξ2

d13/4
. By picking η ≤ O

(
1
d3α

)
, ξ ≤√

η
d3α−1 , and β2 = β2

1 , we have w.h.p. for T1 ≤ t < T̃ , ∀i, j ∈ [d],
∣∣∣W (t)

1 [i, j]
∣∣∣ = Ω̃

(
1√
d

)
and for

any j ∈ [d],

W
(t)
1 [i, j] = sign

(
w

(0)
2i

)
V

(t)
j +R

(t)
1 [i, j], where

∣∣∣R(t)
1 [i, j]

∣∣∣∣∣∣V (t)
j

∣∣∣ ≤ Õ
(
η

1
4 +

1

d
α
2−

1
4

)
.

The third lemma proves the convergence of Adam at time T̃ .

Lemma 25. Under Assumption 1, 2 and 3, suppose σ ≤ η3/2ξ2

d13/4
. By picking η ≤ O

(
1
d3α

)
, ξ ≤√

η
d3α−1 , and β2 = β2

1 , at time T̃ , we have that w.h.p. ∀j ∈ [d] :
∣∣∣E(T̃ )

j

∣∣∣ ≤ Õ (d√ηd), which implies∥∥∥E(T̃ )
∥∥∥2
2
≤ Õ

(
ηd4
)
.

D.12 PROOF OF LEMMA 23

The proof is based on the following lemma, which gives a coarse analysis on the magnitude of
weights and their increments per step during the second phase.

Lemma 26. Under Assumption 1, 2 and 3, suppose σ ≤ η3/2ξ2

d13/4
. By picking η ≤ O

(
1
d3α

)
, ξ ≤√

η
d3α−1 , and β2 = β2

1 , we have w.h.p. for all T1 ≤ t < T̃ ,

∀i, j ∈ [d] :
∣∣∣w(t+1)

2i

∣∣∣ > ∣∣∣w(t)
2i

∣∣∣ , ∣∣∣∆w(t)
2i

∣∣∣ = Θ̃(η),
∣∣∣∆W (t)

1 [i, j]
∣∣∣ ≤ Õ(η).

Moreover, we have that ∀i, j ∈ [d] :
∣∣∣w(t)

2i

∣∣∣ = Θ̃
(

1√
d

)
,
∣∣∣W (t)

1 [i, j]
∣∣∣ = Õ

(
1√
d

)
.

Equipped with Lemma 26, we are ready to prove Lemma 23. We will only prove the results of w(t)
2i .

The proof for W (t)
1 [i, j] uses the same techniques.
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Lemma 26 gives us upper bounds of
∣∣∣w(t)

2i

∣∣∣ , ∣∣∣W (t)
1 [i, j]

∣∣∣, as well as
∣∣∣∆w(t)

2i

∣∣∣ and
∣∣∣∆W (t)

1 [i, j]
∣∣∣ for

all i, j ∈ [d]. Then we know that eq.(35) still holds, which gives us ∀j ∈ [d] :
∣∣∣E(t+1)

j − E(t)
j

∣∣∣ =

Õ
(√

dη
)

. Then we can use the same strategy in Lemma 19 to prove that
∣∣∣g(t+1)

2i − g(t)2i

∣∣∣ = Õ(ηd).

By definition, for T1 ≤ t < T̃ , we know that
∣∣∣g(t)2i

∣∣∣ = Ω
(
d
√
η
)
. Combining with the bound∣∣∣g(t+1)

2i − g(t)2i

∣∣∣ = Õ(ηd), we know that the g(t)2i parts in eq.(30) and eq.(31) still hold. Then we can

use the same strategy in Section D.2 to prove that the w(t)
2i part of eq. (29) still holds, which gives us

∀i ∈ [d] : w
(t+1)
2i = w

(t)
2i − η

(
sign

(
g
(t)
2i

)
+ e

(t)
2i

)
, where

∣∣∣e(t)2i

∣∣∣ = Õ (
√
η) .

By Lemma 14, we have that at the end of the first phase (t = T1),

∀i ∈ [d] : w
(T1)
2i = sign

(
w

(0)
2i

)
c(T1) +R

(T1)
2i , where

∣∣∣R(T1)
2i

∣∣∣
c(T1)

= Õ
(
√
η +

1

dα−1/2

)
.

Combining with ∀i ∈ [d],∀t ≤ Ti : sign
(
g
(t)
2i

)
= −sign

(
w

(0)
2i

)
yields that during the second phase,

for t ≤ T̃ , we have

∀i ∈ [d] : w
(t)
2i = sign

(
w

(0)
2i

)
c(t) +R

(t)
2i , where

∣∣∣R(t)
2i

∣∣∣
c(t)

= Õ
(
√
η +

1

dα−1/2

)
.

D.13 PROOF OF LEMMA 26

By definition of Tf , there exists j0 ∈ [d] such that E(τ)
j0

< −
√
ηd for T1 ≤ t ≤ T̃ . We prove by

induction that during this period, ∀i ∈ [d] : sign
(
w

(t)
2i

)
= sign

(
W

(t)
1 [i, j0]

)
= sign

(
w

(0)
2i

)
and

that ∀i, j ∈ [d] :
∣∣∣w(t)

2i

∣∣∣ = Θ̃
(

1√
d

)
,
∣∣∣W (t)

1 [i, j]
∣∣∣ = Õ

(
1√
d

)
.

The base case (t = T1) was already proven by Lemma 22. Now suppose for some t such that
T1 ≤ t < T̃ , for all τ such that T1 ≤ τ ≤ t, we have ∀i ∈ [d] : sign

(
w

(τ)
2i

)
= sign

(
W

(τ)
1 [i, j0]

)
=

sign
(
w

(0)
2i

)
and that ∀i, j ∈ [d] :

∣∣∣w(τ)
2i

∣∣∣ = Θ̃
(

1√
d

)
,
∣∣∣W (τ)

1 [i, j]
∣∣∣ = Õ

(
1√
d

)
. Using these bounds,

we get that ∀j ∈ [d] :
∣∣∣E(τ)

j

∣∣∣ ≤∑d
i=1

∣∣∣w(τ)
2i W

(τ)
1 [i, j]

∣∣∣+ |Aj | = O(1), which then yields two upper

bounds
∣∣∣g(τ)1 [i, j]

∣∣∣ =
∣∣∣w(τ)

2i E
(τ)
j

∣∣∣ = Õ
(

1√
d

)
and

∣∣∣g(τ)2i

∣∣∣ ≤∑d
j=1

∣∣∣E(τ)
j W

(τ)
1 [i, j]

∣∣∣ = Õ
(√

d
)

.

By definition of Tg, we know that for all T1 ≤ τ ≤ t, ∀i ∈ [d] :
∣∣∣g(τ)2i

∣∣∣ ≥ d
√
η = Ω(ξ) and that

sign
(
g
(τ)
2i

)
= −sign

(
w

(0)
2i

)
, which implies that Condition 2 is satisfied for ∀i ∈ [d]. At the end

of the proof of this lemma, we will show that T̃ = Θ̃
(

1√
dη

)
. Together with the upper bound of∣∣∣g(τ)2i

∣∣∣, we can apply Lemma 21 to get that w.h.p. for T1 ≤ τ ≤ t, sign
(

∆w
(τ)
2i

)
= sign

(
w

(0)
2i

)
and∣∣∣∆w(τ)

2i

∣∣∣ = Θ̃(η). Combining with the inductive hypothesis sign
(
w

(τ)
2i

)
= sign

(
w

(0)
2i

)
gives us

that
∣∣∣w(τ+1)

2i

∣∣∣ =
∣∣∣w(τ)

2i

∣∣∣+ Θ̃(η). Specially, when τ = t, we get the lower bound
∣∣∣w(t+1)

2i

∣∣∣ ≥ ∣∣∣w(t)
2i

∣∣∣ =

Ω̃
(

1√
d

)
and that sign

(
w

(t+1)
2i

)
= sign

(
w

(0)
2i

)
.

Since E(τ)
j0

< −
√
ηd, we have that ∀i ∈ [d] :

∣∣∣g(τ)1 [i, j0]
∣∣∣ =

∣∣∣w(τ)
2i

∣∣∣ ∣∣∣E(τ)
j0

∣∣∣ = Ω̃
(√
η
)

= Ω(ξ)

and that sign
(
g
(τ)
1 [i, j0]

)
= −sign

(
w

(0)
2i

)
. That means Condition 1 is satisfied for ∀i ∈ [d]

and j0. Using the same technique as when we deal with w
(τ)
2i , we get that for T1 ≤ τ ≤ t,
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∀i ∈ [d] :
∣∣∣W (τ+1)

1 [i, j0]
∣∣∣ =

∣∣∣W (τ)
1 [i, j0]

∣∣∣ + Θ̃(η), sign
(
W

(t+1)
1 [i, j0]

)
= sign

(
w

(0)
2i

)
and that

∀i, j ∈ [d],
∣∣∣∆W (τ)

1 [i, j]
∣∣∣ = Õ(η).

Now we analyze the magnitude order of
∣∣∣w(t+1)

2i

∣∣∣ , ∣∣∣W (t+1)
1 [i, j]

∣∣∣. Let’s first analyze
∣∣∣w(t+1)

2i

∣∣∣.
By Lemma 14, when t = T1, ∀i, j ∈ [d],∣∣∣w(T1)

2i

∣∣∣∣∣∣w(T1)
2j

∣∣∣ = 1± Õ
(
√
η +

1

dα−1/2

)
,

∣∣∣W (T1)
1 [i, j0]

∣∣∣∣∣∣w(T1)
2i

∣∣∣ = 1± Õ
(
√
η +

1

dα−1/2

)
.

Combining with the facts that for T1 ≤ τ ≤ t,
∣∣∣W (τ+1)

1 [i, j0]
∣∣∣ =

∣∣∣W (τ)
1 [i, j0]

∣∣∣ + Θ̃(η) and∣∣∣w(τ+1)
2i

∣∣∣ =
∣∣∣w(τ)

2i

∣∣∣ + Θ̃(η) yields

∣∣∣W (t+1)
1 [i,j0]

∣∣∣∣∣∣w(t+1)
2i

∣∣∣ = Θ̃(1). Since we just proved ∀i ∈ [d] :

sign
(
w

(t+1)
2i

)
= sign

(
W

(t+1)
1 [i, j0]

)
= sign

(
w

(0)
2i

)
, we get that

(W2W1)
(t+1)
j0

=

d∑
i=1

w
(t+1)
2i W

(t+1)
1 [i, j0] =

d∑
i=1

∣∣∣w(t+1)
2i

∣∣∣ ∣∣∣W (t+1)
1 [i, j0]

∣∣∣ = O(1),

which gives us that
∣∣∣w(t+1)

2i

∣∣∣ = Õ
(

1√
d

)
. Recall that we have shown

∣∣∣w(t+1)
2i

∣∣∣ ≥ Ω̃
(

1√
d

)
, then∣∣∣w(t+1)

2i

∣∣∣ = Θ̃
(

1√
d

)
.

