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ABSTRACT

Adaptive optimization methods are well known to achieve superior convergence
relative to vanilla gradient methods. The traditional viewpoint in optimization,
particularly in convex optimization, explains this improved performance by arguing
that, unlike vanilla gradient schemes, adaptive algorithms mimic the behavior of a
second-order method by adapting to the global geometry of the loss function. We
argue that in the context of neural network optimization, this traditional viewpoint
is insufficient. Instead, we advocate for a local trajectory analysis. For iterate
trajectories produced by running a generic optimization algorithm OPT, we intro-
duce Rgsg, a statistic that is analogous to the condition number of the loss Hessian
evaluated at the iterates. Through extensive experiments, we show that adaptive
methods such as Adam bias the trajectories towards regions where RA%™ is small,
where one might expect faster convergence. By contrast, vanilla gradient methods
like SGD bias the trajectories towards regions where RSP is comparatively large.
We complement these empirical observations with a theoretical result that provably
demonstrates this phenomenon in the simplified setting of a two-layer linear net-
work. We view our findings as evidence for the need of a new explanation of the

success of adaptive methods, one that is different than the conventional wisdom.

1 INTRODUCTION

The efficient minimization of a parameterized loss function is a core primitive in statistics, optimiza-
tion and machine learning. Gradient descent (GD), which iteratively updates a parameter vector
with a step along the gradient of the loss function evaluated at that vector, is a simple yet canonical
algorithm which has been applied to efficiently solve such minimization problems with enormous
success. However, in modern machine learning, and especially deep learning, one frequently en-
counters problems where the loss functions are high dimensional, non-convex and non-smooth. The
optimization landscape of such problems is thus extremely challenging, and in these settings gradient
descent often suffers from prohibitively high iteration complexity.

To deal with these difficulties and improve optimization efficiency, practitioners in recent years have
developed many variants of GD. One prominent class of these GD variants is the family of adaptive
algorithms (Duchi et al., [2011; [Tieleman et al., [2012; Kingma & Bal 2015). At a high level, adaptive
methods scale the gradient with an adpatively selected preconditioning matrix, which is constructed
via a moving average of past gradients. These methods are reminiscent of second order gradient
descent, since they construct approximations to the Hessian of the loss functions, while remaining
computationally feasible since they eschew full computation of the Hessian. A vast line of empirical
work has demonstrated the superiority of adaptive methods over GD to optimize deep neural networks,
especially on Natural Language Processing (NLP) tasks with transformers (Vaswani et al.| 2017}
Devlin et al.|[2019).

From a theoretical perspective, adaptive methods are well understood in the traditional context of
convex optimization. For instance, |Duchi et al.[|(2011) show that when the loss function is convex,
then the Adagrad algorithm yields regret guarantees that are provably as good as those obtained
by using the best (diagonal) preconditioner in hindsight. The key mechanism that underlies this
improved performance, is that the loss function has some global geometric property (such as sparsity
or a coordinate wise bounded Lipschitz constant), and the algorithm adapts to this global geometry
by adaptively selecting learning rates for features that are more informative.
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However, in non-convex optimization, and deep learning in particular, it is highly unclear whether
this simple characterization is sufficient to explain the superiority of adaptive methods over GD.
Indeed, for large scale neural networks, global guarantees on the geometric properties of the loss
are typically vacuous. For instance, for a 20-layer feedforward neural network, if we scale up the
weights in each layer by a factor of 1.5, then the global Lipschitz constant of the network is scaled up
by a factor of at least e'°. Hence it only makes sense to study convergence by looking at the local
geometry of the loss along the trajectory of the optimization algorithm (Arora et al., 2018).
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Figure 1: (left) Training losses of SGD+M starting from sep and Zadam. o 0 on
(right) The 10th largest value over median in the diagonal of loss Hessian

(which can be viewed as a variant of RO% (¢) defined in eq. (1)) for Adam Figure 2: Training losses of Adam
and SGD+M. Since the full Hessian is too big, here we selected several and SGD+M on the sentence classifi-
layers and randomly sampled 200 coordinates per layer to compute. cation task described in Section@

Moreover, the interaction between an optimization algorithm and neural network geometry is highly
complex — recent work has shown that geometric characteristics of iterates encountered during
optimization is highly dependent on the choice of optimization algorithm and associated hyperparam-
eters (Lewkowycz et al.L|2020; |Cohen et al.,[2021). For instance, Cohen et al.[(2021]) demonstrate
that while training neural networks with GD, the maximum eigenvalue of the Hessian evaluated at
the GD iterates first increases and then plateaus at a level 2/(step size). The viewpoint from convex
optimization, where a loss function has some (potentially) non-uniform but fixed underlying geometry
that we must adapt to, is thus insufficient for neural networks, since the choice of optimization
algorithm can actually interact with and influence the observed geometry significantly.

To provide another example of this interactive phenomenon, we consider the following experiment.
On the same network training loss function f, we run stochastic gradient descent with momentum
(SGD+M) and Adam to obtain two different trajectories. We select an iterate xag,m from the Adam
trajectory and an iterate zsgp from the SGD trajectory, such that f(zagam) = f(2sep). We then run
SGD+M twice, once from xag,m and once from xsgp. If the underlying geometry of the loss function
f was truly fixed, then we would not expect a significant difference in the performance of running
SGD+M from either of the two iterates. However, as shown in Figure [[[(left), running SGD+M from
ZTadam achieves lower loss than that from zsgp, suggesting that Adam may bias the trajectory towards
a region which is more favorable for rapid training. This motivates the following question.

How does adaptive optimization impact the observed geometry of a neural network loss function,
relative to SGD (with momentum)?

The remainder of this paper is dedicated to answering the above question. To this end, for each iterate
in a trajectory produced by running an optimization algorithm OPT, where the Hessian of the ¢th
iterate is given by H(®) € R?*?, we define the second order statistic R* (¢) in the following fashion.

For the tth iterate in the trajectory, let ROPT(¢) be the ratio of maximum of the absolute entries of the

diagonal of H®), to the median of the absolute entries of the diagonal of H*). Concretely, we define

ROPdT( ) — ma‘X{lHZ(’Lt)l};iZI . (1)
" median {1,

This statistic thus measures the uniformity of the diagonal of Hessian, where a smaller value of ROPT(¢)

implies that the Hessian has a more uniform diagonal. It can also be viewed as a stabl variant of

!Consider the case where one parameter has little impact on the loss, then the second derivative w.r.t. this

(t) | d
ax{|HD |y . . . o
max{|Hy; 1yiz1 infinity. So we consider median which is more stable.

parameter is almost zero, making — i
min{|H [}
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the condition number. Instead of eigenvalues, we choose diagonal entries because adaptive methods
used in practice are coordinate-wise, which can be viewed as the diagonal scaling approachesE]
In Appendix we discuss this intuition in detail and compare Rglgg (t) with singular value-
based metrics. As a supplementary result, in Appendix [E] we demonstrate that the loss Hessian
approaches diagonal during training for Adam and SGD+M. There has been prior theoretical work
on overparameterized neural networks showing that a smaller condition number of Hessian, Neural
Tangent Kernel (Jacot et al., 2018) etc. could yield to faster convergence rate for (S)GD (Liu et al.,
2022). As for (diagonal) adaptive methods (e.g. Adagrad), they were original designed to adapt to the
nonuniform diagonal geometry. Intuitively, a smaller Rr?lsg(t), which implies more uniform diagonal
geometry, could lead to faster convergence.

Armed with this statistic, we make the following contributions:

* On a wide variety of neural network transformer architectures and language modeling
datasets, we conduct experiments to compare how RA4m () and RSGPM (1) evolve over time,
when Adam and SGD+M are run from the same initialization and with their optimal (initial)
learning rates respectively. In each case, we demonstrate that the Adam trajectory attains
RAdm () values that are significantly smaller than the RSSPM(¢) values found by SGD+M.
We show a simple example of this phenomenon in Figure[I[right). This suggests that relative
to SGD+M, Adam biases the optimization trajectory to a region where the Hessian diagonal
is more uniform. We call this phenomenon the uniformity of diagonal geometry for adaptive
methods. As an aside, we observe that larger improvements in optimization performance of
Adam over SGD+M are correlated with larger gaps between RA%™(¢) and RSSPM(¢). This
suggests that a region where the Hessian diagonal is more uniform is also a region that is

more amenable to rapid optimization.

* We complement our empirical results with a theoretical analysis of this phenomenon in the
simplified setting of large batch Adam and SGD+M, on a two-layer linear network with
d-dimensional input and hidden layer, and one dimensional output. We show that for a wide
range of ¢, RA®M (1) = 1 4 o(1) but RSSPM(¢) = Q(log d). Our proof reveals that Adam
induces the weight matrices to have low rank whose leading singular vectors have certain
type of uniformity (see Section [6]for discussion), a fact that we also observe empirically in
large scale neural networks, suggesting that this may be a mechanism by which adaptive

methods bias trajectories to have uniformity of diagonal geometry.

2 RELATED WORK

Existing analyses of adaptive methods. The vast majority of prior theoretical work on adaptive
methods has focused on the blackbox setting (Duchi et al., 2011} |Kingma & Bal, 2015} |Chen et al.,
2020; Reddi et al.| 2018} 'Ward et al.| |2020; |IDéfossez et al.l [2020; |[Ene et al.| [2021). These works
make minimal assumptions about the structure of the loss function, beyond (possibly) some global
properties such as convexity or smoothness. These global properties (governed by parameters such
as the smoothness parameter) are assumed to hold over the entire domain. Hence this style of
analysis is worst case, since the resulting convergence bounds depend on polynomially on these
global parameters. However, as we show in Section in neural networks these parameters are
prohibitively large. This worst case analysis is hence unlikely to explain the success of adaptive
methods on neural networks. By contrast, our focus is on analyzing the local trajectory that is induced
by running the optimization method.

Existing analyses of (S)GD on neural networks. There is an extensive literature on the analysis of
GD/SGD in the non-blackbox setting, e.g. overparameterized neural networks, (Du et al., [2018}; J1
& Telgarsky, [2020; |Allen-Zhu et al., 2019a;bj |Arora et al.,[2019a; |Liu et al., [2022). However, it is
unclear how to translate these analyses of GD/SGD, to an analysis that explains the gap between
GD/SGD and adaptive methods.

Influence of algorithms on the loss geometry. In many simple convex settings, e.g. linear or logistic
regression and the Neural Tangent Kernel (Jacot et al.| |2018)), the loss geometry is usually fixed
and not influenced by learning algorithms. However, in neural networks the interaction between

?Recall that the main theoretical bound in the original Adagrad paper (Duchi et al.,[2011) is in terms of the
diagonal scaling.
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algorithms and loss landscapes is more complicated. [Lewkowycz et al.|(2020) find a so-called catapult
effect of initial learning rate on the training trajectory of SGD and related loss curvature. (Cohen
et al.[(2021)) demonstrate that while training neural networks with GD, the maximum eigenvalue of
the Hessian evaluated at the GD iterates first increases and then plateaus at a level that is inversely
proportional to the step size. However, (Cohen et al.| (2021) leave open the problem of whether similar
interactive phenomena occur in algorithms that are not GD, including adaptive methods.

3 OVERVIEW OF RESULTS AND SETUP

3.1 ISSUES OF PRIOR ANALYSES ON ADAPTIVE METHODS

As is mentioned in Section [2] existing work on adaptive algorithms has mainly focused on black-
box analysis assuming some global worst-case parameters. However, these global bounds can be
extremely bad in complicated deep learning models, as is discussed in Section[I] To see this, we
initialized a transformer modeﬂ with default initialization in Pytorch but chose a large gairﬂ and
computed the smoothness parameter (denoted as ) and the condition number (denoted as ) of
loss Hessian on one layer. We observed that setting the gain as a large constant (e.g. 800) results
in extremely large [ and s (I > 107 and x > 10'°), which makes the convergence rates in prior
black-box analysis vacuous.

The failure of global worst-case analysis implies that we need to focus on the local trajectory of
algorithms. However, it is unclear that when two optimization algorithms are used, they will have the
same geometry in local trajectory. In particular, although in theory, adaptive algorithms can yield
to a convergence rate with better dependency on certain local geometry of the function comparing
to SGD (with momentum), it could still be the case that the local geometry along the trajectory of
adaptive algorithm can be much worse than that of SGD (with momentum).

That motivates us to study the local geometry, especially that obtained by adaptive methods comparing
to SGD (with momentum) in the paper. Motivated by the diagonal scaling of Adagrad and Adam for
neural network training, we ask the follow main question in our paper:

How does the local diagonal geometry (diagonal of the loss Hessian) along the local trajectory of
adaptive algorithms compare to that of SGD (with momentum)?

3.2 OVERVIEW OF THE EXPERIMENTS

As is discussed in Section we consider RO (¢) defined in eq. () as a measurement of the uniformity

of the diagonal of the loss Hessian. We conduct experiments on different NLP tasks to examine
ROPT(t), as in language models, adaptive methods have shown significantly faster convergence than
SGD (with momentum). The details of these experiments will be shown in Section[d] To explore
potential different patterns of different layers, we do the computation layer by layer. On a wide
variety of transformer architectures and language modeling datasets from the same initialization, we

observe that:

When we train the neural network using Adam, the uniformity of diagonal geometry, mea-
sured by ROPT (1) is smaller than that when we train using SGD+M from the same initializa-
tion, except for first several layers.

Table [1| shows a typical example of RA%M(¢) compared to RSSPM(¢) on a sentence classification

task using BERT-small (Turc et al.,|2019; |Bhargava et al., 2021) (See Section@for details). We
repeated the experiments for 12 times starting from the same initialization. Table [1| shows the
averaged RA%M (1) and RSSPM(¢) in some randomly selected layers (except for the first several). We
ned 2~ and their standard deviations in the brackets}’| Figure 2| shows the
) d thei dard deviations in the brackets | Fi 2|sh h
‘med

RSGDM (t)
corresponding training losses of one in these 12 experiments.

also report the averaged -2

*https://pytorch.org/tutorials/beginner/transformer_tutorial.html

“This refers to the gain parameter in some commonly used initialization functions of Pytorch, e.g.
torch.nn.init.xavier_uniform_().

3 R3GPM(4) values in Tablefor most layers are roughly 1.4 to 2 times RA%™ (¢) in corresponding layers. In

practice, it can be considered significant because it might imply 1.4 to 2 times faster convergence.


https://pytorch.org/tutorials/beginner/transformer_tutorial.html
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Table 1: RA%™ () and RSSPM(¢) in some layers, on the sentence classification task (see Section .

Layer# ) Tteration 0 ] Iteration 750 Tteration 1250 o
mEG R RO RN RERE BMG BN R
9 15.7 15.7 12.76 9.65 1. 45 (0 65) 11.43 14.24 0.94 (0.40)
12 22.63 22.63 13.17 7.41 1.92 (0.67) 10.62 9.67 1.33 (0.75)
15 9.35 9.35 80.57 53.52 1.65 (0.65) 100.65 61.80 2.01 (1.00)
17 8237 82.37 405.02 223.56 1.91 (0.53) 423.28 337.32 1.43 (0.63)
18 31.32 31.32 17.07 13.24 1.43 (0.58) 18.15 15.63 1.21(0.36)
22 47.13 47.13 233.72 72.67 3.54 (1.21) 158.38 93.13 2.28 (1.18)
24 31.17 31.17 17.52 17.34 1.13 (0.40) 13.51 14.23 1.05 (0.36)

To understand this phenomenon in a more principled point of view, we also provide a formal proof
of the statement in a simplified setting: large batch Adam and SGD+M on a 2-layer linear network.
Although simple, the choice of 2-layer linear network to understand learning dynamics is common in
prior works (e.g. (Tian et al.}2021))). Section @]below describes the theoretical setup.

3.3 SETUP OF THE THEORETICAL ANALYSIS

Notation Let [d] = {1,2,...,d}. We use || - ||2 to denote the I norm of a vector, and || - ||z to
denote the Frobenius norm of a matrix. Let (-, -) be the Euclidean inner product between vectors or
matrices. Let \V'(11, %) be the one-dimensional Gaussian distribution with mean 4 and variance o2,

For a scalar (vector, matrix) A which evolves over time, we use A® to denote its value at time .

Let there be m data points. The data matrix is X € R% *™ and the label matrix is Y € R% >  We
assume that the input dataset is whitened, i.e. A, := T}LX XT ¢ R¥=*d= ig an identity matrix.

The parameters of a 2-layer linear network are given by W := (Wy, Wy ). Assume W; € R%*di-1 for
i =1,2. We have dy = d,,, dy = d,.. We consider the square loss L(W) := ﬁHWngX -Y|%.

Denote A := %YX T ¢ Riv>d=_|Arora et al.|(2019b) show that with whitened dataset,
1 - - 1
L(W):= %HW2W1X ~Y|F=L(W)+¢c, LW):= §HW2W1 — A|%. 2

where ¢ does not depend on W. We consider the following model with small Gaussian initialization.

Assumption 1 (Setup). The input covariance A, = =X X7 € Ré=*4= js an identity matrix. The
input and hidden layers are both of dimension d, i.e. di = do = d. Without loss of generality, we can

assume that A is a row vector (i.e. do = 1) whose coordinates are positiwﬂ and O(1) in terms of d.
Assumption 2 (Gaussian Initialization). Vi, j : w{? ~ N(0, =) W, 5] ~ N(O, —i=) are
independently initialized with sufficiently large o > 0.

Denote A and IN\M as the batch versions of A and A,.,. We make the following large-batch assumption.
We emphasize that large batches are commonly used in NLP tasks (e.g. (Brown et al.,[2020)).
Assumption 3 (Large Batch). For the randomly selected batches, assume E[fl] = A, ]E[f\m} = Ay

Vi, j € [d] : [(A A) ] <o E [([&m[i,j] — Auoli J))?| < 0% and 0 = O(7kar).

Denote §(*) as the batch gradient at time ¢. The update rules of SGD+M and Adam are given by
SGD+M: w1 = By + g WD) — w®) _ ()

Adam: 7 =17- t+1/( t+1) m D =B m® 4 (1 _ 51) 3)

m(t)
Vo 4 ¢

where 7 is the learning rate, (3, 51, B2 are momentum parameters, and ¢ is for numerical stability.
All operations on vectors are element-wise. Here and throughout, the notation f(z) = O(g(x))

WD Z B0 4 (1= By)i® 0§, WD — W _yp,

In Assumptionwe assume Gaussian initialization. Due to the rotational invariance of Gaussian distribution,
we can assume that all coordinates of A are positive without loss of generality.
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(resp. f(x) = Q(g(x)), f(z) = O(g(x))) means that there exist constants C;, Co > 0 such that
f(z) < Cag(z) (resp. ]f(x) > Crg(x), Crg(z) < f(x) < Cag(z)). We will also use the notation
with ~, i.e. O(+), Q(- ) to hide factors that are logarithmic in d. In our theoretlcal analysis, “with

o()
high probability”, or “w.h.p.” for short, means that with probability at least 1 — poly ooy (@)

4 THE UNIFORMITY OF DIAGONAL GEOMETRY

As is mentioned in Section [3.2} we computed ROFT (¢) defined in eq. (I) on different language models.
In this section, we present the results of SGD+M and Adam on different architectures and datasets.
In Appendix [A] we present the results of other adaptive algorithms.

During training we started from the same initial weights and used the same learning rate schedule
(constant or decreasing) for SGD+M and Adam. We tuned and chose the best (initial) learning rate
of SGD+M. The (initial) learning rate of Adam was set as a value under which Adam converged
faster than SGD+M with its best learning rate. The concrete values will be stated in later parts of this
section. We used large batch sizes to make the training procedure stable. When computing Hessian,
we also used large batch sizes. Due to the extremely large dimension, we did the computation on
some uniformly selected coordinates, more precisely, 200 coordinates per layer.

4.1 EXPERIMENTS ON REAL DATASETS

Sentence classification task on BERT-small We fine-tuned BERT-small (Turc et al.,[2019;|Bhargava
et al.,[2021) on the IMDB dataset (Maas et al.,[2011)): the task is to classify whether movie reviews
are positive or negativem The momentum parameter 3 in SGD was set as 0.9. The two momentum
parameters (31, 82) of Adam were set as (0.9, 0.999). We trained the model using linearly decreasing
learning rates for 10 epochs (2500 iterations). The initial learning rates of SGD+M and Adam were
0.001 and Se-5, respectively. As mentioned in Sectlongzl, Figure 2] and Table[I|show the training

losses and the comparison between RA%M(¢) and RSSPM(1) respectively.

Translation task We trained a Seq2Seq network that uses Transformer to solve a machine translation
task on Multi30k (Elliott et al.| 2016))(CC BY-NC-SA 4.0): this task is to train a German to English
translation modelﬂ The momentum parameter 3 in SGD was set as 0.9. The two momentum
parameters (01, f2) of Adam were set as (0.9, 0.98). We trained the model using constant learning
rates (0.03 for SGD+M and 1e-4 for Adam) for 60 epochs (1800 iterations). The experiments were
repeated for 8 times starting from the same initialization. Figure [3[left) shows the training losses

for one among them. Table 2afshows the averaged RA%™(¢), RSGPM(1) and R";igm ((t) (with standard

deviation in the brackets) in some randomly selected layers.

Layer #27
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Figure 3: Training losses of Adam and SGD+M for the translation Figure 4: Singular values and R, of the
task on (left) Multi30k (see Section and (right) data with weight matrix in the 27-th layer on the trans-
randomly generated targets (see Section 4.2). lation task (see Section 4. T).

4.2 EXPERIMENTS ON RANDOM DATASETS

We used the same model and momentum parameters as in the translation task described in Section 4.1
but generated random integers as targets. Similar to the setting on real targets, the model was trained

"nttps://huggingface.co/docs/transformers/v4.16.2/en/training
$https://pytorch.org/tutorials/beginner/translation_transformer.html
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Table 2: RA%™(¢) and RSSPM(t) in some layers for the translation task. (a) on Multi30k and (b) on data with
randomly generated targets.

(a) (b)
Layer# Epoch 0 Epoch 30 Epoch 55 Layer# 3 Epuch 0 ~ Epoch 30 " B Epoch 55 .
R RN RN R R RN 5 R Ryt BREM() R () R0 By

3 4.27 427 5.14 241 2.16(0.75) 3.14 2 1.58 (0.41) 3 4.82 4.82 3.98 1.8 2.23(0.36) 3.79 1.61 2.36 (0.

5 7.09 7.09 36.11 18.33 2.00 (0.42) 52.12 16.59 3.16 (0.64) 5 8.04 8.04 46.06 45.84 1.01(0.17) 47.83 34.18 1.41(0.30)
7 5.79 579 591 387 1.55(0.32) 752 3.08 2.45 (0.56) 7 5.69 5.69 4477 3.92 11.79 (2.37) 46.5 2.74 17.4(2.99)
9 18.11 18.11 28.93 20.74 1.43(0.28) 36.67 18 2.05(0.18) 9 11.89 11.89 317.34 55.61 5.81(0.70) 351.85 46.54 7.61(0.87)
12 11.1 11.1 6.64 725 0.95 (0.21) 9.27 5.06 1.88 (0.54) 12 19.73 19.73 133.39 391 34.17 (4.51) 145.09 297 49.49 (13.40)
15 83.15 83.15 5241 75 7.15(1.63) 46.27 5.69 8.6 (3.06) 15 3212 32.12 462.74 51.53 9.03 (0.91) 492.73 50.57 9.84 (1.03)
18 14.99 14.99 4.19 4.22 1.17 (0.45) 3.09 2.72 1.2 (0.46) 18 19.79 19.79 74.6 6.59 11.8(3.33) 79.02 3.58 22.75 (6.01)
21 93.5 93.5 30.29 5.36 5.72(1.05) 19.27 48 4.09 (0.86) 21 26.94 26.94 767.31 48.89 16.4 (3.38) 797.49 36.88 21.98 (3.40)
24 36.63 36.63 6.14 4.66 1.35 (0.31) 5.02 32 1.6 (0.36) 24 34.72 3472 467.75 9.15 52.57(11.16) 602.03 351 172.65 (18.85)
28 18.47 18.47 3.07 1.95 1.58 (0.16) 29 1.59 1.83(0.14) 28 13.13 13.13 19.8 222 8.99 (1.74) 19 1.63 117 (1.48)

using constant learning rates (0.015 for SGD+M and 5e-5 for Adam) for 60 epochs (1800 iterations),
and we repeated the experiments for 8 times startlnifrom the same initialization. Flgur NEknght)

shows the training losses for one among them. Table [2b|shows the averaged RAdam(¢), RSSPM(¢) and
RS(JDM

é&i;dgm O (w1th standard deviation in the brackets) of the same 10 layers as in Table 2

4.3 SUMMARIZATION OF THE EMPIRICAL RESULTS AND DISCUSSION

Overall, through extensive experiments on language models, we demonstrate that starting from
the same initialization, the ROPY(¢) values found by Adam are smaller than those found by
SGD+M, except for the first several layers. This suggests that Adam is biased towards a region
with more uniform diagonal Hessian than SGD+M. In Appendix[A.T0[we also validate this observation

on the in-distribution test data.

