

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 HIERARCHICAL CONCEPT-BASED INTERPRETABLE MODELS

Anonymous authors

Paper under double-blind review

ABSTRACT

Modern deep neural networks remain challenging to interpret due to the opacity of their latent representations, impeding model understanding, debugging, and debiasing. Concept Embedding Models (CEMs) address this by mapping inputs to human-interpretable concept representations from which tasks can be predicted. Yet, CEMs fail to represent inter-concept relationships and require concept annotations at different granularities during training, limiting their applicability. In this paper, we introduce *Hierarchical Concept Embedding Models* (HiCEMs), a new family of CEMs that explicitly model concept relationships through hierarchical structures. To enable HiCEMs in real-world settings, we propose *Concept Splitting*, a method for automatically discovering finer-grained sub-concepts from a pretrained CEM’s embedding space without requiring additional annotations. This allows HiCEMs to generate fine-grained explanations from limited concept labels, reducing annotation burdens. Our evaluation across multiple datasets, including a user study and experiments on *PseudoKitchens*, a newly proposed concept-based dataset of 3D kitchen renders, demonstrates that (1) Concept Splitting discovers human-interpretable sub-concepts absent during training that can be used to train highly accurate HiCEMs, and (2) HiCEMs enable powerful test-time concept interventions at different granularities, leading to improved task accuracy.

1 INTRODUCTION

State-of-the-art Deep Neural Networks (DNNs) can achieve very high task accuracies but fail to explain their reasoning in human-understandable terms (Barredo Arrieta et al., 2020). Concept Embedding Models (CEMs) (Espinosa Zarlenga et al., 2022) address this limitation by learning to predict a set of human-understandable *concept* representations provided at training time (e.g., “size” or “colour”), and then using these concept representations (or *embeddings*) for learning to predict a downstream task. Within this framework, CEM’s concept predictions serve as an explanation for its downstream task prediction. However, CEMs cannot model relationships between concepts, treating all concepts as independent entities from each other, leading to their representations failing to capture known inter-concept relationships (Raman et al., 2024). This is problematic because real-world concepts are often interrelated, and human cognition inherently utilises such relationships for reasoning (McClelland & Rogers, 2003). Additionally, CEMs require expensive concept annotations at training time to learn their embeddings (Espinosa Zarlenga et al., 2022), limiting their usability.

While numerous researchers have explored concept discovery (Yuksekgonul et al., 2023; Oikarinen et al., 2023; Rao et al., 2024), they typically overlook the hierarchical relationships between discovered concepts. Additionally, these methods rarely support human-in-the-loop refinement, where expert interventions, such as corrections to concept predictions at test time, could improve model performance. These gaps limit their applicability to real-world scenarios where hierarchical concept structures and iterative human feedback are critical.

In this paper, we show that CEMs capture sub-concepts not provided during training as part of their embedding spaces. For example, a CEM trained with the concept “contains vegetables” may encode subspaces corresponding to finer-grained sub-concepts like “contains onions” and “contains carrots” within its embedding manifold. To exploit this structure, we propose (1) *Concept Splitting* (Figure 1), a method for discovering sub-concepts from a CEM’s concept embeddings using sparse autoencoders (Bricken et al., 2023), and (2) *Hierarchical CEM* (HiCEM, Figures 2 and 3), a model designed

Figure 1: **Concept Splitting.** (a) Train a CEM and calculate concept embeddings. (b) Train SAEs on the embeddings (the image depicts a single embedding set). (c) Create concept labels. The green points are marked as having the new concept, and the black points (where the parent concept is not active or where the SAE feature is not active) are marked as not having the new concept.

to support hierarchical concept relationships like those discovered by Concept Splitting. Together, Concept Splitting and HiCEMs significantly reduce annotation costs by requiring only coarse, high-level concept labels during training while automatically discovering more granular sub-concepts. **The coarse concept labels could be obtained cheaply by using LLMs (Oikarinen et al., 2023; Yang et al., 2023) or by grouping semantically related classes.** Our evaluation across several datasets, including a user study, strongly suggests that Concept Splitting can discover human-interpretable concepts that HiCEMs can then utilise to construct more fine-grained explanations for their predictions without compromising predictive or intervention performance. Hence, our contributions are:

- We introduce **Concept Splitting**, a method to discover sub-concepts in a CEM’s embeddings. This reduces the need for exhaustive concept annotations and enhances the granularity of explanations.
- We propose **HiCEMs**, a family of inherently interpretable concept-based models that capture hierarchical concept relationships and support human interventions at multiple hierarchy levels.
- We introduce **PseudoKitchens**, a synthetic dataset of photorealistic 3D kitchen renders with perfect ground-truth concept annotations and precise spatial localisation.
- We demonstrate, through empirical, qualitative, and quantitative experiments, including a user study, that HiCEMs trained via Concept Splitting can accurately discover interpretable sub-concepts that were absent during training. Moreover, our experiments show that HiCEMs trained with Concept Splitting achieve competitive task accuracies and are receptive to test-time concept interventions at different granularity levels.

2 BACKGROUND AND RELATED WORK

Concept learning Concept-based methods aim to explain a model’s predictions using human-understandable concepts (e.g., “colour” or “size”) (Bau et al., 2017; Fong & Vedaldi, 2018; Kim et al., 2018). Some methods, for example, Concept Bottleneck Models (CBMs) (Koh et al., 2020), explicitly incorporate concepts in their architecture, leading to inherently interpretable models that provide concept-based explanations. These methods typically require a concept-annotated training set and may suffer from suboptimal predictive performance due to conflicting training objectives (Espinosa Zarlenga et al., 2022). Furthermore, they **often** do not consider the relationships between concepts; instead, they treat all concepts as independent variables (Havasi et al., 2022). Other methods attempt to construct post-hoc concept-based explanations, instead of producing inherently interpretable models. For example, Automatic Concept-based Explanations (ACE) (Ghorbani et al., 2019) clusters a DNN’s latent space to discover relevant concepts. In contrast to ACE, we (1) use the discovered concepts to construct inherently interpretable models, (2) exploit the relationship between existing and discovered concepts, and (3) demonstrate effective discovered concept interventions.

Concept Embedding Models Concept Embedding Models (CEMs) (Espinosa Zarlenga et al., 2022) provide concept-based explanations while achieving higher task accuracies than CBMs. CEMs, and their variants (Kim et al., 2023; Espinosa Zarlenga et al., 2024; Xu et al., 2024; Espinosa Zarlenga et al., 2025), improve task accuracy by representing concepts using high-dimensional supervised vectors, or *embeddings*. For each concept c_i , a CEM learns two embeddings: one for when it is active

(a “positive” embedding, $\hat{\mathbf{c}}_i^+$), and another for when it is inactive (a “negative” embedding, $\hat{\mathbf{c}}_i^-$). Each concept embedding is aligned to its corresponding ground truth concept through a scoring function s , which learns to assign an activation probability \hat{p}_i to each concept c_i . These probabilities are used to output an embedding $\hat{\mathbf{c}}_i$ for each concept c_i via a mixture of positive and negative embeddings weighted by the predicted probability (i.e., $\hat{\mathbf{c}}_i = \hat{p}_i \hat{\mathbf{c}}_i^+ + (1 - \hat{p}_i) \hat{\mathbf{c}}_i^-$). Finally, the mixed concept embeddings are concatenated into a bottleneck $\hat{\mathbf{c}}$ and passed to a label predictor $f(\hat{\mathbf{c}})$ (usually a linear layer). This predictor outputs a downstream task prediction \hat{y} .

An important property of CEMs is that they support *concept interventions*: at test time, an expert can correct mispredicted concepts, allowing the model to update its downstream label prediction based on these corrections. Interventions can be performed by fixing a concept’s embedding to the embedding that is semantically aligned with the ground truth concept label (e.g., setting $\hat{\mathbf{c}}_i := \hat{\mathbf{c}}_i^+$ if concept c_i is determined to be present in x). However, a major limitation of CEMs is that they fail to capture known inter-concept relationships (Raman et al., 2024), deviating from how humans tend to reason about a task hierarchically (McClelland & Rogers, 2003). Moreover, lacking a mechanism for representing hierarchical inter-concept relationships means that CEMs need a large number of concept labels in their training datasets to capture different concept granularities. Our work addresses these issues by exploiting a pre-trained CEM’s embedding space to discover sub-concepts that were not provided during training, and using them to train HiCEMs that can exploit sub-concept relationships.

Concept discovery Several methods (Bricken et al., 2023; Huang et al., 2022; Huben et al., 2024; O’Mahony et al., 2023; Rao et al., 2024; Vielhaben et al., 2023; Yuksekgonul et al., 2023; Zhang et al., 2021) aim to identify human-interpretable concepts that can help explain how a model makes its predictions. Some methods try to discover concepts encoded by a model’s neurons (Fel et al., 2023; Graziani et al., 2023; Oikarinen & Weng, 2023; Panousis & Chatzis, 2023), some ask large language models to suggest relevant concepts (Oikarinen et al., 2023; Yang et al., 2023), and some look for meaningful features of inputs (Ghorbani et al., 2019). A few approaches attempt to assign concepts to individual neurons, however this can be problematic, as neurons often represent complex, uninterpretable features (Elhage et al., 2022). However, most of these works typically fail to evaluate interventions on discovered concepts or to consider the relationships between discovered concepts. For example, hierarchical relationships among concepts imply that some sub-concepts (e.g., “contains onions” and “contains carrots”) can only exist in the presence of another parent concept (e.g., “contains vegetables”). Therefore, here we present a method for discovering such sub-concepts and propose an inherently interpretable architecture that explicitly represents these sub-concept relationships. Furthermore, we demonstrate that interventions on discovered sub-concepts are effective.

Modelling concept relationships Most early concept-based models unrealistically assumed inter-concept independence. More recent works model inter-concept relationships through autoregressive architectures (Havasi et al., 2022), causal graphs (Dominici et al., 2024), probabilistic methods (Vandenhirtz et al., 2024; Xu et al., 2024), or intervention-specific mechanisms (Singhi et al., 2024). However, these capture interactions without explicitly organising concepts into hierarchies or discovering sub-concepts. A related direction by Panousis et al. (2024) models hierarchical concepts but uses a spatially-grounded approach (high-level for whole images, low-level for patches) dependent on vision-language models and textual concept descriptions. In contrast, we discover hierarchies by decomposing concept embeddings, independent of spatial structure or vision-language constraints. To enable this, we introduce *Concept Splitting*, a method to automatically discover latent sub-concepts from a model trained with only high-level labels, and *HiCEMs*, an architecture that explicitly models these hierarchical relationships to enable fine-grained explanations and multi-level interventions without exhaustive annotations.

3 CONCEPT SPLITTING

Previous work has found that Sparse AutoEncoders (SAEs) can uncover interpretable concepts in the representation spaces of neural networks (Bricken et al., 2023; Bussmann et al., 2024). SAEs are a type of autoencoder trained to reconstruct their input while enforcing a sparsity constraint on a high-dimensional latent representation, effectively learning a dictionary of (hopefully interpretable) features. We apply this idea in CEMs to discover sub-concepts, and then we train HiCEMs (Section 4)

162 that use the discovered concepts to provide finer-grained explanations. Specifically, we use BatchTopK
 163 sparse autoencoders (Bussmann et al., 2024), which keep the top activations across a batch. While
 164 we focus on using SAEs to discover sub-concepts, they are not the only option, and Appendix A
 165 discusses an alternative approach using clustering to find mutually exclusive sub-concepts.