Now we prove
∣∣∣W (t+1)

1 [i, j]
∣∣∣ = Õ

(
1√
d

)
. We have proved that T1 ≤ τ ≤ t, ∀i, j ∈ [d],∣∣∣∆W (τ)

1 [i, j]
∣∣∣ = Õ(η) and

∣∣∣w(τ+1)
2i

∣∣∣− ∣∣∣w(τ)
2i

∣∣∣ = Θ̃(η), then ∀i, j ∈ [d],∣∣∣W (t+1)
1 [i, j]

∣∣∣∣∣∣w(t+1)
2i

∣∣∣ ≤

∣∣∣W (T1)
1 [i, j]

∣∣∣+
∑t
τ=T1

∣∣∣W (τ+1)
1 [i, j]−W (τ)

1 [i, j]
∣∣∣∣∣∣w(T1)

2i

∣∣∣+
∑t
τ=T1

∣∣∣w(τ+1)
2i

∣∣∣− ∣∣∣w(τ)
2i

∣∣∣
≤

∣∣∣W (T1)
1 [i, j]

∣∣∣+ (t+ 1− T1)Õ(η)∣∣∣w(T1)
2i

∣∣∣+ (t+ 1− T1)Θ̃(η)
= Õ(1),

where the last equality uses

∣∣∣W (T1)
1 [i,j]

∣∣∣∣∣∣w(T1)
2i

∣∣∣ = 1 ± Õ
(√
η + 1

dα−1/2

)
. Since we already proved that∣∣∣w(t+1)

2i

∣∣∣ = Θ̃
(

1√
d

)
, we get

∣∣∣W (t+1)
1

∣∣∣ = Õ
(

1√
d

)
.

Therefore by induction, for all t in the interval [T1, T̃ ), we have ∀i, j ∈ [d] :
∣∣∣w(t)

2i

∣∣∣ = Θ̃
(

1√
d

)
,∣∣∣W (t)

1 [i, j]
∣∣∣ = Õ

(
1√
d

)
. From the proof we also get ∀i ∈ [d] :

∣∣∣w(t+1)
2i

∣∣∣ > ∣∣∣w(t)
2i

∣∣∣, and that∣∣∣∆w(t)
2i

∣∣∣ = Θ̃(η),
∣∣∣∆W (t)

1 [i, j]
∣∣∣ ≤ Õ(η).

Now we verify that T̃ = Θ̃
(

1√
dη

)
. Combining ∀i, j ∈ [d] :

∣∣∣w(T̃ )
2i

∣∣∣ = Θ̃
(

1√
d

)
and ∀t ∈

[T1, T̃ ),
∣∣∣w(t+1)

2i

∣∣∣− ∣∣∣w(t)
2i

∣∣∣ = Θ̃(η), we immediately get that T̃ − T1 = Θ̃
(

1√
dη

)
. In Section D.2 we

have shown that T1 = Θ
(

1√
dη

)
, then we get T̃ = Θ̃

(
1√
dη

)
.

D.14 PROOF OF LEMMA 24

We prove this lemma by induction. The base case (t = T1) can be verified by Lemma 14. Now
suppose for t in the interval [T1, T̃ ), we have ∀i, j ∈ [d],

∣∣∣W (t)
1 [i, j]

∣∣∣ = Ω̃
(

1√
d

)
.
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For t ∈ [T1, T̃ ), by the proof of Lemma 26 (Section D.13), we know that for ∀τ ≤ t, ∀i, j ∈ [d] :∣∣∣w(τ)
2i

∣∣∣ = Θ̃
(

1√
d

)
,
∣∣∣W (τ)

1 [i, j]
∣∣∣ = Õ

(
1√
d

)
and that

∣∣∣g(τ)1 [i, j]
∣∣∣ ≤ Õ ( 1√

d

)
,
∣∣∣g(τ)2i

∣∣∣ ≤ Õ (√d), and

that T̃1 = Θ̃
(

1√
dη

)
. Then we can pick H := 1

1−β1
log d

ηξ2 and apply Lemma 16 and Corollary 2 to

get that, w.h.p., for all t ∈ [T1, T̃ ) and ∀i, j ∈ [d], the update of W1 can be written as

W
(t+1)
1 [i, j] = W

(t)
1 [i, j]− ηt

(1− β1)
∑H
τ=0 β

τ
1 g

(t−τ)
1 [i, j] + ε

(t)
1n [i, j]√

(1− β2)
∑H
τ=0 β

τ
2

(
g
(t−τ)
1 [i, j]

)2
+ ε

(t)
1d [i, j] + ξ

,

where
∣∣∣ε(t)1n [i, j]

∣∣∣ , ∣∣∣ε(t)1d [i, j]
∣∣∣ ≤ Õ(ηξ2). By Lemma 23, we have that for 1 ≤ i, j ≤ d,

g
(t)
1 [i, j] = w

(t)
2i E

(t)
j = c(t)sign

(
w

(0)
2i

)
E

(t)
j +R

(t)
g,1[i, j],

∣∣∣R(t)
g,1[i, j]

∣∣∣
c(t)
∣∣∣E(t)

j

∣∣∣ = Õ
(
√
η +

1

dα−1/2

)
,

⇒
H∑
τ=0

βτ1 g
(t−τ)
1 [i, j] = sign

(
w

(0)
2i

) H∑
τ=0

βτ1 c
(t−τ)E

(t−τ)
j +

H∑
τ=0

βτ1R
(t−τ)
g,1 [i, j]. (37)

Using the fact that for a, b ∈ R, |a
2−b2|
a2 ≤ 2 |a−b||a| +

(
|a−b|
|a|

)2
, we get that

(
g
(t)
1 [i, j]

)2
=
(
c(t)sign

(
w

(0)
2i

)
E

(t)
j +R

(t)
g,1[i, j]

)2
:=
(
c(t)E

(t)
j

)2
+R

(t)
gsqr,1[i, j],

where

∣∣∣R(t)
gsqr,1[i,j]

∣∣∣(
c(t)E

(t)
j

)2 = Õ
(√
η + 1

dα−1/2

)
. That yields

H∑
τ=0

βτ2

(
g
(t−τ)
1 [i, j]

)2
=

H∑
τ=0

βτ2

(
c(t−τ)E

(t−τ)
j

)2
+

H∑
τ=0

βτ2R
(t−τ)
gsqr,1 [i, j]. (38)

Since
(
c(t−τ)E

(t−τ)
j

)2
> 0, in eq. (38) we have that∣∣∣∑H

τ=0 β
τ
2R

(t−τ)
gsqr,1 [i, j]

∣∣∣∣∣∣∣∑H
τ=0 β

τ
2

(
c(t−τ)E

(t−τ)
j

)2∣∣∣∣ = Õ
(
√
η +

1

dα−1/2

)
. (39)

However we cannot similarly prove that
∣∣∣∑H

τ=0 β
τ
1R

(t−τ)
g,1 [i, j]

∣∣∣ � ∣∣∣∑H
τ=0 β

τ
1 c

(t−τ)E
(t−τ)
j

∣∣∣ in

eq. (37) because c(t−τ)E(t−τ)
j may not have the same sign for τ = 0, 1, ...,H . To deal with eq.(37),

we need to consider the two cases where
∣∣∣∑H

τ=0 β
τ
1R

(t−τ)
g,1 [i, j]

∣∣∣ � ∣∣∣∑H
τ=0 β

τ
1 c

(t−τ)E
(t−τ)
j

∣∣∣ or∣∣∣∑H
τ=0 β

τ
1R

(t−τ)
g,1 [i, j]

∣∣∣ 6� ∣∣∣∑H
τ=0 β

τ
1 c

(t−τ)E
(t−τ)
j

∣∣∣.
Case 1.

∣∣∣(1− β1)
∑H
τ=0 β

τ
1R

(t−τ)
g,1 [i, j] + ε

(t)
1n [i, j]

∣∣∣ ≤ δ
∣∣∣(1− β1)

∑H
τ=0 β

τ
1 c

(t−τ)E
(t−τ)
j

∣∣∣ where

δ =
(
η

1
4 + 1

d
α
2
− 1

4

)
.

Note that from eq. (39) we have∣∣∣∣∣(1− β1)

H∑
τ=0

βτ2R
(t−τ)
gsqr,1 [i, j]

∣∣∣∣∣ ≤ Õ
(
√
η +

1

dα−1/2

) ∣∣∣∣∣(1− β1)

H∑
τ=0

βτ2

(
c(t−τ)E

(t−τ)
j

)2∣∣∣∣∣ .
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Combining with
∣∣∣ε(t)1d [i, j]

∣∣∣ ≤ Õ(ηξ2) ≤ Õ
(
η

1
4 + 1

d
α
2
− 1

4

)2
ξ2, we can apply Lemma 33 to get that

W
(t+1)
1 [i, j]−W (t)

1 [i, j]

=− ηt
(1− β1)sign

(
w

(0)
2i

)∑H
τ=0 β

τ
1 c

(t−τ)E
(t−τ)
j + (1− β1)

∑H
τ=0 β

τ
1R

(t−τ)
g,1 [i, j] + ε

(t)
1n [i, j]√

(1− β2)
∑H
τ=0 β

τ
2

(
c(t−τ)E

(t−τ)
j

)2
+ (1− β2)

∑H
τ=0 β

τ
2R

(t−τ)
gsqr,1[i, j] + ε

(t)
1d [i, j] + ξ

=− ηt
1− β1√
1− β2

·
sign

(
w

(0)
2i

)∑H
τ=0 β

τ
1 c

(t−τ)E
(t−τ)
j√∑H

τ=0 β
τ
2

(
c(t−τ)E

(t−τ)
j

)2
+ ξ

(
1 + e

(t)
1 [i, j]

)

:=− sign
(
w

(0)
2i

)
v
(t)
j

(
1 + e

(t)
1 [i, j]

)
,

where
∣∣∣e(t)1 [i, j]

∣∣∣ = Õ
(
η

1
4 + 1

d
α
2
− 1

4

)
. Since

∣∣∣W (t+1)
1 [i, j]−W (t)

1 [i, j]
∣∣∣ = Õ(η), we get that∣∣∣v(t)j ∣∣∣ = Õ(η).

Case 2.
∣∣∣(1− β1)

∑H
τ=0 β

τ
1R

(t−τ)
g,1 [i, j] + ε

(t)
1n [i, j]

∣∣∣ > δ
∣∣∣(1− β1)

∑H
τ=0 β

τ
1 c

(t−τ)E
(t−τ)
j

∣∣∣ where

δ =
(
η

1
4 + 1

d
α
2
− 1

4

)
.

Since

∣∣∣R(t)
g,1[i,j]

∣∣∣
c(t)
∣∣∣E(t)
j

∣∣∣ = Õ
(√
η + 1

dα−1/2

)
, we have that

∣∣∣∣∣(1− β1)

H∑
τ=0

βτ1R
(t−τ)
g,1 [i, j]

∣∣∣∣∣ ≤ Õ
(
√
η +

1

dα−1/2

)
(1− β1)

H∑
τ=0

βτ1

∣∣∣c(t−τ)E(t−τ)
j

∣∣∣
(i)

≤ Õ
(
√
η +

1

dα−1/2

)√√√√(H + 1)(1− β1)

H∑
τ=0

βτ2

(
c(t−τ)E

(t−τ)
j

)2
(ii)
= Õ

(
√
η +

1

dα−1/2

)√√√√(1− β1)

H∑
τ=0

βτ2

(
g
(t−τ)
1 [i, j]

)2
,

where (i) uses Cauchy-Schwarz inequality and β2 = β2
1 , (ii) uses eq. (38) and (39).

