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ABSTRACT

Modern deep neural networks remain challenging to interpret due to the opacity
of their latent representations, impeding model understanding, debugging, and
debiasing. Concept Embedding Models (CEMs) address this by mapping inputs to
human-interpretable concept representations from which tasks can be predicted.
Yet, CEMs fail to represent inter-concept relationships and require concept annota-
tions at different granularities during training, limiting their applicability. In this
paper, we introduce Hierarchical Concept Embedding Models (HiCEMs), a new
family of CEMs that explicitly model concept relationships through hierarchical
structures. To enable HiCEMs in real-world settings, we propose Concept Split-
ting, a method for automatically discovering finer-grained sub-concepts from a
pretrained CEM’s embedding space without requiring additional annotations. This
allows HiCEMs to generate fine-grained explanations from limited concept labels,
reducing annotation burdens. Our evaluation across multiple datasets, including a
user study and experiments on PseudoKitchens, a newly proposed concept-based
dataset of 3D kitchen renders, demonstrates that (1) Concept Splitting discovers
human-interpretable sub-concepts absent during training that can be used to train
highly accurate HiCEMs, and (2) HiCEMs enable powerful test-time concept
interventions at different granularities, leading to improved task accuracy.

1 INTRODUCTION

State-of-the-art Deep Neural Networks (DNNs) can achieve very high task accuracies but fail to
explain their reasoning in human-understandable terms (Barredo Arrieta et al., 2020). Concept
Embedding Models (CEMs) (Espinosa Zarlenga et al., 2022) address this limitation by learning to
predict a set of human-understandable concept representations provided at training time (e.g., “size”
or “colour”), and then using these concept representations (or embeddings) for learning to predict
a downstream task. Within this framework, CEM’s concept predictions serve as an explanation
for its downstream task prediction. However, CEMs cannot model relationships between concepts,
treating all concepts as independent entities from each other, leading to their representations failing
to capture known inter-concept relationships (Raman et al., 2024). This is problematic because real-
world concepts are often interrelated, and human cognition inherently utilises such relationships for
reasoning (McClelland & Rogers, 2003). Additionally, CEMs require expensive concept annotations
at training time to learn their embeddings (Espinosa Zarlenga et al., 2022), limiting their usability.

While numerous researchers have explored concept discovery (Yuksekgonul et al., 2023; Oikarinen
et al., 2023; Rao et al., 2024), they typically overlook the hierarchical relationships between dis-
covered concepts. Additionally, these methods rarely support human-in-the-loop refinement, where
expert interventions, such as corrections to concept predictions at test time, could improve model
performance. These gaps limit their applicability to real-world scenarios where hierarchical concept
structures and iterative human feedback are critical.

In this paper, we show that CEMs capture sub-concepts not provided during training as part of their
embedding spaces. For example, a CEM trained with the concept “contains vegetables” may encode
subspaces corresponding to finer-grained sub-concepts like “contains onions” and “contains carrots”
within its embedding manifold. To exploit this structure, we propose (1) Concept Splitting (Figure 1),
a method for discovering sub-concepts from a CEM’s concept embeddings using sparse autoencoders
(Bricken et al., 2023), and (2) Hierarchical CEM (HiCEM, Figure 2), a model designed to support
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(a) Train CEM, extract concept 
embeddings.

Has vegetables:

(b) Train a SAE on the 
concept embeddings.

(c) Create discovered concept 
labels from the SAE features.

Cucumber 
feature active

Cucumber 
feature not 
active

Onion

Cucumber

Encode Decode

Not “has 
vegetables”

Figure 1: Concept Splitting. (a) Train a CEM and calculate concept embeddings. (b) Train SAEs on
the embeddings (the image depicts a single embedding set). (c) Create concept labels. The green
points are marked as having the new concept, and the black points (where the parent concept is not
active or where the SAE feature is not active) are marked as not having the new concept.

hierarchical concept relationships like those discovered by Concept Splitting. Together, Concept
Splitting and HiCEMs significantly reduce annotation costs by requiring only coarse, high-level
concept labels during training while automatically discovering more granular sub-concepts. Our
evaluation across several datasets, including a user study, strongly suggests that Concept Splitting can
discover human-interpretable concepts that HiCEMs can then utilise to construct more fine-grained
explanations for their predictions without compromising predictive or intervention performance.
Hence, our contributions are:

• We introduce Concept Splitting, a method to discover sub-concepts in a CEM’s embeddings. This
reduces the need for exhaustive concept annotations and enhances the granularity of explanations.

• We propose HiCEMs, a family of inherently interpretable concept-based models that capture
hierarchical concept relationships and support human interventions at multiple hierarchy levels.

• We introduce PseudoKitchens, a synthetic dataset of photorealistic 3D kitchen renders with
perfect ground-truth concept annotations and precise spatial localisation.

• We demonstrate, through empirical, qualitative, and quantitative experiments, including a
user study, that HiCEMs trained via Concept Splitting can accurately discover interpretable
sub-concepts that were absent during training. Moreover, our experiments show that HiCEMs
trained with Concept Splitting achieve competitive task accuracies and are receptive to test-time
concept interventions at different granularity levels.

2 BACKGROUND AND RELATED WORK

Concept learning Concept-based methods aim to explain a model’s predictions using human-
understandable concepts (e.g., “colour” or “size”) (Bau et al., 2017; Fong & Vedaldi, 2018; Kim
et al., 2018). Some methods, for example, Concept Bottleneck Models (CBMs) (Koh et al., 2020),
explicitly incorporate concepts in their architecture, leading to inherently interpretable models that
provide concept-based explanations. These methods typically require a concept-annotated training
set and may suffer from suboptimal predictive performance due to conflicting training objectives
(Espinosa Zarlenga et al., 2022). Furthermore, they do not consider the relationships between
concepts; instead, they treat all concepts as independent variables (Havasi et al., 2022). Other
methods attempt to construct post-hoc concept-based explanations, instead of producing inherently
interpretable models. For example, Automatic Concept-based Explanations (ACE) (Ghorbani et al.,
2019) clusters a DNN’s latent space to discover relevant concepts. In contrast to ACE, we (1) use the
discovered concepts to construct inherently interpretable models, (2) exploit the relationship between
existing and discovered concepts, and (3) demonstrate effective discovered concept interventions.

Concept Embedding Models Concept Embedding Models (CEMs) (Espinosa Zarlenga et al.,
2022) provide concept-based explanations while achieving higher task accuracies than CBMs. CEMs,
and their variants (Kim et al., 2023; Espinosa Zarlenga et al., 2024; Xu et al., 2024; Espinosa Zarlenga
et al., 2025), improve task accuracy by representing concepts using high-dimensional supervised
vectors, or embeddings. For each concept ci, a CEM learns two embeddings: one for when it is active
(a “positive” embedding, ĉ+i ), and another for when it is inactive (a “negative” embedding, ĉ−i ). Each
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concept embedding is aligned to its corresponding ground truth concept through a scoring function s,
which learns to assign an activation probability p̂i to each concept ci. These probabilities are used
to output an embedding ĉi for each concept ci via a mixture of positive and negative embeddings
weighted by the predicted probability (i.e., ĉi = p̂iĉ

+
i + (1 − p̂i)ĉ−i ). Finally, the mixed concept

embeddings are concatenated into a bottleneck ĉ and passed to a label predictor f(ĉ) (usually a linear
layer). This predictor outputs a downstream task prediction ŷ.