166 Our approach, which we name *Concept Splitting* (Figure 1), takes as input a trained CEM M .
 167 First, we run M on a concept-annotated training set $\mathcal{D} = \{(\mathbf{x}^{(j)}, \mathbf{c}^{(j)}, y^{(j)})\}_{j=1}^N$, storing the concept
 168 embedding vectors and concept predictions $\{\hat{\mathbf{c}}^+, \hat{\mathbf{c}}^-, \hat{\mathbf{c}}, \hat{p}_i\}$ for each sample in \mathcal{D} and for each concept
 169 c_i we want to split (Figure 1(a)). For simplicity, we describe how to split a single concept c_i . However,
 170 this operation can be performed for all training concepts.
 171

172 Next, let E_i be the set of embedding vectors for c_i , and let E_i^{true} and E_i^{false} be the subsets of
 173 embeddings in E_i where c_i was predicted by M to be present (i.e., $\hat{p}_i = 1$) or absent, respectively.
 174 We partition the embedding vectors using M ’s concept predictions for c_i , as these predictions tell us
 175 whether the dominant component in the mixture is a positive embedding or a negative embedding.

176 Here, we want to discover sub-concepts of c_i , where we consider the sub-concepts of c_i to be groups
 177 of concepts that are either only active when c_i is (positive sub-concepts), or only active when c_i is
 178 not (negative sub-concepts). To this end, we train SAEs on E_i^{true} and E_i^{false} separately (Figure 1(b)).
 179 Using the SAE trained on E_i^{true} , we discover sub-concepts that are present when c_i is also present,
 180 and using the SAE trained on E_i^{false} we discover sub-concepts that are present when c_i is not.

181 Once we have trained a SAE on an embedding set, we create new concept labels using the features
 182 learned by the SAE (Figure 1(c)). Bussmann et al. (2024) describe how to calculate a threshold for
 183 determining when a feature is active during inference. Every feature can be treated as a discovered
 184 sub-concept. The examples that activate the feature are marked as having the new sub-concept, and
 185 the examples that do not activate the feature are marked as not having the new sub-concept.

186 Once Concept Splitting has been performed, we can interpret a discovered sub-concept using proto-
 187 types, which provide training examples that strongly activate the concept. This approach, similar to
 188 that used by previous works (Alvarez Melis & Jaakkola, 2018; Espinosa Zarlenga et al., 2023; Yeh
 189 et al., 2020), enables experts to assign potential semantics to discovered concepts.
 190

191 4 HIERARCHICAL CEMs

193 We introduce the HiCEM architecture (Figure 2), which explicitly models hierarchical relationships
 194 between concepts. For simplicity, we focus on two-level hierarchies, however our architecture could
 195 be extended to support deeper hierarchies.
 196

197 4.1 ARCHITECTURE

199 Like in CEMs, for each top-level concept, a HiCEM learns a mixture of two embeddings with
 200 semantics representing the concept’s activity. In HiCEM, each top-level concept c_i is represented with
 201 the embeddings $\hat{\mathbf{c}}_i^+, \hat{\mathbf{c}}_i^- \in \mathbb{R}^m$. Here, $\hat{\mathbf{c}}_i^+$ represents c_i ’s active state, and $\hat{\mathbf{c}}_i^-$ represents its inactive
 202 state. In contrast to CEMs however, we also want $\hat{\mathbf{c}}_i^+$ and $\hat{\mathbf{c}}_i^-$ to contain information about c_i ’s
 203 positive and negative sub-concepts, respectively. To achieve this, a backbone network $\psi(\mathbf{x})$ (e.g., a
 204 pre-trained ResNet model) produces a latent representation $\mathbf{h} \in \mathbb{R}^{n_{\text{hidden}}}$ which is the input to top-level
 205 embedding generators ϕ_i^+ and ϕ_i^- . These top-level embedding generators produce intermediate
 206 embeddings $\hat{\mathbf{c}}_i^{+'} = \phi_i^+(\mathbf{h}), \hat{\mathbf{c}}_i^{-''} = \phi_i^-(\mathbf{h}) \in \mathbb{R}^m$. Following the work of Espinosa Zarlenga et al.
 207 (2022), we implement the top-level embedding generators as single fully connected layers.

208 To produce final concept embeddings that contain information about sub-concepts, the embeddings
 209 $\hat{\mathbf{c}}_i^{+'}$ and $\hat{\mathbf{c}}_i^{-'}$ are passed through a positive and a negative *sub-concepts module*, respectively. The
 210 positive sub-concepts module, which we describe in further detail below, is responsible for learning
 211 the positive sub-concepts of c_i . It outputs the positive concept embedding for c_i , $\hat{\mathbf{c}}_i^+$, as well as the
 212 probability of its most likely positive sub-concept, \hat{p}_i^+ . Similarly, the negative sub-concepts module
 213 outputs the negative concept embedding for c_i , $\hat{\mathbf{c}}_i^-$, as well as the probability of its most likely negative
 214 sub-concept, \hat{p}_i^- . If concept c_i has no positive sub-concepts (i.e., concept c_i is a leaf node in the hier-
 215 archy), then we take $\hat{\mathbf{c}}_i^+ = \hat{\mathbf{c}}_i^{+'}$ and $\hat{p}_i^+ = s(\hat{\mathbf{c}}_i^+)$, where s is a shared scoring function that calculates
 concept probabilities from concept embeddings. We proceed analogously in the absence of negative

Figure 2: **Hierarchical CEM:** as in a CEM, from a latent code \mathbf{h} , we learn two embeddings per concept ($\hat{\mathbf{c}}_i^+$ and $\hat{\mathbf{c}}_i^-$). These embeddings are then passed through sub-concepts modules (Figure 3), which produce new embeddings ($\hat{\mathbf{c}}_i^+$ and $\hat{\mathbf{c}}_i^-$) that include information about sub-concepts. The sub-concepts modules also output the most likely sub-concept probabilities, which are used to calculate top-level concept probabilities. These probabilities are used to output an embedding for each concept via a weighted mixture of positive and negative embeddings.

sub-concepts. \hat{p}_i^+ can be taken as an estimate for the probability of the top-level concept c_i , because c_i can only be present if one of its positive sub-concepts is. Similarly, the complement of \hat{p}_i^- can be taken as another estimate for the probability of c_i . The predicted probability of concept c_i , \hat{p}_i , is calculated as the average of p_i^+ and the complement of \hat{p}_i^- : $\hat{p}_i = \frac{1}{2}(p_i^+ + 1 - \hat{p}_i^-)$. As in CEMs, the final concept embedding $\hat{\mathbf{c}}_i$ for c_i is calculated as a weighted mixture of \mathbf{c}_i^+ and \mathbf{c}_i^- : $\hat{\mathbf{c}}_i = \hat{p}_i \mathbf{c}_i^+ + (1 - \hat{p}_i) \mathbf{c}_i^-$.

Like in previous embedding-based concept models (Espinosa Zarlenga et al., 2022; 2023; Xu et al., 2024), before making a task prediction, all k mixed concept embeddings are concatenated, resulting in a bottleneck $g(\mathbf{x}) = \hat{\mathbf{c}}$ with $k \cdot m$ units. This is put through a label predictor f to get a downstream task label. Following previous work (Koh et al., 2020; Espinosa Zarlenga et al., 2022), we use an interpretable label predictor f parametrised by a simple linear layer.

As in previous concept-based models, HiCEMs provide a concept-based explanation for the predicted downstream task label through predicted concept probabilities $\hat{\mathbf{p}}(\mathbf{x}) \triangleq [\hat{p}_1, \dots, \hat{p}_k]$. However, unlike previous architectures, HiCEMs explicitly model the relationship between concepts and sub-concepts: a concept's positive embedding contains information about its positive sub-concepts, and a concept's negative embedding includes information on its negative sub-concepts.

4.2 SUB-CONCEPTS MODULES

We describe a positive sub-concepts module, as illustrated in Figure 3, but negative sub-concepts modules operate in exactly the same way. Inside the positive sub-concepts module for concept c_k , sub-concept embedding generators ϕ_{kj}^+ produce embeddings for each of c_k 's positive sub-concepts: $\hat{\mathbf{c}}_{kj}^+ = \phi_{kj}^+(\hat{\mathbf{c}}_k^+)$. Like the top-level embedding generators, these are implemented as single fully connected layers. Similarly to CEMs (Espinosa Zarlenga et al., 2022), these embeddings are aligned with ground-truth sub-concept c_{kj}^+ via a learnable and differentiable scoring function $s : \mathbb{R}^m \rightarrow [0, 1]$, trained to predict the probability $\hat{p}_{kj}^+ \triangleq s(\hat{\mathbf{c}}_{kj}^+) = \sigma(W_s \mathbf{c}_{kj}^+ + \mathbf{b}_s)$ of sub-concept c_{kj}^+ being active from its sub-concept embedding. As in CEMs, the scoring function is shared across all sub-concepts. c_k 's positive embedding, $\hat{\mathbf{c}}_k^+$, is constructed as a weighted mixture of all the n_k^+ positive sub-concept embeddings: $\hat{\mathbf{c}}_k^+ \triangleq \sum_{j=1}^{n_k^+} \hat{p}_{kj}^+ \hat{\mathbf{c}}_{kj}^+$.

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284

285
286 **Figure 3: Positive sub-concepts module:** positive sub-concept embedding generators ϕ_{kj}^+ (illustrated
287 for “contains apples” and “contains pears”) produce sub-concept embeddings from the preliminary
288 parent concept embedding $\hat{\mathbf{c}}_k^+$. A shared scoring function $s(\cdot)$ predicts probabilities for each sub-
289 concept. The positive parent concept embedding $\hat{\mathbf{c}}_k^+$ is computed as a weighted mixture of sub-concept
290 embeddings, whilst an estimate for the parent concept probability \hat{p}_k^+ is obtained via a differentiable
291 soft maximum operation over the sub-concept probabilities.

292
293
294 The highest positive sub-concept probability \hat{p}_k^+ , which is an estimate for the probability of c_k , is
295 calculated in a differentiable way as $\hat{p}_k^+ = \sum_{j=1}^{n_k^+} \text{softmax}(\alpha \cdot \hat{\mathbf{p}}_k^+ - \beta)_j \cdot \hat{p}_{kj}^+$, where $(\hat{\mathbf{p}}_k^+)_j = \hat{p}_{kj}^+$
296 and the constants α and β scale the input of the softmax so that its output is strongly weighted
297 towards the largest \hat{p}_{kj}^+ . In practice, we use $\alpha = 200, \beta = 100$ to scale the probabilities from $[0, 1]$ to
298 $[-100, 100]$, so that the calculated highest sub-concept probability is very close to the true maximum
299 of the probabilities.
300

4.3 TRAINING

301
302 HiCEMs are trained by jointly minimising a weighted sum of the cross-entropy loss on both task
303 prediction and concept predictions: $\mathcal{L} \triangleq \mathbb{E}_{(\mathbf{x}, y, \mathbf{c})} [\mathcal{L}_{\text{task}}(y, f(g(\mathbf{x}))) + \lambda \mathcal{L}_{\text{CrossEntr}}(\mathbf{c}, \hat{\mathbf{p}}(\mathbf{x}))]$. Here,
304 the hyperparameter $\lambda \in \mathbb{R}^+$ controls the relative importance of concept and task accuracy.
305

306 When training HiCEMs, we use the RandInt regularisation strategy proposed by Espinosa Zarlen
307 ga et al. (2022) to improve intervention effectiveness. That is, during training, we randomly perform
308 independent concept interventions with probability p_{int} .
309

4.4 CONCEPT INTERVENTIONS

310 HiCEMs support interventions on both top-level concepts and sub-concepts in a natural way. Similarly
311 to CEMs (Espinosa Zarlen ga et al., 2022), to intervene on top-level concept c_i , the embedding $\hat{\mathbf{c}}_i$ is
312 updated by replacing it with the output embedding semantically aligned with the concept’s ground
313 truth label. This intervention ensures that $\hat{\mathbf{c}}_i$ contains information about the relevant sub-concepts.
314

315 Intervening on sub-concept c_{ij}^+ differs depending on whether the human expert decides c_{ij}^+ is or is
316 not actually present in the example. (While we focus on positive sub-concepts here, the analogous
317 process applies to negative sub-concepts.) If the human expert determines that c_{ij}^+ is not present, then
318 the model’s predicted probability \hat{p}_{ij}^+ is simply set to zero. On the other hand, if the expert identifies
319 c_{ij}^+ as present, then \hat{p}_{ij}^+ is set to one, and $\hat{p}_{ij'}^+$ is set to zero for all $j' \neq j$ (this means $\hat{\mathbf{c}}_i^+ := \hat{\mathbf{c}}_{ij}^+$).
320
321
322
323

324 Additionally, because the presence of c_{ij}^+ implies that the top-level concept c_i is present, we also
 325 intervene on c_i . Therefore this operation results in the update $\hat{c}_i := \hat{c}_i^+ := \hat{c}_{ij}^+$.
 326

327 5 EXPERIMENTS

329 We evaluate Concept Splitting and HiCEMs by exploring the following research questions:
 330

331 **RQ1** Does Concept Splitting discover interpretable sub-concepts?