Combining with
∣∣∣ε(t)1n [i, j]

∣∣∣ ≤ Õ(ηξ2) ≤ Õ
(√
η + 1

dα−1/2

)(
ξ −

√∣∣∣ε(t)1d [i, j]
∣∣∣) gives us

∣∣∣∣∣(1− β1)

H∑
τ=0

βτ1 c
(t−τ)E

(t−τ)
j

∣∣∣∣∣ <
∣∣∣(1− β1)

∑H
τ=0 β

τ
1R

(t−τ)
g,1 [i, j] + ε

(t)
1n [i, j]

∣∣∣
η

1
4 + 1

d
α
2
− 1

4

≤
Õ
(√
η + 1

dα−1/2

)
η

1
4 + 1

d
α
2
− 1

4


√√√√ H∑
τ=0

βτ2

(
g
(t−τ)
1 [i, j]

)2
−
√∣∣∣ε(t)1d [i, j]

∣∣∣+ ξ


≤Õ

(
η

1
4 +

1

d
α
2−

1
4

)
√√√√ H∑
τ=0

βτ2

(
g
(t−τ)
1 [i, j]

)2
+ ε

(t)
1d [i, j] + ξ

 ,

which implies ∣∣∣W (t+1)
1 [i, j]−W (t)

1 [i, j]
∣∣∣ ≤ ηÕ(η 1

4 +
1

d
α
2−

1
4

)
.
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Consider certain i.j ∈ [d] and the period from T1 to t. Denote T as the set of time points when Case
1 is satisfied. By Lemma 26, we know that η(t− T1) = Õ

(
1√
d

)
, which gives us

∑
τ 6∈T

∆W
(τ)
1 [i, j] ≤ (t− T1)ηÕ

(
η

1
4 +

1

d
α
2−

1
4

)
= Õ

(
η

1
4

d
1
2

+
1

d
α
2 + 1

4

)
.

By the first phase analysis, we have that

W
(T1)
1 [i, j] = sign

(
w

(0)
2i

)
V

(T1)
j +R

(T1)
1 [i, j],

where V (T1)
j = O

(
1√
d

)
,
∣∣∣R(T1)

1 [i, j]
∣∣∣ = Õ

(√
η
d + 1

dα

)
. Combining with the analysis of Case 1,

we have that

W
(T1)
1 [i, j] +

∑
τ∈T

∆W
(τ)
1 [i, j] = sign

(
w

(0)
2i

)(
V

(T1)
j −

∑
τ∈T

v
(τ)
j

)
+RT [i, j],

where |RT [i, j]| ≤ O
(
η

1
4 + 1

d
α
2
− 1

4

)(∣∣∣V (T1)
j

∣∣∣+
∑
τ∈T

∣∣∣v(τ)j

∣∣∣).

Since for τ ∈ T ,
∣∣∣v(τ)j

∣∣∣ = Õ(η), V (T1)
j = O

(
1√
d

)
and η(t − T1) = Õ

(
1√
d

)
, we can bound

|RT [i, j]| by

|RT [i, j]| ≤ Õ
(
η

1
4 +

1

d
α
2−

1
4

)(
O
(

1√
d

)
+ (t− T1)Õ(η)

)
≤ Õ

(
η

1
4

d
1
2

+
1

d
α
2 + 1

4

)
.

Combining the above results together yields

W
(t)
1 [i, j] = W

(T1)
1 +

t−1∑
τ=T1

∆W
(τ)
1 [i, j] = W

(T1)
1 +

∑
τ∈T

∆W
(τ)
1 [i, j] +

∑
τ 6∈T

∆W
(τ)
1 [i, j]

= sign
(
w

(0)
2i

)(
V

(T1)
j −

∑
τ∈T

v
(τ)
j

)
+ Õ

(
η

1
4

d
1
2

+
1

d
α
2 + 1

4

)

:= sign
(
w

(0)
2i

)
V

(t)
j +R

(t)
1 [i, j], where

∣∣∣R(t)
1 [i, j]

∣∣∣ ≤ Õ(η 1
4

d
1
2

+
1

d
α
2 + 1

4

)
.

By the inductive hypothesis
∣∣∣W (t)

1 [i, j]
∣∣∣ = Ω̃

(
1√
d

)
, we get that

∣∣∣V (t)
j

∣∣∣ = Ω̃
(

1√
d

)
, which gives us∣∣∣R(t)

1 [i,j]
∣∣∣∣∣∣V (t)

j

∣∣∣ ≤ Õ
(
η

1
4 + 1

d
α
2
− 1

4

)
.

Therefore, we have that for any j ∈ [d] and any i1, i2 ∈ [d],∣∣∣W (t)
1 [i1, j]

∣∣∣∣∣∣W (t)
1 [i2, j]

∣∣∣ =

∣∣∣sign
(
w

(0)
2i1

)
V

(t)
j

(
1± Õ

(
η

1
4 + 1

d
α
2
− 1

4

))∣∣∣∣∣∣sign
(
w

(0)
2i2

)
V

(t)
j

(
1± Õ

(
η

1
4 + 1

d
α
2
− 1

4

))∣∣∣ = 1± Õ
(
η

1
4 +

1

d
α
2−

1
4

)
.

By Lemma 23, we know that
∣∣∣w(t)

2i

∣∣∣ with different i are also roughly equal, i.e.

∣∣∣w(t)
2i1

∣∣∣∣∣∣w(t)
2i2

∣∣∣ = 1 ±

Õ
(√
η + 1

dα−1/2

)
. Then we have for any j ∈ [d],

(W2W1)
(t)
j =

d∑
i=1

w
(t)
2i W

(t)
1 [i, j] =

d∑
i=1

∣∣∣w(t)
2i

∣∣∣ ∣∣∣W (t)
1 [i, j]

∣∣∣ = Θ
(
d
∣∣∣w(t)

2k

∣∣∣ ∣∣∣W (t)
1 [k, j]

∣∣∣)
= Θ̃

(√
d
∣∣∣W (t)

1 [k, j]
∣∣∣) .

where k can be any index in {1, 2, ..., d} and the last equality uses ∀i ∈ [d] :
∣∣∣w(t)

2i

∣∣∣ = Θ̃
(

1√
d

)
.
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Now we analyze the lower bound of
∣∣∣W (t+1)

1 [k, j]
∣∣∣. Although it may decrease during some period,

we observe that once
∣∣∣W (t)

1 [k, j]
∣∣∣ decreases to some value of order Θ̃

(
1√
d

)
such that (W2W1)

(t)
j <

Aj −
√
ηd, i.e. E

(t)
j < −

√
ηd, we can apply the technique in Section D.13 when analyzing

W
(t)
1 [i, j0] to get that

∣∣∣W (t)
1 [k, j]

∣∣∣ will increase in the next step. This mechanism ensures a Ω̃
(

1√
d

)
lower bound of

∣∣∣W (t+1)
1 [k, j]

∣∣∣. Since k, j are arbitrary, we have proved that at time t + 1, ∀i, j ∈

[d] :
∣∣∣W (t+1)

1 [i, j]
∣∣∣ ≥ Ω̃

(
1√
d

)
.

Therefore by induction, we conclude that when T1 ≤ t < T̃ , for ∀i, j ∈ [d],
∣∣∣W (t)

1 [i, j]
∣∣∣ = Ω̃

(
1√
d

)
.

The remaining part of this lemma has also been proved by the analysis above.

D.15 PROOF OF LEMMA 25

Lemma 26 tells us that for any i ∈ [d],
∣∣∣w(t)

2i

∣∣∣ keeps increasing when t < T̃ . However, the behavior

of W (t)
1 [i, j] is more complicated. The following lemma tells us that

∣∣∣W (t)
1 [i, j]

∣∣∣ will increase until

Tf,j . After that
∣∣∣W (t)

1 [i, j]
∣∣∣ and E(t)

j may zigzag, but E(t)
j will not fluctuate dramatically and will be

trapped in a small interval around zero.

Lemma 27. Under Assumption 1, 2 and 3, suppose σ ≤ η3/2ξ2

d13/4
. Pick η ≤ O

(
1
d3α

)
, ξ ≤

√
η

d3α−1 ,

and β2 = β2
1 . Consider certain coordinate j. For T1 ≤ t < min

{
T̃ , Tf,j

}
, we have ∀i ∈ [d] :∣∣∣W (t)

1 [i, j]
∣∣∣ keeps increasing. If Tf,j < T̃ , then for Tf,j ≤ t < T̃ , we will have−Õ

(√
ηd
)
≤ E(t)

j ≤
Õ
(√
ηd
)
.

Now we start proving Lemma 25. At time T̃ , denote S :=
{
j : Tf,j < T̃

}
, i.e. the set of coordinates

whose Ej have passed its “flip time”. By Lemma 27, we know that ∀j ∈ S,
∣∣∣E(T̃ )

j

∣∣∣ ≤ Õ (√ηd). If

Sc = φ, which means ∀j ∈ [d] :
∣∣∣E(T̃ )

j

∣∣∣ ≤ Õ (√ηd), then our lemma will immediately follow. If

Sc 6= φ, we have T̃ = min {Tg, Tf} = Tg and that ∀j ∈ Sc : E
(T̃ )
j < 0. By the definition of Tg , we

know that ∃i0 ∈ [d] :
∣∣∣g(T̃ )

2i0

∣∣∣ ≤ O (d√η). Then∣∣∣∣∣∣
d∑

j∈Sc
E

(T̃ )
j W

(T̃ )
1 [i0, j]

∣∣∣∣∣∣ =

∣∣∣∣∣∣
d∑
j=1

E
(T̃ )
j W

(T̃ )
1 [i0, j]−

∑
j∈S

E
(T̃ )
j W

(T̃ )
1 [i0, j]

∣∣∣∣∣∣
≤
∣∣∣g(T̃ )

2i0

∣∣∣+

∣∣∣∣∣∣
∑
j∈S

E
(T̃ )
j W

(T̃ )
1 [i0, j]

∣∣∣∣∣∣ ≤ O (d
√
η) + dÕ

(√
ηd
)
Õ
(

1√
d

)
= Õ (d

√
η) .

By Lemma 24, we know that when T1 ≤ t < T̃ , for ∀i, j ∈ [d],
∣∣∣W (t)

1 [i, j]
∣∣∣ = Ω̃

(
1√
d

)
. Since the

update per step
∣∣∣∆W (t)

1 [i, j]
∣∣∣ ≤ Õ(η), we know that sign

(
W

(t)
1 [i, j]

)
remains unchanged during

this period and sign
(
W

(t)
1 [i, j]

)
= sign

(
W

(T1)
1 [i, j]

)
= sign

(
w

(0)
2i

)
independent of j. Combining

with ∀j ∈ Sc : E
(T̃ )
j < 0 gives us that E(T̃ )

j W
(T̃ )
1 [i0, j] for different j have the same sign. Therefore

for any j0 ∈ Sc,

Õ (d
√
η) ≥

∣∣∣∣∣∣
d∑

j∈Sc
E

(T̃ )
j W

(T̃ )
1 [i0, j]

∣∣∣∣∣∣ =

d∑
j∈Sc

∣∣∣E(T̃ )
j W

(T̃ )
1 [i0, j]

∣∣∣ ≥ ∣∣∣E(T̃ )
j0

W
(T̃ )
1 [i0, j0]

∣∣∣
≥
∣∣∣E(T̃ )

j0

∣∣∣ Ω̃( 1√
d

)
⇒
∣∣∣E(T̃ )

j0

∣∣∣ ≤ Õ (d√ηd) .
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Note that the above inequality holds for any j0 ∈ Sc, which means ∀j ∈ Sc :
∣∣∣E(T̃ )

j

∣∣∣ ≤ Õ (d√ηd).
Combining with the fact that ∀j ∈ S :

∣∣∣E(T̃ )
j

∣∣∣ ≤ Õ (d√ηd) completes the proof.