Positive correlation between uniformity of diagonal Hessian and fast convergence. We observe
that on random dataset, SGD+M plateaus after about 400 steps and thus converges much slower when

compared to Adam than on real dataset (see Figure [3). On the other hand, the gaps of RISHE(?M( )

and RA%M(¢) are more significant on random data than on real data (see Table as well. In
Appendix[A.4] we conduct another experiment where we switch from SGD to Adam in the middle
and compare it with the model trained by Adam from the beginning. The observation is that both
the loss gap and the gap of RI?IEE( ) are gradually closed after switching (see Figureand Table .
Hence we find a positive correlation between fast convergence and the uniformity of diagonal of
loss Hessian, suggesting that a region with more uniform diagonal of Hessian is also a region that is
more amenable to fast optimization. In Appendix[A]we study other adaptive algorithms (Adagrad,
RMSprop and AMSGrad) and get similar observation: all these adaptive methods converge faster
than SGD or SGD+M and also bias the trajectory to regions with smaller ROPT(¢), suggesting that
the uniformity of diagonal Hessian might be a universal mechanism (partially) explaining the faster

optimization of adaptive algorithms than SGD (with momentum).

More discussions on the trajectory difference. Considering the fact that our comparison between
RAdam(¢) and Rsmg’(?M( ) is conditioned on the same iteration when SGD+M has larger training loss
than Adam, there is a potential alternative explanation of the Hessian diagonal uniformity. That is,
the global minimum has uniform Hessian, and Adam simply converges faster to it than SGD+M.

To rule out this possibility, in Appendix |A.3[we add a comparison of our measurements RA%™ (1)

'med

and RSSPM(#/) 'where ¢, t' are picked such that ¢th Adam iterate and ¢'th SGD+M iterate have the

'med

same training loss. The results (in Table[7) show that RA%™(¢) < RSCPM(#/) for most layers, thus

demonstrating that the trajectories of Adam and SGD+M are truly different and that the difference is
because Adam biases the local geometry (as opposed to faster convergence).

Adding regularization. People in practice usually add weight decay (equivalent to [, regularization)
to encourage better generalization ability. In Appendix we compare SGD+M and Adam when
both using small weight decay values (0.001). The results in Figure and Table 9] suggest that
in this case, the positive correlation between Rmed( ) and convergence speed still holds: Adam

converges faster than SGD+M and in most of the layers except for the first several, RA%™ () values

°To prevent ROMI(t) from getting too large due to tiny median, we added an additional term
0.001 max{ |Hz(t>|} —1 to the denominator of eq. (I) when computing.
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are smaller than RSSPM (). This reveals the robustness of our observation under weak regularization.
However, under large weight decay parameters, we observed cases where Adam still converged faster
but Rggjm( ) values were larger rather than smaller. In the case of strong regularization, the adaptivity
of Adam requires further exploration and we hope to find new mechanisms in the future.

Image tasks. Although in this paper we focus on language models where Adam shows significant
fast convergence, we also add supplementary results in Appendix [A.8|on image tasks where SGD+M
performs better. On a residual network trained on CIFAR-10, we observed that Adam did not converge
faster than SGD+M (see Figure and in the meantime, RA%™(¢) values were no longer smaller
than RSSPM(t) during training (see Table[10). This reveals the connection between the local diagonal
geometry and the convergence speed from another perspective. That is, when the diagonal of Hessian

of Adam is not more uniform than SGD+M, its convergence speed is not better, either.

5 THEORETICAL ANALYSIS

In Section ] we empirically demonstrate the uniformity of diagonal geometry. In this section, we
theoretically analyze this property for large batch Adam and SGD+M on a two-layer linear network
with 1-dimensional output.

Since the weights and Hessians in different layers may have different magnitudes, we compute the
RY% (t) layer by layer. We denote RyOM (t) (resp. RA%™. (1)) as the ROV (t) found by SGD+M

‘med med

(resp. Adam) w.r.t. Wy, at time ¢ where & = 1, 2.
Theorem 1. Under Assumption|l||2|and\3| consider the weights {WS(G)D} (resp. {Wé dlm} )

t>0
obtained by SGD+M (resp. Adam) defined in (3).

1. Foranyp > 0, pick0 < e < d%, n<O (CNT:H) and o > 4(p + 2). Suppose 0 < L gﬂ, then
there exists Tsgp 1, Tsgp,2 such that w.h.p., L (Wégff“”) =0(d), L (W;ggn‘z)) ( ) and

Vt € [Tsop, Tsop2] : Rouwk (t) = Q(logd), k=1,2.

7/ 2¢2

2. Forany p > 0, pickn < O (déa) £ < Vg a > % and o = B1. Suppose o < d13/£4 ,
Then 3T xdam, 1 Tadam,2 such that w.h.p., L (WA(Z:% o ) = 0(d), (Wj(ﬁ‘; 2)) <0 ( ) and

~ 1 1
VYt € [TAdam,17TAdam,2] : R’,%Zn;c( ) 1+0 (’17 + da_1> R k= 1,2.
271

An immediate corollary of this theorem below gives the difference between iterates of Adam and
SGD+M that have the same loss.

Corollary 1. Under the setup in Theorem (If w.h.p., for any t € [Tsop1,Tsop2] and t' €
[Tadam,1s Tadam,2] such that L (Ws%)u) =1L (nga)m> e {Q (dip) ,@(d)}, we have

1
1)7 k=1,2.
1

o
2

RSO (1) = Qlogd),  RAan (¢ )—1w(ni+

Theorem! 1] and Corollary[I]tell us that during a long training period when the loss decreases from
O(d)to O ( ) the diagonal of loss Hessian for Adam keeps nice uniformity in the sense that for
each layer, its diagonal elements have roughly the same value, i.e. RA%Y (1) =1+ 0(1),k = 1,2.
On the other hand, the diagonal of loss Hessian for SGD+M is less uniform. Appendix [B] gives a
proof sketch of Theorem[I} The detailed proof can be found in Appendix [Cand D}

6 THE LOW RANK STRUCTURE OF WEIGHT MATRICES AND UNIFORMITY OF
LEADING SINGULAR VECTORS

The proof sketch in Appendix hi ghlights one crucial intuition of Theoremm After Tsgp,1 (resp.
T'agam,1) steps, W1 of SGD+M (resp. Adam) becomes an approximately rank-1 matrix. Consider
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the left singular vector u := [uy,us, ..., u4]7 which corresponds to the leading singular value o7.
We can show that the distribution of u?, u3, ..., u2 for Adam is more uniform than that of SGD+M.
This property, we call the uniformity of the leading singular vector, is related to the uniformity of the
diagonal of loss Hessian, see Appendix [F|for more details.

Similar low rank bias after training has been studied in prior works (e.g. (Gunasekar et al.l 2017}
Li et al., 2018} |Chou et al.| [2020)). For more complicated models, we want to check whether the
weight matrices also have low rank structures and if so, whether we can still observe the uniformity
of leading singular vectors. More formally, consider the weight matrix in some layer W € R™*",
we want to check

(A) Whether W € R™*™ is approximately a rank k matrix with & < min{m,n}, and

(B) If (A) is true, then consider the top k singular values o1, ..., o and corresponding left singular

N k [ N
vectors w1, s, ...uy. Define a new vector @ := Y., o2u; ® u; := [iy, U2, ..., Uq]” and compute
N w2 .
R, := 2%l which is a generalized version of ————"% in the rank 1 case. We want to see whether
median @, median u

R,, obtained by Adam is smaller than that of SGD+M. L

After reviewing the weight matrices we got in different settings, we observed that (A) and (B) hold
for many layers in those models. For example, on the translation task mentioned in Section .1} we
found 12 layers which had approximately low rank structures and for 10 of them, R,, values (defined
in (B)) obtained by Adam were smaller than those found by SGD+M. Figure ff] shows the result on
one typical layer. Results of more layers can be found in Appendix[A.3]

Remarks 1. The definition of R, is based on the connection between diagonal of loss Hes-
sian and weight matrices. Appendix |F| shows that for a 2-layer linear network, Rgg}z(t) =
max; HWl(f)[z]Hg
median|| W " [i,:]|12
note w; = [U;1, Uia, -, Ui L and v; = [vi1, Via, ..., Vin] T, we have that for the j-th row,

. k
Wil I3 ~ || by ovussof

Zle o?u; ® u;, we have that |Wi[j,:]||3 &~ @;. Although in multi-layer nonlinear neural net-
works, the connection between diagonal of loss Hessian and the weight matrices is more complicated
and ROPT, (t) may depend on the product of many weight matrices rather than one single matrix, we

still believe that this definition of R,, is a reasonable ratio to consider.

. When Wy € R™*" is approximately rank k, i.e. W; = Zle aiuiviT, de-

o k 2 92 . ~ ~~ ~ 1T ._
= Y i—i0;uj;. By defining @ = [l 12, ..., 0q]" =

2. We may also want to consider the right singular vectors v1, vs, ...v; and corresponding v =
[01, Vg, ..., Dg) T i= Zle o?v; ® v; and compute R, := mme(}f;l% for Adam and SGD+M. However,
on this translation task, among the 12 layers which were approximately low rank, for only 6 of them,
R, of Adam were smaller, i.e. we did not observe uniformity of the leading right singular vector
for Adam. Results of R, can be found in Appendix [A.5] One possible reason is that for a weight
matrix, its right singular vectors are closer to the input data than left singular vectors and more easily

influenced by the data, therefore may not show uniformity.

7 CONCLUSION AND FUTURE WORK

We demonstrate that adaptive optimization methods bias the training trajectory towards a region
where the diagonal of loss Hessian is more uniform, through extensive experiments on language
models and theoretical analysis in a simplified setting of two-layer linear networks. Although our
findings may not directly lead to an improved algorithm for practical use, they provide a new way of
thinking when designing new algorithms: in contrast with the traditional view which tries to design
a method that performs better in the bad loss geometry, our findings suggest that we can design
algorithms which implicitly avoid regions with bad geometry. There are a lot of future directions
along this line. For example, our theoretical results on the two-layer linear networks may be able to
generalize to multi-layer networks. In fact, people conjecture that the key-value-query structure in
language models can be approximated by a three-layer linear network. Hence the generalization to
multi-layer networks might provide more connection to real deep models and could be an interesting
and challenging future direction. Moreover, it is also possible to relax our large-batch assumption
(Assumption 3)) and prove similar results in the general stochastic setting.
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REPRODUCIBILITY STATEMENT

The training details (e.g. hyperparameters) of experiments are specified in Section[d] The source
code is provided in the supplemental material. For the theoretical results, Section[3.3|states the full
set of assumptions. Section[C|and Section [D]in the appendix provide complete proofs.
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A MORE EXPERIMENTS OF THE UNIFORMITY OF DIAGONAL GEOMETRY

A.1 VANILLA SGD vSs. ADAGRAD

In this section, we present the Rr?lgg(t) values defined in eq. (T) obtained by vanilla SGD and Adagrad
on a language modeling taskm The task is to assign a probability for the likelihood of a given word
(or a sequence of words) to follow a sequence of words. We trained a transformer model to solve this
problem on both Wikitext-2 (Merity et al.| 2017)(CC BY-SA 3.0) and random dataset (generating
random integers as targets). This model has roughly 8 layers (not counting normalization and dropout

layers)

The setup is the same as in Section [3.2] We used the same learning rate schedule (constant or
decreasing) for SGD and Adagrad. We tuned and chose the best (initial) learning rate of SGD. The
(initial) learning rate of Adagrad was set as a value under which Adagrad converged faster than
SGD with its best (initial) learning rate. We used large batch sizes to make the training procedure
more stable. When computing Hessian, we also used large batch sizes. Due to the extremely large
dimension, we did the computation on some uniformly selected coordinates, more precisely, 200
coordinates per layer.

We tried different initialization (normal and uniform) by using different gains of the Pytorch initial-
ization schedule.

A.1.1 EXPERIMENTS ON REAL DATASET

Flgure@ shows the training losses on real dataset (wikitext-2). Table [3] (resp. Tabled) shows the
ROPT(#) for Adagrad and SGD under uniform (resp. normal) initialization with different gains.
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(a) Wikitext-2 (b) Random dataset

Figure 5: Training losses of Adagrad and SGD on wikitext-2 (left) and random data (right)

Table 3: ROPT(t) of Adagrad and SGD under uniform initialization with different gains

(a) Gain =2 (b) Gain=0.5
Layer# G Epoch 1 Epoch 20 Epoch 40 Layer# Epoch 1 Epoch 20 Epoch 40
D Adagrad SGD Adagrad SGD  Adagrad SGD Adagrad SGD Adagrad SGD  Adagrad
1 6.07 6.77 591 9.77 5.16 10.37 1 69.36  78.60 15.26 7.74 18.22 7.23
2 4.60 6.26 3.43 1.66 3.44 1.88 2 2412 2436 4.05 2.30 3.70 2.04
3 5.15 6.84 4.35 4.34 4.84 3.60 3 2.83 2.85 3.78 4.98 3.56 4.40
4 9.47 10.78 9.76 3.54 8.67 3.14 4 5.25 4.74 3.83 5.68 3.11 4.81
5 12.54 13.96 10.31 6.59 9.79 6.98 5 6649 6783  88.75 19.31 63.01 15.64
6 4.92 5.25 7.21 2.33 7.94 2.28 6 6.54 6.91 3.57 2.08 3.50 1.97
7 5.73 5.45 40.56 4.57 21.24 4.76 7 3.22 3.73 13.03 3.97 9.55 4.07
8 9.39 8.87 37.95 4.50 46.03 3.19 8 6.12 5.99 6.73 7.82 5.43 6.98

Uhttps://pytorch.org/tutorials/beginner/transformer_tutorial.html
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Table 4: ROPI (¢) of Adagrad and SGD under normal initialization with different gains

'med
(a) Gain = 1 (b) Gain=0.5
Layer# Epoch 1 Epoch 20 Epoch 40 Layer# Epoch 1 Epoch 20 Epoch 40
SGD  Adagrad SGD Adagrad SGD  Adagrad SGD  Adagrad SGD  Adagrad SGD  Adagrad
1 6.76 6.06 8.27 12.28 9.69 11.17 1 9.12 14.46 10.90 8.00 10.19 8.55
2 9.51 6.61 3.19 1.87 3.21 1.73 2 10.70 1542 8.52 2.12 8.88 2.04
3 7.38 7.35 8.61 3.38 9.25 3.94 3 5.73 5.94 10.16 2.80 6.05 2.99
4 18.02 1563 6.45 4.86 7.49 4.44 4 16.62 1294 8.90 391 8.12 4.14
5 12.70 9.35 11.69  11.23 15.07 12.18 5 15.98 16.98 42.57 10.76 18.45 10.16
6 1276 11.86 3.84 2.32 3.20 2.09 6 4.84 6.46 7.92 2.66 5.30 2.46
7 11.79 8.58 17.95 432 14.99 4.50 7 6.52 6.55 107.51 3.14 136.38 2.73
8 1709 1273 26.70 5.16 2691 6.73 8 8.39 8.20 337.34 5.18 315.21 4.48

A.1.2 EXPERIMENTS ON RANDOM DATASET

Figure [5b|shows the training losses on random dataset and Table [5|shows the ROPT(¢) in different
layers.

Table 5: Ror: (t) of Adagrad and SGD for random data

Layer# Epoch 1 Epoch 20 Epoch 40
SGD Adagrad SGD  Adagrad SGD  Adagrad
1 10.88 10.98 9.99 18.66 9.67 22.37
2 9.47 12.15 14.98 443 13.01 3.99
3 7.45 8.52 459.71 6.09 451.16 5.11
4 9.84 10.42 135.37 722 126.91 6.04
5 7.09 7.88 103.60  353.89 184.61  190.17
6 7.68 8.58 18.38 4.08 18.69 2.73
7 7.81 5.40 294.68 6272 22925  29.76
8 13.51 9.16 329.12 2059  203.70 9.57

A.2 RMSPROP AND AMSGRAD

In this section, we present the results of RMSprop and AMSGrad and compare them with SGD+M.
The experiments were conducted on the translation task described in Section[d.1] The learning rates
we used were 2.5e-5 for RMSprop, 0.0005 for AMSGrad and 0.03 for SGD+M. Both RMSprop and
SGD+M used momentum parameter 0.9. The two momentum parameters (31, 52) of AMSGrad were
(0.9,0.98). Figure[6|shows the training losses and Table[6|shows the corresponding ROF ().

med
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Figure 6: Training losses of RMSprop, AMSGrad and SGD+M on the translation task described in Section
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Table 6: RAVPP (1), RAMSSrd (1) and RSCPM(¢) in some layers, on the translation task described in Section

‘med ‘med
Layer# SGDM lgl\’lpsopf:}lx 10 AMSGrad SGDM lg\?sopfor; 2 AMSGrad SGDM lgl\’lps(;(r::; 0 AMSGrad
RSOPM(t)  REVPP(H)  RAMSOR(r)  RSORM(t)  REVPP(H)  RAMSOR()  RSSPM(t)  REVPPU(t)  RAMSORd(r)
3 3.97 2.69 2.56 233 1.89 1.68 2.83 1.62 1.56
5 26.17 21.19 11.36 37.11 17.83 10.85 51.94 10.22 12.31
7 4.10 6.98 6.12 3.94 4.95 292 7.58 229 2.58
9 29.41 35.72 25.86 37.81 19.89 16.90 30.68 16.24 9.97
12 4.93 6.20 12.67 4.63 6.61 4.64 6.44 5.13 4.06
15 85.06 33.63 19.51 140.99 12.22 6.72 44.07 6.98 5.37
18 8.71 2.99 9.48 3.86 244 4.16 3.51 2.10 235
21 95.34 11.68 6.62 47.20 6.37 4.74 22.20 4.58 3.58
24 8.70 5.67 6.95 8.13 3.59 5.13 6.46 230 2.83
28 4.44 242 2.64 4.67 1.85 1.81 2.63 1.46 2.13

A.3 COMPARISON CONDITIONED ON THE SAME LOSS

In this section, we compare RSSPM (1) and RA%M(¢) conditioned on the same training loss. More
precisely, we make comparison of RA%M(¢) and RSSPM(¢/), where ¢, ¢’ are picked such that tth Adam
iterate and ¢'th SGD+M iterate have the same training loss. The detalls of the tasks are described in

in Sectlonn Tablel 7|shows the results of RA%M (¢) and RSSPM (') in some layers.

'med 'med

Table 7: R2%™(¢) and RSGPM (') in some layers. Dataset and task: (a) sentence classification task on BERT-

small, (b) translation task on Multi30k.

(b)
(@)
Layer# RSGDML;’/SS 3‘]7?2Adam RsouML?SS ZZ?SAdam RSGDML ?/SS 1‘19?9\@.“
Layer# scml;ofs 0 ZSAd st,Dr\I;mq 0 171(5\)(1 sc.m%o?s 0-132@"\ et (*) mei (0) P (1) med " (£) med (1) med” ()

RSGDM(y7) - RAdam(y) - RSCDM(y7)  pAdam(y)  RSGDM(y7)  pAdam(y) 3 401 445 5.80 3.02 2.44 228

9 16.77 13.69 14.14 12.71 15.17 9.86 5 31.19 27.50 44.29 21.46 57.83 19.52
12 16.68 8.29 9.98 8.31 8.90 542 7 5.80 4.38 7.51 3.71 5.25 2.87
15 18.64 7.79 51.39 46.43 80.82 40.97 9 21.23 53.65 28.99 20.92 44.26 28.13
17 208.29 381.05 464.37 315.58 498.26 313.99 13 53.18 17.717 51.17 20.64 35.80 3549
18 14.43 23.56 19.17 19.26 15.76 12.99 15 82.30 186.41 34.17 13.76 33.87 5.31
22 257.32 88.47 188.55 110.87 197.79 139.48 21 100.43 23.66 23.45 5.12 12.96 5.35
24 3422 16.34 16.42 18.08 14.04 15.97 26 7.45 3.48 4.69 3.10 3.33 2.83
30 19.14 9.54 10.46 5.48 9.56 533

Table 8: RO% (t) of SGD, Adam after SGD and Adam

'med
in some layers after roughly 2160 iterations

b s Layer# SGD  Adam Adam after SGD Adam
13 29476 150.02 332.96 150.02
¢ 14 1434 5.84 5.33 5.84
5o 15 3638  16.66 11.86 16.66
4 16 6.47 7.05 3.76 7.05
° 17 17.17 6.05 4.76 6.05
ji 26 5.68 3.53 2.30 3.53
’ 2 o 27 1433 1593 21.76 15.93
28 9.10 1.71 1.71 1.71
Figure 7: Training losses of SGD, Adam after SGD 29 8.22 3.04 2.82 3.04
and Adam for the translation task 30 11.39 512 529 512

A.4 EXPERIMENTS OF SWITCHING FROM SGD TO ADAM

In this section we describe another learning schedule: the “Adam after SGD” schedule, where we
switch from SGD to Adam in the middle to see whether the loss and ROFT(¢) can catch up with the

model trained by Adam from the very beginning. Again, we used the same model as in the translation
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task in Section[4-1] In this section, we did not add momentum term to SGD in order to get a larger
gap between SGD and Adam than the case using momentum. We want to see whether this larger gap
can be closed after switching to Adam in the middle.

As is shown in Figure and Table both the loss gap and the gap of ROFT(¢) were closed after a

'med
period of training after switching algorithms, which provides evidence of the connection between

convergence speed and uniformity of diagonal of loss Hessian.

A.5 THE LOW RANK STRUCTURE

In this section, we present more results for the experiments in Section [6]

We examined the weights of the model trained for the translation task in Section[#.1] Among roughly
30 layers, we observed that for 12 layers, at least the weight matrices obtained by Adam after training
have approximately low rank structures.

Figure[8]shows the examples of layers with or without the low rank structure.

Layer #14 Layer #27

*  seD
2_5% O Adam

singular values
singular values

0 100 200 300 400 5(% 600 0 100 200 300 400 500 600
coodinate coodinate

Figure 8: Examples of layers with approximately low rank structure (right) and without low rank structure (left)

We then studied the uniformity of leading singular vectors of these 12 layers, i.e. computed R,, and
R, defined in (B) and the second remark of Section[6] The observation is that for 10 out of these 12
layers, R, values of Adam were smaller those of SGD, which implies the uniformity of leading left
singular vectors of Adam. However, we did not observe significant uniformity for Adam in terms of
leading right singular vectors (R,). The second remark of Section[6]discusses possible reasons.

Figure[9]shows how R,, and R, changed over time in some layers.

Layer #5 Layer #11 Layer #19 Layer #25
2. 25 25 N
9 ‘ *  SGD 2 ‘ * sGD (| g ‘ * SGD || g 4 ‘ *  SGD
2 O Adam = O Adam|| 2 O  Adam|| 3 O Adam
> > > >
515 5 515 515
= =1 = >
21 g 21 2
@ @ @ @
0.5 0 0.5 0.5
0 500 0 500 0 500 0 500
coodinate coodinate coodinate coodinate
14 12 18 20
/7 —
{ T \ 16
\ / ~
Fl 12 \\ / = 10 \ = 3
= \ _/ S <14 RGN
\ SGD SGD SGD \ SGD
10 8 12
Adam Adam Adam Adam
10 10
0 50 0 50 0 50 0 50
epoch epoch epoch epoch
14 11 14 10
12 / — -
10 121\ \
. . N - N —
< 10 [ o] \ < 8 \ e
107\ \
s SGD 9 SGD \ SGD \ SGD
Adam Adam 8 Adam Adam
o o = o
0 50 0 50 0 50 0 50
epoch epoch epoch epoch

Figure 9: R, and R, for Adam and SGD with momentum in some layers
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A.6 HOW THE (ADAPTIVE) GRADIENT ALIGNS WITH DIAGONAL OF LOSS HESSIAN

In this section we present the uniformity of diagonal geometry of adaptive methods from another
perspective. Denote H;; as the (¢, ¢)-th element of the loss Hessian H and g; as the i-th element of the
gradient. It is conjectured that when | H,;| is large, the corresponding |g;| is usually large as well. For
adaptive methods, we can regard the update per step as the learning rate times the “adaptive gradient”.
Let’s use gadapt,; to represent the i-th component of the adaptive gradient. Through experiments on
language models, we found that |gaqap,;| for different ¢ are quite uniform and do not align with | H;|
as the true gradient |g;| does.

In the experiments, we first sorted |Hj;| in the ascent order: |H;, 4, | < |Hiyin| < ... < |H;
(suppose H € R%*?) and then plotted the corresponding |g;, | and | Gadapt,i, | for k € [d].

d,id|

A.6.1 SGD vs. ADAGRAD

Here we compare SGD and Adagrad on the language modeling task on wikitext-2 described in
Section[A.T] We observed that the figures of all layers are quite similar so we select one layer as an
example, as is shown in Figure [I0}

True gradient of SGD True gradient of Adagrad Adaptive gradient of Adagrad
-3 -3
P x 10 15 x 10
o~ _ 1
o o1 =]
5 0.5
g e T . .
15y ol s tmacinasaiar ol o " 7 S ]
0 50 100 150 200 0 50 100 150 200 0 50 100 150 200
coordinate coordinate coordinate
o 10" x10°
1
o
N f—
1 2 05 .
= . K
8 s e,
% ot ) o AR E ove o '6‘.5\.'\'}-"‘
0 50 100 150 200 0 50 100 150 200
coordinate coordinate
x10 x10°°
5
o
¥ =
" k=]
< oo
8 o
=3 o inmeie NNy L bl

0 50 100 150 200 100 50 100
coordinate coordinate coordinate

Figure 10: How the true gradient ({|gi, |}¢_1) and “adaptive gradient” ({|gadapt,i, | } ¢—1) align with diagonal of
Hessian ({| H;, ., |}#—1). Here coordinates are sorted such that |H;, 4, | < |Hiy.ip| < ... < |Hi,,| (suppose
H € R*™9), Experiments were conducted on the model described in Section This figure shows the results
on the 12-th layer.