An important property of CEMs is that they support concept interventions: at test time, an expert can
correct mispredicted concepts, allowing the model to update its downstream label prediction based on
these corrections. Interventions can be performed by fixing a concept’s embedding to the embedding
that is semantically aligned with the ground truth concept label (e.g., setting ĉi := ĉ+i if concept ci is
determined to be present in x). However, a major limitation of CEMs is that they fail to capture known
inter-concept relationships (Raman et al., 2024), deviating from how humans tend to reason about a
task hierarchically (McClelland & Rogers, 2003). Moreover, lacking a mechanism for representing
hierarchical inter-concept relationships means that CEMs need a large number of concept labels in
their training datasets to capture different concept granularities. Our work addresses these issues by
exploiting a pre-trained CEM’s embedding space to discover sub-concepts that were not provided
during training, and using them to train HiCEMs that can exploit sub-concept relationships.

Concept discovery Several methods (Bricken et al., 2023; Huang et al., 2022; Huben et al., 2024;
O’Mahony et al., 2023; Rao et al., 2024; Vielhaben et al., 2023; Yuksekgonul et al., 2023; Zhang
et al., 2021) aim to identify human-interpretable concepts that can help explain how a model makes
its predictions. Some methods try to discover concepts encoded by a model’s neurons (Fel et al.,
2023; Graziani et al., 2023; Oikarinen & Weng, 2023; Panousis & Chatzis, 2023), some ask large
language models to suggest relevant concepts (Oikarinen et al., 2023; Yang et al., 2023), and some
look for meaningful features of inputs (Ghorbani et al., 2019). A few approaches attempt to assign
concepts to individual neurons, however this can be problematic, as neurons often represent complex,
uninterpretable features (Elhage et al., 2022). However, most of these works typically fail to evaluate
interventions on discovered concepts or to consider the relationships between discovered concepts.
For example, hierarchical relationships among concepts imply that some sub-concepts (e.g., “contains
onions” and “contains carrots”) can only exist in the presence of another parent concept (e.g., “contains
vegetables”). Therefore, here we present a method for discovering such sub-concepts and propose
an inherently interpretable architecture that explicitly represents these sub-concept relationships.
Furthermore, we demonstrate that interventions on discovered sub-concepts are effective.

3 CONCEPT SPLITTING

Previous work has found that Sparse AutoEncoders (SAEs) can uncover interpretable concepts in
the representation spaces of neural networks (Bricken et al., 2023; Bussmann et al., 2024). SAEs
are a type of autoencoder trained to reconstruct their input while enforcing a sparsity constraint on a
high-dimensional latent representation, effectively learning a dictionary of (hopefully interpretable)
features. We apply this idea in CEMs to discover sub-concepts, and then we train HiCEMs (Section 4)
that use the discovered concepts to provide finer-grained explanations. Specifically, we use BatchTopK
sparse autoencoders (Bussmann et al., 2024), which keep the top activations across a batch. While
we focus on using SAEs to discover sub-concepts, they are not the only option, and Appendix B
discusses an alternative approach using clustering to find mutually exclusive sub-concepts.

Our approach, which we name Concept Splitting (Figure 1), takes as input a trained CEM M .
First, we run M on a concept-annotated training set D = {(x(j), c(j), y(j))}Nj=1, storing the concept
embedding vectors and concept predictions {ĉ+, ĉ−, ĉ, p̂i} for each sample inD and for each concept
ci we want to split (Figure 1(a)). For simplicity, we describe how to split a single concept ci. However,
this operation can be performed for all training concepts.

Next, let Ei be the set of embedding vectors for ci, and let Etrue
i and Efalse

i be the subsets of
embeddings in Ei where ci was predicted by M to be present (i.e., p̂i = 1) or absent, respectively.
We partition the embedding vectors using M ’s concept predictions for ci, as these predictions tell us
whether the dominant component in the mixture is a positive embedding or a negative embedding.

Here, we want to discover sub-concepts of ci, where we consider the sub-concepts of ci to be groups
of concepts that are either only active when ci is (positive sub-concepts), or only active when ci is
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"no fruit"
Input 
𝐱 𝜓(𝐱)

Positive sub-concepts module

Negative sub-concepts module

Mean

Positive sub-concepts module

Mean

𝐡

𝑠(·)

𝑠(·)

Soft maximumNegative sub-concepts 
module

"no vegetables"

"contains apples"

"contains pears"

Figure 2: Hierarchical CEM: as in a CEM, from a latent code h, we learn two embeddings per
concept (ĉ+′

i and ĉ−′
i ). These embeddings are then passed through sub-concepts modules, which

produce new embeddings (ĉ+i and ĉ−i ) that include information about sub-concepts. The sub-concepts
modules also output the most likely sub-concept probabilities, which are used to calculate top-level
concept probabilities. These probabilities are used to output an embedding for each concept via a
weighted mixture of positive and negative embeddings.

not (negative sub-concepts). To this end, we train SAEs on Etrue
i and Efalse

i separately (Figure 1(b)).
Using the SAE trained on Etrue

i , we discover sub-concepts that are present when ci is also present,
and using the SAE trained on Efalse

i we discover sub-concepts that are present when ci is not.

Once we have trained a SAE on an embedding set, we create new concept labels using the features
learned by the SAE (Figure 1(c)). Bussmann et al. (2024) describe how to calculate a threshold for
determining when a feature is active during inference. Every feature can be treated as a discovered
sub-concept. The examples that activate the feature are marked as having the new sub-concept, and
the examples that do not activate the feature are marked as not having the new sub-concept.

Once Concept Splitting has been performed, we can interpret a discovered sub-concept using proto-
types, which provide training examples that strongly activate the concept. This approach, similar to
that used by previous works (Alvarez Melis & Jaakkola, 2018; Espinosa Zarlenga et al., 2023; Yeh
et al., 2020), enables experts to assign potential semantics to discovered concepts.

4 HIERARCHICAL CEMS

We introduce the HiCEM architecture (Figure 2), which explicitly models hierarchical relationships
between concepts. For simplicity, we focus on two-level hierarchies, however our architecture could
easily be extended to support deeper hierarchies.

4.1 ARCHITECTURE

Like in CEMs, for each top-level concept, a HiCEM learns a mixture of two embeddings with
semantics representing the concept’s activity. In HiCEM, each top-level concept ci is represented with
the embeddings ĉ+i , ĉ

−
i ∈ Rm. Here, ĉ+i represents ci’s active state, and ĉ−i represents its inactive

state. In contrast to CEMs however, we also want ĉ+i and ĉ−i to contain information about ci’s
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positive and negative sub-concepts, respectively. To achieve this, a backbone network ψ(x) (e.g., a
pre-trained ResNet model) produces a latent representation h ∈ Rnhidden which is the input to top-level
embedding generators ϕ+i and ϕ−i . These top-level embedding generators produce intermediate
embeddings ĉ+′

i = ϕ+i (h), ĉ
−′
i = ϕ−i (h) ∈ Rm. Following the work in (Espinosa Zarlenga et al.,

2022), we implement the top-level embedding generators as single fully connected layers.

To produce final concept embeddings that contain information about sub-concepts, the embeddings
ĉ+′
i and ĉ−′

i are passed through a positive and a negative sub-concepts module, respectively. The
positive sub-concepts module, which we describe in further detail below, is responsible for learning
the positive sub-concepts of ci. It outputs the positive concept embedding for ci, ĉ+i , as well as the
probability of its most likely positive sub-concept, p̂+i . Similarly, the negative sub-concepts module
outputs the negative concept embedding for ci, ĉ−i , as well as the probability of its most likely negative
sub-concept, p̂−i . If concept ci has no positive sub-concepts (i.e., concept ci is a leaf node in the hier-
archy), then we take ĉ+i = ĉ+′

i and p̂+i = s(ĉ+i ), where s is a shared scoring function that calculates
concept probabilities from concept embeddings. We proceed analogously in the absence of negative
sub-concepts. p̂+i can be taken as an estimate for the probability of the top-level concept ci, because ci
can only be present if one of its positive sub-concepts is. Similarly, the complement of p̂−i can be taken
as another estimate for the probability of ci. The predicted probability of concept ci, p̂i, is calculated
as the average of p+i and the complement of p̂−i : p̂i = 1

2 (p̂
+
i +1− p̂−i ). As in CEMs, the final concept

embedding ĉi for ci is calculated as a weighted mixture of c+i and c−i : ĉi = p̂iĉ
+
i + (1− p̂i)ĉ−i .