D.16 PROOF OF LEMMA 27

Consider certain j ∈ [d], when t < min
{
T̃ , Tf,j

}
, we have that E(t)

j < −
√
ηd. Therefore we

can use the same argument as in Section D.13 to prove that
∣∣∣W (t)

1 [i, j]
∣∣∣ keeps increasing, and

sign
(
W

(t)
1 [i, j]

)
= sign

(
w

(0)
2i

)
for all i ∈ [d].

At time the “flip time” t = Tf,j , by definition, E(t)
j ≥ −

√
ηd. After that E(t)

j may oscillate. Now we

prove that once E(t)
j ≥

√
ηd (or E(t)

j ≤ −
√
ηd), after a short period E(t)

j will decrease (or increase)

until E(t)
j ≤ Õ

(√
ηd
)

(or E(t)
j ≥ −Õ

(√
ηd
)
). Moreover, during this period, E(t)

j won’t change too
much.

We first recall that when T1 ≤ t < T̃ , Lemma 26 gives us for all i ∈ [d],
∣∣∣w(t)

2i

∣∣∣ = Θ̃
(

1√
d

)
and∣∣∣W (t)

1 [i, j]
∣∣∣ = Õ

(
1√
d

)
. Then eq.(35) we obtained in the first phase analysis still holds, which tells

us that the change of E(t)
j per step satisfies

∣∣∣E(t+1)
j − E(t)

j

∣∣∣ = Õ
(
η
√
d
)

for all T1 ≤ t < T̃ .

We divide the analysis into two cases, based on whether these E(t)
j ≥

√
ηd or E(t)

j ≤ −
√
ηd. By

Lemma 24, we know that when T1 ≤ t < T̃ , ∀i ∈ [d],
∣∣∣W (t)

1 [i, j]
∣∣∣ = Ω̃

(
1√
d

)
. Since the update per

step
∣∣∣∆W (t)

1 [i, j]
∣∣∣ ≤ Õ(η), we know that sign

(
W

(t)
1 [i, j]

)
remains unchanged during this period

and sign
(
W

(t)
1 [i, j]

)
= sign

(
W

(T1)
1 [i, j]

)
= sign

(
w

(0)
2i

)
.

By the analysis of w(t)
2i in Lemma 23, we have for all i ∈ [d], w(t+1)

2i = w
(t)
2i + sign

(
w

(0)
2i

)
∆

(t)
2i ,

where ∆
(t)
2i = η

(
1± Õ

(√
η
))

.

Case 1. Consider some time point t such that E(t)
j ≤ −

√
ηd. Note that for all i ∈ [d],∣∣∣g(t)1 [i, j]

∣∣∣ =
∣∣∣w(t)

2i E
(t)
j

∣∣∣ = Ω̃
(√
η
)

and that sign
(
g
(t)
1 [i, j]

)
= −sign

(
w

(t)
2i

)
= −sign

(
w

(0)
2i

)
.

By Lemma 23, for all i ∈ [d] we have W (t+1)
1 [i, j] = W

(t)
1 [i, j] + sign

(
w

(0)
2i

)
∆

(t)
1 [i, j] with

∆
(t)
1 [i, j] = η

(
1± Õ

(√
η
))

. That gives us

E
(t+1)
j =

d∑
i=1

w
(t+1)
2i W

(t+1)
1 [i, j]−Aj

=

d∑
i=1

(
w

(t)
2i + sign

(
w

(0)
2i

)
∆

(t)
2i

)(
W

(t)
1 [i, j] + sign

(
w

(0)
2i

)
∆

(t)
1 [i, j]

)
−Aj

=

d∑
i=1

(
w

(t)
2i W

(t)
1 [i, j] + sign

(
w

(0)
2i

)(
w

(t)
2i ∆

(t)
1 [i, j] + ∆

(t)
2i W

(t)
1 [i, j]

)
+ ∆

(t)
2i ∆

(t)
1 [i, j]

)
−Aj

(i)
=E

(t)
j +

d∑
i=1

(∣∣∣w(t)
2i

∣∣∣∆(t)
1 [i, j] + ∆

(t)
2i

∣∣∣W (t)
1 [i, j]

∣∣∣+ ∆
(t)
2i ∆

(t)
1 [i, j]

)
,

⇒ E
(t+1)
j > E

(t)
j ,
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where (i) is because sign
(
w

(t)
2i

)
= sign

(
W

(t)
1 [i, j]

)
= sign

(
w

(0)
2i

)
. Therefore we have proved

that E(t)
j will increase in the next step. After that for τ ≥ t+ 1, as long as E(τ)

j ≤ −
√
ηd, the above

analysis will hold and E(τ)
j will keep increasing until E(τ)

j > −
√
ηd or we reach T̃ .

Case 2. Consider some time point t such that E(t)
j ≥

√
ηd. We will prove that E(t)

j will decrease
after a short period, and during this period, the change of it is at most Õ

(√
ηd
)
.

By similar arguments as in Case 1, we can get that W (t+1)
1 [i, j] = W

(t)
1 [i, j]− sign

(
w

(0)
2i

)
∆

(t)
1 [i, j],

where ∆
(t)
1 [i, j] = η

(
1± Õ

(√
η
))

, Then

E
(t+1)
j =

d∑
i=1

w
(t+1)
2i W

(t+1)
1 [i, j]−Aj

=

d∑
i=1

(
w

(t)
2i + sign

(
w

(0)
2i

)
∆

(t)
2i

)(
W

(t)
1 [i, j]− sign

(
w

(0)
2i

)
∆

(t)
1 [i, j]

)
−Aj

=

d∑
i=1

(
w

(t)
2i W

(t)
1 [i, j]− sign

(
w

(0)
2i

)(
w

(t)
2i ∆

(t)
1 [i, j]−∆

(t)
2i W

(t)
1 [i, j]

)
−∆

(t)
2i ∆

(t)
1 [i, j]

)
−Aj

(i)
=E

(t)
j −

d∑
i=1

(∣∣∣w(t)
2i

∣∣∣∆(t)
1 [i, j]−∆

(t)
2i

∣∣∣W (t)
1 [i, j]

∣∣∣+ ∆
(t)
2i ∆

(t)
1 [i, j]

)
,

where (i) is because sign
(
w

(t)
2i

)
= sign

(
W

(t)
1 [i, j]

)
= sign

(
w

(0)
2i

)
. E(t+1)

j may not be smaller

than E(t)
j , but we will show that after at most ts steps for some ts, we will have E(t+ts+1)

j < E
(t+ts)
j .

To see this, first note that by the bounds of ∆
(t)
1 [i, j] and ∆

(t)
2i , we get ∆

(t)
1 [i, j] ≥ ∆

(t)
2i − ηÕ

(√
η
)
.

Since
∣∣∣w(t)

2i

∣∣∣ increases by Θ̃(η) per step, and
∣∣∣W (t)

1 [i, j]
∣∣∣ keeps decreasing, then we have either i)

after ts steps for some ts, ∀i ∈ [d] :
∣∣∣w(t+ts)

2i

∣∣∣ ≥ ∣∣∣W (t+ts)
1 [i, j]

∣∣∣+
√
η or ii) we reach T̃ .

For i), if E(t+ts)
j <

√
ηd, then it’s already what we want. Otherwise we will have ∆

(t+ts)
1 [i, j] =

η
(

1± Õ
(√
η
))

. Hence

E
(t+ts)
j − E(t+ts+1)

j

=

d∑
i=1

(∣∣∣w(t+ts)
2i

∣∣∣∆(t+ts)
1 [i, j]−∆

(t+ts)
2i

∣∣∣W (t+ts)
1 [i, j]

∣∣∣+ ∆
(t+ts)
2i ∆

(t+ts)
1 [i, j]

)
≥

d∑
i=1

(∣∣∣W (t+ts)
1 [i, j]

∣∣∣ (∆
(t+ts)
1 [i, j]−∆

(t+ts)
2i

)
+
√
η∆

(t+ts)
1 [i, j] + ∆

(t+ts)
2i ∆

(t+ts)
1 [i, j]

)
≥

d∑
i=1

(
−ηÕ (

√
η)
∣∣∣W (t+ts)

1 [i, j]
∣∣∣+ η

√
η + ∆

(t+ts)
2i ∆

(t+ts)
1 [i, j]

)
> 0,

where the last inequality uses ∀i, j ∈ [d] :
∣∣∣W (t+ts)

1 [i, j]
∣∣∣ = Õ

(
1√
d

)
. Therefore E(t+ts+1)

j <

E
(t+ts)
j . After that for τ ≥ t+ ts + 1, as long as E(τ)

j ≥
√
ηd, the above analysis will hold and E(τ)

j

will keep decreasing until E(τ)
j <

√
ηd or we reach T̃ .

Now we prove that during these ts steps, the change of Ej is Õ
(√
ηd
)
. Since at each step the

difference |w2i|− |W1[i, j]| will be enlarged by Ω̃(η), then we know that ts =
√
η/Ω̃(η) = Õ

(
1√
η

)
.
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Combining with the fact that for all T1 ≤ τ ≤ T̃ ,
∣∣∣E(τ+1)

j − E(τ)
j

∣∣∣ = Õ
(
η
√
d
)

gives us

E
(t+ts)
j − E(t)

j ≤ Õ
(
ηts
√
d
)

= Õ
(√

ηd
)
.

For ii), we reach T̃ before ∀i ∈ [d] :
∣∣∣w(t+ts)

2i

∣∣∣ ≥ ∣∣∣W (t+ts)
1 [i, j]

∣∣∣ +
√
η. Then we have T̃ − t ≤

√
η/Ω̃(η) = Õ

(
1√
η

)
, which yields E(T̃ )

j − E(t)
j ≤ Õ

(
η(T̃ − t)

√
d
)
≤ Õ

(√
ηd
)
.

Combining the above two cases, we find that if for some t, E(t)
j ≥

√
ηd, then after at most ts steps

Ej will decrease and keeps decreasing until Ej <
√
ηd or we reach T̃ . During these steps, Ej can

increase at most Õ
(√
ηd
)
. If for some t, E(t)

j ≤ −
√
ηd, then after one step it will increase and keeps

increasing until Ej >
√
ηd or we reach T̃ . That means once for some coordinate j, Ej overshoots, it

will zigzag in a small region around zero, which is
[
−Õ

(√
ηd
)
, Õ
(√
ηd
)]

.

E HESSIAN TENDS TO BECOME MORE AND MORE DIAGONAL DURING
TRAINING

In this section, we empirically demonstrate that the trend of loss Hessian in practice is to become
more and more diagonal during training. We also give a rigorous theoretical analysis on a two-layer
network under Assumption 1 and 2.

E.1 EMPIRICAL RESULTS

Let’s first define the diagonal domination of the i-th coordinate at time t.

rOPT
diag,i(t) :=

√∑
j 6=i
(
H(t)[i, j]

)2∣∣H(t)[i, i]
∣∣ .

To measure the diagonal domination of the whole Hessian, we need to consider the distribution of
rOPT

diag,i(t) for different i. Figure 14 shows the mean and median of rSGDM
diag,i (t) and rAdam

diag,i(t) on the
sentence classification task (see Section 4.1). Here we chose 4 layers (Layer #6, 12, 17 and 22) and
computed the Hessians across these 4 layers. Since the number of parameters is very large, we did
the computation by random sampling. As we can see, for both rSGDM

diag,i (t) and rAdam
diag,i(t), the trend of

their mean or median is to decrease over time, although there might be some oscillation.
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Figure 14: Mean and median of rSGDM
diag,i (t) and rAdam

diag,i(t) for the full hessian across the four layers (#6,12,17,22)

E.2 THEORETICAL ANALYSIS

To simplify the theoretical analysis, we consider the mean of rOPT
diag,i(t) over all coordinate and define

ROPT
diag (t) := mean

(
rOPT

diag,i(t)
)
. (40)

We consider a 2-layer network under Assumption 1 and 2, and have two goals in our proof:
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1. To show that ROPT
diag (t) after training is smaller than that before training (t = 0).