332 **RQ2** How do HiCEMs’ task and provided (top-level) concept accuracies compare to those of the
 333 original CEM and other baselines?

334 **RQ3** Can a HiCEM’s task accuracy be improved by intervening on discovered sub-concepts?

335 5.1 PSEUDOKITCHENS

337 To rigorously evaluate concept-based models, we introduce PseudoKitchens (Appendix B), a synthetic
 338 dataset of photorealistic 3D kitchen renders with perfect ground-truth concept annotations. Our
 339 approach provides complete control over scene generation and pixel-perfect labels for all concepts.
 340

341 5.2 SETUP

343 **Datasets** We evaluate our methods across six diverse datasets: MNIST-ADD (based on LeCun
 344 et al. (2010)), a procedural SHAPES dataset (similar to Matthey et al. (2017)), Caltech-UCSD
 345 Birds-200-2011 (CUB) (Wah et al., 2011), Animals with Attributes 2 (AwA2) (Xian et al., 2019),
 346 our new PseudoKitchens dataset, and ImageNet (Russakovsky et al., 2015). These datasets span
 347 simple synthetic tasks, fine-grained visual classification, and large-scale recognition, providing a
 348 comprehensive testbed. Full details on each dataset, including concept definitions and splits, are
 349 provided in Appendix C.

350 **Metrics** For each dataset, we run Concept Splitting on the provided concepts in an initial CEM,
 351 and then train a HiCEM with the provided top-level concepts and the discovered sub-concepts.

353 Following Espinosa Zarlenga et al. (2023), we evaluate discovered sub-concept accuracy and perform
 354 interventions by automatically pairing sub-concepts with a human-understandable “left-out” concept
 355 from a predefined “concept bank”. This bank contains anticipated concepts excluded during initial
 356 CEM training (e.g., “the first digit is 6” in the MNIST-ADD dataset), with each concept pre-associated
 357 with the parent concept whose sub-concept it might represent. To align discovered sub-concepts with
 358 the bank, we compute the area under the receiver operating characteristic curve (ROC-AUC) scores
 359 between the discovered sub-concept labels and their potential parent-concept-associated matches in
 360 the bank. Each concept in the bank is assigned to the sub-concept with the highest ROC-AUC score,
 361 as long as that score is greater than 0.7. Discovered sub-concepts that are not matched with a concept
 362 bank concept are not included in the evaluation. We do not have ground-truth concept annotations for
 363 ImageNet (Russakovsky et al., 2015), so we evaluate the discovered sub-concepts with a user study.
 364 Discovered sub-concepts that were not matched to the concept bank, or that were not selected for the
 365 user study in the case of ImageNet, are not included when we train our HiCEMs.

366 To answer **RQ1**, we present the results of our user study conducted with ImageNet, and for the other
 367 datasets, we report the average discovered sub-concept ROC-AUC of the HiCEM. To address **RQ2**,
 368 we report the task accuracy and the provided concept ROC-AUC of the initial CEM and the HiCEM.
 369 For **RQ3**, we measure the change in HiCEMs’ task accuracies as concepts are intervened. All metrics
 370 in our evaluation, apart from those calculated on ImageNet, are computed on test datasets using three
 371 random seeds, from which we compute a mean and standard deviation. Because ImageNet is so large,
 372 we compute metrics using a single random seed. Whenever we measure concept accuracy, we use the
 373 mean concept ROC-AUC to avoid being misled by a majority-class classifier.

374 **Baselines** We compare HiCEMs with black box models, CEMs (Espinosa Zarlenga et al., 2022),
 375 CBMs (Koh et al., 2020), Label-free CBMs (*LF-CBMs*, (Oikarinen et al., 2023)), Post-hoc CBMs
 376 (*PCBMs*, (Yuksekgonul et al., 2023)), and PCBMs with residual connections (*PCBM-hs*). Our black
 377 box models have the same architecture as our CEMs, but without any concept supervision. To evaluate
 the usefulness of the discovered concept labels produced by Concept Splitting, in each of our runs we

378 Table 1: Mean ROC-AUC for discovered concepts. LF-CBMs were unable to discover concepts on
 379 the PseudoKitchens dataset. Sub-concepts discovered with Concept Splitting are predicted accurately.
 380

	MNIST-ADD	SHAPES	CUB	AwA2	PseudoKitchens
LF-CBM	–	0.75 ± 0.00	0.77 ± 0.00	0.78 ± 0.00	–
HiCEM w/o concept splitting (control)	0.86 ± 0.01	0.88 ± 0.02	0.81 ± 0.00	0.73 ± 0.00	0.75 ± 0.06
CEM + Concept Splitting (ours)	0.93 ± 0.01	0.93 ± 0.01	0.85 ± 0.01	0.88 ± 0.01	0.88 ± 0.01
HiCEM + Concept Splitting (ours)	0.93 ± 0.01	0.93 ± 0.01	0.85 ± 0.01	0.88 ± 0.01	0.88 ± 0.00

386 Table 2: User study results. Users are far more likely to say sub-concepts generated by our method
 387 are examples of their parent concept than randomly chosen words are (first two rows). Users also
 388 agree that, in a lot of cases, the images labelled as having a discovered sub-concept are consistent
 389 with the automatically generated name of that sub-concept (second two rows).
 390

	Yes	No	Not sure	They are the same
Sub-concept relationship (control)	16 (3.8%)	387 (91.3%)	20 (4.7%)	1 (0.2%)
Sub-concept relationship (experimental)	241 (60.6%)	109 (27.4%)	19 (4.8%)	29 (7.3%)
Image labels (control)	4 (0.9%)	424 (97.9%)	5 (1.2%)	–
Image labels (experimental)	244 (54.8%)	172 (38.7%)	29 (6.5%)	–

397 train a control HiCEM that has the same architecture as the HiCEM with discovered sub-concepts,
 398 but no sub-concept supervision (“*HiCEM w/o concept splitting*”). That is, the HiCEM is trained
 399 with access to top-level concept labels but without any labels or supervision for sub-concepts. We
 400 match the “sub-concepts” in this baseline to our concept bank using sub-concept predictions on
 401 the training dataset. We also train a CEM with top-level concepts *and* discovered sub-concepts
 402 (“*CEM + Concept Splitting*”) so we can compare this to the HiCEM. The CUB dataset is used by
 403 Oikarinen et al. (2023) to evaluate LF-CBMs, so we take their discovered concepts and manually
 404 match them with concepts for which we have ground-truth labels. For the other datasets, and for all
 405 the datasets with the PCBML baseline, we use the names of concepts for which we have ground-truth
 406 labels to create the models. For further details on how we train each of these baselines, including the
 407 architectures and hyperparameters used, see Appendices D and E. Due to the computational cost of
 408 training models on ImageNet, we do not include results for all baselines on it.
 409

410 **User Study** To evaluate the sub-concepts discovered on ImageNet, we ran a user study. We
 411 automatically named discovered sub-concepts with the CLIP vision-language model (Radford et al.,
 412 2021), using a method similar to previous work (Rao et al., 2024). We then asked users whether the
 413 discovered sub-concept names were semantically related to the name of their parent concept (“Is
 414 [sub-concept name] an example of [parent concept name]?”). As a control we picked words at random
 415 from the dictionary used to name the sub-concepts. We also asked users whether images labelled by
 416 Concept Splitting as having the discovered sub-concepts were consistent with the sub-concept names
 417 (“Does this image show [sub-concept name]?”), and used images selected at random from the dataset
 418 as a control. Full details are contained in Appendix F.

419 5.3 RESULTS

420 **421 Discovered concepts are human-interpretable and can be predicted accurately (RQ1, Ta-
 422 bles 1 and 2).** We report the accuracy of the discovered concept predictions made by our models
 423 using the ground truth labels of the corresponding human-interpretable concept bank concepts on
 424 the test datasets. For example, the meaning assigned to one of the concepts discovered on the
 425 MNIST-ADD dataset was “the top digit is 6”, and therefore we compute the accuracy of this dis-
 426 covered concept with respect to the ground-truth labels of the concept “the top digit is 6” in our
 427 concept bank. In Appendix G, we show samples from the training dataset that were labelled as
 428 having this discovered concept, to demonstrate how it is straightforward to interpret it. Table 1
 429 shows that the mean discovered sub-concept ROC-AUCs are high, exceeding 90% in some cases.
 430 The mean discovered concept ROC-AUC of HiCEMs is always higher than that of both LF-CBMs
 431 and HiCEMs trained without sub-concept supervision (HiCEM w/o **concept splitting** in Table 1),
 432 showing that the labels produced by Concept Splitting align the sub-concept activations in HiCEMs
 433 with human-interpretable concepts. CEMs with discovered sub-concepts and top-level concepts side

432 Table 3: Task accuracies. The task accuracy of HiCEMs is competitive with all our baselines.
 433 * indicates reported accuracy, with a ResNet-50 backbone.

	MNIST-ADD	SHAPES	CUB	AwA2	PseudoKitchens	ImageNet
Black box (not interpretable)	0.94 \pm 0.00	0.89 \pm 0.00	0.80 \pm 0.00	0.98 \pm 0.00	0.67 \pm 0.01	0.77
LF-CBM	–	0.59 \pm 0.01	0.80\pm0.00	0.94 \pm 0.00	–	0.72*
PCBM	0.16 \pm 0.03	0.54 \pm 0.01	0.65 \pm 0.01	0.95 \pm 0.00	0.16 \pm 0.00	–
PCBM-h	0.53 \pm 0.01	0.73 \pm 0.00	0.73 \pm 0.00	0.96 \pm 0.00	0.52 \pm 0.01	–
CBM	0.23 \pm 0.01	0.78 \pm 0.01	0.65 \pm 0.00	0.97 \pm 0.00	0.66\pm0.01	0.77
CEM	0.92 \pm 0.01	0.89\pm0.00	0.76 \pm 0.01	0.98\pm0.00	0.66\pm0.01	0.79
HiCEM w/o concept splitting (control)	0.93\pm0.00	0.88 \pm 0.01	0.77 \pm 0.01	0.98\pm0.00	0.64 \pm 0.01	–
CEM + Concept Splitting (ours)	0.93\pm0.01	0.87 \pm 0.01	0.79 \pm 0.01	0.98\pm0.00	0.66\pm0.02	–
HiCEM + Concept Splitting (ours)	0.92 \pm 0.00	0.87 \pm 0.02	0.74 \pm 0.01	0.98\pm0.00	0.65 \pm 0.01	0.78

433 Table 4: Mean ROC-AUCs for provided concepts. HiCEMs are able to predict provided concepts just
 434 as well as CEMs.