Like in previous embedding-based concept models (Espinosa Zarlenga et al., 2022; 2023; Xu et al.,
2024), before making a task prediction, all k mixed concept embeddings are concatenated, resulting
in a bottleneck g(x) = ĉ with k ·m units. This is put through a label predictor f to get a downstream
task label. Following previous work (Koh et al., 2020; Espinosa Zarlenga et al., 2022), we use an
interpretable label predictor f parametrised by a simple linear layer.

Sub-concepts Modules We describe a negative sub-concepts module, as illustrated in Figure 2,
but positive sub-concepts modules operate in exactly the same way. Inside the negative sub-concepts
module for concept ci, sub-concept embedding generators ϕ−ij produce embeddings for each of
ci’s negative sub-concepts: ĉ−ij = ϕ−ij(ĉ

−′
i ). Like the top-level embedding generators, these are

implemented as single fully connected layers. Similarly to CEMs (Espinosa Zarlenga et al., 2022),
these embeddings are aligned with ground-truth sub-concept cij via a learnable and differentiable
scoring function s : Rm → [0, 1], trained to predict the probability p̂−ij ≜ s(ĉ−ij) = σ(Wsc

−
ij + bs)

of sub-concept cij being active from its sub-concept embedding. As in CEMs, the scoring function
is shared across all sub-concepts. ci’s negative embedding, ĉ−i , is constructed as a weighted mixture

of all the n−i negative sub-concept embeddings: ĉ−i ≜
∑n−

i
j=1 p̂

−
ij ĉ

−
ij .

The highest negative sub-concept probability p̂−i , the complement of which is an estimate for the

probability of ci, is calculated in a differentiable way as p̂−i =
∑n−

i
j=1 softmax(α · p̂

−
i − β)j · p̂

−
ij ,

where (p̂−
i )j = p̂−ij and the constants α and β scale the input of the softmax so that its output

is strongly weighted towards the largest p̂−ij . In practice, we use α = 200, β = 100 to scale the
probabilities from [0, 1] to [−100, 100], so that the calculated highest sub-concept probability is very
close to the true maximum of the probabilities.

As in previous concept-based models, HiCEMs provide a concept-based explanation for the predicted
downstream task label through its predicted concept probabilities p̂(x) ≜ [p̂1, . . . , p̂k]. However,
unlike previous architectures, HiCEMs explicitly model the relationship between concepts and sub-
concepts: a concept’s positive embedding contains information about its positive sub-concepts, and a
concept’s negative embedding includes information on its negative sub-concepts. HiCEMs are trained
by jointly minimising a weighted sum of the cross-entropy loss on both task prediction and concept
predictions: L ≜ E(x,y,c) [Ltask (y, f(g(x))) + λLCrossEntr (c, p̂(x))]. Here, the hyperparameter
λ ∈ R+ controls the relative importance of concept and task accuracy.

Concept Interventions HiCEMs support interventions on both top-level concepts and sub-concepts
in a natural way. Similarly to CEMs (Espinosa Zarlenga et al., 2022), to intervene on top-level
concept ci, the embedding ĉi is updated by replacing it with the output embedding semantically
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aligned with the concept’s ground truth label. This intervention ensures that ĉi contains information
about the relevant sub-concepts.

Intervening on sub-concept c−ij differs depending on whether the human expert decides c−ij is or is
not actually present in the example. (While we focus on negative sub-concepts here, the analogous
process applies to positive sub-concepts.) If the human expert determines that c−ij is not present, then
the model’s predicted probability p̂−ij is simply set to zero. On the other hand, if the expert identifies
c−ij as present, then p̂−ij is set to one, and p̂−ij′ is set to zero for all j′ ̸= j (this means ĉ−i := ĉ−ij).
Additionally, because the presence of c−ij implies that the top-level concept ci is not present, we also
intervene on ci. Therefore this operation results in the update ĉi := ĉ−i := ĉ−ij .

When training HiCEMs, we use the RandInt regularisation strategy proposed by Espinosa Zarlenga
et al. (2022) to improve intervention effectiveness. That is, during training, we randomly perform
independent concept interventions with probability pint.

5 EXPERIMENTS

We evaluate Concept Splitting and HiCEMs by exploring the following research questions:

RQ1 Does Concept Splitting discover interpretable sub-concepts?
RQ2 How do HiCEMs’ task and provided (top-level) concept accuracies compare to those of the

original CEM and other baselines?
RQ3 Can a HiCEM’s task accuracy be improved by intervening on discovered sub-concepts?

5.1 PSEUDOKITCHENS

To rigorously evaluate concept-based models, we introduce PseudoKitchens, a new synthetic dataset
of photorealistic 3D kitchen renders with perfect ground-truth concept annotations. Our approach
provides complete control over scene generation and pixel-perfect labels for all concepts (see
Appendix C for a full description).

5.2 SETUP

Datasets We evaluate our methods across six diverse datasets: MNIST-ADD (LeCun et al., 2010), a
procedural SHAPES dataset, Caltech-UCSD Birds-200-2011 (CUB) (Wah et al., 2011), Animals with
Attributes 2 (AwA2) (Xian et al., 2019), our new PseudoKitchens dataset, and ImageNet (Russakovsky
et al., 2015). These datasets span simple synthetic tasks, fine-grained visual classification, and large-
scale recognition, providing a comprehensive testbed. Full details on each dataset, including concept
definitions and splits, are provided in Appendix D.

Metrics For each dataset, we run Concept Splitting on the provided concepts in an initial CEM,
and then train a HiCEM with the provided top-level concepts and the discovered sub-concepts.

Following Espinosa Zarlenga et al. (2023), we evaluate discovered sub-concept accuracy and perform
interventions by automatically pairing sub-concepts with a human-understandable “left-out” concept
from a predefined “concept bank”. This bank contains anticipated concepts excluded during initial
CEM training (e.g., “the first digit is 6” in the MNIST-ADD dataset). To align discovered sub-concepts
with the bank, we compute the area under the receiver operating characteristic curve (ROC-AUC)
scores between the discovered sub-concept labels and their potential parent-concept-associated
matches in the bank. Each concept in the bank is assigned to the sub-concept with the highest
ROC-AUC score, as long as that score is greater than 0.7. We do not have ground-truth concept
annotations for ImageNet (Russakovsky et al., 2015), so we evaluate the discovered sub-concepts
with a user study. Discovered sub-concepts that were not matched to the concept bank, or that were
not selected for the user study in the case of ImageNet, are not included when we train our HiCEMs.

To answer RQ1, we present the results of our user study conducted with ImageNet, and for the other
datasets, we report the average discovered sub-concept ROC-AUC of the HiCEM. To address RQ2,
we report the task accuracy and the provided concept ROC-AUC of the initial CEM and the HiCEM.
For RQ3, we measure the change in HiCEMs’ task accuracies as concepts are intervened. All metrics

6
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Table 1: Mean ROC-AUC for discovered concepts. LF-CBMs were unable to discover concepts on
the PseudoKitchens dataset. Sub-concepts discovered with Concept Splitting are predicted accurately.