2. Note that in our setting (see in Assumption 1), the Hessian is a (d2+d)×(d2+d) matrix. For
a completely “uniform” matrix with the same size, we have that ROPT

diag (t) = Θ
(√
d2 + d

)
=

Θ(d). Hence our second goal is to show that the ROPT
diag (t) after training is on lower order

than Θ(d).
Theorem 2. Consider the ratio ROPT

diag (t) defined in eq. (40). Under Assumption 1 and 2, we have
that before training (t = 0), with high probability,

ROPT
diag (0) ≥ Ω̃

(
d4α−

3
2

)
. (41)

For SGD+M defined in eq. (3). For any p > 0, by picking the same hyperparameters as in The-
orem 1, for TSGD,1, TSGD,2 mentioned in Theorem 1, we have with constant probability, for any
t ∈ [TSGD,1, TSGD,2],

RSGDM
diag (t) ≤ Õ

(√
d
)

+ q(t), (42)

where the trend of q(t) is to decrease over time and q(TSGD,2) ≤ Õ
(

1
dp/2−1

)
= o(d).

For Adam defined in eq. (3). For any p > 0, by picking the same hyperparameters as in Theorem 1, for
TAdam,1, TAdam,2 mentioned in Theorem 1, we have with high probability, for any t ∈ [TAdam,1, TAdam,2],

RAdam
diag (t) ≤ Õ

(√
d
)

+ r(t), (43)

where the trend of r(t) is to decrease over time and r(TAdam,2) ≤ Õ
(

1

d
p−1
2

)
= o

(√
d
)

.

E.3 PROOF OF THEOREM 2

Lemma 4.3 of (Kawaguchi, 2016) gives us the following forms of Hessian.

For any k ∈ {1, 2, ...,H + 1}, we know that∇vec(Wk)(∇vec(Wk)L(W )) equals

((WH+1 . . .Wk+1)T (WH+1 . . .Wk+1)⊗ (Wk−1 . . .W1)(Wk−1 . . .W1)T ,

and for k ∈ {2, 3, ...,H + 1},

∇vec(Wk)(∇vec(W1)L(W ))

=(CT (WH+1 . . .Wk+1)⊗ (Wk−1 . . .W1)T )

+[(Wk−1 . . .W2)T ⊗ I][Idk−1
⊗ (r(WH+1 . . .Wk+1)).,1 · · · Idk−1

⊗ (r(WH+1 . . .Wk+1)).,dk ],

where r = (WH+1 . . .W1 −A)T , C = WH+1WH · · ·W2.

For the 2-layer linear network, write the Hessian as

H :=

[
H22 HT

21
H21 H11

]
,

then we have that

H11 = (WT
2 W2)⊗ Id ∈ Rd

2×d2 ,

H22 = W1W
T
1 ∈ Rd×d,

H21 = WT
2 ⊗WT

1 + Id ⊗ (W2W1 −A)T ∈ Rd
2×d.

Intuitively, before training the elements of W1 and W2 are very close to zero, and W2W1 −A ≈ −A.
Since the elements of A are Θ(1), we know that the magnitudes of elements of H21 are much bigger
than those of H11 and H22.

After training, for both SGD+M and Adam, W2W1 −A ≈ 0. Then H21 ≈ (W2)T ⊗ (W1)T and the
magnitudes of its elements are no longer much larger than those of H11 and H22. From the formula
of H11, we know that all the diagonal entries are nonzero, and among the d4−d2 off-diagonal entries,
there are only d3 − d2 nonzero entries, which helps us to bound ROPT

diag (t).
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E.3.1 PROOF OF EQ. (41)

Let’s first analyze the weights and Hessian before training (t = 0). For ease of notation, we omit the
superscript (t).

For the i-th row where 1 ≤ i ≤ d, i.e. the i-th row of the submatrix [H22 HT
21], we have

∑
j 6=i

H2[i, j] =
∑
j 6=i

H2
22[i, j] +

d2∑
j=1

H2
21[j, i]

≥
id∑

j=(i−1)d

H2
21[j, i] =

d∑
j=1

(w2iW1[i, j] + (W2W1 −A)j)
2

= Θ(d).

On the other hand, for the diagonal elements, we have w.h.p.

|H[i, i]| = |H22[i, i]| = ‖W1[i, :]‖22 =

d∑
j=1

W 2
1 [i, j] ≤ Õ

(
1

d4α−1

)
.

Then we have that for 1 ≤ i ≤ d,√∑
j 6=iH

2[i, j]

|H[i, i]|
≥

√
Ω(d)

Õ
(

1
d4α−1

) = Ω̃
(
d4α−

1
2

)
.

For the (id+ k)-th row where 1 ≤ i ≤ d, 1 ≤ k ≤ d, i.e. the ((i− 1)d+ k)-th row of the submatrix
[H21 H11], we have∑

j 6=id+k

H2[i, j] =
∑

j 6=(i−1)d+k

H2
11[(i− 1)d+ k, j] +

d∑
j=1

H2
21[(i− 1)d+ k, j]

≥ H2
21[(i− 1)d+ k, i] = (w2iW1[i, k] + (W2W1 −A)k)

2
= Θ(1).

On the other hand, for the diagonal elements, we have w.h.p.

|H[id+ k, id+ k]| = |H11[(i− 1)d+ k, (i− 1)d+ k]| = w2
2i ≤ Õ

(
1

d2α

)
.

Then we have that for 1 ≤ i ≤ d, 1 ≤ k ≤ d,√∑
j 6=id+kH

2[i, j]

|H[id+ k, id+ k]|
≥
√

Ω(1)

Õ
(

1
d2α

) = Ω̃
(
d2α
)
.

Taking the average, we obtain that before training, i.e. when t = 0,

ROPT
diag (0) ≥

dΩ̃
(
d4α−

1
2

)
+ d2Ω̃

(
d2α
)

d2 + d
= Ω̃

(
d4α−

3
2

)
.

E.3.2 PROOF OF EQ. (42)

The proof is based on the lemma below.
Lemma 28. Suppose the weight matrices have the following structure:

W1 = uvT +R1,

W2 = cuT +RT2 ,

where ∀1 ≤ i, j ≤ d : |R1[i,j]|
|uivj | ≤ δ,

|R2i|
|cui| ≤ δ, δ ∈ (0, 1).

Then we have for 1 ≤ i ≤ d,√∑
j 6=iH

2[i, j]

|H[i, i]|
≤ 1 + δ

1− δ

(
1 +

|c|
‖v‖2

)√∑d
j=1 u

2
j

u2i
+

‖E‖2
(1− δ)2u2i ‖v‖22

,
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and for 1 ≤ i ≤ d, 1 ≤ k ≤ d,√∑
j 6=id+kH

2[i, j]

|H[id+ k, id+ k]|
≤ 1 + δ

1− δ

(
1 +
|vk|
|c|

)√∑d
j=1 u

2
j

u2i
+

|Ek|
(1− δ)2c2u2i

.

Now we are ready to prove eq. (42).

By the analyses in Section C.1, we know that for t ∈ [TSGD,1, TSGD,2], the weights obtained by GD
with momentum satisfy

W
(t)
1 = u(T1)v(t)T +R

(t)
1 ,

W
(t)
2 = c(t)u(T1)T +R

(t)T
2 ,

where TSGD,1 = T1 and

∀1 ≤ i, j ≤ d :

∣∣∣R(t)
1 [i, j]

∣∣∣∣∣∣u(T1)
i v

(t)
j

∣∣∣ ≤ Õ(ε0),

∣∣∣R(t)
2i

∣∣∣∣∣∣c(t)u(T1)
i

∣∣∣ ≤ Õ(ε0).

Here ε0 is defined in Definition 2. Since u(T1) doesn’t depend on time t in the period (TSGD,1, TSGD,2],
we write u(T1) as u for ease of notation.

Hence by Lemma 28, when t ∈ [TSGD,1, TSGD,2], we have for 1 ≤ i ≤ d,√∑
j 6=i
(
H(t)[i, j]

)2∣∣H(t)[i, i]
∣∣ ≤ 1 + Õ(ε0)

1− Õ(ε0)

(
1 +

∣∣c(t)∣∣∥∥v(t)
∥∥
2

)√∑d
j=1 u

2
j

u2i
+

∥∥E(t)
∥∥
2(

1− Õ(ε0)
)2
u2i
∥∥v(t)

∥∥2
2

= O

(
1 +

∣∣c(t)∣∣∥∥v(t)
∥∥
2

)√∑d
j=1 u

2
j

u2i
+O

( ∥∥E(t)
∥∥
2

u2i
∥∥v(t)

∥∥2
2

)
,

(44)
and for 1 ≤ i ≤ d, 1 ≤ k ≤ d,√∑

j 6=id+k
(
H(t)[i, j]

)2∣∣H(t)[id+ k, id+ k]
∣∣ ≤ 1 + Õ(ε0)

1− Õ(ε0)

1 +

∣∣∣v(t)k ∣∣∣∣∣c(t)∣∣
√∑d

j=1 u
2
j

u2i
+

∣∣∣E(t)
k

∣∣∣(
1− Õ(ε0)

)2 (
c(t)
)2
u2i

= O

1 +

∣∣∣v(t)k ∣∣∣∣∣c(t)∣∣
√∑d

j=1 u
2
j

u2i
+O


∣∣∣E(t)

k

∣∣∣(
c(t)
)2
u2i

 .

(45)
By Lemma 3, we have u = X + Y where Xi, i ∈ [d] are i.i.d Gaussian random variables and w.h.p.,

∀i ∈ [d] :
|Yi|
|Xi|

≤ Õ
(

1

d
1
4α−

1
2

)
:= δxy, (46)

which yields that

∀i ∈ [d] :

√∑d
j=1 u

2
j

|ui|
≤
(

1 + δxy
1− δxy

) √∑d
j=1X

2
j

|Xi|
,

1

u2i
≤
(

1

1− δxy

)2
1

X2
i

. (47)

By the proof in Section C.8, we know that for t ∈ [TSGD,1, TSGD,2], ∀i ∈ [d] : v
(t)
i , c(t) are positive.

The induction in Section C.9 further gives us that for t ∈ [TSGD,1, TSGD,2], w.h.p. ∀k ∈ [d] :
v
(t)
k

c(t)
=

Θ
(

1√
d

)
, which yields c(t)

‖v(t)‖
2

= Θ(1). Combining with eq. (47), we obtain(
1 +

∣∣c(t)∣∣∥∥v(t)
∥∥
2

)√∑d
j=1 u

2
j

u2i
≤ O


√∑d

j=1X
2
j

|Xi|

 ,

1 +

∣∣∣v(t)k ∣∣∣∣∣c(t)∣∣
√∑d

j=1 u
2
j

u2i
≤ O


√∑d

j=1X
2
j

|Xi|

 .