	MNIST-ADD	SHAPES	CUB	AwA2	PseudoKitchens	ImageNet
CBM	0.99\pm0.00	1.00\pm0.00	0.89 \pm 0.00	1.00\pm0.00	0.91 \pm 0.00	0.99
CEM	0.99\pm0.00	1.00\pm0.00	0.95\pm0.00	1.00\pm0.00	0.92\pm0.00	1.00
HiCEM w/o concept splitting (control)	0.99\pm0.00	1.00\pm0.00	0.93 \pm 0.00	1.00\pm0.00	0.91 \pm 0.00	–
CEM + Concept Splitting (ours)	0.99\pm0.00	1.00\pm0.00	0.95\pm0.00	1.00\pm0.00	0.92\pm0.00	–
HiCEM + Concept Splitting (ours)	0.99\pm0.00	1.00\pm0.00	0.93 \pm 0.01	1.00\pm0.00	0.91 \pm 0.00	0.99

451
 452 by side have similar discovered concepts accuracies to HiCEMs after Concept Splitting, however
 453 sub-concept interventions in HiCEMs can work better than in CEMs (Figure 4, discussed later).

454 Our user study on ImageNet (Table 2), **conducted with 20 participants**, shows that the sub-concepts
 455 discovered by our method are both semantically coherent and accurately labelled. When evaluating
 456 the names of sub-concepts generated by Concept Splitting, participants found them to be semantically
 457 related to their parent concepts **67.9%** of the time, a dramatic increase over the **4.0%** agreement
 458 rate for randomly chosen words in the control group. Furthermore, users confirmed that images
 459 labelled by our method were consistent with the discovered sub-concept name in **54.8%** of cases, far
 460 exceeding the **0.9%** agreement for the control. A Chi-Square test (where we discard “Not sure” and
 461 group “Yes” and “They are the same” together) confirms that both of these improvements over the
 462 control groups are statistically significant ($p < 0.01$).

463 To assess the robustness of Concept Splitting across different embedding representations, we further
 464 explore an idealised setting in Appendix H, where concept embeddings contain perfect one-hot
 465 information about sub-concepts. Here, Concept Splitting recovers the encoded sub-concepts almost
 466 perfectly. This suggests that our method can be applied to arbitrary concept embedding spaces as long
 467 as they encode sub-concept information: it is not dependent on the embedding structure of CEMs.

468
 469 **HiCEMs have high task and provided concept accuracies (RQ2, Tables 3 and 4).** We measure
 470 the task and provided (top-level) concept accuracies of HiCEMs and our baselines. The results are
 471 in Tables 3 and 4. HiCEMs achieve both high task accuracy and high provided concept accuracy,
 472 compared to the baselines. In particular, the task and provided concept accuracies of HiCEMs are
 473 never more than 2% below those of CEMs, so running Concept Splitting and replacing a CEM with
 474 a HiCEM that supports more detailed explanations does not lead to a reduction in task or provided
 475 concept accuracy. Overall, the effect of Concept Splitting on the task and provided concept accuracy
 476 is insignificant, so the additional interpretability offered by the discovered sub-concepts does not
 477 come at the cost of accuracy.

478
 479 **Intervening on sub-concepts identified through Concept Splitting can enhance task accuracy,**
 480 **with these interventions sometimes yielding even greater improvements in HiCEMs compared**
 481 **to CEMs. (RQ3).** We investigate how intervening on provided and discovered concepts affects
 482 task accuracy in HiCEMs and our relevant baselines. Figure 5 demonstrates that provided concept
 483 interventions perform equally well in HiCEMs as in CEMs.

484 As shown in Figure 4, intervening on discovered sub-concepts can lead to an increase in task accuracy,
 485 although interventions on some discovered sub-concepts have no effect or very slightly decrease
 486 task accuracy. Interventions in HiCEMs trained with sub-concept labels from Concept Splitting tend

Figure 4: Task accuracy as discovered concepts are intervened. Intervening on discovered sub-concepts improves task accuracy. In some cases, such as in CUB and PseudoKitchens, interventions in HiCEMs lead to a greater increase in task accuracy than in CEMs trained with Concept Splitting’s discovered concepts. LF-CBMs (Oikarinen et al., 2023) do not easily support interventions.

Figure 5: Change in task accuracy as provided concepts are intervened. Provided concept interventions on ImageNet are shown in Appendix I. Provided concept interventions work just as well in HiCEMs as they do in CEMs.

to increase task accuracy, whereas interventions in HiCEMs without sub-concept supervision (our control) can decrease it, highlighting the value of Concept Splitting. On the CUB and PseudoKitchens datasets, sub-concept interventions in HiCEMs are more effective than the equivalent interventions in CEMs with both top-level concepts and discovered sub-concepts, supporting the use of the HiCEM architecture over the regular CEM architecture when we have hierarchical concept relationships. HiCEMs with discovered sub-concepts support both the fine-grained interventions enabled by these sub-concepts and the broader concept interventions available in standard CEMs.

6 LIMITATIONS AND CONCLUSION

In this work, we introduced Concept Splitting and HiCEMs to enable the discovery and modelling of hierarchical sub-concepts in interpretable models. Our experiments, which use our new PseudoKitchens dataset and include a user study, show that Concept Splitting discovers interpretable sub-concepts. HiCEMs incorporating these concepts provide fine grained explanations while requiring few manual concept annotations, without sacrificing task or provided concept accuracy. After they have been introduced, discovered sub-concepts can be predicted with high accuracy, and a human expert can correct sub-concept mispredictions. **One limitation of our approach is that SAEs are not guaranteed to discover meaningful concepts.** Additionally, we only looked at modelling sub-concept relationships. Future work could explore extending our approach to encompass deeper hierarchies. It would also be valuable to investigate, perhaps through a user study, whether offering more fine-grained intervention options is beneficial to a user’s cognitive load when interacting with the model. Nonetheless, capturing the hierarchical structure present in the concept embeddings of CEMs helps to fill a gap in earlier concept-based architectures and represents a meaningful step forward in concept-based interpretable modelling.

540 ETHICS STATEMENT
541

542 Our research aims to enhance the transparency and accountability of neural networks. We have taken
543 care to address ethical considerations related to our experiments. The user study (Appendix F) was
544 conducted under institutional ethics approval, with all participants providing informed consent and
545 their data being fully anonymised. Our new PseudoKitchens dataset is entirely synthetic, containing
546 no personally identifiable information, and all real-world datasets are public benchmarks used in
547 accordance with their licenses.

548
549 REPRODUCIBILITY STATEMENT
550

551 We have made a comprehensive effort to ensure the reproducibility of our results. Our source code,
552 which includes implementations of our HiCEM architecture and the Concept Splitting method, is
553 provided in the supplementary material and will be made publicly available. The architectural details
554 of HiCEMs are described in Section 4, and our Concept Splitting method is detailed in Section 3,
555 with an alternative clustering-based method in Appendix A. Experimental settings are specified in
556 Appendices D and E. Details regarding our new PseudoKitchens dataset are in Appendix B. Finally,
557 the methodology for our user study is provided in Appendix F.

558
559 REFERENCES
560

561 David Alvarez Melis and Tommi Jaakkola. Towards robust interpretability with self-explaining
562 neural networks. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and
563 R. Garnett (eds.), *Advances in Neural Information Processing Systems*, volume 31. Curran Asso-
564 ciates, Inc., 2018. URL https://proceedings.neurips.cc/paper_files/paper/2018/file/3e9f0fc9b2f89e043bc6233994dfcf76-Paper.pdf.

566 Alejandro Barredo Arrieta, Natalia Díaz-Rodríguez, Javier Del Ser, Adrien Bennetot, Siham
567 Tabik, Alberto Barbado, Salvador Garcia, Sergio Gil-Lopez, Daniel Molina, Richard Ben-
568 jamins, Raja Chatila, and Francisco Herrera. Explainable artificial intelligence (xai): Concepts,
569 taxonomies, opportunities and challenges toward responsible ai. *Information Fusion*, 58:82–
570 115, 2020. ISSN 1566-2535. doi: <https://doi.org/10.1016/j.inffus.2019.12.012>. URL <https://www.sciencedirect.com/science/article/pii/S1566253519308103>.

572 David Bau, Bolei Zhou, Aditya Khosla, Aude Oliva, and Antonio Torralba. Network dis-
573 section: Quantifying interpretability of deep visual representations. In *2017 IEEE Confer-
574 ence on Computer Vision and Pattern Recognition (CVPR)*, pp. 3319–3327, Los Alamitos,
575 CA, USA, 07 2017. IEEE Computer Society. doi: 10.1109/CVPR.2017.354. URL <https://doi.ieee.org/10.1109/CVPR.2017.354>.

577 Trenton Bricken, Adly Templeton, Joshua Batson, Brian Chen, Adam Jermyn, Tom Conerly, Nick
578 Turner, Cem Anil, Carson Denison, Amanda Askell, Robert Lasenby, Yifan Wu, Shauna Kravec,
579 Nicholas Schiefer, Tim Maxwell, Nicholas Joseph, Zac Hatfield-Dodds, Alex Tamkin, Karina
580 Nguyen, Brayden McLean, Josiah E Burke, Tristan Hume, Shan Carter, Tom Henighan, and
581 Christopher Olah. Towards monosematicity: Decomposing language models with dictionary
582 learning. *Transformer Circuits Thread*, 2023. <https://transformer-circuits.pub/2023/monosemantic-features/index.html>.

584
585 Bart Bussmann, Patrick Leask, and Neel Nanda. Batchtopk sparse autoencoders. In *NeurIPS*
586 *2024 Workshop on Scientific Methods for Understanding Deep Learning*, 2024. URL <https://openreview.net/forum?id=d4dpOCqybL>.

588 Gabriele Dominici, Pietro Barbiero, Mateo Espinosa Zarlenga, Alberto Termine, Martin Gjoreski,
589 Giuseppe Marra, and Marc Langheinrich. Causal concept graph models: Beyond causal opacity in
590 deep learning. *arXiv preprint arXiv:2405.16507*, 2024.

592 Nelson Elhage, Tristan Hume, Catherine Olsson, Nicholas Schiefer, Tom Henighan, Shauna
593 Kravec, Zac Hatfield-Dodds, Robert Lasenby, Dawn Drain, Carol Chen, Roger Grosse,
Sam McCandlish, Jared Kaplan, Dario Amodei, Martin Wattenberg, and Christopher Olah.

