
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

A UNIFIED PERSPECTIVE AND REVIEW ON TREE
SEARCH FOR LLMS TEST-TIME SCALING

Anonymous authors
Paper under double-blind review

ABSTRACT

As the scaling of large language models (LLMs) during training reaches dimin-
ishing returns due to increased resource requirements and limited data availability,
focus has shifted toward scalable test-time algorithms. Chain-of-Thought (CoT)
reasoning, which enables intermediate reasoning steps in text space, has emerged
as a promising approach. However, CoT’s single-path exploration is suscepti-
ble to biases and underexploration of the solution space in complex problems.
This survey examines advancements in tree search-based methods for enhancing
LLM test-time reasoning. Beginning with foundational search algorithms like
depth-first search (DFS) and breadth-first search (BFS), we trace the evolution to
heuristic-guided approaches and ultimately Monte Carlo Tree Search (MCTS). We
introduce a unified framework for comparing these methods, focusing on their
core designs, reasoning reward formulations, and targeted applications. Our anal-
ysis highlights MCTS’s capability to balance exploration and exploitation, over-
coming limitations of traditional inference methods like beam search. This survey
establishes a foundation for advancing scalable test-time reasoning in LLMs, with
implications for improving general-purpose reasoning capabilities.

Training Budget

Ta
sk

 P
er

fo
rm

an
ce

O

8B

80B

1T Tokens

100T Tokens

5,000 Flops

500,000 Flops

Parameters

Training Data

Training Time

Training-Time Scaling

Scalable Training Techniques

Attention Mechanism Next Token Prediction

Non-Scalable Training Techniques

Recurrent Networks

How are you doing

Objective Space

Objective Signal
Gradient

Latent Space

Inference Budget

Ta
sk

 P
er

fo
rm

an
ce

O

1 CoT Step

1 Inference
Model

CoT

Base Models

Searching

First Step…,

Result

First Step…,

Result

Second Step…,

…

10 CoT Steps

3 Bigger
Inference Agents

More
Explorations

Minimal
Exploration

Test-Time Scaling

Scalable Inference Techniques

Chain of Thoughts

First Step…

Second Step…

…

Tree-Search Method
(This Survey’s Focus)

Non-Scalable Inference Techniques

Beam Search Decoding

Objective Signal

Objective Space

Reward

Task Space

Figure 2 改

Figure 1: Comparison of Training-time and Test-time Scaling: Highlighting Budget Allocation,
Techniques, and Their Impact on Task Performance.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

1 INTRODUCTION

As returns from scaling Large Language Models (LLMs) during pretraining diminish (Kaplan et al.,
2020a; Hoffmann et al., 2022a), the research focus is shifting towards eliciting their full poten-
tial by allocating additional computation at inference. This paradigm, known as test-time scaling
(TTS) (Brown et al., 2024; Wu et al., 2024), is inspired by human cognition, where deeper, more
deliberate thinking often yields superior outcomes (Kahneman, 2011; Evans, 1984). Unlike spe-
cialized models, general-purpose LLMs leverage natural language to reason within the text space,
unlocking a path toward artificial general intelligence (Bubeck et al., 2023). However, conventional
search algorithms like beam search have proven inadequate for navigating the vast and complex
reasoning spaces required for challenging tasks.

The introduction of Chain-of-Thought (CoT) prompting was a breakthrough, demonstrating that
LLMs could externalize latent reasoning processes into explicit, sequential steps (Wei et al., 2022).
CoT’s performance was shown to scale with the test-time compute budget, yet its reliance on a
single, greedy reasoning path remains a significant limitation. To overcome this, recent work has
focused on tree search algorithms that explore multiple reasoning paths in parallel (Wang et al.,
2023b). These methods, drawing inspiration from classical AI, aim to efficiently traverse a large
reasoning tree to discover an optimal solution path, significantly boosting performance on complex
reasoning tasks (HuggingFace, 2025).

The evolution of these search algorithms mirrors the progression of classical search: from early
uninformed methods analogous to Depth-First and Breadth-First Search (e.g., Tree-of-Thought), to
heuristic-guided search, and now to sophisticated strategies like Monte Carlo Tree Search (MCTS).
Despite this rapid innovation, the field has become fragmented, characterized by inconsistent nota-
tion, varying evaluation protocols, and a lack of a unified conceptual framework. This disorganiza-
tion hinders systematic comparison and impedes progress.

This survey aims to unify the rapidly growing space of search-based reasoning in LLMs by provid-
ing a coherent framework and cross-paper synthesis that extends beyond descriptive summarization.
We consolidate the field’s core algorithmic designs, surface common structural principles, analyze
empirical trends, and identify gaps that are not evident from individual works. Our main contribu-
tions are:

• Unified Formalism: We introduce a common formalism that decomposes tree-search
methods into shared components (node representation, evaluation, backup dynamics), en-
abling consistent comparison and clarifying the role of reward in test-time search.