(48)
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By the proof in Section C.8, we know that for t ∈ [TSGD,1, TSGD,2], ∀i ∈ [d] : v
(t)
i , c(t) are positive

and monotonically increasing. On the other hand, the proof in Section C.2 and C.9 tells us that w.h.p.∥∥E(t)
∥∥
2

(resp. ∀k ∈ [d],
∣∣∣E(t)

k

∣∣∣) decreases from Θ(
√
d) (resp. Θ(1)) when t = TSGD,1 to O(

√
ε0d)

(resp. O(
√
ε0)) when t = TSGD,2. Therefore, the trend of

‖E(t)‖
2

u2
i‖v(t)‖2

2

and

∣∣∣E(t)
k

∣∣∣
(c(t))

2
u2
i

is to decrease over

time, and when t = TSGD,2, we have w.h.p.

∀k ∈ [d] :
∣∣∣E(t)

k

∣∣∣ = O (
√
ε0) ,

∥∥∥E(t)
∥∥∥
2

= O
(√

ε0d
)
. (49)

Moreover, when t = TSGD,2, the inequality in eq. (26) becomes equality, i.e. c2‖u‖22 = Θ
(√

d
)

and

∀j ∈ [d] : ‖u‖22v2j = Θ
(

1√
d

)
.

Using u = X + Y and eq. (46), we have

c2‖X‖22 = Θ
(√

d
)
, ∀j ∈ [d] : ‖X‖22v2jΘ

(
1√
d

)
, ⇒ ‖X‖22‖v‖22 = Θ

(√
d
)
,

which together with the second inequality in eq. (47) yields

1

u2i ‖v‖22
≤
(

1

1− δxy

)2
1

X2
i ‖v‖22

= Θ

(∑d
j=1X

2
j

X2
i

√
d

)
,

1

c2u2i
≤
(

1

1− δxy

)2
1

c2X2
i

= Θ

(∑d
j=1X

2
j

X2
i

√
d

)
.

Combining with eq. (49), we get that∥∥E(t)
∥∥
2

u2i
∥∥v(t)

∥∥2
2

≤ O

(∑d
j=1X

2
j

X2
i

·
√
ε0

)
,

∣∣∣E(t)
k

∣∣∣(
c(t)
)2
u2i
≤ O

(∑d
j=1X

2
j

X2
i

·
√
ε0
d

)
. (50)

Substituting eq. (48) and (50) into eq. (44) and (45) gives us

∀1 ≤ i ≤ d :

√∑
j 6=i
(
H(t)[i, j]

)2∣∣H(t)[i, i]
∣∣ ≤ O


√∑d

j=1X
2
j

|Xi|

+ q
(t)
1i ,

where the trend of q(t)1i is to decrease over time and q(TSGD,2)
1i ≤ O

(∑d
j=1X

2
j

X2
i
· √ε0

)
.

We also have

∀1 ≤ i ≤ d, 1 ≤ k ≤ d :

√∑
j 6=id+k

(
H(t)[i, j]

)2∣∣H(t)[id+ k, id+ k]
∣∣ ≤ O


√∑d

j=1X
2
j

|Xi|

+ q
(t)
2i ,

where the trend of q(t)2i is to decrease over time and q(TSGD,2)
2i ≤ O

(∑d
j=1X

2
j

X2
i
·
√

ε0
d

)
.

Hence

RSGDM
diag (t) = O

1

d

d∑
i=1

√∑d
j=1X

2
j

|Xi|

+
1

d2 + d

d∑
i=1

q
(t)
1i +

d

d2 + d

d∑
i=1

q
(t)
2i

:= O

1

d

d∑
i=1

√∑d
j=1X

2
j

|Xi|

+ q(t),
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where the trend of q(t) is to decrease over time and

q(TSGD,2) ≤ 1

d2 + d

d∑
i=1

O

(∑d
j=1X

2
j

X2
i

·
√
ε0

)
+

d

d2 + d

d∑
i=1

O

(∑d
j=1X

2
j

X2
i

·
√
ε0
d

)

≤ O

(
1

d2 + d

d∑
i=1

∑d
j=1X

2
j

X2
i

·
√
ε0d

)
= O

(
1

d

d∑
i=1

∑d
j=1X

2
j

X2
i

·
√
ε0
d

)
.

Denote σ2 as the variance of Xi for i ∈ [d]. By concentration of chi-squared distribution, we know
that with probability at least 1− δ for δ > 0,

d∑
i=1

X2
i ≤ σ2d+ σ2O

(√
d log

1

δ

)
.

By Lemma 35 in Appendix G, we know that with constant probability 1
d

∑d
i=1

1
|Xi| = O

(
1
σ log d

)
.

Then with constant probability, 1
d

∑d
i=1

1
X2
i
≤ 1

d

(∑d
i=1

1
|Xi|

)2
= O

(
d
σ2 log2 d

)
. Hence

1

d

d∑
i=1

√∑d
j=1X

2
j

|Xi|
= Õ(

√
d),

1

d

d∑
i=1

∑d
j=1X

2
j

X2
i

= Õ
(
d2
)
.

Therefore with constant probability,

RSGDM
diag (t) = Õ

(√
d
)

+ q(t),

where the trend of q(t) is to decrease over time and q(TSGD,2) ≤ Õ
(
d
√
ε0d
)
. For any p > 0, by

picking the same hyperparameters as in Theorem 1, we have ε0d ≤ Õ
(

1
dp

)
and hence q(TSGD,2) ≤

Õ
(

1
dp/2−1

)
= o(d).

E.3.3 PROOF OF EQ. (43)

By the analyses in Section D.1, we know that for t ∈ [TAdam,1, TAdam,2], the weights obtained by
Adam satisfy

W
(t)
1 = uv(t)T +R

(t)
1 ,

W
(t)
2 = c(t)uT +R

(t)T
2 ,

where ∀i ∈ [d] : ui = sign(w
(0)
2i ) ∈ {±1} and

∀1 ≤ i, j ≤ d :

∣∣∣R(t)
1 [i, j]

∣∣∣∣∣∣uiv(t)j ∣∣∣ ≤ δ := Õ
(
η

1
4 +

1

d
α
2−

1
4

)
,

∣∣∣R(t)
2i

∣∣∣∣∣c(t)ui∣∣ ≤ δ.
Hence by Lemma 28, when t ∈ [TAdam,1, TAdam,2], we have for 1 ≤ i ≤ d,√∑

j 6=i
(
H(t)[i, j]

)2∣∣H(t)[i, i]
∣∣ ≤ 1 + δ

1− δ

(
1 +

∣∣c(t)∣∣
‖v(t)‖2

)√∑d
j=1 u

2
j

u2i
+

∥∥E(t)
∥∥
2

(1− δ)2 u2i
∥∥v(t)

∥∥2
2

= O

(
1 +

∣∣c(t)∣∣
‖v(t)‖2

)
√
d+O

(∥∥E(t)
∥∥
2∥∥v(t)
∥∥2
2

)
,

(51)

and for 1 ≤ i ≤ d, 1 ≤ k ≤ d,√∑
j 6=id+k

(
H(t)[i, j]

)2∣∣H(t)[id+ k, id+ k]
∣∣ ≤ 1 + δ

1− δ

1 +

∣∣∣v(t)k ∣∣∣∣∣c(t)∣∣
√∑d

j=1 u
2
j

u2i
+

∣∣∣E(t)
k

∣∣∣
(1− δ)2

(
c(t)
)2
u2i

= O

1 +

∣∣∣v(t)k ∣∣∣∣∣c(t)∣∣
√d+O


∣∣∣E(t)

k

∣∣∣(
c(t)
)2
 .

(52)

Recall the following facts of Adam.
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(A) By Lemma 14, we know that for t ∈ [TAdam,1, T1] (where T1 is defined in Definition 4),
w.h.p. ∀k ∈ [d] : v

(t)
k = c(t) = η(t − tinc). Specially, when t = TAdam,1, ∀k ∈ [d] :

v
(t)
k = c(t) = 1

d
α
2

. Lemma 24 and 26 tell us that for t ∈ [T1, TAdam,2] w.h.p. ∀i, j ∈ [d] :

|W1[i, j]| = Θ̃
(

1√
d

)
, |w2i| = Θ̃

(
1√
d

)
, which gives us ∀k ∈ [d] :

∣∣∣v(t)k ∣∣∣ = Θ̃
(

1√
d

)
and∣∣c(t)∣∣ = Θ̃

(
1√
d

)
. That means when t ∈ [TAdam,1, TAdam,2], ∀k ∈ [d] :

∣∣∣v(t)k ∣∣∣ and
∣∣c(t)∣∣

increase from 1

d
α
2

to Θ̃( 1√
d
) and

∣∣∣v(t)k ∣∣∣
|c(t)| = Θ̃(1), |c

(t)|
‖v(t)‖

2

= Θ̃
(

1√
d

)
.

(B) Lemma 14 and 25 tell us that w.h.p.
∥∥E(t)

∥∥
2

(resp. ∀k ∈ [d],
∣∣∣E(t)

k

∣∣∣) decreases from Θ(d)

(resp. Θ(1)) when t = TAdam,1 to Õ
(
d2
√
η
)

(resp. Õ
(
d
√
ηd
)
) when t = TAdam,2.

Combining (A) and (B), we get that the trend of
‖E(t)‖

2

‖v(t)‖2
2

and

∣∣∣E(t)
k

∣∣∣
(c(t))

2 is to decrease over time, and

when t = TAdam,2, we have w.h.p.

∥∥E(t)
∥∥
2∥∥v(t)
∥∥2
2

≤ Õ
(
d2
√
η
)
,

∣∣∣E(t)
k

∣∣∣(
c(t)
)2 ≤ Õ (d2√ηd) . (53)

Substituting (A) and eq. (53) into eq. (51) and (52) gives us w.h.p.,

∀1 ≤ i ≤ d :

√∑
j 6=i
(
H(t)[i, j]

)2∣∣H(t)[i, i]
∣∣ ≤ O

(√
d
)

+ r
(t)
1i ,

where the trend of r(t)1i is to decrease over time and r(TAdam,2)
1i ≤ Õ

(
d2
√
η
)
.

We also have

∀1 ≤ i ≤ d, 1 ≤ k ≤ d :

√∑
j 6=id+k

(
H(t)[i, j]

)2∣∣H(t)[id+ k, id+ k]
∣∣ ≤ Õ (√d)+ r

(t)
2i ,

where the trend of r(t)2i is to decrease over time and r(TAdam,2)
2i ≤ Õ

(
d2
√
ηd
)
.

HenceRAdam
diag (t) = Õ

(√
d
)

+ 1
d2+d

∑d
i=1 r

(t)
1i + d

d2+d

∑d
i=1 r

(t)
2i := Õ

(√
d
)

+r(t) where the trend

of r(t) is to decrease over time and

r(TAdam,2) ≤ 1

d2 + d

d∑
i=1

Õ
(
d2
√
η
)

+
d

d2 + d

d∑
i=1

Õ
(
d2
√
ηd
)
≤ Õ

(
d2
√
ηd
)
.

For any p > 0, by picking the same hyperparameters as in Theorem 1, we have ηd4 ≤ Õ
(

1
dp

)
and

hence r(TAdam,2) ≤ Õ
(

1

d
p−1
2

)
= o

(√
d
)

.

E.4 PROOF OF LEMMA 28

By the assumed weight structure, we get that

∀i ∈ [d] :(1− δ)2(cui)
2 ≤ (w2i)

2 ≤ (1 + δ)2(cui)
2,

(1− δ)2(ui)
2‖v‖22 ≤ ‖W1[i, :]‖22 ≤ (1 + δ)2(ui)

2‖v‖22.
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For the i-th row where 1 ≤ i ≤ d, i.e. the i-th row of the submatrix [H22 HT
21], by triangle

inequality, we have

√∑
j 6=i

H2[i, j] ≤
√∑

j 6=i

H2
22[i, j] +

√√√√ d2∑
j=1

H2
21[j, i]

≤
√∑

j 6=i

〈W1[i, :],W1[j, :]〉2 +

√√√√ d∑
j=1

w2
2j

d∑
k=1

W 2
1 [i, k] + ‖E‖2

≤ ‖W1[i, :]‖2

√∑
j 6=i

‖W1[j, :]‖22 +

√√√√ d∑
j=1

w2
2j

+ ‖E‖2.