A.6.2 SGD WITH MOMENTUM VS. ADAM

Here we compare Adam and SGD+M on the tasks described in Section@ Again, we select one
layer as an example for each task. Figure [[T|shows the results on the sentence classification task and
Figure[I2]shows the results on the translation task.

A.7 ADDING REGULARIZATION AND OTHER TRICKS

In this section, we add weight decay to both Adam and SGD+M on the translation task described
in Sectionfd] The momentum parameter /3 in SGD was set as 0.9. The two momentum parameters
(81, B2) of Adam were set as (0.9, 0.98). For both algorithms, we set the weight decay parameter as
0.001. We trained the model using constant learning rates for 60 epochs (1800 iterations). We tuned
and chose the best learning rate 0.03 for SGD+M. The learning rate of Adam was set as 0.0001, under
which Adam converged faster than SGD+M with its best learning rate 0.03. Figure [T3ashows the
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True gradient of SGD+M True gradient of Adam Adaptive gradient of Adam
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Figure 11: How the true gradient ({|g;, | }#_1) and “adaptive gradient” ({|gadapt,:,, | } 1) align with diagonal of
Hessian ({|H;,, i, |}¢_1). Here coordinates are sorted such that |H;, i, | < |Hiy.in| < ... < |Hi,i,| (suppose

H € R¥%), Experiments were conducted on the sentence classification task described in Section This
figure shows the results on the 12-th layer.
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Figure 12: How the true gradient ({|g;, |}¢_,) and “adaptive gradient” ({|gadapt,qy, | }#—1) align with diagonal of
Hessian ({|H;,, s, |}¢_,). Here coordinates are sorted such that |H;, i, | < |Hiy.ip| < ... < |Hi,,i,| (suppose

H € R¥*9) Experiments were conducted on the translation task described in Section This figure shows the
results on the 5-th layer.

SGDM
training losses and TableHshows the values of RA%M(¢), RSSPM(t) and i‘i‘%ﬂﬁ; in some randomly
‘med

selected layers.

A.8 RESULTS ON IMAGE TASKS

We trained a ResNelE on CIFAR-10 dataset and compared the convergence speed and ROPT () of

med
SGD+M and Adam. The momentum parameter 5 in SGD was set as 0.9. The two momentum

parameters (31, 32) of Adam were set as (0.9, 0.98). The model was trained using constant learning

"'We borrowed the implementation here https://pytorch-tutorial.readthedocs.io/en/
latest/tutorial/chapter03_intermediate/3_2_2_cnn_resnet_cifarl0/| and replace
the “layers” array [2,2,2] with [1,1,1].
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Figure 13: (a) Training losses of Adam and SGD+M for the translation task, both with weight decay. (b) Training
losses of Adam and SGD+M for a ResNet trained on CIFAR-10.

Table 9: R3%™(¢) and

'med

SGDM
Rmcd

Laye Epoch 0 Epoch 30 o Epoch 55 o

BN R0 RO RN REsG REMO RN R
3 73.09 73.09 17.65 13.11 1.35 13.38 6.28 2.13
5 469.88 469.88 293.48 310.85 0.94 601.63 588.12 1.02
7 80.78 80.78 8.22 39.65 0.21 13.65 4.85 2.81
9 494.27 494.27 150.14 123.79 1.21 301.89 119.53 2.53
15 632.10 632.10 277.18 175.34 1.58 334.48 282.88 1.18
138 55.08 55.08 6.56 4.45 1.47 23.88 4.52 5.29
21 549.62 549.62 257.89 44.78 5.76 515.99 53.79 9.59
24 107.51 107.51 8.54 3.64 2.34 53.79 3.32 16.20
28 13.77 13.77 4.74 2.37 2.00 15.60 2.15 7.24
30 491.62 491.62 6.91 2.66 2.60 9.60 2.02 4.7

(t) (both using weight decay) in some layers for the translation task.

rates for 41 epochs (2050 iterations). We tuned and chose the best learning rates for both algorithms:
0.5 for SGD+M and 0.005 for Adam. Figure[I3b|shows the training losses and Table[I0]shows the

SGDM
values of RA%M (¢), RSSOM(¢) and %.
Table 10: RA%™(¢) and R3SPM (¢) for ResNet on CIFAR-10.

Layer# Epoch 10 o Epoch 20 o Epoch 40
RV RN g RV RN TEeg BV RN

1 6.88 2534 0.27 374 39.35 0.09 4.39 15.80

2 110.19 35.93 3.07 32.97 36.27 0.91 60.69 28.06

3 40.89 16.92 242 13.98 15.92 0.88 11.70 37.01

4 28.56 23.66 1.21 11.48 13.04 0.88 7.9 14.51

5 13.47 23.78 0.57 8.64 12.07 0.72 6.52 14.23

6 18.72 12.49 1.50 12.19 8.80 1.38 8.96 21.69

7 18.85 39.25 0.48 9.00 12.81 0.70 13.87 11.42

8 13.79 19.91 0.69 8.87 11.72 0.76 7.48 9.34

9 12.50 14.85 0.84 9.62 8.06 1.19 11.35 8.08

10 14.89 14.53 1.02 8.15 5.80 1.41 6.21 8.89

A.9 COMPARISON BETWEEN ROPT(#) AND SINGULAR VALUE-BASED METRICS

In Section [} through extensive experiments on language models, we demonstrate that when we

train the neural network using Adam, the uniformity of diagonal geometry, measured by R

19
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smaller than that when we train using SGD+M from the same initialization, for most of the layers.
We are aware that people also usually consider Hessian singular values instead of diagonal entries to
measure the loss geometry. Hence in this section we make a comparison between our diagonal-based
metric and singular value-based metrics.

First, we believe that our metric has a natural connection to the mechanism that underlies adaptive
methods. Adaptive methods in practice choose coordinate-wise adaptive learning rates. From a
high-level perspective, this procedure can be viewed as adapting to the loss smoothness with respect
to each coordinate. The smoothness of certain coordinate is measured by the second derivative with
respect to this coordinate and therefore corresponds to the diagonal entries of loss Hessian. Our
metric, which measures these diagonal entries, is thus fundamentally intertwined with the mechanism
that underlies adaptive methods.

OPT

Next, we empirically demonstrate that our metric R,

(t) is a reasonable proxy of singular value-

] d
based metrics. Define a singular value-based metric SOPT () := %

G i=1
oPT

our diagonal-based metric ROFT (¢), where {o;(t)}¢_; denotes the singular values of loss Hessian
H(t) € R4 a the tth iterate. We compare SOFT (¢) along the trajectories of Adam and SGD+M in
the translation task described in Section4.1] Table[TT]suggests that if measured by singular values,
Adam is also biased to a region with smaller SOFT(¢) than SGD+M, similar to the observation for
ROPT(t). This is expected because in Appendix [E| we demonstrate that the loss Hessian approaches
diagonal during training. The fact that our diagonal-based metric and singular value-based metric give
the same result also reveals the robustness of our observation to the choice of metric, demonstrating
that there does exist some geometry bias of Adam towards more uniform regions even when measured
by different metrics.

as an analogy of

Finally, there is strong reason why our metric is often easier to compute empirically and analyze
theoretically than singular value-based metrics such as SOFT(¢).
1. From the empirical computation perspective, suppose the loss Hessian is d x d. Then
computing its singular values, in general, requires computing the whole matrix with d?
elements. However, our metric only requires computing the d diagonal entries.

2. From the theoretical analysis perspective, in Appendix [F} we show that the diagonal of
loss Hessian in linear networks can be connected to weight matrices by simple formulas.
These straightforward formulas simplify the analysis and allow us to connect our metric
to the low-rank structure of weight matrices and the uniformity of their leading singular
vectors (see Section [6] for more discussions). However, all these nice connections fail to
hold for singular value-based metrics. The formulas of singular values are very complicated
even in linear networks, making it almost impossible to theoretically analyze any singular
value-based metrics.

Table 11: SA%™(¢) and SSSPM(¢) in some layers for the translation task.

Lay Epoch 0 Epoch 30 o Epoch 55 o

Swb"®  Shr() SEM s BeE SEMO sare S
3 4.53 4.53 6.08 2.87 2.12 5.92 2.58 2.30
5 14.64 14.64 40.01 15.38 2.60 52.28 15.05 3.47
7 6.91 6.91 9.84 5.06 1.94 12.25 4.22 2.90
9 24.12 24.12 42.02 30.89 1.36 33.20 21.54 1.54
12 19.07 19.07 32.41 24.84 1.30 28.83 14.23 2.03
15 47.03 47.03 69.97 11.54 6.06 42.71 7.19 5.94
18 15.96 15.96 26.03 29.73 0.88 18.46 17.94 1.03
21 31.03 31.03 25.84 7.92 3.26 19.71 7.06 2.79
24 35.42 35.42 21.31 18.08 1.18 14.62 10.33 1.41
28 55.38 55.38 6.18 2.77 2.23 4.84 2.01 241
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A.10 THE UNIFORMITY OF DIAGONAL GEOMETRY ON IN-DISTRIBUTION TEST DATA

In this section we compare RA%M(¢) and RSSPM(¢) on the in-distribution test data. The task is the
translation task described in Section Table 12| validates that on in-distribution test data, Adam is
also biased to a region with smaller RO'T (¢) than SGD+M, similar to what happens on the training
data shown in Table[2a] This is expected because of the same distribution. One other thing we want
to emphasize is that, in real language tasks, the dataset is typically very large and the model see each
training example only once. Hence the training behavior usually implies similar in-distribution test

behavior.

Table 12: RA%™(¢) and RSSPM(t) in some layers for the translation task.

Layer# Epoch 0 Epoch 30 o Epoch 55 o

RYGM(E)  Rain(n)  RSGM(t)  Ralim™(t) sy RSM()  Radn(e) g
3 4.39 4.39 5.80 3.06 1.89 6.79 2.81 2.42
5 7.90 7.90 38.01 11.71 3.24 41.40 10.21 4.06
7 5.77 5.77 6.00 4.61 1.30 5.53 3.20 1.73
9 25.09 25.09 28.81 17.17 1.68 16.67 14.85 1.12
12 10.24 10.24 9.13 8.63 1.06 13.78 9.09 1.52
15 79.71 79.71 77.18 13.56 5.69 37.93 991 3.83
18 14.78 14.78 3.94 7.15 0.55 5.42 6.04 0.90
21 83.25 83.25 26.04 5.44 4.79 13.11 5.57 2.36
24 29.91 29.91 6.89 542 1.27 6.51 7.16 0.91
28 22.57 22.57 5.39 3.94 1.37 6.13 2.14 2.87

B PROOF SKETCH OF THEOREM I
Now we give a proof sketch of Theorem (I} which contains three major steps. The detailed proof can
be found in Appendix [F [C|and [D}]

First we relate the diagonal of Hessian to weight matrices W5, W5. Under Assumption [T} denote
Wi, :] as the i-th row of W7 and Wy := [wa;, waa, ..., waq4). Since the input dataset is whitened, we
can show that

i
)
\2

2
max; (wé?) ot max;
— (t)=

ot (t) = >2 ) med,2

'med, 1

median (wé? median H Wl(t) [i,:] ‘

Next, due to the one-dimensional output, we can prove that W converges to an approximately rank-1
matrix. More precisely, we have

W1(t> = u®p®T 4 ng,
Wi = OO 4 RO,
where ¢® is a scalar, u®,v® RY) € R? and R\” € R4 Denote the i-th coordinate of
u® v®) Rgt) as ugt),vgt), Rg;), respectively. Denote the (i, j)-th element of Rgt) as Rgt) [i, 7]
We have that Vi, j € [d] : ‘R(Q? < ¥ ’ugt) and ‘Rg) [i,j]’ < ‘ugt)vgt) .

Using the rank 1 structure, we can further simplify RO2T | (f) and RO, () by

2
max; (ugt))

Rﬁi{k(t)z—tg,k:m. 4)
median (ug ))
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The final step is the detailed analysis of u(*).
For SGD+M, we can prove that u*) ~ C(t)[X1, Xa, ..., X4]T where C(t ) € Rand X;,i € [d] are

max; (
i.i.d. Gaussian variables. Then we have with high probability, ( ) Q(log d). For Adam,

me: 1dn( (t))
max; (u( >>

we can prove that Vi € [d] : ul(-t) € {£1}, which gives us " ( (t))

—— 2 = 1. Substituting into eq. @)

completes the proof.

C ANALYSIS OF SGD+M

Note that A = LYV X7, Ay, := L XXT. Denote g( ). = Vi, LIW®), k = 1,2. We have that
g = Wi (wPwlt - a), gl = (wwi - a) Wi

Let A®, A;@ and §,(:), k = 1,2 be the corresponding batch versions at time ¢t. Let E(*) :=

WQ(t)Wl(t) — A, and use Ei(t), A; and (Wét)Wl(t)) to represent the i-th coordinates of E*), A and

Wz(t)Wl(t), respectively. By eq. (2), the update rules of W1 and Wy for SGD+M are given by:

t
W(tJrl) Wl(t) nZBt TW (1T (W2T)W(T) _ A) _ nz ﬁtfngY)’
7=0

t
Wit =wi —y Z BT ( Wi - A) Wi~ D,
7=0
where
Daf? = a0 o = T (wPw (A - 0., - (40 - 4)).
D = 50— of? = (WY (R ) (A0 - ) Wi
Based on the magnitude of W» and W1, we can intuitively divide the training procedure into 2 phases.

1. First phase: the first several iterations when W and W5 are “small” so that WoWW/; — A ~
—A.

2. Second phase: later iterations when W»W; cannot be ignored.

More formally, the boundary between the first and second phase is defined below.
Definition 1 (End of the first phase). The end of the first phase (denoted as T1) is defined as
Ty = inf{t >0:3i,5€d: \w;? > Lo ’Wl(t)[z’,j]‘ > d%}

By Assumption 2]and the assumption that Vj € [d] : A; > 0, A; = @( ), at the beginning, w.h.p.,
Vj € [d] : (WoWh); — Aj < 0. During the training, each (Wng) increases and approaches A;.
We hope that by choosing a small learning rate, when (W2 W7); overshoots for some coordinate 7, i..
(WaW7y),; > Aj, it will be close to convergence. To analyze this overshooting issue more carefully,
let’s first define the following “almost overshooting time”.

Definition 2 (Almost overshooting time). For ¢ > 0, denote ¢y = dl% + €log \/g. Define
4

Ty = inf {t >0:35€[d: (Wz(t)Wl(t)) A > \/a}

J
Definition 3 (Convergence time). For ¢ > 0, we define the “convergence time”
Ty i=inf {t > 0 [|EO||; < .

We can first show that after the first phase, i.e. when ¢t = T, W; will become an approximately
rank-1 matrix, as described in the following lemma.
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Lemma 1. Under Assumption and suppose o < d;’j%. By picking n < O (di) we have
that whent =Ty, L (W(Tl)) = O(d), and that

W) = BT 4 (T (TOT
W) = RITOT 4 ((T1)gy(T)T

where ¢TV) € R, u(Tl),v(Tl),RéTl) € R? and Rng) € R4 Denote the i-th coordinate
of u(Tl)v'u(Tl),Rng) as UETI) U(Tl),Rgl), respectively, and the (i, j)-th element of Rng) as
3

Rng)[i,j]. Then w.h.p.,
~ 1 ~ 1
(@) <o)
dioe—1 ‘C(Tl)u(Tl) dia—1

The following lemma tells us that this approximate rank-1 structure is preserved when 77 < t <
min{Tg, T3}

Lemma 2. Under Assumption and|3| suppose o < %. By picking n < O ((17*;7*4) we
4
have that w.h.p. for Ty <t < min{Ts, T3},

RV

‘UETI)UJ(‘TI)

‘ R

Vi<ij<d:

IN

Wl(t) = (M) OT + R§t)’
W = o0y T 4 gOT

where
V1<i4.7<d ’ gt) [Z’j]‘ < @ ) ‘ étl) < @ )
= Za] = . ul(_Tl),UJ(_t) = (60 1) ‘c(t)ung) = (60 ’

and € is defined in Deﬁnition Moreover, when t = min{Ty, T3}, L (W(t)) = O(epd).

The following lemma gives us a more detailed description of w(7*).
Lemma 3. The u(™) in Lemmaandcan be written as ™) = X +Y where X;,i € [d] are

i.i.d Gaussian random variables and that w.h.p. Vi € [d] : % <O ( . )

di%3

Now we are ready to prove the SGD+M part of Theorem I}

C.1 PROOF OF THE SGD+M PART OF THEOREM[I]

Define Tsgp,1 = T4, Tsgp,2 = min{7T», T5}. By pickingn < O (d%j+4), we can apply Lemma

andto conclude that L (W (%@1)) = ©(d) and L (W Ts:2)) = O(eyd). For any p > 0, by
picking 0 < e < L and & > 4(p + 2), we have L (W (T30:2)) = O(eod) < O ().

Moreover, when ¢ € [Tsop,1, Tscp,2], the conditions in Lemma are satisfied with § = @(eo).
Then we can apply Lemma [30|and get that

1 @( ) 2 max; (u(T1)>2

B €0 7

ﬁ%ﬁmﬁgwwz@ 0 ). )
+0(eo) median (uE 1))

By Lemma uw(T) = X +Y where w.h.p. Vi € [d] : Yil < o (%

1
dic—3

). This fact yields

2 ~ 2
max; (u") > 1-0 (7)) max 2

2 -
median (uET‘ )) 1+

Vi e [d] :

median X?

S
/N
IS
N

Q

|
NI
N—
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Here X;,i € [d] are i.i.d Gaussian random variables by Lemma@ To prove the concentration of
median Xf, we borrow the Proposition 12 in Chapter 2.3 of (Lerasle, [2019). By setting K = N =d
in this proposition, we have

P (|median X? —E[X7])| > 2,/VaI(X%)> <e ¥,

Denote o2 as the variance of X;,i € [d]. Then E[X?] = o2 and Var(X?) = 20*. Hence
P (‘median X7 - 02‘ > 2\/502> <e .

That means with high probability, median X? < C'o? for some C' > 0. By Lemmain Appendix
we know that w.h.p.

22, X1 = o og ),

which gives us w.h.p.
2
maxlgigd Xz

= Q(logd).
median X? (log d)
Hence we have proved that Rlsng’?}’[( ), Rﬁf;?gl( ) > Q(log d).

C.2 PRrROOF OF LEMMA[I]

In the first phase, W5 W is “small”, and we write the update equations in the following way

W(t-H) W(t) nzﬂt TW(T)T (W(T)W(T) ) ﬁZﬂt TDg(T)

t
t) +n Z ﬂtiTWQT)TA -7 Z 5t7TW2(T)TW2T)Wl(T) - Z Btf'ngiT)
=0 7=0 7=0

t t
_ Wl(t) + nWQ(t)TAZﬁt_T + nz ﬁt_T <W2T)T o WQ(t)T) A (5)

t t
-7 Z Bt—TWQ(T)TW2(T)W17) —n Z ﬂt_TDng)
=0 =

_w® N 0T {0
=W, +175W2 A+175 ,

where

r( R A t)TA+ Z/Bt r (W2T B W( )T )A

t
~ (1= W TwOW — (1 - B) Zﬁt‘TDg§T)~

7=0
Similarly, we have

(t+D) _ b () (T _ 0, N O NG
WD = n;)ﬁ (W2 W A)W1 =W AT ©

where
t

AW 4 (1= ) 3 gt (W - i)
=0
t t

— (=8> W W wT - (1-8) Y B DS,

=0 =0

The following lemma gives us an explicit formula of Wz(t).
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Lemma 4. Let \; < Ay be the two roots of the quadratic equation * — 2z + 1 — e B || Al3 =
Pickn < ﬁ, then we have that

:clA§+(C2+r ))\

Wi 2, wi® _ W§1LA1W2<° (t)

where Cl = — Na—; B 2 = Mg

will be specified in the proof.

(t)

We can prove that in the first phase, r; " is “small”. More specifically, denote its ¢-th coordinate as

7"51 , and the i-th coordinate of C as C5;. Then the following lemmas tell us that Vi € [d],
O (dp(a ) where w.h.p. O (dMa)) < min;erg) |Coyl.

T's54

We first have the following bounds of ‘7’%) ()

rit (®)

and |7y,

fori € [d].

Lemma 5. Under Assumptlon and suppose o < /:+1 and pickn < O (di) We have w.h.p.
forallt <Ty,Vie|[d ‘ i, 7] <(’)(d3 <O<d"2)
2

2 *1)
Lemma 6. Under conditions of Lemma we have that w.h.p. for all t < Ty, Vi € [d] :

0 (=)

Next we prove upper and lower bounds of |Cy;| and |Cy;| for i € [d].

T2z

(®

rsi | <

Lemma 7. Under Assumption E|andE| suppose o < dgf%. Pickn < ﬁ, we have that
i) whp., Vi€ [d:|Cy| <O (%),|Cxu <O (5):
ii) Cy can be written as Cy := (Cg + C4) where Cs;,i € [d] are i.i.d Gaussian random variables

g
2
and that w.h.p. ¥i € [d] : chll <0 (ﬁ)

i) whp. Vi € [d],|Cul = @ (1) 1 1Cail = @ (<4 ).

Now we are ready to prove Lemma([T} Lemma ] tells us that
:clA§+(c2+r ))\ t

where \; =1 — |All2 and A2 = 1+ 15[ A2

1|
1-8
Under the conditions of Theoreml and pick n < O (), by Lemma|§| and we know that w.h.p.
VE<TV1<i<d,

~ 1
<0( ). loal =2

s ~
>7 |02i§@<1), ” §(9<11 )
« do |022| die—1
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(t)

We first prove that 'w reaches

da/2 for some coordinate i before ‘W( )[k j]’ for Vk, j € [d]. To

see this, first note that

W Wlt 1)+ n5W2t 1)TA+lfﬁ(t 1)

t—1 -
SRS SUCLP TS Bk
T t—1
—w© <012A1+CQZ)\T+ZA57‘§T> A+$Zr§ﬂ
T
wz(22> e
t—1 T
%er (Clz/\f+z)\f (r) vOT 4 M gy(OT
7=0

where v(OT = ﬁA and

t—1
ul) =3 "A\jC7. (8)
=0
Moreover, we have that
)\t
Wi0 = CuX o (Gt ) M= O 0 4 T, el = 5
ZT:O )\72—

For t < T4, by eq. (7), we get that w.h.p.,
1 \r+ (7 t) A
S| o
N

V1<i,j<d:

o

- 1
_ <o)
|Col <d4“1>

[i, ]‘<(9( ) Then we have that w.h.p.

‘A2r5z

e

Fort < Tl,byLemmaV1 <i,j<d: rg

T T T t—1
‘# 7' OTg)[Z J]‘ ‘ZT 07’5) ‘ ‘ZT OTE)Z’]]‘ <ZT OO( % 1)
L R SE O RS

02 ()
ozt

Here we used Vi € [d] : A; = ©(1) by Assumption I}

Since A1 = 1 — 25| A2, we have that [C1,A{| < [Chif < O () and that
t—1
A;|Cui] AlCul (1
Chi )\Tv(t) C ; )\T n < 2 <O —
Eoae 3| R < <0 (e

Using the Gaussian tail bound and union bound, we have w.h.p. V1 < 4,5 < d: ‘Wl(o) [i,j]‘ =
o (d%) Combining the above bounds together yields that for ¢ < T3 and Vi, j € [d],
Wl ) = Ry 3]+ o (14 €7 ),

9)
wy) = Ry +cVu (14 e3).
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where for Vi,j € [d]. ’Rg?[i,j]‘ < @(d“+ ) Rétl)l

0 ()

Further we notice that for t < T3, we have Vj € [d],

< (5( = and‘(t)

621

(t) _
’vj’_ﬁAj'ZizloAE_nAj M-l AT 4 —O(1>

[c® N T I8N0 -1 M4l T AL T \Va

®),,(®) 1
which yields that ’u ‘ O (ﬁ)
for some ¢ € [d] before ’Wl(t)[k,j]‘ for Vk,j € [d], ie. T1 =

1}
[3 .
> -

c(t)ugt)‘. Together with eq. (@) gives us that

‘wQ ‘ reaches da/2

inf {t >0:3ie] ‘w(t)

Further, we know that at time 7, c(Tl)u(Tl) |Ca0| A3 = © (52) for some iy € [d], which
means w.h.p.
o(k) L) o () . . o
L < L = Qd%) <Al = (1 + 1,6’||A”2> <0 (dza),

logd
= T1=0 ( ) .
' nl[All2

(10)
This is the length of the first phase. As for c(Tl)u(Tl) and ung)v](-Tl) for other coordinates, we have
that w.h.p. V1 < ¢, 5 <d,
T -1 T
(Tl)(le ] [Coi A, )‘2* g @ -1 CaiA;
u,; U Z | 21 | B )\ | 21 ]‘ HAH | 21 ‘
Q dO‘/Q - -
e )Q(l) (31)
@(\/a) die diots
- ~ 1 ~ 1
‘C(Tl)uz(-Tl) = 0ug = @ (a2) @ ( g ) - ( 3 ) '
di® di®
n . . R{TV[ J])
Here in (i) we used Ay = 1 + 75[|All2. Then we have at time 71, Vi,j € [d], Tom,m] <

U;

(T1)

A 1 Ry
O ( . ) and that
PR

’C(Tl)uETl) ’

<0 ( di“ ) Together with eq. (9), we have the following weight
4

structure:
Wl(Tl) _ R(Tl) + T yp(TT

W2(T1) _ R(Tl) —|—C(T1) (Tl)T

where w.h.p.,

Finally, we consider the loss. Since Vj € [d] : (Wz(Tl)Wl(Tl)) — A; = —0O(1), we know that
_ J
L (W) = e(d).
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C.3 PROOF OF LEMMA[3]

Eq. () tells us that w™) = ZZ;_OI ACT. Lemmatells us that Cy can be written as Cy =

1 (C5 + Cy) where C3;, i € [d] are i.i.d Gaussian random variables and that w.h.p. Vi € [d] : }g‘:: <

@) (ﬁ) . Combining these two facts together finishes the proof.
2

C.4 PROOF OF LEMMA [

Replacing ¢t by t — 1 in eq. (6), we get

W = w4 17ﬂAW1(t RO B C ) (1)
Eq. (6)-(T1) and substituting eq. (3) yield

2 2
t+1 t t t—1 n -1 Ui -7
Wit —wi? = wi? -t ¢ (I_B)QHAHgWQ“ )+ (I_B)QA# )

n t t—1
().