MNIST-ADD SHAPES CUB AwA2 PseudoKitchens

LF-CBM – 0.75±0.00 0.77±0.00 0.78±0.00 –
HiCEM w/o sub-supervision (control) 0.86±0.01 0.88±0.02 0.81±0.00 0.73±0.00 0.75±0.06

CEM + Concept Splitting (ours) 0.93±0.01 0.93±0.01 0.85±0.01 0.88±0.01 0.88±0.01

HiCEM + Concept Splitting (ours) 0.93±0.01 0.93±0.01 0.85±0.01 0.88±0.01 0.88±0.00

Table 2: User study results. Users are far more likely to say sub-concepts generated by our method
are examples of their parent concept than randomly chosen words are (first two rows). Users also
agree that, in a lot of cases, the images labelled as having a discovered sub-concept are consistent
with the automatically generated name of that sub-concept (second two rows). Even better results
might be obtained by manually selecting high-quality sub-concepts, and naming them manually
instead of using our crude automatic naming method with CLIP.

Yes No Not sure They are the same

Sub-concept relationship (control) 16 (3.8%) 387 (91.3%) 20 (4.7%) 1 (0.2%)
Sub-concept relationship (experimental) 241 (60.6%) 109 (27.4%) 19 (4.8%) 29 (7.3%)
Image labels (control) 4 (0.9%) 424 (97.9%) 5 (1.2%) –
Image labels (experimental) 244 (54.8%) 172 (38.7%) 29 (6.5%) –

in our evaluation, apart from those calculated on ImageNet, are computed on test datasets using three
random seeds, from which we compute a mean and standard deviation. Because ImageNet is so large,
we compute metrics using a single random seed. Whenever we measure concept accuracy, we use the
mean concept ROC-AUC to avoid being misled by a majority-class classifier.

Baselines We compare HiCEMs with black box models, CEMs (Espinosa Zarlenga et al., 2022),
CBMs (Koh et al., 2020), Label-free CBMs (LF-CBMs, (Oikarinen et al., 2023)), Post-hoc CBMs
(PCBMs, (Yuksekgonul et al., 2023)), and PCBMs with residual connections (PCBM-hs). Our black
box models have the same architecture as our CEMs, but without any concept supervision. To
evaluate the usefulness of the discovered concept labels produced by Concept Splitting, in each of
our runs we train a control HiCEM that has the same architecture as the HiCEM with discovered
sub-concepts, but no sub-concept supervision (“HiCEM w/o sub-supervision”). That is, the HiCEM is
trained with access to top-level concept labels but without any labels or supervision for sub-concepts.
We match the “sub-concepts” in this baseline to our concept bank using sub-concept predictions
on the training dataset. We also train a CEM with top-level concepts and discovered sub-concepts
(“CEM + Concept Splitting”) so we can compare this to the HiCEM. The CUB dataset is used by
Oikarinen et al. (2023) to evaluate LF-CBMs, so we take their discovered concepts and manually
match them with concepts for which we have ground-truth labels. For the other datasets, and for all
the datasets with the PCBM baseline, we use the names of concepts for which we have ground-truth
labels to create the models. For further details on how we train each of these baselines, including the
architectures and hyperparameters used, see Appendices F and H. Due to the computational cost of
training models on ImageNet, we do not include results for all baselines on it.

User Study To evaluate the sub-concepts discovered on ImageNet, we ran a user study. We
automatically named discovered sub-concepts with the CLIP vision-language model (Radford et al.,
2021), using a method similar to previous work (Rao et al., 2024). We then asked users whether the
discovered sub-concept names were semantically related to the name of their parent concept (“Is
[sub-concept name] an example of [parent concept name]?”). As a control we picked words at random
from the dictionary used to name the sub-concepts. We also asked users whether images labelled by
Concept Splitting as having the discovered sub-concepts were consistent with the sub-concept names
(“Does this image show [sub-concept name]?”), and used images selected at random from the dataset
as a control. Full details are contained in Appendix E.

5.3 RESULTS

Discovered concepts are human-interpretable and can be predicted accurately (RQ1, Ta-
bles 1 and 2). We report the accuracy of the discovered concept predictions made by our models
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Table 3: Task accuracies. The task accuracy of HiCEMs is competitive with all our baselines.
* indicates reported accuracy, with a ResNet-50 backbone.

MNIST-ADD SHAPES CUB AwA2 PseudoKitchens ImageNet

Black box (not interpretable) 0.94±0.00 0.89±0.00 0.80±0.00 0.98±0.00 0.67±0.01 0.77

LF-CBM – 0.59±0.01 0.80±0.00 0.94±0.00 – 0.72*
PCBM 0.16±0.03 0.54±0.01 0.65±0.01 0.95±0.00 0.16±0.00 –
PCBM-h 0.53±0.01 0.73±0.00 0.73±0.00 0.96±0.00 0.52±0.01 –
CBM 0.23±0.01 0.78±0.01 0.65±0.00 0.97±0.00 0.66±0.01 0.77
CEM 0.92±0.01 0.89±0.00 0.76±0.01 0.98±0.00 0.66±0.01 0.79
HiCEM w/o sub-supervision (control) 0.93±0.00 0.88±0.01 0.77±0.01 0.98±0.00 0.64±0.01 –
CEM + Concept Splitting (ours) 0.93±0.01 0.87±0.01 0.79±0.01 0.98±0.00 0.66±0.02 –
HiCEM + Concept Splitting (ours) 0.92±0.00 0.87±0.02 0.74±0.01 0.98±0.00 0.65±0.01 0.78

Table 4: Mean ROC-AUCs for provided concepts. HiCEMs are able to predict provided concepts just
as well as CEMs.

MNIST-ADD SHAPES CUB AwA2 PseudoKitchens ImageNet

CBM 0.99±0.00 1.00±0.00 0.89±0.00 1.00±0.00 0.91±0.00 0.99
CEM 0.99±0.00 1.00±0.00 0.95±0.00 1.00±0.00 0.92±0.00 1.00
HiCEM w/o sub-supervision (control) 0.99±0.00 1.00±0.00 0.93±0.00 1.00±0.00 0.91±0.00 –
CEM + Concept Splitting (ours) 0.99±0.00 1.00±0.00 0.95±0.00 1.00±0.00 0.92±0.00 –
HiCEM + Concept Splitting (ours) 0.99±0.00 1.00±0.00 0.93±0.01 1.00±0.00 0.91±0.00 0.99

using the ground truth labels of the corresponding human-interpretable concept bank concepts on
the test datasets. For example, the meaning assigned to one of the concepts discovered on the
MNIST-ADD dataset was “the top digit is 6”, and therefore we compute the accuracy of this dis-
covered concept with respect to the ground-truth labels of the concept “the top digit is 6” in our
concept bank. In Appendix G, we show samples from the training dataset that were labelled as
having this discovered concept, to demonstrate how it is straightforward to interpret it. Table 1
shows that the mean discovered sub-concept ROC-AUCs are high, exceeding 90% in some cases.
The mean discovered concept ROC-AUC of HiCEMs is always higher than that of both LF-CBMs
and HiCEMs trained without sub-concept supervision (HiCEM w/o sub-supervision in Table 1),
showing that the labels produced by Concept Splitting align the sub-concept activations in HiCEMs
with human-interpretable concepts. CEMs with discovered sub-concepts and top-level concepts side
by side have similar discovered concepts accuracies to HiCEMs after Concept Splitting, however
sub-concept interventions in HiCEMs can work better than in CEMs (Figure 3, discussed later).

Our user study on ImageNet (Table 2) demonstrates that the sub-concepts discovered by our method
are semantically coherent and accurately labelled. When evaluating the names of sub-concepts
generated by Concept Splitting, participants found them to be semantically related to their parent
concepts 67.9% of the time, a significant increase over the 4.0% agreement rate for randomly
chosen words in the control group. Furthermore, users confirmed that images labelled by our method
were consistent with the discovered sub-concept name in 54.8% of cases, far exceeding the 0.9%
agreement for the control. A Chi-Square test (where we discard “Not sure” and group “Yes“ and
“They are the same” together) confirms that both of these improvements over the control groups are
statistically significant (p < 0.01).