Then we have that for 1 ≤ i ≤ d,√∑
j 6=iH

2[i, j]

|H[i, i]|
≤
‖W1[i, :]‖2

√∑
j 6=i ‖W1[j, :]‖22 +

√∑d
j=1 w

2
2j

‖W1[i, :]‖22
+

‖E‖2
‖W1[i, :]‖22

=

√∑
j 6=i ‖W1[j, :]‖22
‖W1[i, :]‖22

+

√∑d
j=1 w

2
2j

‖W1[i, :]‖22
+

‖E‖2
‖W1[i, :]‖22

≤

√
(1 + δ)2

(1− δ)2
·
∑
j 6=i u

2
j‖v‖22

u2i ‖v‖22
+

√
(1 + δ)2

(1− δ)2
·
c2
∑d
j=1 u

2
j

u2i ‖v‖22
+

‖E‖2
(1− δ)2u2i ‖v‖22

≤ 1 + δ

1− δ

(
1 +

|c|
‖v‖2

)√∑d
j=1 u

2
j

u2i
+

‖E‖2
(1− δ)2u2i ‖v‖22

.

For the (id+ k)-th row where 1 ≤ i ≤ d, 1 ≤ k ≤ d, i.e. the ((i− 1)d+ k)-th row of the submatrix
[H21 H11], by triangle inequality again, we have

√ ∑
j 6=id+k

H2[i, j] ≤
√ ∑
j 6=(i−1)d+k

H2
11[(i− 1)d+ k, j] +

√√√√ d∑
j=1

H2
21[(i− 1)d+ k, j]

≤
√∑

j 6=i

w2
2iw

2
2j +

√√√√ d∑
j=1

w2
2iW

2
1 [j, k] + |Ek|

= |w2i|

√∑
j 6=i

w2
2j +

√√√√ d∑
j=1

W 2
1 [j, k]

+ |Ek|.

Then we have that for 1 ≤ i ≤ d, 1 ≤ k ≤ d,√∑
j 6=id+kH

2[i, j]

|H[id+ k, id+ k]|
≤
|w2i|

√∑
j 6=i w

2
2j +

√∑d
j=1W

2
1 [j, k]

w2
2i

+
|Ek|
w2

2i

=

√∑
j 6=i w

2
2j

w2
2i

+

√∑d
j=1W

2
1 [j, k]

w2
2i

+
|Ek|
w2

2i

≤

√
(1 + δ)2

(1− δ)2
·
∑
j 6=i c

2u2j
c2u2i

+

√
(1 + δ)2

(1− δ)2
·
v2k
∑d
j=1 u

2
j

c2u2i
+

|Ek|
(1− δ)2c2u2i

≤ 1 + δ

1− δ

(
1 +
|vk|
|c|

)√∑d
j=1 u

2
j

u2i
+

|Ek|
(1− δ)2c2u2i

.
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F CONNECTION BETWEEN DIAGONAL OF LOSS HESSIAN AND WEIGHTS

The partial derivative at Wi of the cost function for each i is given by:

∇WiL(W ) = WT
i+1 . . .W

T
H+1(WH+1WH . . .W1 −A)WT

1 . . .WT
i−1 (54)

In our experiments, we were interested in the diagonal elements of the hessian. These are given by:

∇(Wi)a,b(∇Wi
L(W ))a,b = ∇(Wi)a,b(W

T
i+1 . . .W

T
H+1(WH+1WH . . .W1 −A)WT

1 . . .WT
i−1)a,b

for each possible i, a, b. For ease in notation, define for each i, the quantities Mi := WT
i+1 . . .W

T
H+1

and Ni := WT
1 . . .WT

i−1. Then we have the following lemma.

Lemma 29. The diagonal elements of the hessian of the cost function are given by:

∇(Wi)a,b(∇Wi
L(W ))a,b = (MiM

T
i )a,a(NT

i Ni)b,b

for each possible i, a, b.

Proof. We have:

∇Wi
L(W ) = WT

i+1 . . .W
T
H+1(WH+1WH . . .W1 −A)WT

1 . . .WT
i−1

= Mi(WH+1WH . . .W1 −A)Ni

= MiWH+1WH . . .W1Ni −MiY Ni.

This implies that:

∇(Wi)a,b(∇Wi
L(W ))a,b = ∇(Wi)a,b (MiWH+1WH . . .W1Ni −MiY Ni)a,b

= ∇(Wi)a,b (MiWH+1WH . . .W1Ni)a,b ,

where the last step follows since Mi and Ni are not functions of Wi.

Since Mi := WT
i+1 . . .W

T
H+1, Ni := WT

1 . . .WT
i−1, by defining Ci := MiWH+1WH . . .Wi+1 =

MiM
T
i and Di := Wi−1 . . .W2W1Ni = NT

i Ni we have that:

∇(Wi)a,b(∇Wi
L(W ))a,b = ∇(Wi)a,b(CiWiDi)a,b,

where Ci and Di are not functions of Wi. Now, Equation 74 in the Matrix Cookbook12 shows us that
for any matrices A and X we have:

∇Xmn(XA)ij = δimAnj .

Note that Wi ∈ Rdi×di−1 , then we can apply this to obtain that:

∇(Wi)a,b(∇Wi
L(W ))a,b = ∇(Wi)a,b(CiWiDi)a,b

= ∇(Wi)a,b

[
di∑
k=1

(Ci)a,k(WiDi)k,b

]

=

di∑
k=1

(Ci)a,k∇(Wi)a,b(WiDi)k,b

=

di∑
k=1

(Ci)a,kδak(Di)b,b

= (Ci)a,a(Di)b,b

= (MiM
T
i )a,a(NT

i Ni)b,b.

This completes the proof.

12https://www.math.uwaterloo.ca/˜hwolkowi/matrixcookbook.pdf
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For ease of notation, let’s now drop the superscript OPT and (t) and write ROPT
med,1(t) as Rmed,1 and

ROPT
med,2(t) as Rmed,2. For a 2-layer linear network, H = 1. Consider the Hessian w.r.t W1, we have

M1M
T
1 = WT

2 W2 and NT
1 N1 is an identity matrix. Under Assumption 1, we know that W2 is a row

vector, which can be denoted as W2 = [w21, w22, ..., w2d1 ]. Then we have

(M1M
T
1 )a,a = w2

2a, (N
T
1 N1)b,b = 1, ⇒ Rmed,1 =

maxi(w2i)
2

median(w2i)2
.

Similarly, consider the Hessian w.r.t. W2, we have that M1M
T
1 is an identity matrix and NT

1 N1 =
W1W

T
1 . Therefore,

(M1M
T
1 )a,a = 1, (NT

1 N1)b,b = ‖W1[b, :]‖22, ⇒ Rmed,2 =
maxi ‖W1[i, :]‖22

median‖W1[i, :]‖22
.

Hence we have related the uniformity of diagonal Hessian to that of weight matrices. In the detailed
analysis, for both GD and Adam, we can prove that W1 converges to an approximately rank 1 matrix.
The following lemma allows us to use this rank 1 structure to compute Rmed,1 and Rmed,2.

Lemma 30. Suppose W1 ∈ Rd×d and W2 ∈ R1×d have the following structure:

W1 = uvT +R1,

W2 = cuT +R2,

where u ∈ Rd,v ∈ Rd, R1 ∈ Rd×d, R2 ∈ R1×d and that

∀1 ≤ i, j ≤ d :
|R1[i, j]|
|uivj |

≤ δ, |R2i|
|cui|

≤ δ, δ ∈ (0, 1).

Then we have

Rmed,1, Rmed,2 ∈
[

(1− δ)2

(1 + δ)2
· maxi u

2
i

median u2i
,

(1 + δ)2

(1− δ)2
· maxi u

2
i

median u2i

]
.

Proof. Let’s first consider Rmed,1. we have

∀i ∈ [d] : (1− δ)2(cui)
2 ≤ w2

2i ≤ (1 + δ)2(cui)
2

⇒ (1− δ)2 max
i

(cui)
2 ≤ max

i
w2

2i ≤ (1 + δ)2 max
i

(cui)
2

(1− δ)2median (cui)
2 ≤ median w2

2i ≤ (1 + δ)2median (cui)
2,

which yields

(1− δ)2

(1 + δ)2
· maxi u

2
i

median u2i
≤ Rmed,1 =

maxi w
2
2i

median w2
2i

≤ (1 + δ)2

(1− δ)2
· maxi u

2
i

median u2i
.

Similarly, for Rmed,2. We have that

∀i, j ∈ [d] : (1− δ)2(uivj)
2 ≤W 2

1 [i, j] ≤ (1 + δ)2(uivj)
2

⇒ (1− δ)2u2i ‖v‖22 ≤ ‖W1[i, :]‖22 ≤ (1 + δ)2u2i ‖v‖22
⇒ (1− δ)2 max

i
u2i ‖v‖22 ≤ max

i
‖W1[i, :]‖22 ≤ (1 + δ)2 max

i
u2i ‖v‖22

(1− δ)2median u2i ‖v‖22 ≤ median ‖W1[i, :]‖22 ≤ (1 + δ)2median u2i ‖v‖22,

which yields

(1− δ)2

(1 + δ)2
· maxi u

2
i ‖v‖22

median u2i ‖v‖22
≤ Rmed,2 =

maxi ‖W1[i, :]‖22
median‖W1[i, :]‖22

≤ (1 + δ)2

(1− δ)2
· maxi u

2
i ‖v‖22

median u2i ‖v‖22
.

That means
(1− δ)2

(1 + δ)2
· maxi u

2
i

median u2i
≤ Rmed,2 ≤

(1 + δ)2

(1− δ)2
· maxi u

2
i

median u2i
.
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G AUXILIARY LEMMAS

Lemma 31. Let A = 1
mY X

T , Λxx := 1
mXX

T , g(t)k = ∇Wk
L(W (t)), k = 1, 2. Denote Ã(t), Λ̃

(t)
xx

and g̃(t)k , k = 1, 2 as the corresponding batch versions at time t. Let M (t)
1 = maxi,j

∣∣∣W (t)
1 [i, j]

∣∣∣ and

M
(t)
2 = maxi

∣∣∣w(t)
2i

∣∣∣. Under Assumption 3, we have with probability at least 1− 1
d , for ∀t ≤ T and

∀i, j ∈ [d], ∣∣∣g̃(t)1 [i, j]− g(t)1 [i, j]
∣∣∣ ≤ d3M (t)

1

(
M

(t)
2

)2
σ
√
dT +M

(t)
2 σ
√
d2T ,∣∣∣g(t)2i − g

(t)
2i

∣∣∣ ≤ d4 (M (t)
1

)2
M

(t)
2 σ
√
dT + dM

(t)
1 σ
√
d2T .

Proof. By Assumption 3 and Chebyshev’s inequality, we have for fixed i, j ∈ [d] and t ≤ T ,

P
(∣∣∣Ã(t)

i −Ai
∣∣∣ > λ

)
≤ σ2

λ2
, P

(∣∣∣Λ̃(t)
xx[i, j]− Λxx[i, j]

∣∣∣ > λ
)
≤ σ2

λ2
.