2
t+1 n -1
= Wit —aw® - (1 ~Gogr |A||§> Wi 4

where r3(t) 1= 7 5)2 Argt nr 5 (Tét) 77,;:—1)).

For the equation 22 — 27 + 1 — ﬁHAH% = 0, the roots are \; = 1 — 5| Al]2 and Ay =
1+ 725[|All2. We have that
WD oo wg® = x (WS = xewf ) )
t—1
= W = WY = At (WQU) — W)+ SN
T=1
At 1 < A W, 0)) (t)

‘We further have

t—1 ¢
W = Nws” + 3T AT (Wg(l) - A2Wz(°)) +3 N
7=0

T=1

A — AL ; .
=2y T (g = W) 4 S A

T=1

t
= CIAL + Cods+ > AT

T=1

= O+ <02 + rgﬂ) b,

) _ —r (1) oW ew” _ wiawg®
where ry”’ = ZT 1Ay Oy = -2 and Oy = 25—

C.5 PROOF OF LEMMA[3]

Write rgt) = ﬁt“W(t)TA + q(t) + q%) + q£4) where q%z) = (1 -
BB (W W) A 0l =~ = Bl s WOW ) and
qg? =-(1-8", ,Bt_TDgY). And write r(t) = —BtHAWl(t) (t) + qé) + qg?, where
@) = (1= B XL AW W) gl = (1 - p) zfzo SwOw oW
and g3 = —(1— B) 1 8" Dgy”).
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. For any 7 < T, we have that

Let’s first try to bound "hz 1,7 ‘ and ’qQQ i

vield: |(w, T’Wlf)\—Zw Wi i)wzj Wil \Si;:dalv

= O(1). Then we have for all ¢, j € [d],

and thus i € [d] : ‘Ei(’)

(r+1);. (). . SN (k) (k) Nk 1
WA = | <0 el B < 2o 0(77)

1
_no(da/2>

~ B (R) s - S 1
SﬂZﬁ kZ‘EJ( WVl”[%J]‘SUZﬁ ko(da/m)
k=0 Jj=1 k=0

1
= ’170 (da/2_1) .

‘w(TH) _ wg)

21

That gives us Vi, j € [d],

(w27)—w21>A ‘ < n( 1_@5:0(52;52_17—))
=0

’fhzlj‘ (1 B)Zﬁt T

7=0
0 k).
af2, S-5Y 5 TZ\A (W3- wl.1))|
=0

ZO (6td;/1;17)> =0 (da/n?—l) '

We have for Vi, j € [d],

Then we bound ‘qg [Z}j]‘ and ’qég),i .

wy) (Wéﬂwfﬂ)j’g( A2 BT T

0901 < @ -3

7=0

1

t d
] < a-p Y o Y| (Ww?) Wil
7=0 =1
d g 1 1
SOU=BY BT mimg =0 (da_z)
=0 i=1 2

Finally we use Lemmato bound ‘q&) [i, j]’ and ‘qéﬁfz‘ Fort < T, the Ml(t)7 MQ(t) in Lemma

are upper bounded by . In the theorem we consider the training period before Tsgp 2 so the
time 7 in Lemma |Zf| 1s set as Tsgp,2. In the following sections, we will prove that Tsgp 2 <

(dalogn ”/6)> Then by Lemma we have with probability at least 1 — %, for V¢ < T} and
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Vi, j € [d],
u) O () 1 dot1 d 1 dot2 d
‘Dg ]’ = ’91 [i, 5] — 91 [i, J]’ <0 <d32a30 " logg +0 =\ logE
(1 [aet2
< _—
<0 <d(50 p ) ,
1 detl 1 det2 g
‘Dg ’g(t) 921 < O g IOg* +O —a 70 710g*
S n € d>—1 n €

- 1 lda+2

By picking o < da”j%, we have w.h.p. for V¢ < T and Vi, j € [d], ’Dgit) [z’,j]‘ <n0 (L) and
. .
Dol <00 (55

), which yields

0216, < -5y 8

=0 =0

‘ . 1 1
] <03 el | < 19 Y 00 (e )no (d>

7=0 7=0

Combining all the above bounds and substituting < O () gives us for V¢ < Ty and Vi, j € [d],

1
00| < 54 of2,| + 6 (5 )+ [rt?
2

d
. = 1
< 6t+1 ZAjwl(t)[Z,]] + O <dga2) .
j=1
12)
For t < Ty, we have Vi, j € [d], ’wQZ)A ’ < (9 da/2) and ’Z] 1A4; Wl(t [2, j]‘ < O(da/Z 1)

which gives us ’r( )[ ]‘ <0 (d@/2
yields that for ¢ < T3 and Vi, j € [d],

) and ’ 2?‘ < O (a75=)- Substituting into eq. () and eq. (6)

<0 (7))
| < e+ 2 () <0 ().

alogd n 1
< —— .
oati/7° (7T < d)

®)

Wi g1 - Wit < o g™ —w

)

Hence for ¢ < min { log(l/ﬁ) , Tl} we have Vi, j € [d],

IN

‘w(t) <

S

i

_alogd
fort < Toa(1 777"

Then we know that T} > % and also get tighter bounds of ‘Wl(t) i, 4],
(t)

Now we use these new bounds to analyze |r;” [7, j]‘ and ‘7"2 ‘ again.

() 4.

J

1

When ¢t < 1fgl<°1g/§)’ we have for all 4,5 € [d], ™! ‘w A,

Clan ‘Z?:lA‘W(t)[i,j]’ ‘Zj AW, ]” < (9( L ) When lalogd) <t < T, we

(1/p
have B! < L, suggesting that Vi, j € [d], 8" ‘w(t A; ‘ <2LoO (d—%) <O (dgiu) and
2

gt ‘25:1 Ale(t)[i’j]’ < (Ta@ (d%%l) < (9(
proof.

< O(—t—) and
(7#=)

ErY
2

). Substituting into (I2) completes the

7@,
2
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C.6 PROOF OF LEMMA[G

Based on the bound in LemmaE[, we have
(t— 1) n ) _ (=1
1_ 2ZAT 1_ﬁ<r21 T2 )

ae

)] _
‘TB'L -

IN

d
T S At ¢

. 1 ~ 1 ~ 1

Since Ay = 1 — %5 | All2, A = 1+ 25| A2, and note that [| Al = (m), we have that
t—1 ( ) n n 1 1
t—1—7 (7 < t—1—7 < 2 — O
;)‘1 Z/\ O<d2a 2)1_)\10<dga2) O<dg(a1))’
o~ 1 n = 1 ~ 1
< T < = .
n;l& O<d3<a1>) - /\2—1O(d3(°‘1)> O(d%al)

C.7 PROOF OF LEMMA[7]

‘(t 1)

t
0] -

-7, (T)

t
o Ay Ty,

‘TSz

For the equation 22 — 27 + 1 — ﬁ”AH% = 0, the roots are \; = 1 — 2
1+ 15| All2, which gives us
Wi — O
/\2 - M\
W AW T 4 — Wi+ Al .
25 || Al

1@  1-8 or , 1—=8 0
. A
a2 g, AT g,

where 75”) = — WSO WOW T — Dgi”. Note that this is slightly different from the definition of
rgo) in eq. (6). Now let’s bound the i-th coordmate of ré ),
(s4) -
dz1!
@ (%1) which also applies to ¢ = 0. Using the Gaussian tail bound and union bound, w.p. at
least 1 — ¢, for ever 1 < 4, j < d, we have that

Cy =

In Section we have shown that w.h.p. for V¢ < T3 and Vi, j € [d], (t

0)r. . 2 2d?
’wzz dgialog?7 ‘W1( )[%]]’ < dzTalOgT'
Then we have that w.p. atleast 1 — 0, V1 <i,j <d:,
d
’(W(O)W(O) ‘Zwm)W(O) il Z’ng) ’Wm)j Z}‘
d
2 2d?
S;\/d%lg 5\/d4a &5 S patlos 5
= @< (W(O)W(O) ‘ W%, 51| + ‘Dg
o (14)
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T
Next, we bound the i-th coordinate of W2(0) + ||A\|B AW(O)T ie. wél) + ”1A”ﬁ A (W(O)[ ,]) .

By independence under Assumption 2] we have that

© , 1-8 o N\ _ o), (- (0)
Var (in + ||AH2A(W [i, }) ) = Var (w% ) + ||A||2 ZAQVar (Wl [i, ]])

1 1
= pa ||A||2 ZAJ dia — =0 <d2a) :

=1

Using the Gaussian tail bound and union bound, w.p. at least 1 — 6, for ever 1 < ¢ < d, we have that

0, 1-8 0 1\ < Loeed 2o (L
ol + oA (V)" < 0 (e ) <0 ()

Since for X ~ AN(0,0?), we have that P(|X| < t) < \/%U, then for a fixed i,

1-5 0)r: 1 2/d4 1
Plw? + A(w! z,:)‘ )< =0(—=].
(o + s (700) | < ) <o (v ) = (@
Then by union bound, we have that w.p. at least 1 — ﬁ%“ forevery 1 <1 < d,
1= 5A<W(o>..)T>@ 1
ol g (069)’| 2 0 ()

Now define C5 := WQ(O) + HAIB AW(0 T and Cy = 2||A|| 7"21). We get that C'3;,i € [d] are i.i.d
Gaussian random variables and that Cy = (Cg + Cy), where w.h.p. for all ¢ € [d],

- /1 1 (1) . 1
|C3i|§0<da)7 |C'3i|2@(dia)7 |Cas §O<ds;), (15)

where (i) follows from eq. (T4) and the fact that || A2 = v/d. Then we get that w.h.p.

wew: 2l ) o1y

T
2
|C3’L o ( ; ) d%”‘“*%

Substituting eq. (T3) into eq. (T3)), we get that w.h.p.,

ol = ([u? + o (W%69) ) < |

Similarly, note that

N

jo}i
S
IsH
NS pe—y
Q
N~~~
S}
/N
=
N~
—_

1) o AQWQ(O)
Ao — A\
WQ(O) + nAWl(O)T + nféo) - WQ(O) -

2
214l

1 1-p or _ 1=5 0
=Wy - ———aAaw O - =
272 TOAlLTt T 24l

Cy=—

0
25 Al W3

we can use the same techniques to get that i) w.p. at least 1 — 8, Vi € [d] : |C] < O (). ii) w.p.
1 : I>af_1
atleast 1 — 8 — ——, Vi € [d), |C1i| > O (d%a).
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C.8 PROOF OF LEMMA[Z]

The proof in Section|C.2]tells us that at the end of the first phase (when t = T}),
VV(T1 = uTp(MT 4 Rng)v

W2(T1) _ C(Tl)u(Tl)T + Rng)T’ (16)

T_ A oy N
_ 3 T -1\,
1 ﬂ ETI 0 A
Denote the i-th coordinate of u®, v®, RY) as u{” ("' R{) respectively. Denote the (i, j)-th
element of Rgt) as Rgt) [i, 7]. For t > Ty, we prove by induction that,
W(t) u(T1) R(t)

17
W(t) (T1)T Rg) , a7

where

DT — (T Oy08

— e
R = RY — 9, RYE® 4,
D) o) (0 (D)

Rét—&-l)T _ Rgt)T . ntE(t)Rgt) + 7"; )’
with Tgt) =7 Zi:o Btf-r (Wét)TE(t) _ WQ(T)TE(T)) _nzi 0 Btfng("') E® .— W(t)W(t)_
A =08 and o) =yt 8 (EOWSOT - EOWOT) g5t 5D,

Note that the r( ) and rét) here are different from those defined in Section but we abuse the
() ()

notation and still use r;” and 5~ to represent the error terms.
The base case is already given by eq. (16).

Suppose our lemma holds for ¢, then for ¢ + 1, using the same techniques as in eq. (3) and eq. (6)), we
have that

t t
Wl(tJrl) — Wl(t) —n Z ﬁt—‘rwz(T)TE(T) - Z Bt—‘nggT)

— 0 OB 1 0

9

t t
W2(t+1) _ WQ(t) _ nZBt_TE(T)Wl(T)T . nzgt_TDgéT)

_ W2(t) B ntE(t)Wl(t)T + Tét)’
Plugging in the inductive hypothesis yields
W(t""l) Wl() T]tWQ(t)T (t) +’I“(t)
= uMy®T L RO g, (C@)u(m 4 Rgt)) E® 45

— (™) (v(t)T — ppc® E(t)) + RO — RV E® 4 ),

Wz(t+1) _ W(t) . E(t)W(t)T n rg')
— DyMIT | gOT (1) (v(t)u(Tl)T + Rgt)T) 4+

( —m B )y )> w™T 4 Rg)T — T]tE(t)Rgt)T + rét).
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It implies that our lemma holds for ¢ + 1, which completes the proof.

Now we analyze the error terms ‘Rgt) [d, j]‘ and ‘Rgti) ) and Vi € [d], U(Tl)

are all positive. We first prove by induction that for all T} < ¢t < Ty, ¢(¥) > 0,Vi € [d],v (t) > 0.

The above discussion already proves the base case. Suppose at time ¢, we have ¢¥) > 0,Vi €
[d], v (t) > 0. Note that when 77 < ¢t < T5, Vi € [d] : E@ <0, then for ¢ + 1,

(t+1) () ’I’}C()E()>O
D) = () 7 ZE ) > 0.
i=1
Therefore by induction, we have proved that for all T} <t < T5, ) > 0,Vi € [d],v (t) > 0.
Now we prove that for all T} <t < T,

‘R(t)[’ j]‘ S ] ‘R(t) ()
1<ij<d: 0<i— "1 <y, T <<y ., (18
Visijs 0’ (T1) (t)* +Z 0= ® |y (T1) - +Z (18)
=T & =T
where
TR O
d; := max max = max max ,
‘ i (Tl) c(T) oy (Tl) i ‘ (T0)] (B 7 o) [ (T
j %

()

The left hand sides of the inequalities are trivial since we have proved that c*) > 0, Vi € [d], v;” > 0

for all T <t < T,. Now we prove the right hand sides by induction.
The base case is already verified by the definition of 6;. Suppose eq.(I8) holds for T; < ¢ < T5. Then
for t + 1, using Vi € [d] : Ei(t) < 0and 0D > @ D) > (D) we can get that V1 < 4,5 < d

QI 1 (t) 1 (t)
’Rgt“)[i,j]‘ ’31 [Z,J]‘ W*”t Ry; ] (ij ) . )Tit)[i,j]
T S T ()
< (6 +27— T ET)> (t) +T]t (5 +ZT T ET)) c(t) (7E.7(t)) (t)
< + €;
vj(- ) 4 pe® (—Ej(.t))
t
o4 Y,
=T
Similarly, we have that V1 < ¢ < d
(t) d (t) @y, -
][Ry o (08 | ey
_|_
c(t+1) ‘ul(_Tl) c® 4, 24:1 (—E(.t)> e ‘uz(-Tl c®

T d
< (6 +3 ) Y (6 + Y )) 2= (_Ea(t)) ”J('t) 1€
< €
e e 5 (7E§t)> o)

t
0; + Z GET).

T:T1

Therefore by induction, eq. (I8) holds for all ¢ in the second phase.

So far we have proved the rank 1 structure stated in Lemma 2] The remaining part of the proof is
given by the following lemma, whose proof is deferred to Section
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Lemma 8. Under Assumption HandE suppose o < d:’j’%. By picking n < O (ﬁ) we
4
have that w.h.p. for Ty <t < min{T5, T3},

R RS

il
Vi<ij<d: 0<

< O(e), 0< ——T1_
T c® Ju;

< 0(60)7 (19)

(
i J

and that when t = min{T5, T3}, we have ||E(*) Hz = O(eod).

C.9 PROOF OF LEMMA[§]

We first have the following lemma which describes the structure of v® for ¢ > T7.

Lemma 9. Under Assumptlonl Iandl fort > Ty, we can write vW7T as vWT = oW A + Ry
with (™) = 12 RIMT = 0,0, ...,0], and

a(tH):(l—nc d(t) ) 4 ec®,

RUHD = (1 — pye® d(t)) R® — R,

t)T

where d®) = ¢(*) ’u(Tl) + Rg)T’u(Tl), Rét)T = c(t)u(Tl)TRgt) + Rét)TRgt).
Moreover, we have that
wiPw = d0p®T 4 ROT = aWa® A + dOROT 4 RPT. (20)

We prove Lemma (8 by induction. Denote the i-th coordinate of Rét) and R\ as R(t) and RSJ’?,
respectively. The following lemmas constitute the inductive part.

3/2
Lemma 10. Under Assumption E|and suppose 0 < Lo and pick n < O (). Con-
sider any t such that T1 < t < min{T»,T5}. Suppose for all Ty < 7 < t, we have ¥i,j €
d] : ‘wg) ‘Wl(T) i ]]’ < O (i), then we have that Vi, j € [d] : ‘rp[z 7
o (nzd11/4) ’réi—) = O (n2d*3/*). Moreover, we can get that Vi € [d] : egt) =0 (nzd%a"’%),
where e ) is defined in eq. (TR).

Lemma 11. Under the conditions of Lemma and pickn < O (761 — — ), we have that at time
4
t+1,

<O0(e), 0 ———"1—
U§t+1) < O(eo) o(t+1) UETI)

’R(H‘l)

B
<1,7<d: < 4
V1<i,7<d 0< ‘U(Tl)

where ¢ is defined in Definition 2]
Lemma 12. Under the conditions of Lemma and pickn < O (dLaﬁ)’ we have that at time
4

t+1,
‘R(t+1)T (T1) ‘R(t+1)
L < O(e), Vjeld: < Ole).
(1) Hu(Tl || ( 0) J [ ] () ||U(T1)H2 (t) ( 0)
Moreover,
‘ ‘Rét;rl) N
Vi€ [d]: < O(ep). (21)
Aj
Lemma 13. Under the conditions of Lemma and pickn < O (dTSH) if we further suppose that
vt ) R R i
Vield: =6 ( ) and —y5- are of order O(eo), then we have that at time t + 1,
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(4) Vi,j € [d): 5 = O(1),

. LD )
(B) Vi € ld): % =0 (L),

(C) Vi,jeld: ]w;*”‘ <O (dVY), ‘Wf””[i,j}‘ <0 (5

),

| RHD

and

(D) Vj €| (,+1)A are of order (9(60)
By combining Lemma T]and[13] we can prove by induction that for all Ty < ¢t < min{T5, T3},
eq. (T9) holds (which follows from Lemma|T1)), and

B
Vi, j € ld: = = O(1), (22)
E

which follows from the part (A) of Lemma[I3] Now the only thmg to verify is the base case, i.e. when
t = T}. More specifically, we want to prove that 1) Vi, j € | ‘w(Tl)‘ <0 (d1/4) ‘WlTl)[ ]‘ <

’R(Tl))

(T1) ) ~
iy
and LTI, Are of order O(ep).

@ (d1/4) and that 2) Vj € [d] : {77 = © (f) and that 3)
All of them can be verified by the proof in Sectlon ﬂ 2|and the definition of Rq(,t), R:(,f).

’ R{TD

So far we have proved eq. (T9) in Lemma Now let’s prove when ¢ = min{75, 75}, we have that
|E®]]2 = O(eod).

If min{7%, T3} = T3, by Deﬁnition we have HE(t) H; <e If min{T,,T5} = T, by Deﬁnition
there exists j € [d] such that Ej(t) = —0O (y/€0). Combining with eq. 22) gives us Vi € [d] :

Ei(t) = -0 (\/5) Combining these two cases, we get that when ¢ = min{75, T3}, E® H; <
max{e, © (eod)} = O (eod).

C.10 PROOF OF LEMMA[I

We prove this lemma by induction. The base case (t = T}) of v(*) is verified by eq. (T6).

Suppose at time ¢, v)T = () A 4 R(t) , then by eq. we have that
wOw = (C(t)u(Tl)T +R§”T> (um)v(t JrR(t))
( ® Hu(n) - Rg>Tu(T1>> W® 4 (DT RO | ROT pl0)

— 0p®T 4 ROT
=dDa® A+ dDROT 4 RIOT

where d(*) := ¢(®) ||u(TV) ||2 + RV RIOT = Oy MTRY 4 ROTRY) That gives us

DT — T _ . (6) ()

= a® A+ ROT _ p,c® (du)a(t) A+ dOROT 4 ROT _ A)

((1 _ mc(t)d(t)) a® 4 mc@) A+ (1 — e d(t)) ROT _ 5, gOT
=atVA 4 R£t+1)T.

Therefore we have proved by induction that for ¢ in the second phase, v(*) = a() A + Rq(f)T. The
above steps also proved eq. (20).
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C.11 PROOF OF LEMMA [I0]

write 1" = ¢\V + ¢{!) where we have ¢!} =3 _ gt~ (W(t) BE® — WQ(T)TE(T))

gty = —n YLy B TDg". Write ri? = ) + ¢5Y) where g3y = —n YL BT Dg. ¢ff) =
D5 B (BOWOT — pow T,

Let’s first bound ‘qu 1,7 ’ and ’qétl))i‘. By definition of T5, we know that for T} < 7 <¢,Vi € [d] :

’Elm = O(1). Then we have for all 4, j € [d],

W~ WOl <0 30 5wl B < 30 50 (a1) = o (a)
k=0 k=0

T+1) ('r)
2i

T d r
<Y S EOWA | <Y R0 (#) = o (a0
k=0 Jj=1 k=0 (23)
Note that

‘E§T+1) _ E(‘r)

y :zd: ((wngl) (T)) Wl( )[Z ]] _|_w£7') (W(TJrl)[Z ,7] W(T) [’L j}))

+ Z (s =) (W01 - w6 0))
We can further get that for Vj € [d],
< d0 (/1) 0 (471) 4+ nd0 (a1) O (/) +2do (@) O (d'/*)
-0 (77d3/2 + 772d2> —0 (Ud3/2> _

Combining the above inequalities gives us Vi, j € [d],

(r+1) o)
‘Ej —

00 =[50 0 () B - 507
7=0
<nz,3t ([l - w?| B + [0l | - B
SnQ ﬁt_T(t— ) o) d3/4 O(l)+(9 d1/4 O d3/2 -0 772d7/4 ,
URCRICICD (#)o(#2)) =0 ()
t d
a8 =n >8> (B WOl - BV W)
=0 j=1
t d
<> 8y (|B| Wi - Wit gl + B - B0 (WG,
=0 j=1

. nzdiﬁm(t — ) (0000 (¢4) +0 (a2) 0 (41)) = 0 (s,
=0

By the assumption of this lemma and the analysis before

Next let’s bound ‘Q12 1 J]’ and ‘qgtz)v

Ty, we know that for all 7 < ¢, the M{™), M in Lemma are upper bounded by O () and
O (dl/ 4), respectively. In the theorem we consider the training period before Tsgp,2 so the time 7' in
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Lemma|31|is set as Tsgp,2. In the following sections, we will prove that Tsgp2 < O (dalog; Vd/e)) .

d
log )
€

Then by Lemma we have with probability at least 1 — %, for V7 < tandVi,j € [d],

(7_) do+1
‘Dg zj}—’g 31— [zy <(9 d%o log +0|dio

’Dg(T) g2z

‘g(T) (7) <

By picking o < danj%, we have ‘Dgy) [i,j]‘ <nO (d%) and ‘Dgg-)

) (d%) which yields
t
86,5 <> B
7=0

t
< n Z Btfr
7=0

Combining the above bounds, we get that Vi, j € [d],

Dg{"li,j)| < O (d*).

<O (n2d%) .