HiCEMs have high task and provided concept accuracies (RQ2, Tables 3 and 4). We measure
the task and provided (top-level) concept accuracies of HiCEMs and our baselines. The results are
in Tables 3 and 4. HiCEMs achieve both high task accuracy and high provided concept accuracy,
compared to the baselines. In particular, the task and provided concept accuracies of HiCEMs are
never more than 2% below those of CEMs, so running Concept Splitting and replacing a CEM with
a HiCEM that supports more detailed explanations does not lead to a reduction in task or provided
concept accuracy. Overall, the effect of Concept Splitting on the task and provided concept accuracy
is insignificant, so the additional interpretability offered by the discovered sub-concepts does not
come at the cost of accuracy.

Intervening on sub-concepts identified through Concept Splitting can enhance task accuracy,
with these interventions sometimes yielding even greater improvements in HiCEMs compared
to CEMs. (RQ3). We investigate how intervening on provided and discovered concepts affects
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Figure 3: Task accuracy as discovered concepts are intervened. Intervening on discovered sub-
concepts improves task accuracy. In some cases, such as in CUB and PseudoKitchens, interventions
in HiCEMs lead to a greater increase in task accuracy than in CEMs trained with Concept Splitting’s
discovered concepts. LF-CBMs (Oikarinen et al., 2023) do not easily support interventions.

0 1 2

0.2
0.4
0.6
0.8
1

Number intervened

Ta
sk

ac
cu

ra
cy

MNIST-ADD

0 2 4

0.2

0.4

0.6

0.8

1

Number intervened

SHAPES

0 10 20 30

0.4

0.6

0.8

1

Number intervened

CUB

0 10 20

0.97

0.98

0.99

1

Number intervened

AwA2

0 10 20

0.6

0.8

1

Number intervened

PseudoKitchens

CEM CBM HiCEM + Concept Splitting

Figure 4: Change in task accuracy as provided concepts are intervened. Provided concept interventions
on ImageNet are shown in Appendix A. Provided concept interventions work just as well in HiCEMs
as they do in CEMs.

task accuracy in HiCEMs and our relevant baselines. Figure 4 demonstrates that provided concept
interventions perform equally well in HiCEMs as in CEMs.

As shown in Figure 3, intervening on discovered sub-concepts can lead to an increase in task accuracy,
although interventions on some discovered sub-concepts have no effect or very slightly decrease
task accuracy. Interventions in HiCEMs trained with sub-concept labels from Concept Splitting tend
to increase task accuracy, whereas interventions in HiCEMs without sub-concept supervision (our
control) can decrease it, highlighting the value of Concept Splitting. On the CUB and PseudoKitchens
datasets, sub-concept interventions in HiCEMs are more effective than the equivalent interventions in
CEMs with both top-level concepts and discovered sub-concepts, supporting the use of the HiCEM
architecture over the regular CEM architecture when we have hierarchical concept relationships.
HiCEMs with discovered sub-concepts support both the fine-grained interventions enabled by these
sub-concepts and the broader concept interventions available in standard CEMs.

6 LIMITATIONS AND CONCLUSION

In this work, we introduced Concept Splitting and HiCEMs to enable the discovery and modelling
of hierarchical sub-concepts in interpretable models. Our experiments, which use our new Pseu-
doKitchens dataset and include a user study, show that Concept Splitting discovers interpretable
sub-concepts. HiCEMs incorporating these concepts provide fine grained explanations while requir-
ing few manual concept annotations, without sacrificing task or provided concept accuracy. After they
have been introduced, discovered sub-concepts can be predicted with high accuracy, and a human
expert can correct sub-concept mispredictions. One limitation of HiCEMs is that they can only model
sub-concept relationships. However, the modelling of these relationships addresses a gap in previous
concept-based architectures, advancing the state of the art in concept-based explainability.
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ETHICS STATEMENT

Our research aims to enhance the transparency and accountability of neural networks. We have taken
care to address ethical considerations related to our experiments. The user study (Appendix E) was
conducted under institutional ethics approval, with all participants providing informed consent and
their data being fully anonymised. Our new PseudoKitchens dataset is entirely synthetic, containing
no personally identifiable information, and all real-world datasets are public benchmarks used in
accordance with their licenses.

REPRODUCIBILITY STATEMENT

We have made a comprehensive effort to ensure the reproducibility of our results. Our source code,
which includes implementations of our HiCEM architecture and the Concept Splitting method, is
provided in the supplementary material and will be made publicly available. The architectural details
of HiCEMs are described in Section 4, and our Concept Splitting method is detailed in Section 3,
with an alternative clustering-based method in Appendix B. Experimental settings are specified in
Appendices F and H. Details regarding our new PseudoKitchens dataset are in Appendix C. Finally,
the methodology for our user study is provided in Appendix E.
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Figure 5: Change in task accuracy as provided concepts are intervened on ImageNet. Provided
concept interventions work just as well in HiCEMs as they do in CEMs.
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A IMAGENET CONCEPT INTERVENTIONS

As shown in Figure 5, provided concept interventions on ImageNet perform similarly in the initial
CEM and in the HiCEM with discovered sub-concepts. Due to the size of ImageNet, the experiment
was only run once so Figure 5 does not contain error bars.

B SPLITTING CONCEPTS USING CLUSTERING

To investigate other methods for extracting sub-concepts from a CEM’s embedding space, we explored
an alternative approach based on unsupervised clustering. While the main paper focuses on the
SAE-based method, we present the clustering-based alternative here for completeness. Unlike the
feature-based discovery of SAEs, where a single input can activate multiple features, this clustering
method naturally produces groups of mutually exclusive sub-concepts.

Specifically, we make use of the TURTLE framework (Gadetsky et al., 2024), which is designed to
discover the labels of a dataset without any supervision by finding the labelling that induces maximal
margin classifiers in the representation spaces of different foundation models. TURTLE can be
understood as a method to cluster examples using embeddings from multiple models simultaneously.
This is useful in our setup, as we can leverage initial CEMs trained with different backbones (e.g.,
CLIP (Radford et al., 2021) and DINOv2 (Oquab et al., 2024)) to produce a more robust clustering.

The process begins by partitioning the training data’s concept embeddings. For a given top-level
concept ci, we create two sets of embeddings: one set containing embeddings from examples
where the initial CEMs agree ci is present, and another where they agree it is absent. We then
run the TURTLE clustering algorithm on each of these sets independently. This separation allows
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us to discover “positive” sub-concepts (which are only active when ci is present) and “negative”
sub-concepts (which are only active when ci is absent).

To determine the optimal number of sub-concepts to discover for a given set of embeddings, we test
a range of cluster counts (from a minimum α to a maximum β). For each count, we compute the
average silhouette score (Rousseeuw, 1987) of the resulting clustering. The number of clusters that
yields the highest silhouette score is selected. Once the optimal clustering is found, each cluster is
treated as a distinct discovered sub-concept. A key property of this approach is that the clustering
algorithm creates a hard partition of the embedding space, meaning each example can belong to only
one cluster. Consequently, the discovered sub-concepts (within either the positive or negative set)
are inherently mutually exclusive. We generate new binary concept labels for each cluster, where
examples belonging to the cluster are labelled as having the sub-concept, and all other examples are
labelled as not having it.

Our complete clustering-based Concept Splitting method is detailed in Algorithm 1.

Algorithm 1: Concept Splitting using clustering for a single concept c.
Input: Set of examples D where all the initial CEMs M agree that the concept we are splitting c

is present (or they all agree c is not present), and concept embeddings Z for c from the
models in M for all examples in D.

Output: Discovered concept labels L.
Hyperparameters: Minimum and maximum number of clusters, α, β ∈ N.
Note: TURTLE refers to the TURTLE clustering method proposed by Gadetsky et al. (2024).