Applying the union bound gives us

P
(
∃i ∈ [d],∃t ≤ T :

∣∣∣Ã(t)
i −Ai

∣∣∣ > λ
)
≤ Tdσ2

λ2
,

P
(
∃i, j ∈ [d],∃t ≤ T :

∣∣∣Λ̃(t)
xx[i, j]− Λxx[i, j]

∣∣∣ > λ
)
≤ Td2σ2

λ2
,

which gives us with probability at least 1− 1
d , for ∀t ≤ T, ∀i, j ∈ [d],∣∣∣Ã(t)

i −Ai
∣∣∣ ≤ σ√d2T , ∣∣∣Λ̃(t)

xx[i, j]− Λxx[i, j]
∣∣∣ ≤ σd√dT .

Now we are ready to bound g̃(t)k − g
(t)
k for k = 1, 2 and t ≤ T .

Note that for all t ≤ T and ∀i ∈ [d],∣∣∣(W (t)
2 W

(t)
1

)
i

∣∣∣ =

∣∣∣∣∣∣
d∑
j=1

w
(t)
2jW

(t)
1 [j, i]

∣∣∣∣∣∣ ≤
d∑
j=1

∣∣∣w(t)
2j

∣∣∣ ∣∣∣W (t)
1 [j, i]

∣∣∣ ≤ dM (t)
1 M

(t)
2 .

Then we have with probability at least 1− 1
d , for all t ≤ T and ∀i ∈ [d],∣∣∣(W (t)

2 W
(t)
1

(
Λ̃(t)
xx − Λxx

))
i

∣∣∣ ≤ d∑
j=1

∣∣∣∣(W (t)
2 W

(t)
1

)
j

∣∣∣∣ ∣∣∣Λ̃(t)
xx[j, i]− Λxx[j, i]

∣∣∣
≤ d3M (t)

1 M
(t)
2 σ
√
dT .

Combining with g̃(t)1 − g
(t)
1 = W

(t)T
2

(
W

(t)
2 W

(t)
1

(
Λ̃
(t)
xx − Λxx

)
−
(
Ã(t) −A

))
, we get that with

probability at least 1− 1
d , for all t ≤ T and ∀i, j ∈ [d],∣∣∣g̃(t)1 [i, j]− g(t)1 [i, j]

∣∣∣ ≤ ∣∣∣w(t)
2i

∣∣∣ ∣∣∣∣(W (t)
2 W

(t)
1

(
Λ̃(t)
xx − Λxx

))
j

∣∣∣∣+
∣∣∣w(t)

2i

∣∣∣ ∣∣∣Ã(t)
j −Aj

∣∣∣
≤ d3M (t)

1

(
M

(t)
2

)2
σ
√
dT +M

(t)
2 σ
√
d2T .

Similarly, note that g̃(t)2i − g
(t)
2i =

(
W

(t)
2 W

(t)
1

(
Λ̃
(t)
xx − Λxx

)
−
(
Ã(t) −A

))
W

(t)T
1 , we then have

that with probability at least 1− 1
d , for all t ≤ T and ∀i, j ∈ [d],∣∣∣g̃(t)2i − g

(t)
2i

∣∣∣ ≤ d∑
j=1

∣∣∣∣(W (t)
2 W

(t)
1

(
Λ̃(t)
xx − Λxx

))
j

∣∣∣∣ ∣∣∣W (t)
1 [i, j]

∣∣∣+

d∑
j=1

∣∣∣Ã(t)
j −Aj

∣∣∣ ∣∣∣W (t)
1 [i, j]

∣∣∣
≤ d4

(
M

(t)
1

)2
M

(t)
2 σ
√
dT + dM

(t)
1 σ
√
d2T .
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Lemma 32. Consider two sequences {a(t)}t≥0, {b(t)}t≥0, which satisfy

a(t) = (1− β)

t∑
τ=0

βτ b(t−τ), β ∈ (0, 1).

Suppose ∀τ ≤ t :
∣∣b(t)∣∣ ≤ B, then for any ε > 0, the following truncated version

ã(t) = (1− β)

H∑
τ=0

βτ b(t−τ)

with H ≥ 1
1−β log B

ε = Ω̃
(

1
1−β

)
satisfies∣∣∣a(t) − ã(t)∣∣∣ ≤ ε.

Proof. We have that∣∣∣a(t) − ã(t)∣∣∣ ≤ ∣∣∣∣∣(1− β)

t∑
τ=H+1

βτ b(t−τ)

∣∣∣∣∣ ≤ (1− β)

t∑
τ=H+1

βτB ≤ BβH+1.

To make it less than ε, it suffices to choose H ≥ log( εB )/ log β.

Since β ∈ (0, 1), we know that log β ≤ β − 1 < 0. We also have log ε
B < 0. Then it suffices to

choose

H ≥ log(ε/B)

β − 1
≥ log(ε/B)

log β
⇒ H ≥ 1

1− β
log

B

ε
= Ω̃

(
1

1− β

)
.

Lemma 33. Suppose a, b, c, ea, eb, ec ∈ R, b > 0, c > 0 satisfy b+ eb + ec > 0, |ea| ≤ δ|a|, |eb| ≤
δb, |ec| ≤ δ2c2 with 0 < δ � 1, then we have

a+ ea√
b+ eb + ec + c

=
a√
b+ c

(1 +R), where |R| = O(δ).

Proof. We have
a+ ea√

b+ eb + ec + c
=

a√
b+ c

+
a√

b+ eb + ec + c
− a√

b+ c
+

ea√
b+ eb + ec + c

=
a√
b+ c

1 +

√
b+ c√

b+ eb + ec + c
− 1︸ ︷︷ ︸

q1

+
ea
a
·

√
b+ c√

b+ eb + ec + c︸ ︷︷ ︸
q2

 .

Define R := q1 + q2. The term |q1| can be bounded by

|q1| =

∣∣∣√b−√b+ eb + ec

∣∣∣
√
b+ eb + ec + c

=
|eb + ec|

(
√
b+ eb + ec + c)

(√
b+
√
b+ eb + ec

)
≤ |eb|

(
√
b+ eb + ec + c)

(√
b+
√
b+ eb + ec

) +
|ec|

(
√
b+ eb + ec + c)

(√
b+
√
b+ eb + ec

)
≤ |eb|

(
√
b+ eb + ec + c)

√
b

+

√
|ec|
c
·

√
|ec|√

b+
√
b+ eb + ec

≤ |eb|
(
√
b+ eb + ec + c)

√
b︸ ︷︷ ︸

q3

+δ

√
|ec|√

b+
√
b+ eb + ec︸ ︷︷ ︸
q4

,
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where |q3| can be bounded by

|q3|
(i)

≤ δb

(
√
b+ eb −

√
|ec|+ c)

√
b
≤ δ

√
b√

b(1− δ) + c(1− δ)
≤ δ

√
b√

b(1− δ)
= O(δ).

Here the denominator of (i) uses b + eb ≥ b(1 − δ) > 0 and
√
x+ y ≥

√
x −

√
|y| when

x ≥ 0, x+ y ≥ 0.

Now let’s bound |q4|. If ec > 0, we have ec = |ec| and |q4| ≤
√
ec√
ec

= 1 since b+ eb ≥ b(1− δ) > 0.

If ec ≤ 0, note that b+ eb + ec > 0, we have |ec| < b+ be ≤ b(1 + δ), which yields |q4| ≤
√
|ec|√
b

=

O(1). Combining the above bounds give us |q1| ≤ |q3|+ δ|q4| = O(δ).

On the other hand, |q2| can be bounded by

|q2| ≤ δ
√
b+ c

√
b+ eb −

√
|ec|+ c

≤ δ
√
b+ c√

b(1− δ) + c(1− δ)
= O(δ).

Then |R| ≤ |q1|+ |q2| = O(δ)

Lemma 34. Suppose X1, X2, ..., Xd are i.i.d Gaussian with mean 0 and variance σ2, then for
0 < δ < 1

e , we have with probability at least 1− δ,

max
1≤i≤d

X2
i ≥ σ2

(
C1 log d− C2 log log

1

δ

)
for some C1, C2 > 0.

Proof. It suffices to assume that σ2 = 1 and prove that w.p. at least 1 − δ, max1≤i≤dX
2
i ≥

C1 log d− C2 log log 1
δ .

First, by the lower bound of Gaussian tail, there exists α, β > 0 such that P(|Xi| > x) = 2P(Xi >

x) ≥ αe−βx2

for x ≥ 0. Then by i.i.d., we have

P(max
i
|Xi| ≤ x) = P

(
d⋂
i=1

{|Xi| ≤ x}

)

=

d∏
i=1

P(|Xi| ≤ x) = (1− P(|Xi| > x))d

≤ (1− αe−βx
2

)d

≤ exp(−dαe−βx
2

),

where the last inequality uses 1− x ≤ e−x for x ∈ [0, 1]. Let exp(−dαe−βx2

) = δ, we get that w.p.
at least 1− δ,

max
1≤i≤d

|Xi| ≥

√
1

β

(
log(αd)− log log

1

δ

)
.

Then we have w.p. at least 1− δ,

max
1≤i≤d

X2
i =

(
max
1≤i≤d

|Xi|
)2

≥ 1

β

(
log(αd)− log log

1

δ

)
.

Lemma 35. Suppose X1, X2, ..., Xd are i.i.d Gaussian with mean 0 and variance σ2, then we have
with constant probability,

1

d

d∑
i=1

1

|Xi|
≤ O

(
1

σ
log d

)
.
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Proof. It suffices to assume that σ2 = 1 and prove that with constant probability, 1
d

∑d
i=1

1
|Xi| ≤

O (log d).

Consider Xi for some fixed i. Since Xi ∼ N (0, 1), we have P(|Xi| ≤ t) ≤ 2t√
2π

. Then we know

that with probability at least 1−Θ
(
d−1

)
, |Xi| ≥ C

d for some C > 0. Then by union bound, with
constant probability, ∀i ∈ [d] : |Xi| ≥ C

d .

Now we split the interval [Cd , 1] into several subintervals Ik = {i : |Xi| ∈ [2−k−1, 2−k]} for
k = 0, 1, ..., dlog2

d
C e − 1. Let pk = P(|Xi| ∈ [2−k−1, 2−k]), we know that |Ik| ∼ Binomial(d, pk)

and pk ≤ C1 · 2−k−1. Then by the concentration of binomial variables, we have w.p. at least 1− d−p

for p > 0, |Ik| = O
(
dpk +

√
dpk log d+ log d

)
= O

(
d · 2−k−1 +

√
d · 2−k−1 log d+ log d

)
.

Then we have∑
i∈Ik

1

|Xi|
≤ |Ik|2k+1 = O

(
d+

√
d · 2k+1 log d+ 2k+1 log d

)
, k = 0, 1, ..., dlog2

d

C
e − 1.

Therefore, with constant probability,

d∑
i=1

1

|Xi|
=

dlog2
d
C e−1∑

k=0

∑
i∈Ik

1

|Xi|
+
∑
|Xi|>1

1

|Xi|

≤
dlog2

d
C e−1∑

k=0

O
(
d+

√
d · 2k+1 log d+ 2k+1 log d

)
+ d

= O
(
d log2

d

C

)
+O

(√
d log d · (

√
2)dlog2

d
C e+C2

)
+ 2dlog2

d
C e+1 log d+ d

= O (d log d) ,

which means with constant probability, 1
d

∑d
i=1

1
|Xi| = O (log d).
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