(t)

‘q22,i Dgg)

] < O (), |r)

<0 ( 3) :

By the analysis in Section we know that at time T, for some ig € [d], ¢ =0 (%) ,

ETl) =0 (d ) and ’ (T1) J(Tl) = Q( - ), which gives
4

1
dits

(T1) ,uETH)

and for Vi, j € [d], we have ¢(™V) |u
us Vi, j € [d],

(71)

B

c(Tn ugTﬂ

‘ @

r
21
( 2d4a+13> ‘

— O (2q5a+1E
c(®) ) (T1) =0 (Tl e ) ’

(Tv)

u;

(71)

7]
G )
Yj Y

Hence we get the bound Vi € [d] : ¢! < O ( 2d%a+%3).

C.12 PROOF OF LEMMA [T

Let’s first try to bound the length of min{7%, 75 }. More formally, we prove that under the conditions
of Lemmaand pickn < O ( ), we have that min{73, 73} < O (W) )

7(~ T2
Under the conditions of Lemma[T0] we know that

(o)
J

vy € [d] : <

AW =0 67,
=1

‘(W(t) )‘ Z‘wgtgrl i.7]| = O (a) .
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Combining with eq. 23)), we get

E(t+1)
=BO + (Wi - wi ) wi e i (Wi —w®) 4 (Wi — ) (Wit —wi?)
=B — g EOWITW + W~ wPWOTEO + Wi + 0 (n%d)

—E® (1 WO W — HW(t

) +0 (772d4) +0 (n2d4) +0 (nQd) .
Then we have

=], = =]
2 2

2
< (1-n ) =],

When T} < t < Ty, we have proved that c(*) is increasing over time in Section which implies

I- Utht)TWft) — M HW(t)

+ O (n?d*)
2

+0 (n*d*).

2 2
that HWQ(t) H2 >C ‘WQ(TI) ) since () u(T)T is the leading term of W Combining with 1, > n
gives us
] (1=l ) o] o,
, S
2 74 o\ t—T1 2 74
[50), < S (1-ae ) [ fr], - SO
2 UCHWQ(Tl) i 2 2 WCHWQ(Tl)
() 77d4 (T1
<ol | texp nCH -1 o (Vd),
o 2
2
2
2
where (i) uses ||E(T1)|| O(V/d). By picking < (9( —< +4) and noticing that HWQ(TI) >
log(+/d/e
Q (da) we have W < \/ . Hence whent — 7177 > © M) we have that ||E(t)H2 <
n 2 5

Veie |EO|L <.

(/77

Al

other words, min{7%, 73} < Ty + O <10g(d/6)2> <O (dlog(d/6>>.

That means after at most O ( ) steps from 77, either ¢t > T5, or we have ||E(t) H; <e In

w0l !

Now we are ready to bound eq. [T8]

Combining min{75,73} < O <dalog57 Vd/e)) and Lemmayields that for ¢ + 1 < min{75, T3},
Vi € [d],

t+1 ~ 3 13 ~ 7 13 d ~ d
Yol <(t+1-1)0 (n%zzaﬁ) <0 (nd4a+4 log \[) ~0 <e log ﬂ) :

Lemmatells us that §, = O (ﬁ) . Substituting these bounds into eq. (I8) completes the proof.
4
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C.13 PROOF OF LEMMA[I2]

The proof in Sectiontells us that for 77 < 7 <75, ™) > 0,Vj € [d]: U](-T) > 0, which gives us

(t+1)T, (Ty) (t+1)
| %
< ‘Il ————and0 < . By Lemma|l 1} we have that

= et D) [|luTD) || e+ ||u(TD) H%Wl)

‘R(H—l) ’ ’R t+1)
Vi<i,j<d: 0< < O(e), ogig@(eo),
T <
which gives us
t+1)T d 1 A
R T \R<*+> a1 Lk I
c(t+1) ||'u,(T1)H2 (t-‘rl)z ‘ T1) c(t+1) 2?21 u!
LemmaPltells us that
R(t+1)T (D) (Tl)TRgt+1)+Rét+l)TR§t+1).
And we have that
(t+1)
<c<t+1>u(T1>TR1 )]‘ ) Sy R(t“)[ ]‘
c(t+1) Hu(ﬂ ||2 (t+1) “’1)2 (t+1)
(’)(eo)c(“'l)z (T1) U(_t+1)
i .
>~ = 0(60>7
c(t+1) 2?21 u ) U§t+l)
(t+1)T p(t+1) - 2
‘(RQ B )j 2zt ’R Hl)‘ ‘R(tﬂ)[@j]‘ O () etV oL fuf™ UJ('HI)
<
2 (t+1) — - 2
c(t+1) ||u(T1)|| v; C(t+1)z §t+1) c(t+1) Z?:l uZ(Tl) UJ(tH)
—0(2).
Therefore
wp e | ]
O(ep).
Y ) Y
By Lemmal[9]

W2(t+1)W1(t+1) — t+1) Hu(Tl) QU(t+1)T 4 Rét+1)Tu(T1)v(t+1)T n Rgtﬂ)T_

Then we have that Vj € [d],

2 -
(WQ(t+1)W1(t+1)) _ ) Hu(Tl) Uj(»t—H) (1 + eétﬂ)) ,  where ‘egtﬂ)‘ < O(e). (24)
j
(W(t+1>W<f+1))
Since t < Ty, we have Vj € [d] : A—jj = O(1), which yields

G Ju o)

0< i <0(), (25)

(t+1)
|

which proves eq. 1)), since Vj € [d] : 0 < < O(eo).

= c<t+1)||u(T1)H21,J<_‘+1)
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C.14 PROOF OF LEMMA[I3]

(A) Under the conditions of Lemma and pickn < O ( ) we can apply the technique when

7a+4

proving eq. (24) to show that eq. (24) also holds at time ¢. Since 5~ < O(eo), we get that
vj(-t) =aMA; + Rffj) =aM 4 (1 + eitj)) , where eq(fj) < O(ep).

Substituting into the time ¢ version of eq.(24) yields

2
Vi€ [d) : (Wé”Wf“)j = a®Wc® A (1 + ég.“) . where ‘é(-t)

2
égt)) .

Since t < Ty, we have Ej(.t) < —\/€o. Combining with A; = ©(1), gives us aV)c® ||u™) H2 —-1=
—Q (\/5) Then we can rewrite E](-t) asVj € [d],

‘um)

That gives us

(T)|? (T1)

14 a®e®

vy € ld]: Ej<t) =A; (a(t)c(t) ‘u ‘u

T
B — 4 (a(%(t) ‘u(m 2_1> P 1)|| é(t)
f a0 [ F 1
= Aj (a(t)c(t) ‘u(Tl) ' ) (1+e(t)),
()
where ‘eEj‘ = ). Hence Vi, j € [d] : —m = o(1).

v (®
(B) Note that we assume Vj € [d] : {5 = © (ﬁ), then we have for j € [d],

—EWyp® 2o E(t) () d_ (1) (1) d
ek c5>(<E;f>)> ~Y g x0 () -0 (),

(®)

e (—Ej ) ol
—E®Wu® T\ ad)"

Then for t 4+ 1, we have that for j € [d],

(t+1) (t) + pe® (—Ej(-t)) )
s ( ) .

D = <f>+m( EO) v ~

=

(C) Combining eq. (23) and V5 € [d] : A; = ©(1), we know that

D) Hu(Tl) 2v§t+1) < 0O(1),

which yields Vj € [d],
+1)

2 D)2 “§t 1 (41 || (™
J— 1
(Uj ) < D ol)=0 (\/E) , (c ) Hu

Hence Vi, j € [d],

2 (D)

(T1) <
= Uj(_t+1)

o) =0 (\/&) .
(26)

o+ ’ul(m)

—0 (d1/4) = ’w§§+1)‘ < (D) ’uETl) 4

1 1 e . T
Uj(-H ) _ 0 ((11/4) ‘W(t+ ]‘ < ‘ug )

s

Lo (),

(i3) 1
D o (W) |

uz(-Tl)

of Y+ RG]
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where (i) and (ii) use Lemma|T1}

‘ (t+1)

(D) The fact that V5 € [d] : < O(eo) was already proved in Lemmain eq.(21). To analyze

RUEFD

~wena» we first prove that 1 — necMd® > 0.

It is not hard to prove that eq.(26) also holds for time ¢. Recall that d*) = ¢(*) Hu(Tl) H2 + Rgt)Tu(Tl)

‘R(zt)T’u,(Tl) -
and Lemma |12|tells us that 0 < -———— < O(ep), then we have
c® [[u™]|

Da® = (c(t)>2 Hu(Tl) ’ + c(t)Rét)Tu(Tl) <0 (\/g) .

Under the conditions of Lemma and pick n < O (d@ﬁ), we have that 1 — ncDd® >
4
1 —nc®d® > 0.

‘Rm

The assumption Vj € [d] : < O(¢) together with ¢(*) > 0 gives us

Aj

npc® ‘Ré’}) 5
mclA; (<o)
2 ‘”!

Combining with the assumption - < 0(60) yields

‘ngtfl)’ (1= pued® ’Rg)‘ T pc® Ré@))
<
a(t‘f‘l)Ai - (1 — ntc(t)d(t)) a(t)Ai —+ ntc(t)Ai

Vi e [d] :

S 0(60).

D ANALYSIS OF ADAM
Note that A = LYV X7, Ay, := L XXT. Denote g,c = Vi, LIW®), k = 1,2. We have that
ggt) _ W(t)T (Wg(t)Wl(t) _ A) ’ gét) _ (Wg(t)Wl(t) B A) Wl(t)T'

Let A® A(t:g and ¢ (t) .k = 1,2 be the corresponding batch versions at time t. Let E(®) :=
W(t)W(t) A, and denote E( ) as the ] -th component of E(). We also denote Aw(t) = wQH) -

wm), AW(t) i, 7] :== W(t+1)[z Jjl - W [z Jj]- By eq. (), the update equations of Adam are given

by
/1 _ t+1
= ﬁa a"li,4] = wi B, g = <E(t)aW1(t) [i, :]>»
1
mlij] (1= ) Xt 8731 i)

w5 - wili, ) = —n,

o1l Wu—ﬁz)zwﬂ " (8700.)) +e
B ey VD WY e U IR LY
\/<1ﬂ2>27 N CAl ) NI
Wl ) — my) (1= B1) Y o B3
\/E \/1—62 0Py (géf) +¢
(1= B) Xty B 7gl) + 8,

\/(1_52)27 085 (gg)) —|—+r2 +f

)

27
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where Dg(t) : g§) ggt) and Dgét) = ~(t) gét), nd

t
rlig) = (1-B1) > B D" li, 4],

7=0
2
r{li, gl = (1= B2) Zﬁ (291 i, 1097 1,51+ (D97 Ti, 1) )
(28)
r2nz: 1_61 Zﬁi "D g:’

=0
2
ryq; = Zﬁ (2922 DS + (Dgg)) )

Denote the i-th coordinate of WoW; and A as (W2W7); and A;, respectively. By Assumption
and the assumption that Vi € [d] : A; > 0,4; = Q(1), at the beginning, w.h.p., Vi € [d] :
(W2W1),; — A; < 0. Based on this, we divide the training procedure into two phases (note that these
two phases are different from those of SGD+M).

1. First phase: when the error (W2W7); — A; is negative and its absolute value is big for all
i€ [d].

2. Second phase: when (WyW;),; — A, is close to zero for some coordinate ¢ € [d].
More formally, we define the boundary between the two phases below.
Definition 4 (End of the first phase). The end of the first phase (denoted as T1) is defined as
T =inf{t>0:3i€d: B > —d}.
In the second phase, we define some time points.

Definition 5. Define T, :— inf {t STy 3ie| ’ gt

<aym).

Fort < Ty, we have Vi € [d] : EZ-(t) < 0 by Deﬁnition@ For t > T7, some Ei(t) may flip the sign
and become positive. For certain coordinate ¢, we define the following “flip time”.

Definition 6. Define Ty ; := inf {t >1T: Ei(t) > —\/nd}. Define Ty := max; Ty ; as the largest
“flip time” over all i € [d), i.e. the “flip time” of the last E; which flips the sign. Moreover, denote
T :=min{T,, T¢}.

We can first show that after a few steps in the first phase, W; will become an approximately rank-1

matrix, as described in the following lemma.

7/ 2¢2

Lemma 14. Under Assumptlonl Iandl suppose g < d13/4 . By pickingn < O (%) &<
\/ d3w—1’ and 3o = B2, there exists ty,. > 0 such that w.h.p. for ti,, <t < Ty,

vigeld: wf) = sign (wh))n(t—tuc) + RS,
WL, j] = sign (wgg) 0 (t = tie) + RO, ],

wherej%m— (f—i- = tl‘.m,)da)a n)(fi) = (\f—" )

Specially, when t =Ty, we have that

Vi, j € [d] : wézl) = sign (wé?)> N (T1 = tine) + Réz‘Tl)v

Wi, ) = sign (wl))) 0Ty — tue) + B,
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where 1 (Th — tip.) = © ( ) and

S

RG]
L (

T
1 ) R (vﬁ+ )
n (Tl - tinc) da_% ’ n (Tl - tinc) da—— '

The following lemma tells us that this approximate rank-1 structure is preserved when 77 < ¢ < T.

Lemma 15. Under Assumpttonl Iandl suppose g < d13/42' By picking n < O (dsa) &<
V 7=t and B2 = B3, we have w.h.p. for Ty <t < T,

Vi, j € [d] : wéz) = sign ( (Q)) QN Ré?,

thﬂzgweﬁﬁwm+R@mﬂ

, RS 5 1 R, (s 1
pr— 4
where ’c(t)‘ \fn+da71/2 ) ’V»(t)’ < n +d — ;
J

and that L (W(T)) < 1) (nd4).

[N
=

Now we are ready to prove the Adam part of Theorem|[T]

D.1 PROOF OF THE ADAM PART OF THEOREMI]

Define Tadam,1 = tinc + . Note that this choice of Tadam,1 gives 7 (Tadam,1 — tinc) = di%. By
pickingn < O (55=) . € < \ / —— and 3, = 3, we can apply Lemma |l4|to get that Vi, j € [d] :
‘wéz‘TAdm’l) =0 (d ) {Tham1) [ ‘ = ( ) and therefore Vi € [d] : Ei(TAd“m’l) =—-06(1)

and L (W (Taam1)) = ©(d). Define TAddm,g =T. By Lemma we have L (W (Taam.2)) = 1) (nd*).
For any p > 0, by picking o > 2%, we have L (W (Tam2)) = O (nd*) < O ().

Moreover, combining Lemma [14]and[15] we get that when ¢ € [Tagam,1, Tadam,2]. the conditions in

Lemma are satisfied with § = O . The i-th component of the w vector (denoted as

uy;) is sign (wgl)) That means Vi € [d] : u? = 1 and maxi(ui)® 1 Then we can apply Lemma

% median(u; )
and get that
1—-0\? max;(u)? [1+6\° max;(u,)?
146/ median(u;)?’ \1—¢6/ median(u;)?
1-6\> [146)\°
1+46) "\1-9¢

) ) ~ 1
= RO R0 =12 00) 120 (vt + L)),
2 4

RSN (1), Rpdan (t) €

)

D.2 PROOF OF LEMMA [14]

For some time ¢, we introduce two conditions.
Condition 1.

H
vr e [H] sign (o7l 41) = s\ 7 (1= 60 | > 870l l| 2 29).
=0
Condition 2.
vr e [H] :sign (g8 7) = S8, (1= ) 2/31 §7| > ).
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Next prove that, under Assumptlonandl by pickingn < O ( dga) § < \/ga=t.and By = B2,
there exists ¢, > 0 such that for ¢, <t < T1, the weights can be approximated in the following

way.
Wi g) = Wi, 3]~ (sign (1" 1i.d1) + "l 51)
wfi ™ =) (st (o) + 7).
il =0 (i), |e8)| =0 (va).

621
Before we dive into the proof, let’s introduce some useful lemmas.

(29)

where

The following lemma reflects our key idea: converting the exponential average in Adam to a finite-step
average, and trying to bound the stochastic error terms in eq. (28).

Lemma 16. Under Assumption and and pick By = (2 Let Ml(t) =

max; jG[d] <t Wl(T) [27]] y MQ(t) = maxiyje[d],fgt wé;r) ) th) = maxi’je[d]ﬁgt

gt [i,j]‘ and
We have that w.h.p., for all t < O (%) and Vi, j € [d],

957 |

G(t) = max; jcld],r<t
AW O] = -y =B S0 B71 s ) + €l ]
VOB S5 (687001 + el gl + €
(1—p1) ZT oﬁlg(t g + 622 i
t
\/(1 — B2) Zf:o B3 (gg T)) + 62d it 5

max{G(lt),G(t) (G'(t))2 (G(t))2}

where H > 1_151 log e and

Y

Awéti) =—

(®)

62n i

(t)

62(1 i )

lingl| < omeh + 0 (D7) [lidl] < o) + <D§”G§” + (DY))Q) ,

2
<OmEH)+0 (Dét)Gét) +(pd")

<o) +0 (DY),

with

~ 2 d1/2 - d3/2
Pl <0 | aurf? (i) oy |55 | 40 arlloy [ )
n n
~ 2 [dl/Z ~ [d3/2

/
Corollary 2. Under the conditions of Lemma (16| and suppose o < %.

o (f ) IfMl(f),MQt) < O( ) G(t) <0 ﬁ) ,th) <0 (\/&) then H in Lemmacan

i1 el 10,31 e || <

Consider any t <

)

be picked as ﬁ log -4 ez and we can get that Vi, j € [d],
O(ng?).
The following lemma analyzes the magnitude of weights during a short period at the beginning.

Lemma 17. Under Assumptionl Hand E suppose o < 1 d13 /4 . Plckf < p ;a, then there exists
2
some time point ti,. € (H,T), such that w.h.p., for t < t., for every i,j € [d],

AW, J]’ <O(n ’Aw <O,
wial| <0 ()0 (o ) < [l <
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Specifically, when t = t,,, we have sign (w( "'“)) = sign (Wl(t"”‘)[i,j]> = sign (wél)),

Wi, g)| = © (i) and [oli,d)| = 26,

§o+1

tim‘)

> Q(&). Moreover, Condition

and are satisfied for t = tj,.. The sgt) [i,j] and sgti) in the conditions are both —sign (wég)).

The following lemma gives us lower bounds of ‘ gi [i,7 ‘ and ‘ 95,

Lemma 18. UnderAssumpnonI Iandl suppose o < 'L d13/4 . Pick § < \/ =, 1 < O( 55 )
Consider t;,. in Lemma We have w.h.p. for any t € [tie,T1), and for Vi,j € [d
i

sign (AW(t) [2, ]]) = sign (Awé?) = sign (wéz)> and that Yi,j € ‘g(t)
Q(\/ﬁ) ‘ggz)’ > Q(\fd) Moreover, we have Y1 < t, Vi,j € [d] : }WlT) i, 7] ‘ <
o () e =0 () o 26 () o7 <0 ()

The following lemma shows that when ¢, < ¢t < T3, we have Vi, j € [d] : ‘gé?

VA=Y

t—1
> |ol) - o7

and that ’ggt) [i,j]’ > ‘ggt) [¢, 4] — g§t_1)[i,j]’-

Lemma 19. Under Assumpttonl Iandl suppose o < 'L d13/4 Pick§ < \/a=1,n < O (d—)
For tjy. in Lemman we have that w.h.p. for tiy,. <t <Tyand T <1, Vi, j € [d],

‘gﬁt) [irg] — gt [i,j]‘ ) ‘gg? g
‘g(t) i j]‘ =0 (1), T =0 (i), (30)
(@) - (o8 70a) | 2
(697i.41) =0/ +0 ()
u)> ( (t— T>) 31
20 92i
'(g = O(v/iir) + 0 (n7?)

(o)’

Equipped with these lemmas, now let’s prove eq. (29).

For any t € [tine,T}), by Lemma , we know that Ml(t), Mg(t) <0 (ﬁ), and that G(t

<
O (%) , Gét) < 0 (\/Zl) At the end of the proof for this lemma, we will show that T} = ( ) .

Then we can pick H := and Corollary I to get that, w.h.p., for all

t € [tinc, T1) and Vi, j 6 eq @]) can be written as

: (1802 879 4] + )i, ]
¢ (1= 2 S50 85 (o ligl) + €065 + €
(1_51)27 oﬁlgzt T)+€;721

t
\/ (1B Sy 05 (0577) + e+ ¢

AW, j] = —

Y

(32)

Awéti) - _

(t)

0,1 €l

t
i, 4| s €8

6271 i

where Vi, j € [d], 521 < O(ng?).

)
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Let’s first look at the update of TW,"[i, j]. For ¢ in the first phase, we write the RHS of eq. (32) as
(1= B) S 81 g + el )
\/(1—62)Zf—oﬁ§( i)+ i)+
(1= B0t 1) 10 BT + (1= B0) 1o 87 (087 lind) = 8710, 31) + €20 g
\/ (1= 62) (6070.1) S 65+ (1 ) S 5 (( (0,41) - (g%“[z;ﬂf) + el + ¢
1”10, 510 — B + €)li, 5] + el ]

J(g@w)z (1= B + el 3] + el i ] + €

where

i

elli. g = (1- B) Zm (8 i1 = 9" 1)

egd[z Jjl =01 = B2) 262 (( (t— r) D (gﬁt)[i,j]f)_

(t)

We have already shown that |e; ] [¢, 7],

[ ]]’ < O(n?). By Lemma we have that Vi, j € [d],

(t)[

‘elan‘ (1-5) 261 — 91

i1

< |ot"1i.51] O (v (1 50 6= 191,41 © (Vi) -
=0
Similarly, we have Vi, j € [d],

e, 1| < (g?’[aﬂf@wﬁ)(l—@)iﬂw(gitw,ﬂ) O (i) (1 - o) ZB
=0

2 .
= (ot"1i.31) O (Vi)
By Lemma we know that ‘ gV, j]‘ = Q (/n). Then we have that

Vi, j € [d] :

elli, 1| < One?) < O (i) |91 1. 3]
Therefore by Lemma [33]in Appendix [G] we have
9111 ) (1= BI) + efli ) + 1,1, ]

J (6906.41) " (1= B*) 4+ e0liog) + €0lid) + €
1 _ H+1 )
R e S (slgn< (t)[ j]) +€§t)[ j])
/1_ §1+1
where ‘égt) [i,j]‘ =0 ().
Since 8 € (0,1), we know that log3 < S — 1 < 0. Then our choice of H gives us H =
lo ne? lo ¢
10g ez 2 fgél and H > ﬁlog% > lfgﬁ , which implies that g{7, 8 < ng?/d.

Ho /1_gEHT
Hence for t > ti,. > H, nt\/ BH“ = \/1 BHH 11 th+1 =n(1+0()).

04| < O (v €.
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Combining all of the above yields that

WD ] = WO ] — me (1—B) Xt BT T d)
\/<1—ﬁg>zi_oﬁ;( .4) e
_ Wl(t)['i7j] _ 1-— 1H+1 (sign( (t )[Z j]) Jregt)[Z j])

Nt —F———
/1_ H+1

= Wil j] - n (sign (o1i.) + i, 1)

where ‘egt) [z’,j]‘ =0 (f) The proof for w( ) is similar.

So far we have successfully proved eq. (29). By sign (AW(”[ . ] ]) = sign (Awg)) = sign (w;))
in Lemma we know that sign (—ggt) [4, 3]) = sign <_g§i)) = sign (wé?)), which gives us

vijeld: wh) =sign (wl)n(t - tue) + LY,

Wi, 5] = sign () m (¢ = tue) + B[, ],

/{1 Wi, a]\ B 4 | :
where Tt = O\ n+ =) and T = O+ =iy ) Now it suffices to
show that Vi, j € | ‘wm‘"‘ <0 (3) ’Wl n) [ ]]‘ O (5= ). which is implied by Lemma

Finally to complete the proof, we show that 7} = © (ﬁ) When ¢t = Ty, we have Vj € [d] :
Zd Tl)WlTl)[ j] = ©(1). Combining with the above results, we know that dn?(Ty — tin.)? =

O(1), i.e. n(Ty — tinc) = O <ﬁ) In Section we will prove ti,e = © (ndglaﬂ> Then we

have T = © (ﬁn)

D.3 PROOF OF LEMMA [16]

For certain ¢t and H, we write eq. (27) as

AW ] = -y B 31 Bigr " lid) + einli. )
OB 87 (ol 001) i)+ ¢
(1*51)27 oﬁlg(t T 521

e
OB (a77) + e

?