- 594 Toy models of superposition. *Transformer Circuits Thread*, 2022. https://transformer-circuits.pub/2022/toy_model/index.html.
- 595
- 596
- 597 Mateo Espinosa Zarlenga, Pietro Barbiero, Gabriele Ciravegna, Giuseppe Marra, Francesco Giannini,
 598 Michelangelo Diligenti, Zohreh Shams, Frederic Precioso, Stefano Melacci, Adrian Weller, Pietro
 599 Lió, and Mateja Jamnik. Concept embedding models: Beyond the accuracy-explainability trade-off.
 600 In *Advances in Neural Information Processing Systems*, volume 35, pp. 21400–21413. Curran Asso-
 601 ciates, Inc., 2022. URL https://proceedings.neurips.cc/paper_files/paper/2022/file/867c06823281e506e8059f5c13a57f75-Paper-Conference.pdf.
- 602
- 603 Mateo Espinosa Zarlenga, Zohreh Shams, Michael Edward Nelson, Been Kim, and Mateja Jamnik.
 604 Tabcbm: Concept-based interpretable neural networks for tabular data. *Transactions on Machine
 605 Learning Research*, 2023.
- 606 Mateo Espinosa Zarlenga, Katie Collins, Krishnamurthy Dvijotham, Adrian Weller, Zohreh Shams,
 607 and Mateja Jamnik. Learning to receive help: Intervention-aware concept embedding models.
 608 *Advances in Neural Information Processing Systems*, 36, 2024.
- 609
- 610 Mateo Espinosa Zarlenga, Dominici Gabriele, Barbiero Pietro, Zohreh Shams, and Mateja Jamnik.
 611 Avoiding leakage poisoning: Concept interventions under distribution shifts. In *International
 612 Conference on Machine Learning (ICML)*, 2025.
- 613 Thomas Fel, Agustin Martin Picard, Louis Béthune, Thibaut Boissin, David Vigouroux, Julien
 614 Colin, Rémi Cadène, and Thomas Serre. CRAFT: concept recursive activation factorization for
 615 explainability. In *IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2023,
 616 Vancouver, BC, Canada, June 17-24, 2023*, pp. 2711–2721. IEEE, 2023. doi: 10.1109/CVPR52729.
 617 2023.00266. URL <https://doi.org/10.1109/CVPR52729.2023.00266>.
- 618 Ruth Fong and Andrea Vedaldi. Net2vec: Quantifying and explaining how concepts are encoded by
 619 filters in deep neural networks. In *2018 IEEE/CVF Conference on Computer Vision and Pattern
 620 Recognition (CVPR)*, pp. 8730–8738, Los Alamitos, CA, USA, 06 2018. IEEE Computer Society.
 621 doi: 10.1109/CVPR.2018.00910. URL <https://doi.ieeecomputersociety.org/10.1109/CVPR.2018.00910>.
- 622
- 623 Artyom Gadetsky, Yulun Jiang, and Maria Brbić. Let go of your labels with unsupervised transfer. In
 624 *International Conference on Machine Learning*, 2024.
- 625
- 626 Amirata Ghorbani, James Wexler, James Y Zou, and Been Kim. Towards automatic concept-based
 627 explanations. In *Advances in Neural Information Processing Systems*, volume 32. Curran Asso-
 628 ciates, Inc., 2019. URL https://proceedings.neurips.cc/paper_files/paper/2019/file/77d2afcb31f6493e350fca61764efb9a-Paper.pdf.
- 629
- 630 Mara Graziani, An phi Nguyen, Laura O’Mahony, Henning Müller, and Vincent Andrearczyk.
 631 Concept discovery and dataset exploration with singular value decomposition. In *ICLR 2023
 632 Workshop on Pitfalls of limited data and computation for Trustworthy ML*, 2023. URL <https://openreview.net/forum?id=i0LYmD1PtC8>.
- 633
- 634 Marton Havasi, Sonali Parbhoo, and Finale Doshi-Velez. Addressing Leakage in Concept Bottleneck
 635 Models. In *Advances in Neural Information Processing Systems*, 2022.
- 636
- 637 Haiyang Huang, Zhi Chen, and Cynthia Rudin. Segdiscover: Visual concept discovery via unsuper-
 638 vised semantic segmentation, 2022. URL <https://arxiv.org/abs/2204.10926>.
- 639
- 640 Robert Huben, Hoagy Cunningham, Logan Riggs Smith, Aidan Ewart, and Lee Sharkey. Sparse
 641 autoencoders find highly interpretable features in language models. In *The Twelfth International
 642 Conference on Learning Representations*, 2024. URL <https://openreview.net/forum?id=F76bwRSLeK>.
- 643
- 644 Been Kim, Martin Wattenberg, Justin Gilmer, Carrie Cai, James Wexler, Fernanda Viegas, and Rory
 645 Sayres. Interpretability beyond feature attribution: Quantitative testing with concept activation
 646 vectors (TCAV). In *Proceedings of the 35th International Conference on Machine Learning*,
 647 volume 80 of *Proceedings of Machine Learning Research*, pp. 2668–2677. PMLR, 07 2018. URL
<https://proceedings.mlr.press/v80/kim18d.html>.

- 648 Eunji Kim, Dahuin Jung, Sangha Park, Siwon Kim, and Sungroh Yoon. Probabilistic Concept
 649 Bottleneck Models. *arXiv preprint arXiv:2306.01574*, 2023.
- 650
 651 Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Yoshua
 652 Bengio and Yann LeCun (eds.), *3rd International Conference on Learning Representations, ICLR*
 653 *2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings*, 2015. URL <http://arxiv.org/abs/1412.6980>.
- 654
 655 Pang Wei Koh, Thao Nguyen, Yew Siang Tang, Stephen Mussmann, Emma Pierson, Been Kim, and
 656 Percy Liang. Concept bottleneck models. In *Proceedings of the 37th International Conference on*
 657 *Machine Learning*, volume 119 of *Proceedings of Machine Learning Research*, pp. 5338–5348.
 658 PMLR, 07 2020. URL <https://proceedings.mlr.press/v119/koh20a.html>.
- 659
 660 Christoph Lampert, Daniel Pucher, and Johannes Dostal. Animals with attributes 2, 2017. URL
 661 <https://cvml.ista.ac.at/AwA2/>.
- 662
 663 Yann LeCun, Corinna Cortes, and CJ Burges. Mnist handwritten digit database. Online, 2010. URL
 664 <http://yann.lecun.com/exdb/mnist>.
- 665
 666 Loic Matthey, Irina Higgins, Demis Hassabis, and Alexander Lerchner. dsprites: Dis-
 667 entanglement testing sprites dataset, 2017. URL <https://github.com/deepmind/>
 668 [dsprites-dataset/](https://github.com/deepmind/dsprites-dataset).
- 669
 670 James L. McClelland and Timothy T. Rogers. The parallel distributed processing approach to
 671 semantic cognition. *Nature Reviews Neuroscience*, 4(4):310–322, 04 2003. ISSN 1471-0048. doi:
 672 [10.1038/nrn1076](https://doi.org/10.1038/nrn1076). URL <https://doi.org/10.1038/nrn1076>.
- 673
 674 Tuomas Oikarinen. Label-free concept bottleneck models, 2023. URL <https://github.com/>
 675 Trustworthy-ML-Lab/Label-free-CBM.
- 676
 677 Tuomas Oikarinen and Tsui-Wei Weng. CLIP-dissect: Automatic description of neuron repre-
 678 sentations in deep vision networks. In *The Eleventh International Conference on Learning*
 679 *Representations*, 2023. URL <https://openreview.net/forum?id=iPWiwWHc1V>.
- 680
 681 Tuomas P. Oikarinen, Subhro Das, Lam M. Nguyen, and Tsui-Wei Weng. Label-free concept
 682 bottleneck models. In *The Eleventh International Conference on Learning Representations, ICLR*
 683 *2023, Kigali, Rwanda, May 1-5, 2023*. OpenReview.net, 2023. URL <https://openreview.net/pdf?id=F1Cg47MNvBA>.
- 684
 685 Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy V. Vo, Marc Szafraniec, Vasil Khali-
 686 dov, Pierre Fernandez, Daniel HAZIZA, Francisco Massa, Alaaeldin El-Nouby, Mido Assran,
 687 Nicolas Ballas, Wojciech Galuba, Russell Howes, Po-Yao Huang, Shang-Wen Li, Ishan Misra,
 688 Michael Rabbat, Vasu Sharma, Gabriel Synnaeve, Hu Xu, Herve Jegou, Julien Mairal, Patrick
 689 Labatut, Armand Joulin, and Piotr Bojanowski. DINOv2: Learning robust visual features with-
 690 out supervision. *Transactions on Machine Learning Research*, 2024. ISSN 2835-8856. URL
 691 <https://openreview.net/forum?id=a68SUt6zFt>. Featured Certification.
- 692
 693 Laura O’Mahony, Vincent Andrearczyk, Henning Müller, and Mara Graziani. Disentangling neuron
 694 representations with concept vectors. In *2023 IEEE/CVF Conference on Computer Vision and*
 695 *Pattern Recognition Workshops (CVPRW)*, pp. 3770–3775, 2023. doi: 10.1109/CVPRW59228.
 696 2023.00390.
- 697
 698 Konstantinos P. Panousis and Sotirios Chatzis. DISCOVER: Making vision networks interpretable
 699 via competition and dissection. In *Thirty-seventh Conference on Neural Information Processing*
 700 *Systems*, 2023. URL <https://openreview.net/forum?id=sWN0vNXGLP>.
- 701
 702 Konstantinos P. Panousis, Dino Ienco, and Diego Marcos. Coarse-to-fine concept bottleneck models.
 703 In *The Thirty-eighth Annual Conference on Neural Information Processing Systems*, 2024. URL
 704 <https://openreview.net/forum?id=RMdnTnffou>.
- 705
 706 Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
 707 Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Köpf, Edward
 708 Yang, Zach DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang,
 709 Junjie Bai, and Soumith Chintala. *PyTorch: an imperative style, high-performance deep learning*
 710 *library*. Curran Associates Inc., Red Hook, NY, USA, 2019.

- 702 Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand Thirion, Olivier
 703 Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent Dubourg, Jake Vanderplas,
 704 Alexandre Passos, David Cournapeau, Matthieu Brucher, Matthieu Perrot, and Édouard Duchesnay.
 705 Scikit-learn: Machine learning in python. *J. Mach. Learn. Res.*, 12(null):2825–2830, November
 706 2011. ISSN 1532-4435.
- 707 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
 708 Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya Sutskever.
 709 Learning transferable visual models from natural language supervision. In Marina Meila and
 710 Tong Zhang (eds.), *Proceedings of the 38th International Conference on Machine Learning, ICML 2021, 18-24 July 2021, Virtual Event*, volume 139 of *Proceedings of Machine Learning Research*, pp. 8748–8763. PMLR, 2021. URL <http://proceedings.mlr.press/v139/radford21a.html>.
- 711 Naveen Raman, Mateo Espinosa Zarlenga, and Mateja Jamnik. Understanding inter-concept relationships in concept-based models. In *Proceedings of the 41st International Conference on Machine Learning, ICML'24*. JMLR.org, 2024.
- 712 Sukrut Rao, Sweta Mahajan, Moritz Böhle, and Bernt Schiele. Discover-then-name: Task-agnostic
 713 concept bottlenecks via automated concept discovery. In Ales Leonardis, Elisa Ricci, Stefan Roth,
 714 Olga Russakovsky, Torsten Sattler, and Gü̈l Varol (eds.), *Computer Vision - ECCV 2024 - 18th European Conference, Milan, Italy, September 29-October 4, 2024, Proceedings, Part LXXVII*, volume 15135 of *Lecture Notes in Computer Science*, pp. 444–461. Springer, 2024. doi: 10.1007/978-3-031-72980-5_26. URL https://doi.org/10.1007/978-3-031-72980-5_26.
- 715 Peter J. Rousseeuw. Silhouettes: A graphical aid to the interpretation and validation of cluster
 716 analysis. *Journal of Computational and Applied Mathematics*, 20:53–65, 1987. ISSN 0377-0427.
 717 doi: [https://doi.org/10.1016/0377-0427\(87\)90125-7](https://doi.org/10.1016/0377-0427(87)90125-7). URL <https://www.sciencedirect.com/science/article/pii/0377042787901257>.
- 718 Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang,
 719 Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C. Berg, and Li Fei-Fei. ImageNet
 720 Large Scale Visual Recognition Challenge. *International Journal of Computer Vision (IJCV)*, 115
 721 (3):211–252, 2015. doi: 10.1007/s11263-015-0816-y.
- 722 Nishad Singhi, Karsten Roth, Jae Myung Kim, and Zeynep Akata. Improving intervention efficacy via
 723 concept realignment in concept bottleneck models. In *ICLR 2024 Workshop on Representational
 724 Alignment*, 2024. URL <https://openreview.net/forum?id=7bQmU2rukF>.
- 725 Moritz Vandenhirtz, Sonia Laguna, Rïcards Marcinkevïs, and Julia E Vogt. Stochastic concept
 726 bottleneck models. In *Thirty-eighth Conference on Neural Information Processing Systems*, 2024.
 727 URL <https://openreview.net/forum?id=iSjqTQ5S1f>.
- 728 Johanna Vielhaben, Stefan Bluecher, and Nils Strodthoff. Multi-dimensional concept discovery
 729 (MCD): A unifying framework with completeness guarantees. *Transactions on Machine Learning Research*, 2023. ISSN 2835-8856. URL <https://openreview.net/forum?id=KxBQPz7HKh>.
- 730 Catherine Wah, Steve Branson, Peter Welinder, Pietro Perona, and Serge Belongie. The caltech-ucsd
 731 birds-200-2011 dataset. Technical Report CNS-TR-2011-001, August 2011.
- 732 Yongqin Xian, Christoph H. Lampert, Bernt Schiele, and Zeynep Akata. Zero-shot learning—a
 733 comprehensive evaluation of the good, the bad and the ugly. *IEEE Transactions on Pattern Analysis
 734 and Machine Intelligence*, 41(9):2251–2265, 2019. doi: 10.1109/TPAMI.2018.2857768.
- 735 Xinyue Xu, Yi Qin, Lu Mi, Hao Wang, and Xiaomeng Li. Energy-based concept bottleneck
 736 models: Unifying prediction, concept intervention, and probabilistic interpretations. In *The Twelfth
 737 International Conference on Learning Representations*, 2024. URL <https://openreview.net/forum?id=I1quoTXZzc>.