1 L← ∅
2 n← argmaxα≤i≤β(SilhouetteScore(TURTLE(Z, i)))
3 clusters← TURTLE(Z, n)
4 for cluster in clusters do
5 new concept labels← on for all examples in cluster and off for the remaining

examples in the training dataset.
6 L← L ∪ {new concept labels}
7 end
8 return L

B.1 EVALUATING AND NAMING DISCOVERED SUB-CONCEPTS

To quantitatively evaluate the interpretability of the sub-concepts discovered via clustering, we
automatically assign a human-understandable meaning to each one. This is achieved by matching
them against a predefined “concept bank” of ground-truth concepts that were intentionally excluded
from the initial CEM training.

The matching methodology used for this clustering-based approach differs from the one used for
the SAE-based method in the main paper. Here, for each discovered sub-concept (i.e., each cluster),
we compute its ROC-AUC score against every compatible concept within the concept bank. The
discovered sub-concept is then assigned the semantic label of the bank concept that yields the highest
ROC-AUC score. This procedure ensures that every discovered cluster is assigned an interpretation.
A consequence of this approach is that multiple discovered sub-concepts may be matched to the same
ground-truth concept from the bank. In our analysis, we treat such instances as duplicates and merge
them into a single, final sub-concept before reporting accuracies and performing interventions.

Using clustering to discover sub-concepts is compared to our SAE-based method in Tables 5, 6 and 7
and Figures 6 and 7. Both methods can discover sub-concepts, but the SAE method is less compu-
tationally demanding, as it does not require repeated clustering to find a good number of clusters.
Additionally, the SAE method does not require a deduplication step. Therefore, it has several
advantages over the clustering method.
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Table 5: Mean ROC-AUC for discovered concepts. The clustering method performs better in some
cases, and the SAE method performs better in others.

MNIST-ADD SHAPES CUB AwA2 PseudoKitchens

HiCEM + Concept Splitting (clustering) 0.94±0.02 0.94±0.03 0.90±0.01 0.81±0.03 0.86±0.03

HiCEM + Concept Splitting (SAE) 0.93±0.01 0.93±0.01 0.85±0.01 0.88±0.01 0.88±0.00

Table 6: Task accuracies. The clustering method and the SAE method perform similarly.

MNIST-ADD SHAPES CUB AwA2 PseudoKitchens

HiCEM + Concept Splitting (clustering) 0.93±0.00 0.88±0.02 0.76±0.00 0.98±0.00 0.63±0.00

HiCEM + Concept Splitting (SAE) 0.92±0.00 0.87±0.02 0.74±0.01 0.98±0.00 0.65±0.01

Table 7: Mean ROC-AUCs for provided concepts. The clustering and SAE methods perform
identically.

MNIST-ADD SHAPES CUB AwA2 PseudoKitchens

HiCEM + Concept Splitting (clustering) 0.99±0.00 1.00±0.00 0.93±0.00 1.00±0.00 0.91±0.00

HiCEM + Concept Splitting (SAE) 0.99±0.00 1.00±0.00 0.93±0.01 1.00±0.00 0.91±0.00
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Figure 6: Task accuracy as discovered concepts are intervened. Interventions are mostly effective on
concepts discovered with clustering and with SAEs.
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Figure 7: Change in task accuracy as provided concepts are intervened. The two methods perform
similarly.

C PSEUDOKITCHENS

This Appendix describes PseudoKitchens, our synthetic dataset of photorealistic 3D kitchen renders
with ground-truth concept annotations.

PseudoKitchens (Figure 8) is generated using Blender 4.51, a professional open source 3D graphics
software package. We use Blender’s Python API to automate scene generation. Our approach

1https://www.blender.org

16

https://www.blender.org


864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Figure 8: Images from PseudoKitchens demonstrating the dataset’s photorealistic quality and diversity
in kitchen layouts, ingredient combinations, lighting conditions, and camera perspectives. Each scene
contains ingredients for recipe classification.
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Figure 9: An example from the PseudoKitchens dataset. Left: a photorealistic kitchen scene. Right:
ground-truth concept annotations, with colours indicating the spatial locations of individual concepts.

leverages physically-based rendering to create photorealistic images whilst maintaining complete
experimental control over scene properties. The dataset consists of kitchen scenes containing
ingredients for recipe classification tasks, with each scene accompanied by annotations that describe
the location of every ingredient in it.

C.1 3D ASSETS

Kitchen environments are constructed using 3D assets sourced from BlenderKit2, all licensed under
Royalty Free or Creative Commons CC0 licences. The base kitchen layouts feature countertops,
cabinets, appliances, and storage areas. We manually curated five distinct kitchen layouts.

C.2 RECIPES

We designed 10 distinct recipes that define valid combinations of ingredients for the classification task.
Some ingredients are organised into groups as shown in Table 8. If a recipe contains an ingredient
group, a random number of ingredients are selected from that group, unless the group is pasta in
which case only one type of pasta is selected. The recipes used are shown in Table 9. All together, the
recipes use 29 different ingredients. Where possible, for each ingredient we found multiple distinct
3D models to provide variation. For each instance, a recipe is chosen uniformly at random.

Table 8: Ingredient groups in PseudoKitchens.

Group Ingredients

Fruit Banana, Orange, Apple, Pear, Pineapple
Vegetables Onion, Carrot, Potato, Pepper, Courgette
Pasta Macaroni, Spaghetti

C.3 INSTANCE GENERATION

For each generated image:

1. A kitchen layout, floor and wall textures are selected uniformly at random. The light position,
intensity and colour temperature are chosen randomly.

2https://www.blenderkit.com
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Table 9: Recipes in PseudoKitchens.

Recipe Ingredients

Fruit Salad Fruit
Vegetable Pasta Pasta, Onion, Garlic, Oil, Vegetables, Spice, Tin Tomatoes
Risotto Cheese, Onion, Garlic, Vegetables, Oil, Spice, Rice
Chips Potato, Oil, Flour, Garlic, Spice
Chilli Mince, Oil, Onion, Garlic, Chilli, Tin Tomatoes, Spice, Rice
Smoothie Milk, Yoghurt, Fruit
Hot Chocolate Chocolate, Milk
Banana Bread Butter, Sugar, Egg, Flour, Banana
Chocolate Fudge Cake Egg, Sugar, Oil, Flour, Chocolate, Syrup, Milk
Carbonara Garlic, Meat, Butter, Cheese, Egg, Spaghetti, Spice

2. The camera viewpoint is randomised within predefined bounds for each kitchen, varying both
angle and distance to ensure diverse perspectives whilst maintaining ingredient visibility.
In some cases, not all of the ingredients placed will be visible. This mirrors real images,
where some features might be occluded or out of the shot. The spatial concept annotations
(Figure 9) describe exactly which ingredients are visible in each image.

3. A physics-aware placement system positions ingredients on available surfaces (countertops
or tables) using weighted random selection based on surface area. Objects are not allowed
to overlap, and are randomly rotated and scaled to provide variation. Task-irrelevant objects,
such as saucepans and cooking utensils, are randomly placed in scenes.

C.4 GROUND-TRUTH ANNOTATIONS

A key advantage of our synthetic approach is the automatic generation of perfect ground-truth
annotations. For each rendered scene, we provide:

1. Concept Location Annotations: Using Blender’s Cryptomatte3 support, we produce pixel-
perfect segmentation masks for every ingredient placed in every image. An example is
shown in Figure 9.

2. Instance Information: For every image in the dataset, we save a JSON file containing
all the information needed to recreate it. This includes the names of all the objects in the
image, along with complete scene parameters including camera position, lighting conditions,
material assignments, and object transformations. This enables reproducible generation and
systematic manipulation for controlled experiments.