Awlt) = —

2%
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where
)i g = (1= py) Z Brg8 i, 5] +rili, ], el s = (1= B) Z Bl i,
T=H+1 T=H+1
—qlif [4,5] =ql) s
2
i) = =) 3 5 (A7) +rld)
T=H+1
_Q§d)[7.7]
€2dz: (1—52) Z B3 ( (i T) +T;i),i’
T=H+1
=aly,;

and 1) [i, 5], ritd) [, 4], rég i réd)l are defined in eq. (28).

max{G(lt),G(zt), (G(lt))z., (Gg))z}

Since 3, = 7 < Bl,then if we pick H > 1= B log e

, we can get that

1 (67)° L (e7)” ’
H > % log 52 ,H Z 15 log e ,H> 7 log nfz ,H > —510g e . Hence we
can apply Lemmam Appendlxto get that ‘qln (t )[z gl (t) qé d) S| < ng

Pick T"in Lemma as of order O ( ) By Lemma|31] we have with probability at least 1 — é,
forallt <T,Vr < tandVi,j € [d],

T . . ~\T . . T . . >y 2 (l]‘/2 ol d3/2
‘Dg§ )[m]’ = ‘fﬁ i, 4] - g )[m]‘ <O |d*m (Mz(t)) 7y o +0 Mé”ff\/ e
t
= D§ ),
2 d1/2 B d3/2
at (mf") M;%,/T +0 [dMo = 2108

Dol ”<0( o),

|Dgs?| =387 - ot

Plugging into eq. (28) gives us
i, ]| < 1751225

[r{2ti.a1) < 1—62§:ﬂ
<0 (D@Gﬁ” + (p{") ) 7

ol 2
71, j1Dg\” ’ ‘Dgl ZJ]‘

t
s, su—ﬁnijﬂ”zwg)SO(Dﬁy
2
’rzdl <(1— ) Zﬁ (D) ’Dg " <O(D(t G 4 (Dg>) )
D.4 PROOF OF COROLLARY 2]
Since th) < 1] (%) 7Gg) < ) (\f) then H := —— log nez is bigger than
L, e e (@) (o))

=g, 108 ez
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By Ml(t)v M(t) <0 ( ) G(t) <0 ( ) G(t) <O (ﬁ) and the assumption o < ;1/32/32, we
get that DI and D" are upper bounded by D\ < O (d"/*on~1/2) and D <O (dM/4on=1/2),

which yields Vi, j € [d], egtrz[z Jlls ngd)[z ]]’ eg;zb thd)z < (5(77{2).

Y

D.5 PROOF OF LEMMA [I7]

The proof is based on the following two lemmas.
Lemma 20. Under Assumptlonland I we have that w.p. at least 1 — a —, forevery 1 < i <d,

de < ‘wz ‘ < ,/d% log 2d 5%, and that w.p. atleastl—éforanygzvené > 0, ()[ ]‘ <
242

5= log 24

Lemma 21. Under Assumption|l E|andl suppose o < L d13/4 Pick o = B2, £ € (0,1),n < %.
IfVT < t,Vi,j € |d: ‘W(T)[z ]}‘ < 0(7)

(\/&) we will have
O(n),

Consider any time point t < @)

@(\[)and‘gl zy <(9

’AWI i J]‘ <O ‘sz

where the O notation depends on H =

n£2

Furthermore, if for certain i, j € [d], Condltlonl (resp. Condition is satisfied, we will have

sign (AW{"1i,7]) = =s\"[i, 71, | AW [0, 51| = ()
(resp. sign (Awé?) = fsgl), Awéti) = é(n))
Now we prove Lemma Define t; :=inf {¢: 3,5 : ‘W( )[z j]’ S or ‘wg)} > é} Now we

want to find a time point ¢, before ¢4 for the lemma to hold. During the period t < tg, we have
Vj € [d], E; = —O(1) (which means t; < T3) and therefore for all 4, j € [d], ‘ggt) [i,j]‘ < Land

’gg)’ < 1. Then we can use Lemma to get that for ¢ < min {td, ﬁn} we have ‘AWl(t) [i,j]‘ <
O(n), J(n). Hence tg > Q (%)

(t)

Define tggn = inf {t < min {td, %}

‘w < dgla } By Lemma whp. Vi €
2

[d] :
< O(n) gives us that w.h.p., tsign > @;1/(’)(77) =

> VT , combining with ’szl
d2

d] : ’wég)

[
Q(n;)

Now let’s analyze the behavior of W, during the period ¢t < tg,. Consider any ¢,j € [d]. By

definition, sign (wé?) = sign (wéz)) Note that EJ@ = —0O(1), then we have sign (g%t) [i,j]) =
—s1gn( © )> and that ‘91 i, 7] ‘ =Q (dé
Condition|l|is satisfied with s{”[i, j] = —sign (wz, ) (for all H < t < tyg,), which by Lemma

a) = Q(&) by our choice of £. Then we know that

yields sign (AWl(t) [Lj]) = sign (wél ) and ‘AWl(t i j]‘ =0(n).
Lemma [20| tells us that w.h.p., Vi,j € [d] : ’Wlo)[i,j]‘ = O($=). For any 4,5, if ini-

tially sign (W(O) [i, ]]) = sign (wég)), then for the following steps before g, we will have
sign (Wl( ) i,7 ) = s1gn( ) If initially sign (Wl(o) [i, ]) #* 51gn( © )) then after at most
(2,

=0 ( dm) steps, W1[i, j] will flip the sign. Note that ty = O (ﬁ) is smaller than .
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Hence we have shown that at some time point ¢, we have Vi,j € [d] : sign (Wl(t) [4, j]) =
sign (wéz)) = sign (wé?)). Now we analyze the period t > #.

When tg < t < tggn, we still have sign (AWl(t)[', ]) = sign (wé?)) and ‘AWl(t) [i,j]‘ = 0(n).
Combining these two with the fact sign (Wl( “)[ ]) = sign (wé?)), we know that for all ¢ €
o, tal. sign (W[i, 1) = sign (wS) and that ¥i,j € [d] + WiVl j1| = (Wi, ]| +

Sa+l

O(n). Then at certain step ti,. which satisfies tip. = to + © (dgl> € (H,tgam), we will
7

have Vi — H < 7 < tine, Vi, j € [d] : ‘Wl(T)[i,j]’ = @( éiH) and therefore ‘g(T)
2
d ) T d ). . T
‘Zj:l Wi )[la]]E](' )| = Z]:] ‘Wl )[la]]Ej(' )
Vi, j € [d] : ‘Wl(t)[i,j]‘ :0( . )

d§a+1

= 1) '
=0 (d%“) Q(f) For t < tje, we have

Since tine < tsign, We have ‘w jne

=0 (d ) For t < tj,., note that ‘szl < O( )y tine =

to+6 <M> =0 (31a+1)’ combining with the upper bound in Lemma [20|yields
2

ndz
. ~ 1 1
+tinco(77)§0 W <0 7 )
Moreover, Vit — H < 7 < tin, Vi € [d] : sign (gél)) = 781gn< (© )) Then Conditionis

satisfied with s( ) = —sign (w2 ) for ¢t = tj,c. In the analysis of g [l jl, we have already shown

that for all ¢ < ¢, (and thus for ¢ = #;,.), Condltlonmls satisfied, which completes the proof.

o] < [ul?

D.6 PROOF OF LEMMA [20]

Since for X ~ N (0,0?), we have that P(|X| < t) < \/%g, then for a fixed 4,

2/7 /3 1
P ‘w“.’) < ﬁ) <= =
< 217 dse) T Vor 2/ dE

Then by union bound, we have that w.p. at least 1 — d%%l,

O] 5 V7

As for the upper bounds, using the Gaussian tail bound and union bound, we have w.p. at least 1 — 4,

Vi,je[d): ‘w

T o <[ Z10g 2P

D.7 PROOF OF LEMMA 21]

Now we analyze the magnitude order of AW(t) [i, 7]. The analysis of Aw;) is similar.

Fort < O ( ) By assumption, M(t) (t) <0 ( ) G(t <0 %) G(t) <0 (\/E) and
Hence we can pick H := —% log nez and apply Lemma|l6{and Corollarylto get that,

n®/2¢

o<1

13/4
Whpdforallt<(9( )ande Jje| ,eq.@)canbewrlttenas
AWl(t) [i,§] = —7 (1-51) Z‘r 051 91 [Z Jl+ Egg [i, ]
\/(1—52)Zf_<)65( 1)+ el + €
(1= B) i BTgs " + e

Ui
\/(1 — B2) Zf:o B3 (gg T)) + 62(1 it 5

3

(33)

Awé? =—
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(®)

t
€1d [4,7]] , o

6271 i

(t)

where Vi, j € [d], €2d,i

01|,

< O(n€?).

)

On one hand, using ‘6572[2 j]‘ , ’egg [i,j]‘ < O(ne?) and By = B3, and /T F y > /x — /]y| when

x>0,z +y >0, we get from eq. (33) that
(1-p1) ’Z BTl ﬂ‘+@(77§2)

N () R SR
(1) (1—B1)VH \/ZT o 5191t g [i, ]]) +O(77§2)
OB S (51600 €2

where (i) uses Cauchy-Schwarz inequality for the numerator.

On the other hand, when sign (g%t_H) [i,j]) = sign ( (t= +1)[ ]}) ... = sign <g§t) [i,j]) =
(t)
sp° [

<0 (\/ﬁn) = O(n),

i, j], we have

sign (z Py ) _ ZBT -

If we further have (1 — f31) ‘ZT:O B glt=1 ]]‘ > Q(€), then combining with
O(ne?) < € we will get
H
sign (AW{"[i, j]) = —sign (Z 879\ Vi, 5] + e\ lirj ) —sign (Z (Y )
= —s1[i, 1)

Using /= +y < /|z| + v/|y|, we obtain that
T t—1 A
(1 -8 |21, 87l 7l ]| - One?)

V-8 (51l a1) + Oty +

— H T t—T1
L |0, 878l )|
>Nt = Q(n).

2max{\/(1 —ﬁz)ZT 0 (519“ T)[l J])2a 35}

Together with the upper bound completes the proof.

z Z(ﬁlg(t T)[l J]) :

7=0

0. 1)

IN

‘AWft) [i7j]’ >Nt

D.8 PROOF OF LEMMA [T§]

The proof is based on the following lemma, which gives a coarse analysis on the magnitude of
weights and their increments per step during the first phase

Lemma 22. Under Assumption and suppose o < L d13/4 Pick ¢ < min { NG =1 d%% },for
tine in Lemma we have that w.h.p. for all t;,. <t < Ty, Vi, j € [d].

sign (AWl(t) [z,]]) = sign (Awé?) = sign (wé?)) , AWl(t) [i,7 ]‘ =0(n), ‘Awé’? =0(n),

- ~ (1
sign (Wl(t) [i,j]) = sign (wéf) = sign (wég)) ’W(f) i j}‘ =0 \/E> , wgtb) =0 (d) .
Specially, at the end of the first phase (t = T), we have Vi,j € [d], wéiTl) =0 ( 1d) and

-6 ()
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Now we go back to the proof of Lemma For ti,. < t < T3, since E](t) _ (W2(t)W1(t)> A=
J
Zj 1 wéz)Wft) [i, j] — Aj, we have,

() ._ (t+1) (t)
AEj = F —E].

—Z( bWl g] - WA ] el TWO ] - )WL)

(34
= RN ENE ) D
Combining Lemma[22]and eq. (34) gives us Vj € [d],
d
A >0, B =3 |uli AW, ]| + |Awl) WiV,
= (35)
~ 1 .
<Y O0(n—)=0(nvd).
< ; <77 \/g> (77 )
Let’s first analyze g( )[ , 7]- Note that
g, 3] = WDV EEHD _ED D 4 D B0 _ 0 g0 e

= witY AE“) + Awy) B,

where sign <w§i+1)AE§t)> = sign (wél)) while sign (Aw2?E(t)) —sign (wé?))
Now we analyze the sign of g(t) [i, 7] when ¢, <t < T7. Using ’w(t.i“ﬁl)’ =0 (d%) and eq. (39),
we get that ‘wét‘““)AE )‘ <O ( Vd 17) While on the other hand, ’Awgt““)E(t““) O(n).
That means sign (Agl )[ ,J ]) = —sign (wéz)) Note that sign ( ( ‘“°)[z j}) = —sign (wgl‘““))

—sign (wgi))), we know that ‘git) [i, ]]‘ will increase when t = tj,.

(t)

In the following steps, ‘ g1 |4, ]]‘ will keep increasing as long as ’Aw(t) ()

J
‘ remain O(7), by eq. (33),

we know that the trend of ’AE J( ) ’ is to increase. On the other hand, ‘Ej( ) ’ keeps decreasing since

> ‘wgﬂ)AE@ ‘
Since ‘Wl(t) [4, 7]

)‘ keep increasing while ’AWl(t i, 7],

E(t) < 0 while AE(t) > 0. Then after some time point we will have ‘Awgt)E(t)‘ < ’w(tH)AE(t)‘
and in the following steps ‘ g1 [t ]}‘ will have the trend to decrease. Specially, whent =717 — 1, we

have ‘E )‘ = \/ and ‘Wlt) =0 ( ) t“)‘ = ( ) by Lemmal Wthh gives us

‘AE(t)‘ Z‘ SH AI/Vl(75 [3, ] ‘ ’Awé Wlt) [i, ] ‘ < ié( =0 (77\/&)

)
\/E

O (nv/nd).

Therefore we have proved that when ti,. < t < 77, the trend of ‘ ggt) [i, 7] ‘ is to first increase and then

= ‘Awm E(t

Hence ‘

decrease. In order to prove ‘ gV, ]]‘ = Q (/7). it suffices to show that ‘ g\mi ‘ =Q(,/n) and

’g(m i,J ‘ =Q ().
When t = ¢,

(tinC) —
I

‘g(t.m [z’,j]‘ _ ‘ éi)
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When t = T3, we have

‘g(Tl T1)

: ‘E(fl)

zy‘-‘w( p

=67+ V) =6 (.

As for g(t), since for Vi € [d], Wl(t) [i, 7] for different j have the same sign. Combining with
Vield:E (t) < 0 gives us

d d
= ZE( )Wl(t) [i, 7] Z ‘Ej(t)Wl(t)[z j]‘

j=1 j=1

o

Then it suffices to show that for ¢, < t < T7,
using the same technique as above.

E](.t)Wl(t) [Lj]’ = Q (,/1), which can be proven

Finally, for V7 < t, Vi, j € [d], note that the upper bounds of ’W(T) [i,7 ‘ and ‘w ’ are already given
in Lemmal As for }g [i,7 ‘ and ‘921 -0 (ﬁ) : gg) <
st w0 ()

, we have ‘g [i, ] ‘ = ’wZT)E(T)

D.9 PROOF OF LEMMA [22]

For any i, j € [d], and any ¢ in the interval [¢inc, T1], we prove by induction that
o [ -0 () 1] -0 ().
(B) V1 € [t — H,t] : sign (Wl(T) [i,j}) = sign (wél)) = sign (wé?))
(© |95 g1] = &), |ob| = 2(&).

The base case ¢ = tj,c was already proven by Lemma[I7]

For t € [tine, T1), suppose (B) and (C) hold for time ¢ and (A) holds for all 7 € [tjyc, t]. From (A),
we get that V7 € [tinc, t] : ‘gi i,j ) = ’wQT)Ej(T) =0 (ﬁ) , ;l:l ‘EJ(.T)Wl(T) [i,j}‘ =
o (\/@ Since when t < Ty, Vj € [d] : E(.t) < 0, from (B) we know that V7 € [t — H,t] :

(t)

sign (gy) [i, j}) = sign (géz )) —sign (w%)) Combining with (C) tells us that Conditionand
are satisfied.

In Sectionwe have shown that 7} = © (\ﬁn) . Then for ¢ € [tjuc, T1), we can use Lemma|[21to
get that Vi, < 7 <, Vi, j € [d],

sign (AWl(T) [z’,j]) = sign (Awg)) = sign (sz ) , ‘AWl(T) i,] ’ )| = o(n).

Since when t = tj, sign (Wl(t"”)[i,j]) = sign ( ( ‘"°)) = sign ( ) We get that for ¢, < 7 <
t3

Vi, jeld ‘Wf”l [z,]‘ ‘W{ 2]]‘4—(:) ‘ (T“‘_’
Now for ¢ + 1, we have Vi, j € [d],

o(n).

sign (Wl( +b) [i, ] ) = sign ) ‘W(Hl i,] ’ = ‘Wl(t [i, ] ‘ (t+1- tinc)(:)(n)7

sign (wétl-‘r )) Slgn( (0)) ’th-‘rl)’ ‘ %mc) T (t+1—tn) O ( ).

That means V7 € [t +1 — H,t + 1] : sign (er [i,j}) = sign (wé?) = sign (wél)) This proves
(B) for time ¢ + 1.
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On the other hand, we get that ‘Wl(tﬂ)[i,j]’ > ’Wl(ti“)[i,j]’ = G)( L ) and ‘w;H) >

3
5o+l
‘w%““) =0 <d%%) Since ¢ + 1 < T} which means Vj € [d] : ‘EJ(.HI)‘ > /nd. Then

)i-a

‘g(t+1) i ‘ _ ’w(tJrl E(t+1)‘ (

’ I
[V][P)
M& Q

‘ t+1)‘ _ E(t+1 W(t+1)[z il = ‘EJ(HUW(HU[ ]‘ > d@(

) Vit

d a+1

j=1

This proves (C) at time ¢ + 1.

Since t + 1 < T} which means Vj € [d] : (WQ(HI)WI(HD) - < O(1), we obtain that

Zw§t+1)w(t+1) [i, 1] Z ’wztfl)‘ ’W(t+1) ; j]‘

_ Z (‘w(t.m

Note that ’W( ‘"“)[z’ ]]‘ ‘wé;’”)‘ L (since tine < t4), we get that (t + 1 — tine)O(n) = O (i),

+ (t+1 — tine)O( ) (‘W1 ne) [ ]]’ +(t+1 —tinc)é(n)) < O(1).

Vd

which gives us ‘w( H)’ =0 (f) and ‘W(Hl i, ] ‘ = (ﬁ) and hence (A) holds at time ¢ 4 1.
Therefore by induction, we can prove that (A), (B), (C) hold for all ¢, < ¢ < T1 Then applying
Lemma we get that for all tj,, < t < T3, Vi,j € [d] : ‘AWl(t)[i,j]’ = ‘Aw(t) =
o).

Specially, at the end of the first phase, we have Vj € [d] : (WQ(tJrl)Wl(tH)) = ©(1). Repeating
j

=0 (ﬁ) and ’Wl(Tl)[i,j]’ °) ( for Vi, j € [d].

the above proof techniques gives us ’w( )

D.10 PROOF OF LEMMA [19]

Let’s first prove eq. (30).

By Lemma for tie <t < Ty, we have Vi, j € [d], ggt)[z’,j]‘ = Q )g(t) =0 (v/nd).
Then it suffices to show that for ¢, < t < Ty, g@[i,j] —g( T)[ j]‘ = T@(n) and
‘922 — gl ‘ = 7O(nd). 1t suffices to show that when t < T3, |g{""V[i, j] — ¢" [i,j]‘ = O(n)
and ‘gzm) 95| = O(nd).

(®)

By LemmaE and | we know that when ¢ < T4, Vi, j € [d], ‘AWl(t)[i j]‘ < O(n),

( ) Then the bound ‘AE(”‘ <O (7}\[) in
tinc < t < Tl) Substituting these bounds into eq. (36) gives us

O(n) and that W(t) ¢, ]]’ <0 (

eq. (33) hold for all t < T} (not on
Vvt < 11,

1
7
nly

o005 - o) < [l B

1\ -~ . .
-0 (\/g) O (nVd) +6(m)Oo(1) = O(n),
Similarly, we have that ‘ g(tH) - gg) = O(nd), which proves eq. (30).

Note that for a, b € R:
2 _ 32 2 (b )2 B — (g — D)2 _ _ 2
la? — b?| _ la? — (a—b—a)?| _ |2a(a — b) — (a — b)?| < 2|a b| N (|a b|)

a? a? a? ~ a| |al
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Then eq. (31) immediately follows from eq. (30).

D.11 PROOF OF LEMMA [[3]
We divide Lemma T3]into the following three lemmas. Combining them together immediately gives
us the whole proof.

The first lemma below gives us the structure of W5 in the second phase and that of W; under some
conditions.

Lemma 23. Under Assumptlonl Iandl suppose g < d13/42' By picking n < O (T) &<
V7=t and B2 = B3, we have w.h.p. for Ty <t < T,

Vi e [d] : w;ﬂ) = wgt) 7 (sign (géz)) + e(t)) , Wwhere ’622 =0,
and moreover
Vi e [d] : wg) = sign (wé?)) ) 4 Ré?, where (t) = ( o 1/2) :
As for W, if for certain i.j € [d) and certain t € [Ty, T) we have ‘91 i, 7] ‘ = , then
Wi ) = Wi, 5] = (sign (9710, 1) + i, 1) . where |ef” M\ =0 (V).

The second lemma below also analyzes the structure of W; but removes the conditions in Lemma [23]

Lemma 24. Under Assumpttonl E|andl suppose g < d13/4 . By pickingn < O (d%&) €<
V =, and By = (3, we have w.h.p. for Ty <t < T, Vi, j € [d), () 2, ]]’ Q ﬁ and for
any j € [d),
)| |
Wi, j] = sign (wg:)) V}(t) + R 4], where 5 <O (775 + al)
<ol

The third lemma proves the convergence of Adam at time 7.

Lemma 25. Under Assumption and suppose g < % By picking n < O (d%a) €<

\/ #, and By = 33, at time T, we have that w.h.p. Vg € [d] : ’EJ(T)’ <0 (dm), which implies

=],
2

< ) (nd4).

D.12 PROOF OF LEMMA 23]

The proof is based on the following lemma, which gives a coarse analysis on the magnitude of
weights and their increments per step during the second phase.

Lemma 26. Under Assumption and suppose o NS %. By pickingn < O (d%a) €<
\/ gEa=t, and (3 = B2, we have w.h.p. forall Ty <t < T,

|aufl| =6(m). |AWi.j)| < O).

-5 [1i7a] =0 ().
(t)

Equipped with Lemma we are ready to prove Lemma We will only prove the results of ws,” .

Vi,j € d]: ‘wztﬂ)‘ > ’wg

(®)

Moreover, we have that Vi, j € [d] : ‘w

The proof for Wl(t) [¢, 7] uses the same techniques.
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WG,
all i, j € [d]. Then we know that eq.(33) still holds, which gives us Vj € [d] : ‘E(»H_l) — E(t) =
= O(nd).

Lemma. gives us upper bounds of ’w as well as ‘Awé? ’ and ‘AWl(t) i, j]’ for

(\f 77) Then we can use the same strategy in Lemma to prove that ‘ g2t+1 - gg)

By definition, for Ty < t < T, we know that ’ P =q (dy/n). Combining with the bound

‘g(tJrl (t)

— g5 | = O(nd), we know that the g;) parts in eq.(30) and eq.(31) still hold. Then we can
use the same strategy in Section to prove that the wé? part of eq. (29) still holds, which gives us

O ().

Vi e [d)] : w%H) = wgi) 7 (sign (gg)) + eg?) , where ‘eg)

By Lemma([T4] we have that at the end of the first phase (¢t = T7),

T
; :wl™ = sign (w®) T 4 RV Sl 1
Vield: wsy mgn( ) T 4 RV where R 0 <\/17+ W) .

Combining with Vi € [d],Vt < T : sign ( (¢ )) —sign (w;l)) yields that during the second phase,
fort < T, we have

’R

. ~ 1
Vi € [d} : wé:) = s1gn (wé?)) c(t) —+ Rg;), where =0 (\/ﬁ"‘ dal/2) .

O

D.13 PROOF OF LEMMA [24]

By definition of T, there exists jo € [d] such that EJ(OT) < —/nd for Ty <t < T. We prove by
induction that during this period, Vi € [d] : sign (wg)) = sign (Wl(t) [i, jo]) = sign (wé?)) and
=6 ()W = 0 (%)-

The base case (t = T}) was already proven by Lemma [22] Now suppose for some ¢ such that
T, <t < T, forall 7 such that T} < 7 < t, we have Vi € [d] : sign (wg)) = sign (Wl(T) [z’,jo]) =

that Vi, j € [ ‘w

sign (wél)) and that Vi, j € [d] : ’wéﬂ =0 (i) ‘Wl(ﬂ [, 7] ‘ =0 (ﬁ) Using these bounds,
we get that Vj € [d] : ’E(T)‘ <4, ‘ng w i, j]‘ +]A;| = O(1), which then yields two upper
bounds ‘91 i,7 ‘ = ’w T)E(T) =0 (f) and ’g(T) < Z] L ’E(T)W(T) i, 7 ‘ = (\/&)

By definition of T, we know that forall T; < 7 < ¢, Vi € | ’g(T) >dn = Q(¢) and that
sign (gé?) = —sign (wél)) which implies that Conditionls satisfied for Vi € [d]. At the end

of the proof of this lemma, we will show that T=06 ( Tan ) Together with the upper bound of

, we can apply Lemmato get that w.h.p. for 77 < 7 <, sign (Awéi)) = sign (wé?) and

= (:)( ). Combining with the inductive hypothesis sign (wgﬂ) = sign (wéo)) gives us

t+1)‘ > ‘

‘gZi
‘Awgﬂ

that ‘w(TH

Q (ﬁ) and that sign (wé’f )> = sign (wég)>

Since E(T) < —y/nd, we have that Vi € [d] : ’gr) [2, jo] ‘ ’w(T)

‘ = ’w;)‘ + @( ). Specially, when 7 = ¢, we get the lower bound ’wz

= 2(vn) = 2
and that 51gn( (r )[z jo]) = —sign (wé?) That means Condition [ is satisfied for Vi € [d]

(1)
Ejo

and jo. Using the same technique as when we deal with wg), we get that for 77 < 7 < ¢,
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Vi € [d] : ‘Wl(TH)[i,jo]’ = ’Wl(T) [i,jo]’ + ©(n), sign (Wl(t+1)[i,j0]> = S1gn< (0 )) and that
vi,j € [d), | AW fi, ]| = O).

t41) (t+1)

Now we analyze the magnitude order of ’wQ

[i, j]‘ Let’s first analyze ‘w(tﬂ ‘

By Lemma. when t = T4, Vi, j € [d],
(T1)

[l

‘10(73)

i | Wi |
=120 (Vi + o7 ‘w(m =120 (Vi+ 97 ) -

2j 2i

Combining with the facts that for 77 < 7 < ¢,
esanelt

" ligol| = WiVl jol| + 6(n) and

1ol
‘ (Hl)‘J
21

O(n) yields

‘w T+1)‘ - ‘w = é(l). Since we just proved Vi € [d] :

sign (wéﬁ )) = sign (W( 1 )[z _]0]) = sign (wé?), we get that

d d
W) = 3wl W, o] = 3 [l Wi, ]| = 01

)

i=1 i=1
which gives us that ‘w;H)‘ = (id) Recall that we have shown ‘wgﬂ)‘ > Q (%), then
"= 6(3)
Wa; = Vi)
Now we prove ‘W( +1)[z ]]‘ =0 (id) We have proved that Ty < 7 < t, Vi,j € [d],
‘AWlT) i\ ‘ = O(n) and ‘wzﬁ”‘ - ‘w% = &(n). then Vi, j € [d],
t+1 T T+1)p. . T)r. -
\W< Tindl]_ [0 + S [TV }fo 'l )|
‘wétfl) - ‘wm) + 3wt ‘ _ ‘
WG|+ 1= T)Ow)
() 5 = o),
il + (4 1= )6 ()
W<Tl)[’L j | ~
where the last equality uses ‘ (Tl)’ =1+0 (\/ﬁ + ﬁ) Since we already proved that
it ™| =6 (Jg) we et [ = ( i)
Therefore by induction, for all ¢ in the interval [T}, T'), we have Vi, j € | ‘w(t)‘ =0
W(t) ‘ = O( ) From the proof we also get Vi € ’w2t+1)‘ > ’wé? , and that
Awly)| = &), [aw VG, 71| < OG).