756 Yue Yang, Artemis Panagopoulou, Shenghao Zhou, Daniel Jin, Chris Callison-Burch, and Mark
757 Yatskar. Language in a bottle: Language model guided concept bottlenecks for interpretable
758 image classification. In *IEEE/CVF Conference on Computer Vision and Pattern Recognition,*
759 *CVPR 2023, Vancouver, BC, Canada, June 17-24, 2023*, pp. 19187–19197. IEEE, 2023. doi: 10.
760 1109/CVPR52729.2023.01839. URL <https://doi.org/10.1109/CVPR52729.2023.01839>.
761

762 Chih-Kuan Yeh, Been Kim, Sercan Arik, Chun-Liang Li, Tomas Pfister, and Pradeep Ravikumar.
763 On completeness-aware concept-based explanations in deep neural networks. In
764 H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.), *Advances in Neural*
765 *Information Processing Systems*, volume 33, pp. 20554–20565. Curran Associates, Inc.,
766 2020. URL https://proceedings.neurips.cc/paper_files/paper/2020/file/ecb287ff763c169694f682af52clf309-Paper.pdf.
767

768 Mert Yuksekgonul. Post-hoc concept bottleneck models, 2022. URL <https://github.com/mertyg/post-hoc-cbm>.
769
770

771 Mert Yuksekgonul, Maggie Wang, and James Zou. Post-hoc concept bottleneck models. In
772 *The Eleventh International Conference on Learning Representations*, 2023. URL <https://openreview.net/forum?id=nA5AZ8CEyow>.
773

774 Ruihan Zhang, Prashan Madumal, Tim Miller, Krista Ehinger, and Benjamin Rubinstein. Invertible
775 concept-based explanations for cnn models with non-negative concept activation vectors.
776 *Proceedings of the AAAI Conference on Artificial Intelligence*, 35:11682–11690, 05 2021. doi:
777 10.1609/aaai.v35i13.17389.
778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810 A SPLITTING CONCEPTS USING CLUSTERING
811812 To investigate other methods for extracting sub-concepts from a CEM’s embedding space, we explored
813 an alternative approach based on unsupervised clustering. While the main paper focuses on the
814 SAE-based method, we present the clustering-based alternative here for completeness. Unlike the
815 feature-based discovery of SAEs, where a single input can activate multiple features, this clustering
816 method naturally produces groups of mutually exclusive sub-concepts.
817818 Specifically, we make use of the TURTLE framework (Gadetsky et al., 2024), which is designed to
819 discover the labels of a dataset without any supervision by finding the labelling that induces maximal
820 margin classifiers in the representation spaces of different foundation models. TURTLE can be
821 understood as a method to cluster examples using embeddings from multiple models simultaneously.
822 This is useful in our setup, as we can leverage initial CEMs trained with different backbones (e.g.,
823 CLIP (Radford et al., 2021) and DINOv2 (Oquab et al., 2024)) to produce a more robust clustering.
824825 The process begins by partitioning the training data’s concept embeddings. For a given top-level
826 concept c_i , we create two sets of embeddings: one set containing embeddings from examples
827 where the initial CEMs agree c_i is present, and another where they agree it is absent. We then
828 run the TURTLE clustering algorithm on each of these sets independently. This separation allows
829 us to discover “positive” sub-concepts (which are only active when c_i is present) and “negative”
830 sub-concepts (which are only active when c_i is absent).
831832 To determine the optimal number of sub-concepts to discover for a given set of embeddings, we test
833 a range of cluster counts (from a minimum α to a maximum β). For each count, we compute the
834 average silhouette score (Rousseeuw, 1987) of the resulting clustering. The number of clusters that
835 yields the highest silhouette score is selected. Once the optimal clustering is found, each cluster is
836 treated as a distinct discovered sub-concept. A key property of this approach is that the clustering
837 algorithm creates a hard partition of the embedding space, meaning each example can belong to only
838 one cluster. Consequently, the discovered sub-concepts (within either the positive or negative set)
839 are inherently mutually exclusive. We generate new binary concept labels for each cluster, where
840 examples belonging to the cluster are labelled as having the sub-concept, and all other examples are
841 labelled as not having it.
842843 Our complete clustering-based Concept Splitting method is detailed in Algorithm 1.
844845 **Algorithm 1:** Concept Splitting using clustering for a single concept c .
846847 **Input:** Set of examples D where all the initial CEMs M agree that the concept we are splitting c
848 is present (or they all agree c is not present), and concept embeddings Z for c from the
849 models in M for all examples in D .
850851 **Output:** Discovered concept labels L .
852853 **Hyperparameters:** Minimum and maximum number of clusters, $\alpha, \beta \in \mathbb{N}$.
854855 **Note:** TURTLE refers to the TURTLE clustering method proposed by Gadetsky et al. (2024).
856

```

1  $L \leftarrow \emptyset$ 
2  $n \leftarrow \arg \max_{\alpha \leq i \leq \beta} (\text{SilhouetteScore}(\text{TURTLE}(Z, i)))$ 
3  $\text{clusters} \leftarrow \text{TURTLE}(Z, n)$ 
4 for cluster in clusters do
5    $\text{new\_concept\_labels} \leftarrow \text{on}$  for all examples in cluster and  $\text{off}$  for the remaining
6    $\text{examples in the training dataset.}$ 
7    $L \leftarrow L \cup \{\text{new\_concept\_labels}\}$ 
8 end
9 return  $L$ 

```

857
858 A.1 EVALUATING AND NAMING DISCOVERED SUB-CONCEPTS
859860 To quantitatively evaluate the interpretability of the sub-concepts discovered via clustering, we
861 automatically assign a human-understandable meaning to each one. This is achieved by matching
862 them against a predefined “concept bank” of ground-truth concepts that were intentionally excluded
863 from the initial CEM training.
864

864 Table 5: Mean ROC-AUC for discovered concepts. The clustering method performs better in some
 865 cases, and the SAE method performs better in others.

	MNIST-ADD	SHAPES	CUB	AwA2	PseudoKitchens
HiCEM + Concept Splitting (clustering)	0.94\pm0.02	0.94\pm0.03	0.90\pm0.01	0.81 \pm 0.03	0.86 \pm 0.03
HiCEM + Concept Splitting (SAE)	0.93 \pm 0.01	0.93 \pm 0.01	0.85 \pm 0.01	0.88\pm0.01	0.88\pm0.00

871 Table 6: Task accuracies. The clustering method and the SAE method perform similarly.

	MNIST-ADD	SHAPES	CUB	AwA2	PseudoKitchens
HiCEM + Concept Splitting (clustering)	0.93\pm0.00	0.88\pm0.02	0.76\pm0.00	0.98\pm0.00	0.63 \pm 0.00
HiCEM + Concept Splitting (SAE)	0.92 \pm 0.00	0.87 \pm 0.02	0.74 \pm 0.01	0.98\pm0.00	0.65\pm0.01

877 Table 7: Mean ROC-AUCs for provided concepts. The clustering and SAE methods perform
 878 identically.

	MNIST-ADD	SHAPES	CUB	AwA2	PseudoKitchens
HiCEM + Concept Splitting (clustering)	0.99\pm0.00	1.00\pm0.00	0.93\pm0.00	1.00\pm0.00	0.91\pm0.00
HiCEM + Concept Splitting (SAE)	0.99\pm0.00	1.00\pm0.00	0.93\pm0.01	1.00\pm0.00	0.91\pm0.00

895 Figure 6: Task accuracy as discovered concepts are intervened. Interventions are mostly effective on
 896 concepts discovered with clustering and with SAEs.

900 The matching methodology used for this clustering-based approach differs from the one used for
 901 the SAE-based method in the main paper. Here, for each discovered sub-concept (i.e., each cluster),
 902 we compute its ROC-AUC score against every compatible concept within the concept bank. The
 903 discovered sub-concept is then assigned the semantic label of the bank concept that yields the highest
 904 ROC-AUC score. This procedure ensures that every discovered cluster is assigned an interpretation.
 905 A consequence of this approach is that multiple discovered sub-concepts may be matched to the same
 906 ground-truth concept from the bank. In our analysis, we treat such instances as duplicates and merge
 907 them into a single, final sub-concept before reporting accuracies and performing interventions.

908 Using clustering to discover sub-concepts is compared to our SAE-based method in Tables 5, 6 and 7
 909 and Figures 6 and 7. Both methods can discover sub-concepts, but the SAE method is less compu-
 910 tationally demanding, as it does not require repeated clustering to find a good number of clusters.
 911 Additionally, the SAE method does not require a deduplication step. Therefore, it has several
 912 advantages over the clustering method.

B PSEUDOKITCHENS

914 This Appendix describes PseudoKitchens, our synthetic dataset of photorealistic 3D kitchen renders
 915 with ground-truth concept annotations.

Figure 7: Change in task accuracy as provided concepts are intervened. The two methods perform similarly.

Figure 8: Images from PseudoKitchens demonstrating the dataset’s photorealistic quality and diversity in kitchen layouts, ingredient combinations, lighting conditions, and camera perspectives. Each scene contains ingredients for recipe classification.

PseudoKitchens (Figure 8) is generated using Blender 4.5¹, a professional open source 3D graphics software package. We use Blender’s Python API to automate scene generation. Our approach

¹<https://www.blender.org>

972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
 1000
 1001
 1002
 1003
 1004
 1005
 1006
 1007
 1008
 1009
 1010
 1011
 1012
 1013
 1014
 1015
 1016
 1017
 1018
 1019
 1020
 1021
 1022
 1023
 1024
 1025
 Figure 9: An example from the PseudoKitchens dataset. Left: a photorealistic kitchen scene. Right: ground-truth concept annotations, with colours indicating the spatial locations of individual concepts.

leverages physically-based rendering to create photorealistic images whilst maintaining complete experimental control over scene properties. The dataset consists of kitchen scenes containing ingredients for recipe classification tasks, with each scene accompanied by annotations that describe the location of every ingredient in it.

998 B.1 3D ASSETS

1000 Kitchen environments are constructed using 3D assets sourced from BlenderKit², all licensed under
 1001 Royalty Free or Creative Commons CC0 licences. The base kitchen layouts feature countertops,
 1002 cabinets, appliances, and storage areas. We manually curated five distinct kitchen layouts.

1003 B.2 RECIPES

1005 We designed 10 distinct recipes that define valid combinations of ingredients for the classification task.
 1006 Some ingredients are organised into groups as shown in Table 8. If a recipe contains an ingredient
 1007 group, a random number of ingredients are selected from that group, unless the group is pasta in
 1008 which case only one type of pasta is selected. The recipes used are shown in Table 9. All together, the
 1009 recipes use 29 different ingredients. Where possible, for each ingredient we found multiple distinct
 1010 3D models to provide variation. For each instance, a recipe is chosen uniformly at random.

1011
 1012 Table 8: Ingredient groups in PseudoKitchens.

Group	Ingredients
Fruit	Banana, Orange, Apple, Pear, Pineapple
Vegetables	Onion, Carrot, Potato, Pepper, Courgette
Pasta	Macaroni, Spaghetti

1019 B.3 INSTANCE GENERATION

1020 For each generated image:

1. A kitchen layout, floor and wall textures are selected uniformly at random. The light position, intensity and colour temperature are chosen randomly.