C.5 DATASET COMPOSITION

The complete PseudoKitchens dataset comprises 10,000 training images, 1,000 validation images,
and 1,000 test images. Each image is rendered at 512× 512 resolution using the Cycles4 path tracing
renderer, providing photorealistic images whilst maintaining reasonable computational requirements.
It takes approximately 10 seconds to render one image on an NVIDIA GeForce RTX 4090 GPU.

D DATASETS

D.1 MNIST-ADD

Examples in MNIST-ADD contain two handwritten digits from the MNIST dataset (LeCun et al.,
2010), each between 0 and 6 (inclusive). The label is the sum of the digits (so there are 13 classes).
There are two provided concepts: the first one indicates whether the first digit is greater than three,
and the second one indicates whether the second digit is greater than three. The concepts in the

3https://github.com/Psyop/Cryptomatte
4https://www.cycles-renderer.org
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Table 10: High-level concepts and their corresponding merged fine-grained concepts in the AwA2
task.

High-level concept Merged concepts

patterned patches, spots, stripes
distal limb flippers, hands, hooves, pads, paws
teeth chewteeth, meatteeth, buckteeth, strainteeth
weapons horns, claws, tusks

concept bank consist of a one-hot representation of the digits (for example, one of the concepts is
“the first digit is 3”). The dataset includes 10,000 training, 2,000 validation, and 10,000 test samples.

D.2 SHAPES

Images in our SHAPES task (inspired by the dSprites dataset (Matthey et al., 2017)) contain either a
square, circle, triangle or hexagon. The shape and the background are of different colour, and can be
red, green, blue or purple. The label of a sample encodes the shape, its colour and the background
colour. There are 48 classes. Images are covered in small black polygons to make the task harder.
The provided concepts are “the shape is a polygon”, “the shape has a light colour”, “the shape has a
dark colour”, “the background is light” and “the background is dark”. The concepts in the concept
bank form one-hot representations of the shape, its colour and the background colour (for example
one of the concepts is “the shape is a square”). The dataset includes 10,000 training, 2,000 validation,
and 10,000 test samples. The code we used to generate the dataset is included in the supplementary
material, licensed under the MIT License.

D.3 CUB

CUB (Wah et al., 2011) contains images of birds. Each image is labelled with the species of the
bird it contains, along with many concept annotations. There are 200 different species of bird in the
dataset. We copy the concept preprocessing performed by Koh et al. (Koh et al., 2020), except we do
not filter out any concepts. Some of the concepts in the CUB dataset encode the colour of various
parts of the bird. For each bird part b that has concepts indicating its colour, our task contains two
provided concepts: “b has a light colour” and “b has a dark colour”. This leaves us with 32 provided
concepts. The concept bank contains concepts corresponding to the actual colour of the bird parts.
The code we use to process the concepts is included in the supplementary material.

D.4 AWA2

The AwA2 dataset (Xian et al., 2019) comprises images of 50 animal classes, each annotated with
semantic concepts. For our task, we define four high-level concepts: patterned, distal limb, teeth,
and weapons. Each of these is constructed by grouping related fine-grained concepts, as detailed in
Table 10. The concept bank contains the fine-grained concepts. The initial CEM’s concepts are the
four high-level concepts, as well as the AwA2 concepts that are not used to construct the high-level
concepts. We only split the four high-level concepts, as these are the concepts for which we have
sub-concepts in the concept bank. The AwA2 image data was collected from public sources, such as
Flickr, in 2016 (Lampert et al., 2017). The dataset curators ensured that only images licensed for free
use and redistribution were included.

D.5 PSEUDOKITCHENS

PseudoKitchens is described in detail in Appendix C. The concepts provided to the initial CEM are
the ingredient groups in Table 8 (e.g., “contains fruit”), as well as all the ingredients that are not part
of a group. The concept bank concepts correspond to the ingredients in the ingredient groups (e.g.,
“contains apples”).
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D.6 IMAGENET

ImageNet (Russakovsky et al., 2015) (the ImageNet Large Scale Visual Recognition Challenge 2012-
2017 image classification and localization dataset) spans 1,000 object classes (organised according
to the WordNet hierarchy) and contains 1,281,167 training images, 50,000 validation images and
100,000 test images. As labels for the test images are not publicly available, we use the validation
images as our test set and split the training images into a training set (1,231,167 images) and a
validation set (50,000 images).

The concept labels provided to the initial CEM are generated automatically using the WordNet
hierarchy underlying ImageNet. Each ImageNet class is mapped to its WordNet synset, and we
collect all of its hypernyms (ancestor categories). A fixed set of 55 high-level concept synsets (e.g.
plant, tool, vehicle) is then checked against these hypernyms, and all images from a class are labelled
with every concept it descends from. We do not construct a concept bank for the ImageNet task.

E USER STUDY

This appendix provides details on the user study conducted to evaluate the quality of sub-concept
labels generated by Concept Splitting on ImageNet.

E.1 NAMING IMAGENET DISCOVERED SUB-CONCEPTS

The sub-concept names evaluated in the study were generated through an automated process, similar
to the one used by Rao et al. (2024). To assign a human-readable name to a discovered sub-concept,
we first trained a linear classifier (a probe) on the CLIP ViT-L/14 image embeddings for the ImageNet
training dataset. This probe was trained to distinguish between images that belong to the sub-concept
and those that do not. After training, we iterated through a vocabulary of 20,000 common English
words (following Oikarinen & Weng (2023)). For each word, we computed its text embedding using
CLIP’s text encoder. This text embedding was then passed as input to the trained linear probe to
obtain a score. The word whose embedding received the highest score from the probe was selected as
the name for the sub-concept.

E.2 ETHICAL CONSIDERATIONS

Prior to commencing the user study, an application for ethical review was submitted to our institution’s
ethics committee. The project received approval before any participant recruitment or data collection
began. All participants were provided with a detailed consent form informing them of the study’s
purpose, the nature of their participation, data handling, and their right to withdraw at any time.

E.3 PARTICIPANT RECRUITMENT

Twenty participants were recruited via word-of-mouth and snowball sampling. This convenience
sample was primarily composed of students and colleagues from the authors’ institution and other
academic institutions, as well as friends and family of the authors. Participation was voluntary, and
no monetary or other incentives were provided. The only requirements for participation were basic
visual recognition abilities and access to a computer with an internet connection. No specific domain
knowledge was necessary.

E.4 STUDY DESIGN AND INTERFACE

The user study was administered through a web-based application, eliminating the need for any
software installation on the participants’ devices. Upon accessing the study, participants were
presented with a consent form. After giving consent, they were assigned a random participant ID to
anonymise their responses and allow them to resume the study if they wished.

Participants were then shown a set of instructions detailing the two types of tasks they would be
asked to complete. The study consisted of a maximum of 100 questions, and participants could stop
at any point.
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Figure 10: A sub-concept verification question from our user study.

The two types of questions were:

1. Sub-Concept Verification: Participants were asked to evaluate the relationship between a
parent concept and a sub-concept by answering the question, “Is [sub-concept] an example
of [parent concept]?” (see Figure 10).

• In the experimental group, the sub-concept names provided by our naming method
were used.

• In the control group, the sub-concept names were chosen randomly from the dictionary
used to name sub-concepts, and paired with a parent concept.

2. Image Label Verification: Participants were shown an image and a sub-concept name and
asked, “Does this image show [concept]?” (see Figure 11).

• In the experimental group, the images shown were those our method had labelled as
exhibiting the given sub-concept.

• In the control group, the images were selected at random from the ImageNet training
dataset.

To account for a potential learning curve as participants familiarised themselves with the tasks, the
first five responses from each participant for each question type were discarded and not included in
our analysis. For each question, participants could also select “They are the same” (for sub-concept
verification tasks only) or “Not sure”. All participants were shown a mixture of experimental and
control questions.