Now we verify that T = © (\%in) Combining Vi,j € [d] : ’wéf)

T1,7), ‘wgﬂ) - ’w

= é(%) and Vt €

= O(n), we immediately get that T — T} = © (ﬁ) In Sectionwe

have shown that 7} = © ( Jan ) then we get T=06 ( fn)

D.14 PROOF OF LEMMA [24]

We prove this lemma by induction. The base case (t = Tl) can be verified by Lemma[T4 Now
wal=2 ().

suppose for ¢ in the interval [T}, T'), we have Vi, j € [d],
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Fort € | ), by the proof of Lemma [26|(Section |D.13), we know that for V7 < t, Vi, j € [d] :
’w(T) ( > [i, ] ’ = (f and that ’g(T) ]’ < (9( ) ’g(r) <0 (\f) and
that T} = © ( Van ) Then we can pick H := — log nez and apply Lemma|16|and Corollarylto

get that, w.h.p., forall t € [T}, T) and Vi, j € [d] the update of W7 can be written as
(1= 81) St A1gr "l ) + 1l ]

WiVl 51 = Wil 5] — e
V=BT 85 (o 7003) + )+ €

)

(®)

where |€;,,[4, 7]], 1’; [i,j]' < O(n€?). By Lemma we have that for 1 <i,j <d,
R0 5)|
gt T . 0 (t ’ g,11" A 1
o | B d

= Zﬁ{g? i, ] = sign (w} )Zﬁ’ (= gl T>+ZBTR“ i) G

7=0

" 2
Using the fact that for a, b € R, |2 2b | < glabl | (‘a_b‘> , we get that

lal lal

(590.31)° = (Osign (w2) B + BO15.1)’ = (OED)’ + RO, 1),

50
whereM O (yn+ —=17z). That yields

(C(t)E(t)>
H , H
> 85 (o lial) = 0 8 (et +ZB (et [, (38)
7=0 =0
Since (c(lt_T)EJ(t*T))2 > 0, in eq. (38) we have that

’ZT 0 BgRgzqul) [Z .7]’

’Zr_o B3 (C(t_T)EJ(_tT))2’

- 1
(9<\/77+da_1/2>- (39)

However we cannot similarly prove that ’Zf:o ﬂfRéffT) [z',j]‘ < ‘Eio B{c(t—T)EJ(,th) in
eq. (37) because c(t*T)Ej<t_T) may not have the same sign for 7 = 0,1, ..., H. To deal with eq. @,

we need to consider the two cases where ZT OﬁfR (¢ [i,7 ’ < ‘ZT o BTt E(t 7)

‘ZE:OBI (t T) Z .j ‘ K ‘Z BTC(t T)Et "')

Case 1. ](1 — B S BTRYTT 4] + ) ]]] ‘(1 — BT BTt B where

0= (774 - d**i)'
Note that from eq. (39) we have

(1- ) Zﬁ RUGling

N 1 A N2
<O <\/ﬁ+ d“_1/2> (1-751) ;}65 (C(t_T)Ej(-t )) | .
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Combining with ‘eld i ]]‘ One?) <O (774 +

(7
d2

2
- 7% ) €2, we can apply Lemmato get that
w5 = ]
(1 Bu)sign (wl) ) Iy BTt B 4 (1= 1) oLy BTRYT 1) + il ]
=—1
—T 2 T
J (1= B2) i 83 (=B ) 4 (1= Bo) Iy BE R, Al ) + 4l ] + €
1 - 8, sign (wél)> Zf:o BIC(tf-r)Ej(.t—T)
— :
Vi .
2 Zf:o 527 c(tff)EJ('t )> te
:= — sign (wéj) () (1 + eg )[ ]) ,
where ‘e(lt) [i,j]‘ =0 (77i + d%%%) Since ‘Wl(tﬂ)[i,j] - Wl(t) [i,j]‘ = O(n), we get that
o).

(1+el”6.41)

(@
&
w
&
[

(1-p4) Zf:o B{R“ ™) [i, 7] + eﬁz [4, ]]‘ ‘(1 - 51) Zf:o ﬂfc(t_T)E](-th) where

t—7) E](t—T)

H
(mda ) (-0 3o [
7=0

INS
G}

(\/ﬁera 1/2)\l( )(1— 1) Z@T( (t=r) - ﬂ)
Z:i)@<\/ﬁ+dall/2)\ll_51 252<(tr )27

where (i) uses Cauchy-Schwarz inequality and 35 = (3%, (i) uses eq. (38) and (39).

—

Combining with ‘eln i ]]‘ < One?) < (\f+ o= 1) (f— ‘eld) [i, ]]D gives us

(1= 1) X1 BT R T ) + €5 |

H
(1= B1) Y BT E!™ | <

=0 URne
O (Vi + s ,
b (85 o)

d2z 14

<0 <77i+d31_}1> Z@(“ T) J) +€§2[l Jj+&,

which implies

~ 1
Wi ) = Wi, ]| < O (ni+ . )
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Consider certain i.j € [d] and the period from T3 to t. Denote 7 as the set of time points when Case

1 is satisfied. By Lemma we know that 7(t — T1) = O (%) which gives us

ZAW{” (t—Tl)n(9< L ):0(” 1).

Tt e
= 7+7
raT dz d27T14

By the first phase analysis, we have that

Wi, j] = sign (w’) v + BRI,
(Tv) _ 1
where V; V=0 (7)
we have that

z .7 ‘ O (/T + 2). Combining with the analysis of Case 1,

Wi 41+ 3 AW, §] = sign (wg?) <vj<T1> -y U§T>) + Rrli, ),
TeT TeT
where |R7[i, j]| < O (774 + %7%) (‘Vj(Tl) )

+ ZTET v

Since for 7 € T, va

= O(n), Vj-(Tl) =0 (%) and n(t — T1) = O (%1)’ we can bound
|Rrl[i, j]| by
| Rri ']|<@(1+ ! >((’)<1>+(t T)@())<(§ nt, 1
(3 — 4 a_ 1 T - = -1 1 |-
TiJ " ds—1 Vd VAN dz dztz

Combining the above results together yields

t—1
WiV, 3] = Wi+ ST AW 5] =
T:Tl

Wi+ ST AWl g1+ Y AWl

TeT TET
1
= s <0)> (T1) () 1
mgn(w% (V Zv >+O<d2+d3+i>
TET
1
:= sign (wé?)) Vj(t) + Rgt) [i, 7], where ‘Rgt) [i,j}‘ <O (? + o ) .
dz dztz
By the inductive hypothesis ’Wl(t) [i,j}‘ =0 (\}) we get that ‘V( )‘ ( 1d>, which gives us
(). -

|7{1i.4]]

/o .
< 1
Vo] <O(ni+ 7).
Therefore, we have that for any j € [d] and any 41,2 € [d]
| () 0 (6 s+

}‘))‘zli(’j(ni_;_ 1 )
W] )V (120 (1 )|
By Lemma we know that ‘wg)

O (i+ —~177 ). Then we have for any j € [d],

(WaW) = Zwé?w(“[ )=

‘w

g = © (a]wli| Wi k1))
e (\/é‘wf”[m]’).

, ..., d} and the last equality uses Vi € | =0 (%1)

where k can be any index in {1, 2 ‘w
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Now we analyze the lower bound of ’W(Hl) [k, 7] ‘ Although it may decrease during some period,

we observe that once ‘Wl(t)[ ]‘ decreases to some value of order © ( f) such that (Wng)( )

A; — /nd, ie. Ej(-t) < —4/nd, we can apply the technique in Section when analyzing

Wl(t) [i, jo] to get that ‘Wl(t) [k ]}‘ will increase in the next step. This mechanism ensures a Q (%)

lower bound of )Wltﬂ) [k, j]|- Since k, j are arbitrary, we have proved that at time ¢ + 1, Vi, j €

d] - ‘Wft“ [i,j]‘ >0 (ﬁ)

Therefore by induction, we conclude that when T, < t < T, for Vi, j € [d], ‘Wl(t) i, j]’ =0 (%)

The remaining part of this lemma has also been proved by the analysis above.

D.15 PROOF OF LEMMA [23]

(®)

Lemmatells us that for any i € [d], keeps increasing when ¢ < T. However, the behavior

of Wl(t) [¢, 7] is more complicated. The following lemma tells us that ‘Wl(t) i, 7] ‘ will increase until

T} ;. After that ‘Wl(t) [i, 7] ‘ and E§t) may zigzag, but EJ(.t) will not fluctuate dramatically and will be
trapped in a small interval around zero.

Lemma 27. Under Assumption and suppose o < % Pickn <O (d%a) & </ g
and By = B%. Consider certain coordinate j. For Ty < t < min {T, Tfyj}, we have Vi € [d] :

‘Wl(t) [i,j]’ keeps increasing. If Ty ; < T, then for Ty ; <t < T, we will have —O (/nd) < Ej(t) <

1) (\/nd).

Now we start proving Lemma 25| At time 7', denote S := { j:Ts;<T }, i.e. the set of coordinates
j:v ~

E"| < 0 (vid). 1f

S¢ = ¢, which means Vj € [d] : ‘EJ(T)‘ < O (/nd), then our lemma will immediately follow. If

whose E; have passed its “flip time”. By Lemma ,

5S¢ £ ¢, we have T = min{ ¢, T} =T, and that Vj € S° : E](T) < 0. By the definition of T, we

know that Jig € | ‘ 94| < O (dy/7). Then
d _ _ d
T ). - T T T T .
Z E]( )Wl( )[ZOaJ] _ Z )W( ) ZE( )W( ) 0, }
jese Jj=1 jES
< |62 + [ B WD ) < 0@y + a0 (ad) 0 (75 ) = 02y,

jES

By Lemma , we know that when Ty < t < T, for Vi, j € [d],

®) [z}j]‘ =0 (ﬁ) Since the
update per step ‘AWl(t) [i, }‘ < O(n), we know that sign (Wl(t) [i, j]) remains unchanged during
this period and sign (Wl( )[ }) = sign (Wl( 1)[ ]) = sign (wgg)) independent of j. Combining

withVj € 5¢: E; () < 0 gives us that £ r )W1( )[20 j] for different j have the same sign. Therefore
for any jo € S°¢,

d N N -
Z E(T)W(T) 0,41 = Z ‘EJ(_T>W1(T)[Z.OJ]‘ > ‘EJ(_?)WlT)[iO,jO]’

JES® jeSe
©(G) =l

‘ E!

<0 (/).
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Note that the above inequality holds for any j, € S¢, which means Vj € S¢ : ’EJ(T)} < O (dv/nd).
Combining with the fact that Vj € S : ‘EJ(T)‘ < O (dv/nd) completes the proof.

D.16 PROOF OF LEMMA [27]

Consider certain j € [d], when t < min{ T, TfJ}, we have that E](-t) < —+/nd. Therefore we

can use the same argument as in Section [D.13[to prove that ‘Wl(t) [4, j]‘ keeps increasing, and

sign (Wl(t) [i,j]) = sign (wé?) for all i € [d].

At time the “flip time” ¢t = T ;, by definition, E](.t) > —+/nd. After that E](-t) may oscillate. Now we
prove that once EJ(.t) > +v/nd (or Ej(.t) < —+/nd), after a short period Ej(t) will decrease (or increase)
untilhE](-t) <O (\/ nd) (or E](t) >-0 (\/ nd)). Moreover, during this period, EJ(-t) won’t change too
much.

(t)

We first recall that when Ty < t < T, Lemma gives us for all i € [d], |ws,

=0 (ﬁ) and
Wi, j]| = O (L5 ). Then eq.(33) we obtained in the first phase analysis still holds, which tell
) :@(n\/&) forall T) <t < T.

us that the change of E§t per step satisfies ‘E;Hl) — E;t)

We divide the analysis into two cases, based on whether these E](.t) > /nd or E](t) < —v/nd. By
Lemma , we know that when T} <t < T, Vi € [d], Wl(t) [i,j]’ =0 (ﬁ) Since the update per

step ‘AWl(t) [¢, ]]’ < O(n), we know that sign (Wl(t) [2, j]) remains unchanged during this period
and sign (Wl(t) [i,j]) = sign (WlTl) [i,j}) = sign (wgi))).

3

where Ag—) =n (1 +0O (\/?)))

By the analysis of wét-) in Lemma we have for all i € [d], wgtiﬂ) = wg) + sign (wé?)) Ag?,

Case 1. Consider some time point ¢ such that EJ(-t) < —+/nd. Note that for all i € [d],
‘ggt) [i,j]‘ = wgi)EJ(t) = Q(,/7) and that sign (git) [z’,j}) = —sign (wg)) = —sign (@?).
By Lemma , for all ¢ € [d] we have Wl(t+1)[i,j] = l(t) [i, 4] + sign (wé(;)) Agt) [i, 7] with
AV =n(1+£0 (\/ﬁ)) That gives us

d
B = 3wl w5 - 4,

i=1

(ws? +sign (") AL) (Wi, )+ sign (wl)) AP, 1) - 4,

o

<
Il
—

(w00, 1-+ sign (wl2)) (w AV 51 + AQWOL 1) + DAV 1) - 4y

o

<
I
—

APl ]+ AF)

. d
S (S Wil ]| + AV A07)
=1
(t+1) )
= E; > E;7,
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where (4) is because sign ( (¢ )) = sign (Wl(t) [i,j]) = sign ( o )) Therefore we have proved

that EJ( ) will increase in the next step. After that for 7 > ¢ 4 1, as long as E](-T) < —+/nd, the above
analysis will hold and EJ(T) will keep increasing until EJ(»T) > —y/nd or we reach T'.

Case 2. Consider some time point ¢ such that EJ(-t) > v/nd. We will prove that Ej(-t) will decrease
after a short period, and during this period, the change of it is at most O (\/ nd).

By similar arguments as in Case 1, we can get that Wl( 1) [i,4] = Wl(t) [i, 4] —sign (wzz ) A(t 2, 7],
where Agt) [i,9] =n (1 +0O (\/ﬁ)), Then

d
1 1 ). -
EJ(H— ) _ ng-&- )W1(t+ )[Z,]] — A

=1

=" (wh +sien () AL) (Wi71i, 5] - sien (wi) AP, 5]) - 4,
S (bW, g = sign (ws?) (wh A", 5] = AL WO 51) - A AP L)) - 4,

) d
O (U INE Y

i=1

i, 51| + a9 a1, 1).

where (%) is because sign ( (¢ )) = sign (Wl(t) [i,j}) = sign (wég)) E](-Hl) may not be smaller
than EJ( ), but we will show that after at most ¢ steps for some ¢, we will have E§t+ts+1) < E;Hts).
To see this, first note that by the bounds of A{[i, j] and A, we get A [i, j] > AY) — 1O (/7).
Since ‘wQ ‘ increases by ©(n) per step, and ‘Wl(t) [2, ]}‘ keeps decreasing, then we have either i)

after ¢ steps for some ¢, Vi € | 'wQH_t

> ‘Wl(H_tS) [i,j]‘ + /1 or ii) we reach T.

For i), if E;Hts) < +/nd, then it’s already what we want. Otherwise we will have Agt“s) [i,4] =
n (1 + 0 (\/ﬁ)) Hence

plt+ts) _ Ej(_t+ts+1)

)[ = A(t+t s)

22:( (t+t)
- ‘

(2

(t+ts )[ ]‘ +A(t+t )A(Ht )[ })

Il
—

qu&

> (WA )| (A1) = AT 4 VAT i) + AT AT )

ﬁ
Il
_

U

Il
—

(=00 (v (Wi, 1| 4+ my/m + AT AL ) > o,
where the last inequality uses Vi,j € [d] : ’Wl(t+t‘s)[i,j]‘ =0 (%) Therefore E](H_t‘““) <
E(.”ts) After that for 7 > ¢ + ts + 1, as long as E(T) > \/nd, the above analysis will hold and E](.T)
will keep decreasing until E ) < v/nd or we reach T.

Now we prove that during these ¢, steps, the change of Ej is o (\/nd). Since at each step the

difference |wq;| — |[W1[4, 5]| will be enlarged by (n), then we know that ¢, = \/F]/Q(n) =0 (%)
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Combining with the fact that for all 77 < 7 < T, ‘E](.T'H) - E](,T) =

o (77\/@ gives us
(t+ts) (t) = A
By -E <O (nts\/ﬁ) -0 (\/7771) .
For ii), we reach T before Vi € [d] : ‘wgﬂs)‘ > ‘W(tths)[Z- ]‘ 4 /7. Then we have Fot<
\/ﬁ/ﬁ(ﬂ) =0 (f) which yields E(T) < O ( ( t)\/E) < % (\/W)

Combining the above two cases, we find that if for some ¢, EJ(-t) > +/nd, then after at most ¢, steps
E; will decrease and keeps decreasing until E; < y/nd or we reach T'. During these steps, E; can
increase at most O (J?Td) If for some ¢, Ej(-t) < —+/nd, then after one step it will increase and keeps
increasing until E; > /nd or we reach T'. That means once for some coordinate j, E; overshoots, it
will zigzag in a small region around zero, which is {—(7) (\/W) NG, (W)} .

E HESSIAN TENDS TO BECOME MORE AND MORE DIAGONAL DURING
TRAINING

In this section, we empirically demonstrate that the trend of loss Hessian in practice is to become
more and more diagonal during training. We also give a rigorous theoretical analysis on a two-layer
network under Assumption[T]and

E.1 EMPIRICAL RESULTS

Let’s first define the diagonal domination of the ¢-th coordinate at time ¢.

ot gy VT (HOL)’
cuag, |H(t i z]| ’

To measure the diagonal domination of the whole Hessian, we need to consider the distribution of
7Gha.i (1) for different i. Figure 14| shows the mean and median of 307} (t) and 745" (t) on the

sentence classification task (see Section4.1)). Here we chose 4 layers (Layer #6, 12, 17 and 22) and
computed the Hessians across these 4 layers. Since the number of parameters is very large, we did
the computation by random sampling. As we can see, for both r§0PY (t) and 742" (), the trend of
their mean or median is to decrease over time, although there might be some oscillation.

000 650

00\ T

550 .

(a) Mean (b) Median

Figure 14: Mean and median of rgggﬁd(t) and r:;gg?; (t) for the full hessian across the four layers (#6,12,17,22)

E.2 THEORETICAL ANALYSIS

OPT

To simplify the theoretical analysis, we consider the mean of rg,, ;

(t) over all coordinate and define
Rdlag ( ) ‘= mean (rc(l)lljgz(t)) . (40)

We consider a 2-layer network under Assumption [T]and 2] and have two goals in our proof:

65



Under review as a conference paper at ICLR 2023

1. To show that RG}T(t) after training is smaller than that before training (t = 0).

2. Note that in our setting (see in Assumption , the Hessian is a (d>+d) x (d? +d) matrix. For
a completely “uniform” matrix with the same size, we have that RY"! (¢) = © (Vd? + d) =

diag
©(d). Hence our second goal is to show that the RGFT(t) after training is on lower order
than O(d).

Theorem 2. Consider the ratio Rg[ig(t) defined in eq. @0). Under Assumptionand we have

that before training (t = 0), with high probability,

RT(0) > O (d‘*a*%) . 41)

For SGD+M defined in eq. (3). For any p > 0, by picking the same hyperparameters as in The-
orem |Z| for Tsep,1,TsGp,2 mentioned in Theorem |Z| we have with constant probability, for any
t € [Tsop,1, Tsop,2),

RSG2(t) < O (V) + 4, “2)

where the trend ofq(t) is to decrease over time and q¢(T5».2) < 1) (ﬁ) = o(d).
For Adam defined in eq. (3). For any p > 0, by picking the same hyperparameters as in Theorem(]] for
Tadam,1s Tadam,2 mentioned in Theorem we have with high probability, for any t € [Tagam,1, Tadam,2),

RAdam () < O (\/&) O} (43)

where the trend ofr(t) is to decrease over time and r(Tadan.2) < O ( pl,l ) =o0 (\/3)
d 2

E.3 PROOF OF THEOREM 2|

Lemma 4.3 of (Kawaguchil, 2016) gives us the following forms of Hessian.

Forany k € {1,2,..., H 4 1}, we know that Vyec(w,.) (Vyee(w,) L(W)) equals

(Wegt o Wi )T Wear oo o Wig ) @ (Wieoq oo . W) (Wi ... W),
and for k € {2,3,..., H + 1},
Vaeewi) (Voeew,) L(W))
=(CT(Wiy1.. . Wi1) @ (Wi_p... W)T)
H (Wit oo W) @ N[y, @ (r(Wrrgn oo Wiga))oa - Lag s @ ((Wargn - Wit1)) an s
where r = (Wgyq ... Wy — AT, C =Wy Wy - Wa.
For the 2-layer linear network, write the Hessian as

Hyy HI ]

H =
[Hm Hyy

then we have that
Hyy = (WIW,) @ I; € REXE
Hyy = WiWT € R™X4,
Hy =WT @WT + I, @ (Wl — A)T € REx4,
Intuitively, before training the elements of W7 and W5 are very close to zero, and WoWW; — A ~ — A.

Since the elements of A are ©(1), we know that the magnitudes of elements of Hs; are much bigger
than those of Hy; and Has.

After training, for both SGD+M and Adam, W W, — A = 0. Then Hy; ~ (W3)” ® (W1)T and the
magnitudes of its elements are no longer much larger than those of H;; and Has. From the formula
of Hyy, we know that all the diagonal entries are nonzero, and among the d* — d? off-diagonal entries,

there are only d* — d* nonzero entries, which helps us to bound RGHT ().
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E.3.1 PROOF OF EQ. (#1)

Let’s first analyze the weights and Hessian before training (¢ = 0). For ease of notation, we omit the
superscript ().

For the i-th row where 1 < ¢ < d, i.e. the i-th row of the submatrix [Hao HQTl], we have

ZHQ[Z'] ZH2QZJ +ZH21J,

J#i J#i
d
2 Z H3,[j, 1] Z wai Wi, j] + (W W1 — A);)* = ©(d).
j=1

On the other hand, for the diagonal elements, we have w.h.p.

d
il = o] = W8 = Y W20 < O (g ).

j=1
Then we have that for 1 < <d,

J#l 2[é, 7] ~
=Q(d"*z2).
|H[i,1]] (9 (W) ( )

For the (id + k)-th row where 1 <14 < d,1 <k <d, i.e. the ((i — 1)d + k)-th row of the submatrix
[Hgl HH],WG have

d

Mo Hligl= >, Hulli—1d+k g+ Y H3l(i— 1)d+k,j]

jid+k JA(i-1)d+k j=1
> H3 [(i — 1)d + k,i] = (wo Wi [i, k] + (W W3 — A))* = O(1).
On the other hand, for the diagonal elements, we have w.h.p.

|Hlid + K id + k]| = [Hn[(i — 1)d+ k, (i — 1)d+ k]| = %s@(l).

Then we have that for 1 <1¢ < d,1 <k <d,

\/Zj#id—&-/c H?2[i, j] . Vam) _ 6 (@),

|HTid + k, id + k]|

Taking the average, we obtain that before training, i.e. when ¢t = 0,

a0 (d‘*"‘%) + d20) (d2)

S )]

diag

E.3.2 PROOF OF EQ. (42)

The proof is based on the lemma below.

Lemma 28. Suppose the weight matrices have the following structure:
Wy = uov? + Ry,
Wy = cu’ + RY,

where N1 < i,j <d: wg(s \‘Rzi\gé, §€(0,1).

cu;|

Then we have for 1 < i < d,

Z#iH[m1<1+a<H o) Simts 1Bl
[Hlid T 1-0 lvll2 : (1= d)%uflvll3’
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andfor1 <i<d, 1<k <d,

\/Z#idﬂc H2[i, j] < 1+ 14 v | Z;‘izl us
\Hlid + k,id + k]| ~1—0

| Ex|
(1—6)2c2u?’