²<https://www.blenderkit.com>

1026
1027
1028 Table 9: Recipes in PseudoKitchens.
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038

1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038	1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038
Recipe	Ingredients
Fruit Salad	Fruit
Vegetable Pasta	Pasta, Onion, Garlic, Oil, Vegetables, Spice, Tin Tomatoes
Risotto	Cheese, Onion, Garlic, Vegetables, Oil, Spice, Rice
Chips	Potato, Oil, Flour, Garlic, Spice
Chilli	Mince, Oil, Onion, Garlic, Chilli, Tin Tomatoes, Spice, Rice
Smoothie	Milk, Yoghurt, Fruit
Hot Chocolate	Chocolate, Milk
Banana Bread	Butter, Sugar, Egg, Flour, Banana
Chocolate Fudge Cake	Egg, Sugar, Oil, Flour, Chocolate, Syrup, Milk
Carbonara	Garlic, Meat, Butter, Cheese, Egg, Spaghetti, Spice

- 1039
1040
1041 2. The camera viewpoint is randomised within predefined bounds for each kitchen, varying both
1042 angle and distance to ensure diverse perspectives whilst maintaining ingredient visibility.
1043 In some cases, not all of the ingredients placed will be visible. This mirrors real images,
1044 where some features might be occluded or out of the shot. The spatial concept annotations
1045 (Figure 9) describe exactly which ingredients are visible in each image.
1046
1047 3. A physics-aware placement system positions ingredients on available surfaces (countertops
1048 or tables) using weighted random selection based on surface area. Objects are not allowed
1049 to overlap, and are randomly rotated and scaled to provide variation. Task-irrelevant objects,
1050 such as saucepans and cooking utensils, are randomly placed in scenes.

1050
1051

B.4 GROUND-TRUTH ANNOTATIONS

1052
1053 A key advantage of our synthetic approach is the automatic generation of perfect ground-truth
1054 annotations. For each rendered scene, we provide:

- 1055 1. **Concept Location Annotations:** Using Blender’s Cryptomatte³ support, we produce pixel-
1056 perfect segmentation masks for every ingredient placed in every image. An example is
1057 shown in Figure 9.
1058 2. **Instance Information:** For every image in the dataset, we save a JSON file containing
1059 all the information needed to recreate it. This includes the names of all the objects in the
1060 image, along with complete scene parameters including camera position, lighting conditions,
1061 material assignments, and object transformations. This enables reproducible generation and
1062 systematic manipulation for controlled experiments.

1063
1064

B.5 DATASET COMPOSITION

1065
1066 The complete PseudoKitchens dataset comprises 10,000 training images, 1,000 validation images,
1067 and 1,000 test images. Each image is rendered at 512×512 resolution using the Cycles⁴ path tracing
1068 renderer, providing photorealistic images whilst maintaining reasonable computational requirements.
1069 It takes approximately 10 seconds to render one image on an NVIDIA GeForce RTX 4090 GPU.1070
1071

C DATASETS

1072
1073

C.1 MNIST-ADD

1074
1075 Examples in MNIST-ADD contain two handwritten digits from the MNIST dataset (LeCun et al.,
1076 2010), each between 0 and 6 (inclusive). The label is the sum of the digits (so there are 13 classes).
1077 There are two provided concepts: the first one indicates whether the first digit is greater than three,
1078 and the second one indicates whether the second digit is greater than three. The concepts in the1079
1080 ³<https://github.com/Psyop/Cryptomatte>⁴<https://www.cycles-renderer.org>

1080 Table 10: High-level concepts and their corresponding merged fine-grained concepts in the AwA2
 1081 task.

1083	High-level concept	Merged concepts
1084	patterned	patches, spots, stripes
1085	distal_limb	flippers, hands, hooves, pads, paws
1086	teeth	chewteeth, meatteeth, buckteeth, strainteeth
1087	weapons	horns, claws, tusks

1089
 1090 concept bank consist of a one-hot representation of the digits (for example, one of the concepts is
 1091 “the first digit is 4”). The dataset includes 10,000 training, 2,000 validation, and 10,000 test samples.
 1092

1093 C.2 SHAPES

1094 Images in our SHAPES task (inspired by the dSprites dataset (Matthey et al., 2017)) contain either a
 1095 square, circle, triangle or hexagon. The shape and the background are of different colour, and can be
 1096 red, green, blue or purple. The label of a sample encodes the shape, its colour and the background
 1097 colour. There are 48 classes. Images are covered in small black polygons to make the task harder.
 1098 The provided concepts are “the shape is a polygon”, “the shape has a light colour”, “the shape has a
 1099 dark colour”, “the background is light” and “the background is dark”. The concepts in the concept
 1100 bank form one-hot representations of the shape, its colour and the background colour (for example
 1101 one of the concepts is “the shape is a square”). The dataset includes 10,000 training, 2,000 validation,
 1102 and 10,000 test samples. The code we used to generate the dataset is included in the supplementary
 1103 material, licensed under the MIT License.
 1104

1105 C.3 CUB

1106 CUB (Wah et al., 2011) contains images of birds. Each image is labelled with the species of the
 1107 bird it contains, along with many concept annotations. There are 200 different species of bird in the
 1108 dataset. We copy the concept preprocessing performed by Koh et al. (Koh et al., 2020), except we do
 1109 not filter out any concepts. Some of the concepts in the CUB dataset encode the colour of various
 1110 parts of the bird. For each bird part b that has concepts indicating its colour, our task contains two
 1111 provided concepts: “ b has a light colour” and “ b has a dark colour”. This leaves us with 32 provided
 1112 concepts. The concept bank contains concepts corresponding to the actual colour of the bird parts.
 1113 The code we use to process the concepts is included in the supplementary material.
 1114

1115 C.4 AwA2

1116 The AwA2 dataset (Xian et al., 2019) comprises images of 50 animal classes, each annotated with
 1117 semantic concepts. For our task, we define four high-level concepts: *patterned*, *distal_limb*, *teeth*,
 1118 and *weapons*. Each of these is constructed by grouping related fine-grained concepts, as detailed in
 1119 Table 10. The concept bank contains the fine-grained concepts. The initial CEM’s concepts are the
 1120 four high-level concepts, as well as the AwA2 concepts that are not used to construct the high-level
 1121 concepts. We only split the four high-level concepts, as these are the concepts for which we have
 1122 sub-concepts in the concept bank. The AwA2 image data was collected from public sources, such as
 1123 Flickr, in 2016 (Lampert et al., 2017). The dataset curators ensured that only images licensed for free
 1124 use and redistribution were included.
 1125

1126 C.5 PSEUDOKITCHENS

1127 PseudoKitchens is described in detail in Appendix B. The concepts provided to the initial CEM are
 1128 the ingredient groups in Table 8 (e.g., “contains fruit”), as well as all the ingredients that are not part
 1129 of a group. The concept bank concepts correspond to the ingredients in the ingredient groups (e.g.,
 1130 “contains apples”).

1134
1135

C.6 IMAGENET

1136 ImageNet (Russakovsky et al., 2015) (the ImageNet Large Scale Visual Recognition Challenge 2012-
 1137 2017 image classification and localization dataset) spans 1,000 object classes (organised according
 1138 to the WordNet hierarchy) and contains 1,281,167 training images, 50,000 validation images and
 1139 100,000 test images. As labels for the test images are not publicly available, we use the validation
 1140 images as our test set and split the training images into a training set (1,231,167 images) and a
 1141 validation set (50,000 images).

1142 The concept labels provided to the initial CEM are generated automatically using the WordNet
 1143 hierarchy underlying ImageNet. Each ImageNet class is mapped to its WordNet synset, and we
 1144 collect all of its hypernyms (ancestor categories). A fixed set of 55 high-level concept synsets (e.g.
 1145 plant, tool, vehicle) is then checked against these hypernyms, and all images from a class are labelled
 1146 with every concept it descends from. We do not construct a concept bank for the ImageNet task.

1147
1148

D LF-CBM AND PCB M BASELINES

1149

1150 **Label-free CBM baseline** Label-free CBMs (LF-CBMs) discover concepts by prompting large
 1151 language models for concept names, and then using multimodal models to align LF-CBM representa-
 1152 tions with these concepts (Oikarinen et al., 2023). Evaluating the accuracy of the discovered concepts
 1153 requires access to ground truth labels. Since Oikarinen et al. (Oikarinen et al., 2023) evaluate
 1154 LF-CBMs on the CUB dataset, we use the concepts they discovered and manually align them with
 1155 our ground truth labels for evaluation. The resulting matchings are shown in Table 11. For our other
 1156 datasets, we skip the language model prompting step and directly use the names of labelled concepts
 1157 to train LF-CBMs. This approach was not successful on MNIST-ADD or PseudoKitchens, so we
 1158 exclude those results. As Oikarinen et al. (2023) provide limited discussion of concept interventions,
 1159 we do not attempt them in our experiments. Throughout, we use the same hyperparameters as those
 1160 in the authors’ released code for the CUB dataset (Oikarinen, 2023).

1161

1162 **Post-hoc CBM baseline** Post-hoc CBMs (PCBMs) project the embeddings from a backbone
 1163 network onto a concept subspace defined by a set of concept vectors (Yuksekgonul et al., 2023). An
 1164 interpretable predictor then classifies examples based on these projections. To improve predictive
 1165 performance, a hybrid variant (PCBM-h) includes an additional residual predictor alongside the
 1166 concept-based one. When concept annotations are available—even if only for part of the training
 1167 data—they can be used to compute concept vectors (Kim et al., 2018). Otherwise, we can leverage
 1168 multimodal models by encoding concept names with a text encoder to obtain the vectors. In our
 1169 experiments, we use this approach for concepts where we have ground truth labels, which we use
 1170 to evaluate concept accuracy. For all runs, we adopt the same hyperparameters as those used in the
 1171 authors’ released code (Yuksekgonul, 2022).

1172

E MODEL ARCHITECTURES, TRAINING AND HYPERPARAMETERS

1173

1174 **Model architectures** We use the CLIP ViT-L/14 foundation model (Radford et al., 2021) as the
 1175 backbone for all of our models and baselines. We do not fine-tune the foundation model: we just use
 1176 the representations it outputs. We use the CLIP ViT-B/16 (Radford et al., 2021) multimodal model in
 1177 the LF-CBM baseline to align the models’ representations with concepts (although the backbone of
 1178 the LF-CBMs is the CLIP ViT-L/14 model). For all the models, we precompute the representations
 1179 with standard image preprocessing pipelines and do not use any data augmentations.

1180

1181 When training BatchTopK SAEs, we use the default hyperparameters in the code released by
 1182 Bussmann et al. (2024) for all datasets.⁵ The key distinction of this method is its enforcement of
 1183 sparsity: it selects the top $n \cdot k$ activations across an entire batch of n samples. This allows the number
 1184 of active features to vary per sample, targeting an average of $k = 32$ active features. The SAEs are
 1185 trained for 300 epochs with a dictionary size of 12,288 and a learning rate of 3×10^{-4} .

1186

1187 When performing Concept Splitting with clustering (Appendix A), we use concept embeddings from
 1188 two CEMs to cluster examples. One of the CEMs has the DINOv2 ViT-g/14 foundation model

5`https://github.com/bartbussmann/BatchTopK/blob/main/config.py`

1188
 1189
 1190
 1191
 1192
 1193
 1194
 1195
 1196
 1197
 1198
 1199
 1200
 1201
 1202
 1203
 1204
 1205
 1206
 1207
 1208
 1209
 1210
 1211
 1212
 1213
 1214
 1215
 1216
 1217
 1218
 1219
 1220
 1221
 1222
 1223
 1224
 1225
 1226
 1227
 1228
 1229
 1230
 1231
 1232
 1233
 1234
 1235
 1236
 1237
 1238
 1239
 1240
 1241

Table 11: Matches between concepts discovered by the LF-CBM baseline and ground truth concepts in the CUB dataset.