• Principled Taxonomy and Cross-Paper Insights: We organize existing methods along
core axes—search mechanism, evaluation signal, and domain structure—and synthesize
cross-paper evidence on problem suitability, compute–accuracy trade-offs, and the differ-
ences between MCTS and heuristic tree search, while highlighting methodological gaps in
evaluation practices.

• Applications and Future Directions: We summarize the main applications of search-
based reasoning (performance boosting, data generation, distillation) and outline future
opportunities in adaptive search and scalable, high-fidelity reward modeling.

2 SEARCH IN GENERAL AI

Reasoning tasks can be modeled as a search on a tree or graph, where states branch into subsequent
possibilities. The large branching factors in reasoning create a massive search tree, making efficient
exploration crucial. AI search algorithms systematically navigate this solution space to find optimal
paths by balancing computational cost and accuracy. This section reviews foundational tree-search
methods, setting the stage for advanced LLM-based reasoning search. More details could be found
in Appendix B.

2.1 UNINFORMED SEARCH

Uninformed search algorithms like Breadth-First Search (BFS), Depth-First Search (DFS), and
Uniform Cost Search (UCS) operate without any knowledge of the goal’s location. They rely solely

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

on the problem’s structure-actions, costs, and goal conditions-to explore the search space. Their
exploration strategies differ: BFS guarantees finding the shortest path in terms of steps, while UCS
finds the lowest-cost path. These methods are systematic but can be inefficient in large state spaces
due to their lack of guidance.

2.2 INFORMED SEARCH

Informed search, or heuristic search, uses a domain-specific heuristic function, h(n), to guide
exploration by estimating the cost to a goal.

h(n) = estimated cost of the cheapest path from node n to a goal (1)

An admissible heuristic never overestimates the true cost, while a consistent one satisfies the triangle
inequality, h(n) ≤ c(n, n′) + h(n′), where c(n, n) is is the actual cost of going from n to n′.
Overestimation is disallowed because it can cause the search to overlook the optimal path, whereas
underestimation only affects efficiency, not correctness. A more informed heuristic (i.e., a tighter
lower bound on the true cost) generally leads to more efficient search. Algorithms like A* Search
and Beam Search use heuristics to prioritize promising paths. Notably, A* search is guaranteed to
find the optimal solution if its heuristic is admissible. The effectiveness of informed search hinges on
the quality of the heuristic, balancing its computational cost against the search efficiency it provides.

2.3 MONTE CARLO TREE SEARCH (MCTS)

Monte Carlo Tree Search (MCTS) is a statistical search algorithm adapted from two-player games
for single-agent LLM reasoning tasks. It excels in large search spaces by balancing exploration
and exploitation without a predefined heuristic. MCTS operates in four phases: selection, expan-
sion, simulation, and backpropagation. In the selection phase, it traverses the tree using the Upper
Confidence bounds for Trees (UCT) policy:

a∗ = arg max
a∈A(s)

[
Q(s, a) + c

√
lnN(s)

N(s, a)

]
(2)

where Q(s, a) is the estimated value of action a, N(s) and N(s, a) are visit counts such that N(s)
is the total number of times state s has been visited, and N(s, a) is the number of times action a
has been taken from s, and c is an exploration constant. Unlike uninformed methods, MCTS uses
statistical sampling to handle vast search spaces. Unlike informed methods like A*, it learns its own
value function through simulated rollouts, making it highly effective for complex LLM tasks where
designing a good heuristic is challenging.

2.4 REWARD AS A GUIDING SIGNAL: SEARCH VS. RL

The notion of a “reward” plays a central role in both search and Reinforcement Learning (RL),
yet its function and implementation differ fundamentally, as illustrated in Figure 2. Although both
search rewards and RL rewards are commonly referred to simply as “reward” in the MCTS and
RL literature, they serve distinct purposes. This ambiguity can obscure the conceptual relationship
between test-time planning and training-time optimization. Clarifying this distinction is essential for
establishing the unified framework developed throughout this paper. Additional details are provided
in Appendix D.

In Reinforcement Learning, a reward signal is assimilated into the model’s parameters via
gradient-based updates. This process induces a durable shift in the model’s underlying policy (πθ),
making RL suitable for learning generalizable, reusable skills. The reward serves to optimize a
universal policy that is expected to perform well across a distribution of related tasks.

In Test-Time Search, a reward is an external, transient signal used to guide the planning process
for a single problem instance. This signal, often from a non-differentiable oracle (e.g., a verifier,
a code execution environment), directs the search toward a high-quality solution for the current
query. Crucially, it does not alter the model’s parameters, leaving its general capabilities intact. This
makes search ideal for task-specific, on-the-fly optimization without risking catastrophic forgetting
or policy degradation. RL, by contrast, is vulnerable to catastrophic forgetting because parameter
updates for new tasks can overwrite knowledge from prior tasks.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

External
 Oracle

I think there’s a
positive outcome
by opening the lid

Reward as RL Signal Reward as Search Signal

(A) (B) (C)

Figure 4 改

?

?

?
Reward +100

Next Encounter

!!