Now we are ready to prove eq. (@2).

By the analyses in Section we know that for ¢ € [Tsop,1, Tsop,2], the weights obtained by GD
with momentum satisfy

Wl(t) _ ’u,(Tl)’U(t)T + Rgt),

Wi = Oy 4 gIT
where TSGD,l = T1 and
a1

‘Cmu(Tl)

V1<i,j<d: < Ofep O(eo).

IN

Here ¢ is defined in Deﬁnition Since u(Tl) doesn’t depend on time ¢ in the period (Tscp.1, Ts6p,2)s
we write w(T") as w for ease of notation.

Hence by Lemma 28] when ¢ € [Tsap,1, Tsop,2), we have for 1 < i < d,

\/Z#i (HO[i, 4)° _ 1+0(«) (1 |c®)] ) S . 1ED],
| H O, ] - 1-0(e) [0, uf (1 - @(eo)>2 u? o®|

(®) d 2 £®
Co(ir LY [T o (1R )
||v Hz i u; ||'v(t)H2

(44)
andfor1 <i<d, 1<k <d,
2 (®)
\/Zﬁészrk (H®[i, 51) 1+(9 ‘ ‘ Z 1“?+ ‘Ek ’
2 N 2
|HOid + k, id + k]| N O(e 0) C(t | K (1 —~ (9(60)> (e®)? u2
‘v,(:) Z(?:l u2 ‘E,(f)‘
=01+ =1 +0 5
|c®] u; (c®)”u?
(45)
By Lemma we have u = X +Y where X, i € [d] are i.i.d Gaussian random variables and w.h.p.,
Yil 1
Vi€ |d <O = Ogys 46
1€ [ } ‘XZ| d%a_% y ( )
which yields that
2?71 u? 146 Z 1 X2
€ [d] : —7 < 2y = 47
Ve (7)) SR e ( > Xz @

()

By the proof in Section | we know that for t € [Tsep,1, Tsep,2], ¥ c(t) are positive.

-lg

@
The induction in Section|C.9|further gives us that for ¢t € [Tsgp 1, TSGD,Q], W.h.p. Yk € [d] : + =
G] ( \f) which yields o® = O(1). Combining with eq. (47)), we obtain

||v<”||
d d 2
- |c®] ijlu?<o 2 =1 %]
[0, up " X ’
48
(t) d 2 d X2 ( )
14 Uk Zj:ﬂ‘; <0 ijl J
@) ;= X
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By the proof in Section we know that for ¢ € [Tsp.1,Tsep,2). Vi € [d] : vgt), ¢®) are positive
and monotonically increasing. On the other hand, the proof in Section[C.2]and [C.9tells us that w.h.p.

|E®|, resp. ¥k € [d] (V) (resp. ©(1)) when t = Tscp,1 to O(veod)

(t) ®
(resp. (’)(\/5)) when ¢ = Tsgp,2. Therefore, the trend of u!ﬁv(t‘)‘HQ and (J(t)k)QL2 is to decrease over
time, and when ¢t = Tsgp 2, we have w.h.p.
Vk € [d] : ’E,(f) —0(Ja), HE“)H2 0 (\/eod> . (49)

Moreover, when ¢ = Tsgp 2, the inequality in eq. (26) becomes equality, i.e. ¢||ul|3 = © (\/E) and
vj e fd: fule? = o (J7).
Using u = X + Y and eq. {@6)), we have

. 1
x)3 = o (Vd) . we[dmxnévf@( ) = IXIBlol3 = (V).

Vd
which together with the second inequality in eq. @7) yields

d
1 ( 1 )2 1, > X3
ullvlls = \1—dzy ) X7[l0[3 X2vVd )’

d
1 A o [ Ziz X?
u? ~ \1—0yy /) X7 Xf\/& ’

Combining with eq. {@9), we get that
(t)
1290, _ o (S5 X2 (B
— = <0 = ——— <0 — . 50
oo = O\ V) o =0\ T W)

Substituting eq. (@8) and (30) into eq. @4) and @3) gives us

.2 d
nggd:\/Z#i(H(t)[z,]]) o JEL, x?

|H®) i, ]| | X

+q,

d 2

. : '
where the trend of ¢\ is to decrease over time and qiiTSGM) <O (]X12’ “ /60) .

We also have

2 d
v1<z‘<d,1<k<d:\/2#”+k Ao @

‘H(t) [id + F, Zd-‘rk“ | X

IA

+ 0,

d X2
where the trend of qgl) is to decrease over time and qéTgGD 2 <0 <EJ=1_2 L. ig) .

Hence

diag |X1|
=1
d 2
1 Zj:l X]
=0 = (t)
d Z | X T
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where the trend of ¢(*) is to decrease over time and

d
q(TsGD,z) < 1 a O ijl X72 . Xd: Z] 1X2 €0
~d24d - X? P "\ d
Z 1X2 1 Z‘ﬂX‘ €
< j= ASend | = - =177y [F0 )
O<d2+dZ X2 “od | =0 d; X2 d

Denote o2 as the variance of X; for i € [d]. By concentration of chi-squared distribution, we know
that with probability at least 1 — ¢ for § > 0,

d
/ 1
Y X7 <od+0°0 < dlog 5) .

=1

By Lemmain Appendix we know that with constant probability % S ﬁ =0 (Llogd).
2
Then with constant probability, 3 >2¢_| x2Sy (Zle |71|> = O (% log®d). Hence
V2 X2 X7
— O (d?
a Z X b Z X =0@).

Therefore with constant probablhty,

RSP (1) = O (Vi) + )

where the trend of ¢(*) is to decrease over time and ¢(7s0.2) (d\/ d) For any p > 0, by

O (2) and hence g(Tse0:2) <

IN
IN O

picking the same hyperparameters as in Theorem we have €yd

E.3.3 PROOF OF EQ. (43)

By the analyses in Section we know that for ¢ € [Thagam.1, Tadam,2], the weights obtained by
Adam satisfy

Wl(t) = uvWT + Rgt),
Wi = Oy T 4 pIOT
where Vi € [d] : u; = 51gn(w2 ) € {£1} and

Vi<iji<d LS) b ‘ <§:=0 1 ‘R;?
. — 4
>17,] > . ’u,u(t)‘ = (77 +d 1)7 |C(t)’u,2| =
L]

% —
Hence by Lemma 28] when ¢ € [Tadam,1, TAdam,2), we have for 1 < i < d,

Vs (HOL5)’ <1+5(1+ |c<f>|> S, B,

[H i ] ~1-4 [v®]2 u? (1-6)*u? H’U(t)H; (51)
(t) E®
0<1+ ’cu)‘)\/&*(g(" Hf)’
o2 [v®1];
andforl1 <i<d,1<k<d,
Vi B0 1y () £ |B
[HOfid + k,id+ k]| —1-06 |c®)] ui o (1=8) ()
52
‘U(t)‘ ’E’(ct) (52)
=01 d+ 0O
e | VO (o

Recall the following facts of Adam.
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(A) By Lemma [14] we know that for ¢ € [Tagum,1,71] (Where T} is defined in Definition ),
w.hp. Vk € [d ] : (t) = c® = p(t — tin.). Specially, when t = Tagam 1, Vk € [d] :
v(t) — o) — d%. Lemmaandtell us that for ¢t € [Tl,TAdam o] wh.p. Vi,j € [d] :

|Whli, ]| ﬁ) s |weg| = (ﬁ), which gives us Vk € | ’ ’ = ( ) and

|c | ys (ﬁ) That means when ¢ € [Tadam,1, Ladam 2], Yk € [d] : ’ k)’ and |C(t)|

o{® ~ |e®]

B) Lemmaandtell us that w.h.p. HE(t) H2 (resp. Vk € [d], E,(:) ‘) decreases from ©(d)
(resp. ©(1)) when ¢ = Tagam,1 to ) (d2\/77) (resp. 0 (d\/nd)) when ¢ = Tadam,2-

increase from di% t0 (- /=) and

E® E(f)
Combining (A) and (B), we get that the trend of ||“ o Hg and (’ (f))z is to decrease over time, and
when ¢ = Tadgam,2, We have w.h.p.
t
159, _son o B
2 <O (dVr), 5 <0 (a*/nd). (53)
[0, (c®)

Substituting (A) and eq. (33) into eq. (31) and (32) gives us w.h.p.,

. \/Zj;éi (HOf, 51)° ()
Vi<i<d: ’H(t)[i,iH SO(\/@—i—ru,

where the trend of ") is to decrease over time and r{"*"*) < @ (dy/m).

We also have

\/Za¢zd+k HW[i, j] )2
|H®[id + k. id + k]|

Vi<i<d1<k<d:

<O (\/&) + ré?,

where the trend of !/ is to decrease over time and r(-TAda‘“’Z) < O (d?/nd).

Hence R{&™(t) = O (\/&) +a r B D Dy ri) =0 (\[) + 7 where the trend

of 7® is to decrease over time and

d
}:@dQ

7 (Tadam,2) <

30 (i) <0 (i)

For any p > 0, by picking the same hyperparameters as in Theorem |1} we have nd* < O (%) and

hence r(Taam2) < O (d%l) =0 (ﬁ)

E.4 PROOF OF LEMMA2§]
By the assumed weight structure, we get that

Vi € [d] (1= 6)%(cui)? < (w2i)® < (14 6)*(cus)?,
(1= 8)*(ue)[[vll3 < [IWAL3, ]Il < (1 +6)*(wi)?|l0]l3.
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For the i-th row where 1 < i < d, i.e. the i-th row of the submatrix [Hyy HJ,], by triangle
inequality, we have

ZH%] ZH22ZJ}+

Jj#i Jj#i
d
Z Wili,:], Walj,:]) szj ZW k] + [ Ell2
Jj#i j=1 k=1

d
> wd; | +|E]2.
j=1

< AIWalillz (/D WL, 03 +
J#i

Then we have that for 1 <7 < d,

Zj;&i H?[i, J} Wi, :] j;éz [Wl4, 1015 + \/ Z] 1w23 1 E||2

[H ] AGEIE AT

d

\/Zm WL ||2+ Yo |IE]

WA Wl 313 A, T3

\/<1+6>2,Zm jllv2+\/<1+6>2,022?_1u?+ 11

SV Wl =02 el (- 02l
d 2

<1+6(1+ |c|> Yo, Bl

=5 U Tl T 0Pl

For the (id + k)-th row where 1 <4 <d,1 < k < d, i.e. the (( — 1)d + k)-th row of the submatrix
[Ho1 Hii], by triangle inequality again, we have

d
o B < [ HAl—Dd+ kgl + | Y HR (- Dd+k,j]

J#id+k j#(i—1)d+k J=1
d

Zw%zwgg + ngin[ja k] + [ Ey|
Jj#i j=

= lwal | > ws;+
i

Then we have that for 1 <i <d,1 <k <d,

d .
\/Ej;éidJrk (1, 7] |w21\ 3757, wzg Zj:l W25, k| N | Eg|
|H[id+k,id+k| - 2

d .
D w%j >j=1 WE K] | Byl
2 + 2 T3
ws.

d
\/(1 +0)2 Y Y n \/(1 +0)% Ui L 1Bk

—\V (1-6)2 c2u? (1—6)2 ' c2u? (1—6)2cu?
d 2
144 ok D1 Uj | B
< — 14— .
~1-4 < + |c| u? + (1—106)2c2u?
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F CONNECTION BETWEEN DIAGONAL OF LOSS HESSIAN AND WEIGHTS

The partial derivative at W; of the cost function for each ¢ is given by:

Vw, LW) =Wl .. . Wh Wy Wy ... Wy — AW W, (54)

K3

In our experiments, we were interested in the diagonal elements of the hessian. These are given by:

Ve VWi LOV))ap = Vs, , Wiy - Wiy Wi Wa . Wi — AW LWy

K2

for each possible 7, a, b. For ease in notation, define for each ¢, the quantities M; := WTH W 11

and N; := W{ ... WL . Then we have the following lemma.
Lemma 29. The diagonal elements of the hessian of the cost function are given by:
Vwi)as (VW LW))ay = (MM )a,a (N7 Ni),p

for each possible i, a, b.

Proof. We have:
Vw, LW) =Wl .. . Wh (W paWy .. Wy — AW W,

=MWy Wy...W1 — A)N;

=MWy Wyg...WiN; — M;YN;,.
This implies that:

Vwas (Vw,LW))ap = Vwyy,, MiWue Wy ... WiN; — MY N;),
- V(Wi)a,b (M1WH+1WH . WlNi)aJ) )
where the last step follows since M; and N, are not functions of W.
Since ]\4z = VVE—l ce Wngl’ Ni = WlT ce Wijil’ by deﬁning Ci = MiWH+1WH PN WiJrl =
MZMZT and D; :=W,_1... WoW N, = Nz-TNi we have that:
Ve Vw, LW ) ap = Vw,),, (CiWiDi)a b,

where C; and D; are not functions of W;. Now, Equation 74 in the Matrix Cookboo shows us that
for any matrices A and X we have:

Vo (XA)ij = Gim Anj.

mn

Note that W; € R%*%i-1then we can apply this to obtain that:
Vwaw (VWi LWV))ap = Vwy),, (CiWiDi)ap

<

(Wi)a,b

d;
Z(Ci)a,k(WiDi)k,b]

k=1

QU

i

(]

(Ci)akV Wiy, WiDi)rp

>
&
=

Z(Ci)a,k5ak(Di)b,b
f

= (Ci)a,a(Di)b,b

= (MiM])a,a(N]" Ni)p b

[

This completes the proof. O

Zhttps://www.math.uwaterloo.ca/~hwolkowi/matrixcookbook.pdf
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For ease of notation, let’s now drop the superscript OPT and (t) and write RO | (£) as Rimea,1 and
Rggdr_rz(t) as Ryeq,2. For a 2-layer linear network, H = 1. Consider the Hessian w.r.t W, we have

MiMT = WEW, and NI Ny is an identity matrix. Under Assumption we know that W5 is a row
vector, which can be denoted as Wo = [wa1, waa, ..., a4, |. Then we have

max; (’wgi ) 2

MM )0 = why, (NT Ny )pyp = 1 med: L = hedian (w2
(MM ), Wag, (N7 N1)bp » = Bmedn median(ws;)?

Similarly, consider the Hessian w.r.t. W, we have that M; M- 1T is an identity matrix and V- 1T Ny =
Wy WlT . Therefore,

max; ||W i, :]||3

M, MT), NINy )y = [|[W , = R = .
( 1 1), ( 1 1)bb H 1[ H|2 med,2 median||W1[i,:]||§

Hence we have related the uniformity of diagonal Hessian to that of weight matrices. In the detailed
analysis, for both GD and Adam, we can prove that W, converges to an approximately rank 1 matrix.
The following lemma allows us to use this rank 1 structure to compute Rmed 1 and Rmeq,2-

Lemma 30. Suppose W, € R4 and W, € R'*¢ have the following structure:
Wl = UUT + Rl,
Wy = cu® + Ry,

where u € R%, v € R Ry € R4 Ry € R4 and that

. .
il o5 Bl 505 0,1),
|uivj | |eus|

Vl1<i4,5<d:

Then we have
(1-6)?% max;u? (1+6)? max;u?
(146)% medianu?’ (1 —6)2 median u?

Rmed,la Rmed,2 €

Proof. Let’s first consider Rpeq,1. wWe have
Vi€ [d:(1—06)*(cu;)?* <wsi; < (146)(cuy)?
= (1-96)? m?X(C’U/i)Z < mlaxwgi < (1+9)? Inlax(cui)2
(1 — 6)?median (cu;)? < median w3; < (1 + §)*median (cu;)?,
which yields

(1—-6)? max;u? max; ws; - (1+0)*  max;uf

. Rt — )
(1+06)2 medianu? = ™'~ median w2, = (1—06)2 median u?

Similarly, for Rpeq,2. We have that
Vi,j € [d] : (1= 6)*(uiv;)® <WT[i, j
= (1=0)%u[lv]3 < Wi, ]
= (1- 5)2maXU?||v||2 < max [Wi[i, ]

] < (14 6)%(usvy)?
13 < (1+6)%uf|v]l3
|

<
< (1+6) maxed o]

2
2
2
2
— median u; ||v median 1[2 + median u; ||v||5,
1 — &)*median u?||v||5 < median |[W;[i,:]||? < (1 + 0)*median u?||v||3

which yields

(1-0° maxiuZ[ol} _
. > 4dlmed,2 —

max; [[Wili, ][5 _ (1+0)*  max;uf|v]3
(14 6)? median u?|jv]|3

median|[Wy[i,:][|2 = (1 —6)?  median u2[[v[2’

That means

—5)2 2
(1—-4¢)* max;u; <Rmed,2§(

. 1+46)? | max; u?
(1+6)% median u? — 2

(1—-9)? median u;
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G AUXILIARY LEMMAS

Lemma31. Let A = LY X7, A,, := LXXT, g\ = vy, L(W®), k = 1,2. Denote A®, R{!)
and g(t) k = 1,2 as the corresponding batch versions at time t. Let Ml(t) = max; ; ’Wl( ) [2, j]‘ and
(t)

Wa;

Mz(t) = max; . Under Assumption we have with probability at least 1 — 1, for Vt < T and

Vi, j € [d],
8016, 5] — 9. 31] < M (M) VAT + MoV,

60— o)

< gt (Ml(”) MPoVdT + dM oV T.

Proof. By Assumptionand Chebyshev’s inequality, we have for fixed i,j € [d] and t < T,

P (|47 -] >2) < ’ P (|A805,5] — Asalisg)] > A) < i

A2’ =2
Applying the union bound gives us
- Tdo?
]P’(Hi cld,3t<T: ‘AE” — Al /\> < %,
.y ) . Td?c?
P(HZMJG [d]’HtST A.(I/IS‘I),[Z?]}_AJ,.L[ZM]]’ >)‘) < 22 )

which gives us with probability at least 1 — % for vVt <T,Vi,j € [d],

AW, ] — Am[i,j]] < odV/dT.

‘A@ - 2T,

Now we are ready to bound g( ) (t) fork=1,2andt <T.
Note that for all ¢ < T and Vi € [d],

d
t t t t ‘ t
|(wiow®) | = Zwé W, <3 [l

Then we have with probability at least 1 — %, for all ¢ < T and Vi € [d],

(W Wi (R = ) )

WOl 1| < aviO .

d
<> ‘ (Wé”Wf“)j‘ [8015,1) = Aalsi )
j=1

< MY MP oVdT.
Combining with g(t) (t) = WQ(t)T (Wét)Wl(t) ([\&2 — Am) — (/Nl(t) — A)), we get that with
probability at least 1 — 7, forallt < T and Vi, j € [d],

30163~ o011 < o] | (9510 (380 - ),
J

+ ‘wg—)

‘A(_t) Yy

7 J

2
< @MY (M;w) oVdT + MV o V2T,

Similarly, note that gét) gétz) (WQ(t)Wl(t) (A;@E - AM) — (fl(t) — A)) Wl(t)T, we then have
that with probability at least 1 — 7, forallt < T and Vi, j € [d],

Z‘ (WOwi (A0 - A ))
J

< gt (Ml“)) MPoVdT + dM P oV T

‘921 - g2z

d
iyl + 30 |AP - 45| (W%,
=1
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Lemma 32. Consider two sequences {a)};>¢, {b® };>0, which satisfy

t
a = (1-p)) B, B e (0,1).
7=0

Suppose VT < t: }b(t)| < B, then for any € > 0, the following truncated version
H
20 = (1-8) 3
7=0

with H > ﬁ log % =0 (ﬁ) satisfies

‘a(t) —aW| <e

Proof. We have that

t

T=H+1

t
(1—,8) Z ﬂTb(t_T)

T=H+1

’aa) _a] <

To make it less than e, it suffices to choose H > log(5 )/ log 3.
Since 3 € (0,1), we know that log f < f — 1 < 0. We also have log & < 0. Then it suffices to

choose | B | B B
H> og(</ )> og(/B) = H> ! logQ< ! >
€

- B-1 7 logp 1-p

1-p
O]
Lemma 33. Suppose a,b,c,eq, ep,e. € R,b>0,¢> 0satisfy b+ e, + e. > 0, |eq| < dlal, |ep] <
b, lec| < 62c® with 0 < § < 1, then we have
a—+ eq

a
= 1+ R), where|R|= O().
e \/E—i—c( ) |R| = 0O(0)

Proof. We have
a—+eq [

a a a a
Vb+e,+e.+c Vbte Vb+er+e.+c Vbie Vbte,+e.+c

e |y Vbte e Whte
Vb4 ¢ Vb+ep,te.+c a +Vb+e,te.+c
q1 q2

Define R := ¢q1 + g2. The term |g;| can be bounded by

\/l;—\/b—i—eb—i—ec
o] = Vb+ey,+e.+c

B ley + el
(Vb +ep+ec+c) (\/l;—i-\/b—i-eb—i—ec)
les] |60‘

<

+
(\/b—&—eb—i—ec—l—c)(\/l;—i—\/b—i—eb—i—ec) (\/b—l—eb—l—ec—l—c)(\/B—i—\/b—i—eb—&—ec)
< ‘eb| + V lec] ) V lec]

T (Vbtestect+e)vb ¢ Vb+yvbte,te.
< s 5 Vel
T (Whtepfect+oVh  Vhb+Vbhte,+e.

q3 qa

76



Under review as a conference paper at ICLR 2023

where |g3| can be bounded by

@) 8b 5v/b oo
las] < (Vb + ey —/]ee| + )Vb : b(1—0)+c(1—9) = b(1—06) ().

Here the denominator of (i) uses b + ¢, > b(1 —§) > 0 and \/zr+y > /x — /|y| when
x>0, +y>0.

Now let’s bound |q4|. If . > 0, we have e. = |e.| and |g4| < ‘F = 1since b+ e, > b(1 —9) > 0.

If e. < 0, note that b+ e, + e. > 0, we have |e.| < b+ b. < b(1+ 6), which yields |g4] < V |e°
O(1). Combining the above bounds give us |q1| < |g3] + d]ga| = O(9).

| can be bounded by
ol <o Vb +c <5 Vbte = 0(6).
VhFer = leel+ e 7 Vb1 0) +e(l - )
Then |R| < |¢1] + |g2| = O(9) -

Lemma 34. Suppose X1, Xo, ..., Xy are i.i.d Gaussian with mean 0 and variance o2, then for
0<o< % we have with probability at least 1 — 0,

1
max X7 > o? (Cl log d — C5 log log 5)

1<i<d
for some C,Cy > 0.
Proof. Tt suffices to assume that 0> = 1 and prove that w.p. at least 1 — §, maxj<;j<q X7 >
C1logd — Csloglog %.

First, by the lower bound of Gaussian tail, there exists «, 5 > 0 such that P(| X;| > z) = 2P(X; >
z) > aeB7" for z > 0. Then by i.i.d., we have

P(max|X;| < z) = <ﬂﬂX|<zO

=1

P(Xi| < @) = (1= P(X;| > )

Il
E&

1
—ae” )d

xp(— dove =P ),

IN

IN

where the last inequality uses 1 — 2 < e~ for z € [0, 1]. Let exp(—dae~5%") = §, we get that w.p.
atleast 1 — 6,

1 1
>0/ - =)
1r£1lau<xd|X| \/5 (log(ad) loglog 5)

Then we have w.p. at least 1 — 4,

2
1 1
max X7 = <max | X |) > 3 (1og(ad) — loglog 5) .

1<i<d 1<i<d
O

Lemma 35. Suppose X1, Xo, ..., X4 are i.i.d Gaussian with mean 0 and variance o2, then we have

with constant probability,
1. 1 1
= —logd | .
d; X (o o )
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Proof. 1t suffices to assume that 0> = 1 and prove that with constant probability, 2 5> | | )%-I <
O (logd).
Consider X; for some fixed i. Since X; ~ N (0,1), we have P(|X;| < ¢) < % Then we know

that with probability at least 1 — © (d~!),
constant probability, Vi € [d] : | X;| > &.

il > % for some C' > 0. Then by union bound, with

Now we split the interval [, 1] into several subintervals 7, = {i : [X;| € [27%~1 27*]} for
k=0,1,..[log, 2] — L. Let p, = P(|X;| € [27%~1,27%]), we know that |Z;| ~ Binomial(d, py,)
and pj, < C; -27%~1. Then by the concentration of binomial variables, we have w.p. at least 1 — d—?

(dpx + VdprTog d + log d) = O (d 2k=1 4 \/d-2-FTlogd + log d).

Then we have

d
S < T2 = o(d+ d-2k+1logd+2k+1logd), k=0,1,..., [logy =] — 1.
1€y |X| C

Therefore, with constant probability,

d_ [log, &1-1
LT & Z:| * 2 ]
i=1 k=0 1€y | X5 > 1
f10g2%1—1
< 3 (’)(d+\/d-2k+1logd+2k+1logd)+d
k=0
:O(dlog2 C) +O<\/d10gd~(f)flog2 c]+02) +2f10g2 c]+1logd+d
= 0O (dlogd),

which means with constant probability, 5 ZZ 17 | = O (logd). O
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