Discovered concept	Ground truth concept
A red eye	has_eye_color::red
Glossy black wings	has_wing_color::black
a black back	has_back_color::black
a black beak	has_bill_color::black
a black breast	has_breast_color::black
a black throat	has_throat_color::black
a bright orange breast	has_breast_color::orange
a brownish back	has_back_color::brown
a greenish back	has_back_color::green
a grey back	has_back_color::grey
a large bill	has_bill_length::longer_than_head
a red belly	has_belly_color::red
a red breast	has_breast_color::red
a red throat	has_throat_color::red
a streaked back	has_back_pattern::striped
a streaked breast	has_breast_pattern::striped
a white belly	has_belly_color::white
a white breast	has_breast_color::white
a white underside	has_underparts_color::white
a yellow beak	has_bill_color::yellow
a yellow crown	has_crown_color::yellow
a yellow eye	has_eye_color::yellow
all black coloration	has_primary_color::black
black eyes	has_eye_color::black
blue upperparts	has_upperparts_color::blue
blue wings	has_wing_color::blue
a duck-like bird	has_shape::duck-like

(Oquab et al., 2024) as its backbone, and the other uses the CLIP ViT-L/14 model (Radford et al., 2021). When clustering, we run the TURTLE method (Gadetsky et al., 2024) for 1000 epochs, with the warm-start hyperparameter set to true. We set the γ hyperparameter to 10 as suggested by Gadetsky et al. (2024).

All of our CEM and HiCEM (sub-)concept embeddings have $m = 16$ activations. Across all datasets we always use a single fully connected layer for label predictor f .

Training hyperparameters Our models are trained using the Adam optimisation algorithm (Kingma & Ba, 2015) with a learning rate of 1×10^{-3} . They are trained for a maximum of 300 epochs (or 50 epochs for ImageNet, or 25 for the ImageNet HiCEM), and training is stopped if the validation loss does not improve for 75 epochs. We use a batch size of 256.

In all CEMs, HiCEMs and CBMs the weight of the concept loss is set to $\lambda = 10$. Following (Koh et al., 2020), in MNIST-ADD, CUB and PseudoKitchens we use a weighted cross entropy loss for concept prediction to mitigate imbalances in concept labels. In MNIST-ADD, and in the linear probe used to name concepts for the user study, we also use a weighted cross entropy loss for task prediction to mitigate imbalances in task labels.

When training CEMs and HiCEMs, the RandInt (Espinosa Zarlenga et al., 2022) regularisation strategy is used: at training time, concepts are intervened independently at random, with the probability of an intervention being $p_{\text{int}} = 0.25$. We choose $p_{\text{int}} = 0.25$ because Espinosa Zarlenga et al. (2022) find that it enables effective interventions while giving good performance.

F USER STUDY

This appendix provides details on the user study conducted to evaluate the quality of sub-concept labels generated by Concept Splitting on ImageNet.

F.1 NAMING IMAGENET DISCOVERED SUB-CONCEPTS

The sub-concept names evaluated in the study were generated through an automated process, similar to the one used by Rao et al. (2024). To assign a human-readable name to a discovered sub-concept, we first trained a linear classifier (a probe) on the CLIP ViT-L/14 image embeddings for the ImageNet training dataset. This probe was trained to distinguish between images that belong to the sub-concept and those that do not. After training, we iterated through a vocabulary of 20,000 common English words (following Oikarinen & Weng (2023)). For each word, we computed its text embedding using CLIP’s text encoder. This text embedding was then passed as input to the trained linear probe to obtain a score. The word whose embedding received the highest score from the probe was selected as the name for the sub-concept.

F.2 ETHICAL CONSIDERATIONS

Prior to commencing the user study, an application for ethical review was submitted to our institution’s ethics committee. The project received approval before any participant recruitment or data collection began. All participants were provided with a detailed consent form informing them of the study’s purpose, the nature of their participation, data handling, and their right to withdraw at any time.

F.3 PARTICIPANT RECRUITMENT

Twenty participants were recruited via word-of-mouth and snowball sampling. This convenience sample was primarily composed of students and colleagues from the authors’ institution and other academic institutions, as well as friends and family of the authors. Participation was voluntary, and no monetary or other incentives were provided. The only requirements for participation were basic visual recognition abilities and access to a computer with an internet connection. No specific domain knowledge was necessary.

1296
 1297
 1298
 1299
 1300
 1301
 1302
 1303
 1304
 1305
 1306
 1307
 1308

Is "mound" an example of "medical instrument"?

Some of the words in the question are generated automatically, so if it does not make sense or is ambiguous, please answer it as best you can or choose "Not sure". Ignore the plurality of the words.

Yes No They are the same Not sure

Figure 10: A sub-concept verification question from our user study.

F.4 STUDY DESIGN AND INTERFACE

The user study was administered through a web-based application, eliminating the need for any software installation on the participants' devices. Upon accessing the study, participants were presented with a consent form. After giving consent, they were assigned a random participant ID to anonymise their responses and allow them to resume the study if they wished.

Participants were then shown a set of instructions detailing the two types of tasks they would be asked to complete. The study consisted of a maximum of 100 questions, and participants could stop at any point.

The two types of questions were:

1. **Sub-Concept Verification:** Participants were asked to evaluate the relationship between a parent concept and a sub-concept by answering the question, "Is [sub-concept] an example of [parent concept]?" (see Figure 10).
 - In the *experimental group*, the sub-concept names provided by our naming method were used.
 - In the *control group*, the sub-concept names were chosen randomly from the dictionary used to name sub-concepts, and paired with a parent concept.
2. **Image Label Verification:** Participants were shown an image and a sub-concept name and asked, "Does this image show [concept]?" (see Figure 11).
 - In the *experimental group*, the images shown were those our method had labelled as exhibiting the given sub-concept.
 - In the *control group*, the images were selected at random from the ImageNet training dataset.

To account for a potential learning curve as participants familiarised themselves with the tasks, the first five responses from each participant for each question type were discarded and not included in our analysis. For each question, participants could also select "They are the same" (for sub-concept verification tasks only) or "Not sure". All participants were shown a mixture of experimental and control questions.

The data was anonymised by assigning a unique, randomly generated ID to each participant, with no personal identifiable information being collected. The collected responses were stored securely and were only accessible to the study's authors.

G INTERPRETING DISCOVERED CONCEPTS

Figure 12 shows a random sample of 16 images from the MNIST-ADD training dataset that were labelled as having one of the discovered sub-concepts. From this sample, it is clear that the meaning of the discovered sub-concept is "the top digit is 6".

1350
 1351
 1352 **Does this image show "ships"?**
 1353 Some of the words in the question are generated automatically, so if it does not make sense or is ambiguous, please answer it
 1354 as best you can or choose "Not sure". Ignore plurality: for example, if you are asked 'Does this image show "lions"?' and the
 1355 image contains a single lion, you should answer "Yes".

1356
 1357
 1358
 1359
 1360
 1361
 1362
 1363
 1364
 1365
 1366
 1367
 1368
 1369
 1370
 1371
 1372
 1373
 1374

Yes No Not sure

1375
 1376 Figure 11: An image label verification question from our user study.

1377
 1378
 1379 **H SPLITTING ONE-HOT ENCODED CONCEPT EMBEDDINGS**
 1380
 1381
 1382 To explore how Concept Splitting and HiCEMs perform in an idealised setting where concept
 1383 embeddings contain perfect information about sub-concepts, we conducted a controlled experiment
 1384 on the MNIST-ADD dataset. Specifically, we created one-hot encoded concept embeddings: for
 1385 each top-level concept (e.g., the first digit is greater than 3), the positive embedding for that concept
 1386 was a one-hot vector with a single non-zero entry corresponding to the true sub-concept present
 1387 in the example (e.g., the first digit is 4). This ensures that the concept embeddings encode perfect,
 1388 unambiguous information about the sub-concepts that are present. We then applied Concept Splitting
 1389 to these one-hot embeddings and evaluated whether it could recover the ground-truth sub-concepts.

1390 Concept Splitting with idealised one-hot encoded concept embeddings is compared to Concept
 1391 Splitting with CEM embeddings in Tables 12, 13 and 14 and Figure 13. When Concept Splitting is
 1392 applied to concept embeddings that contain perfect (one-hot encoded) information about sub-concepts,
 1393 it is highly effective, recovering the encoded sub-concepts almost perfectly. In real-world applications,
 1394 one will not have such ideal concept embeddings. However, as we demonstrate in Section 5, Concept
 1395 Splitting is also effective when applied to concept embeddings extracted from a CEM.

1396
 1397 Table 12: Mean ROC-AUC for discovered concepts. When concept embeddings contain perfect
 1398 information about sub-concepts, our method effectively recovers them.

1399
 1400
 1401
 1402
 1403

	MNIST-ADD
HiCEM + Concept Splitting (one-hot embeddings)	1.00 ± 0.00
HiCEM + Concept Splitting (CEM embeddings)	0.93 ± 0.01

Figure 12: A random sample of images from the MNIST-ADD training dataset that were labelled as having one of the discovered sub-concepts. The interpretation assigned to this concept was “the top digit is 6”.

Table 13: Task accuracies. HiCEM achieves similar task accuracy whether trained on concepts discovered from one-hot encoded or CEM embeddings.

	MNIST-ADD
HiCEM + Concept Splitting (one-hot embeddings)	0.93 ± 0.00
HiCEM + Concept Splitting (CEM embeddings)	0.92 ± 0.00

Table 14: Mean ROC-AUCs for provided concepts. HiCEM achieves similar provided concept accuracy whether trained on concepts discovered from one-hot encoded or CEM embeddings.

	MNIST-ADD
HiCEM + Concept Splitting (one-hot embeddings)	1.00 ± 0.00
HiCEM + Concept Splitting (CEM embeddings)	0.99 ± 0.00

Figure 13: Interventions on discovered concepts are slightly more effective with idealised one-hot encoded embeddings, whilst provided concept interventions perform similarly in both scenarios. Mean and standard deviation over three runs are shown; the standard deviation is negligibly small.

I IMAGENET CONCEPT INTERVENTIONS

As shown in Figure 14, provided concept interventions on ImageNet perform similarly in the initial CEM and in the HiCEM with discovered sub-concepts. Due to the size of ImageNet, the experiment was only run once so Figure 14 does not contain error bars.

Figure 14: Change in task accuracy as provided concepts are intervened on ImageNet. Provided concept interventions work just as well in HiCEMs as they do in CEMs.

1512 J CODE, LICENSES, AND RESOURCES

1514 Assets We used the DINOv2 foundation models (Oquab et al., 2024) (<https://github.com/facebookresearch/dinov2>), whose code and model weights are released under the
1515 Apache License 2.0. We also used the CLIP foundation models (Radford et al., 2021) (<https://github.com/openai/CLIP>), whose code is available under the MIT license. To run our
1516 experiments, we made use of the CEM (Espinosa Zarlenga et al., 2022) (<https://github.com/mateoespinosa/cem>, MIT license), Post-hoc CBM (Yuksekgonul et al., 2023) (<https://github.com/mertyg/post-hoc-cbm>, MIT license) and Label-free CBM (Oikarinen et al.,
1517 2023) (<https://github.com/Trustworthy-ML-Lab/Label-free-CBM>) repositories.
1518 We implemented our experiments in Python 3.11 and used open-source libraries such as PyTorch 2.5
1519 (Paszke et al., 2019) (BSD license) and Scikit-learn (Pedregosa et al., 2011) (BSD license). We have
1520 released the code required to recreate our experiments in a MIT-licensed public repository.
1521

1522 Resources All of our experiments were run on virtual machines with at least 8 CPU cores, 18GB
1523 of RAM, and an NVIDIA GPU (Quadro RTX 8000 or GeForce RTX 4090). Including preliminary
1524 experiments, we estimate that approximately 300 GPU hours were required to complete our work.
1525

1526 Use of AI We used Large Language Models (LLMs) as assistants for drafting and improving the
1527 clarity and grammar of this manuscript. LLMs were also used to generate boilerplate code. However,
1528 all core research ideas, experimental design, and analysis of the results were conducted by the authors.
1529

1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565