The data was anonymised by assigning a unique, randomly generated ID to each participant, with no
personal identifiable information being collected. The collected responses were stored securely and
were only accessible to the study’s authors.

F LF-CBM AND PCBM BASELINES

Label-free CBM baseline Label-free CBMs (LF-CBMs) discover concepts by prompting large
language models for concept names, and then using multimodal models to align LF-CBM representa-
tions with these concepts (Oikarinen et al., 2023). Evaluating the accuracy of the discovered concepts
requires access to ground truth labels. Since Oikarinen et al. (Oikarinen et al., 2023) evaluate
LF-CBMs on the CUB dataset, we use the concepts they discovered and manually align them with
our ground truth labels for evaluation. The resulting matchings are shown in Table 11. For our other
datasets, we skip the language model prompting step and directly use the names of labelled concepts
to train LF-CBMs. This approach was not successful on MNIST-ADD or PseudoKitchens, so we
exclude those results. As Oikarinen et al. (2023) provide limited discussion of concept interventions,
we do not attempt them in our experiments. Throughout, we use the same hyperparameters as those
in the authors’ released code for the CUB dataset (Oikarinen, 2023).

Post-hoc CBM baseline Post-hoc CBMs (PCBMs) project the embeddings from a backbone
network onto a concept subspace defined by a set of concept vectors (Yuksekgonul et al., 2023). An
interpretable predictor then classifies examples based on these projections. To improve predictive
performance, a hybrid variant (PCBM-h) includes an additional residual predictor alongside the
concept-based one. When concept annotations are available—even if only for part of the training
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Table 11: Matches between concepts discovered by the LF-CBM baseline and ground truth concepts
in the CUB dataset.

Discovered concept Ground truth concept

A red eye has eye color::red
Glossy black wings has wing color::black
a black back has back color::black
a black beak has bill color::black
a black breast has breast color::black
a black throat has throat color::black
a bright orange breast has breast color::orange
a brownish back has back color::brown
a greenish back has back color::green
a grey back has back color::grey
a large bill has bill length::longer than head
a red belly has belly color::red
a red breast has breast color::red
a red throat has throat color::red
a streaked back has back pattern::striped
a streaked breast has breast pattern::striped
a white belly has belly color::white
a white breast has breast color::white
a white underside has underparts color::white
a yellow beak has bill color::yellow
a yellow crown has crown color::yellow
a yellow eye has eye color::yellow
all black coloration has primary color::black
black eyes has eye color::black
blue upperparts has upperparts color::blue
blue wings has wing color::blue
a duck-like bird has shape::duck-like
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Figure 11: An image label verification question from our user study.

data—they can be used to compute concept vectors (Kim et al., 2018). Otherwise, we can leverage
multimodal models by encoding concept names with a text encoder to obtain the vectors. In our
experiments, we use this approach for concepts where we have ground truth labels, which we use
to evaluate concept accuracy. For all runs, we adopt the same hyperparameters as those used in the
authors’ released code (Yuksekgonul, 2022).

G INTERPRETING DISCOVERED CONCEPTS

Figure 12 shows a random sample of 16 images from the MNIST-ADD training dataset that were
labelled as having one of the discovered sub-concepts. From this sample, it is clear that the meaning
of the discovered sub-concept is “the top digit is 6”.

H MODEL ARCHITECTURES, TRAINING AND HYPERPARAMETERS

Model architectures We use the CLIP ViT-L/14 foundation model (Radford et al., 2021) as the
backbone for all of our models and baselines. We do not fine-tune the foundation model: we just use
the representations it outputs. We use the CLIP ViT-B/16 (Radford et al., 2021) multimodal model in
the LF-CBM baseline to align the models’ representations with concepts (although the backbone of
the LF-CBMs is the CLIP ViT-L/14 model). For all the models, we precompute the representations
with standard image preprocessing pipelines and do not use any data augmentations.

When training BatchTopK SAEs, we use the default hyperparameters in the code released by
Bussmann et al. (2024) for all datasets.5 The key distinction of this method is its enforcement of
sparsity: it selects the top n ·k activations across an entire batch of n samples. This allows the number
of active features to vary per sample, targeting an average of k = 32 active features. The SAEs are
trained for 300 epochs with a dictionary size of 12,288 and a learning rate of 3× 10−4.

5https://github.com/bartbussmann/BatchTopK/blob/main/config.py
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Figure 12: A random sample of images from the MNIST-ADD training dataset that were labelled as
having one of the discovered sub-concepts. The interpretation assigned to this concept was “the top
digit is 6”.
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When performing Concept Splitting with clustering (Appendix B), we use concept embeddings from
two CEMs to cluster examples. One of the CEMs has the DINOv2 ViT-g/14 foundation model
(Oquab et al., 2024) as its backbone, and the other uses the CLIP ViT-L/14 model (Radford et al.,
2021). When clustering, we run the TURTLE method (Gadetsky et al., 2024) for 1000 epochs,
with the warm-start hyperparameter set to true. We set the γ hyperparameter to 10 as suggested by
Gadetsky et al. (2024).

All of our CEM and HiCEM (sub-)concept embeddings have m = 16 activations. Across all datasets
we always use a single fully connected layer for label predictor f .

Training hyperparameters Our models are trained using the Adam optimisation algorithm
(Kingma & Ba, 2015) with a learning rate of 1 × 10−3. They are trained for a maximum of
300 epochs (or 50 epochs for ImageNet, or 25 for the ImageNet HiCEM), and training is stopped if
the validation loss does not improve for 75 epochs. We use a batch size of 256.

In all CEMs, HiCEMs and CBMs the weight of the concept loss is set to λ = 10. Following (Koh
et al., 2020), in MNIST-ADD, CUB and PseudoKitchens we use a weighted cross entropy loss for
concept prediction to mitigate imbalances in concept labels. In MNIST-ADD, and in the linear probe
used to name concepts for the user study, we also use a weighted cross entropy loss for task prediction
to mitigate imbalances in task labels.

When training CEMs and HiCEMs, the RandInt (Espinosa Zarlenga et al., 2022) regularisation strat-
egy is used: at training time, concepts are intervened independently at random, with the probability
of an intervention being pint = 0.25. We choose pint = 0.25 because Espinosa Zarlenga et al. (2022)
find that it enables effective interventions while giving good performance.

I CODE, LICENSES, AND RESOURCES

Assets We used the DINOv2 foundation models (Oquab et al., 2024) (https://github.
com/facebookresearch/dinov2), whose code and model weights are released under the
Apache License 2.0. We also used the CLIP foundation models (Radford et al., 2021) (https:
//github.com/openai/CLIP), whose code is available under the MIT license. To run our
experiments, we made use of the CEM (Espinosa Zarlenga et al., 2022) (https://github.
com/mateoespinosa/cem, MIT license), Post-hoc CBM (Yuksekgonul et al., 2023) (https:
//github.com/mertyg/post-hoc-cbm, MIT license) and Label-free CBM (Oikarinen et al.,
2023) (https://github.com/Trustworthy-ML-Lab/Label-free-CBM) repositories.
We implemented our experiments in Python 3.11 and used open-source libraries such as PyTorch 2.5
(Paszke et al., 2019) (BSD license) and Scikit-learn (Pedregosa et al., 2011) (BSD license). We have
released the code required to recreate our experiments in a MIT-licensed public repository.

Resources All of our experiments were run on virtual machines with at least 8 CPU cores, 18GB
of RAM, and an NVIDIA GPU (Quadro RTX 8000 or GeForce RTX 4090). Including preliminary
experiments, we estimate that approximately 300 GPU hours were required to complete our work.

Use of AI We used Large Language Models (LLMs) as assistants for drafting and improving the
clarity and grammar of this manuscript. LLMs were also used to generate boilerplate code. However,
all core research ideas, experimental design, and analysis of the results were conducted by the authors.
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