?
Reward -100

Next Encounter Next Encounter

Figure 2: Reward Design: Search vs. RL. (A) In RL, a positive reward updates the agent’s policy,
making it more likely to repeat the action. (B) A negative reward also updates the policy, discourag-
ing the behavior. The change is durable. (C) In search, an external oracle provides a reward signal
to guide the current decision process without altering the agent’s underlying parameters.

In summary, RL uses rewards for long-term policy optimization, whereas search employs them for
immediate, instance-level planning and guidance. A search reward defines a local, task-specific
objective used solely within a single inference-time planning instance. In contrast, an RL reward
serves as a global training signal that reshapes the model’s parameters over many episodes. Un-
derstanding this difference is crucial for interpreting the hybrid MCTS–training approaches, where
test-time search signals are leveraged as training data for long-term model improvement.

3 MONTE CARLO TREE SEARCH (MCTS) FOR LLMS

3.1 UNIFIED PROBLEM FORMULATION AND NOTATION

To provide a clear comparative framework for MCTS-based LLM reasoning, we adopt a unified
notation for consistency across methods. Note: as in recent LLM planning work, the “environment”
is simply the evolving text trace, and transitions are deterministic: each action ai (a reasoning step)
uniquely yields the next state si+1. This is a planning—not stochastic MDP—formulation used
in RAP (Hao et al., 2023a), ReST-MCTS (Zhang et al., 2024a), AlphaLLM (Tian et al., 2024a),
rStar-Math (Guan et al., 2025), and LLaMA-Berry (Zhang et al., 2025b).

Importantly, states are partial reasoning traces while actions represent only the next incremental step;
the two spaces are therefore not equivalent. This asymmetry is intrinsic to deterministic planning
and contrasts with RL’s environment-driven MDPs. The objective is to find an optimal reasoning
trace p′ = [s1, . . . , sn] for a problem Q. This formulation enables us to unify insights across papers
and surface shared structural principles (e.g., how node granularity interacts with evaluation), which
prior works have discussed only in isolation.

Table 1: Unified Notations for MCTS-Based Methods in LLM.

Symbol Definition
Q, c Problem question and conditioning prompt
si, ai Reasoning state and action at step i
pi Partial reasoning trace [s1, s2, . . . , si]

vi, rsi Value of trace pi and reward for state si
π, Vθ, Rθ Policy (LLM), value, and reward models
TQ,A Search tree for problem Q and the action space

Ci = (ti, ni, qi) Tree node with identifier ti, visit count ni, and quality value qi

3.2 STRUCTURING THE SEARCH: NODE REPRESENTATION AND GRANULARITY

A fundamental design choice is the definition of a node in the search tree TQ, which dictates the
granularity of the search. We identify three primary strategies:

Trace-based nodes, employed in step-driven frameworks like ReST-MCTS* (Zhang et al., 2024a),
define each node as a complete partial reasoning trace pi = [s1, . . . , si]. This representation allows
the value function vi = Vθ(pi) to capture the full context of the preceding reasoning path when
assessing a node’s potential.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Figure 3: Unified Notations for MCTS-Based Methods in LLM.

State-Action nodes, used in methods such as RAP (Hao et al., 2023b) and ALPHALLM (Tian
et al., 2024b), represent each node as a state-action pair (si, ai). This more localized view focuses
evaluation on the immediate quality of a single reasoning step, simplifying the input to the reward
model.

Terminal-State nodes, a hallmark of purely goal-driven approaches like LLaMA-Berry (Zhang
et al., 2024d) and MCTSr (Zhang et al., 2024c), radically restructure the search space. Here, each
node represents a complete, terminal solution sterminal. The tree does not model the sequential gen-
eration of a single solution but rather a space of candidate solutions, where edges correspond to
refinement or rewriting operations. This transforms the problem from finding an optimal path to
finding an optimal node.

In practice, these node definitions correspond to different textual granularities: trace-based nodes
typically bundle multiple sentences or ”reasoning steps”, state-action nodes can align with a single
reasoning step or short segment, and terminal-state nodes treat entire solutions as atomic. Finer gran-
ularity provides more flexible guidance but increases branching and evaluator cost, while coarser
granularity reduces tree size at the cost of less precise feedback.

3.3 THE CORE CHALLENGE: DESIGNING THE EVALUATION FUNCTION

The most critical differentiator among MCTS-based methods is the design of the evaluation function,
which assigns a quality score (vi estimate how likely to get to correct solution from current node and
ri estimates how much reward for single step action to current node) to the given node. This function
steers the entire search process, and its design reflects the overarching strategy of the framework.

3.3.1 EVALUATION LOCUS: PROCESS VS. OUTCOME REWARDS

The evaluation signal can be derived from the quality of the reasoning process itself or from the
final outcome. Methods focused on improving the reasoning trace, such as ReST-MCTS*, employ a
Process Reward Model (PRM) or a value function Vθ(pi) that evaluates intermediate, non-terminal
states. This provides fine-grained, step-by-step guidance, encouraging the discovery of high-quality
reasoning paths that can be used for subsequent model training.

Conversely, methods that prioritize finding the correct final answer often rely on an Outcome Re-
ward Model (ORM). In this paradigm, intermediate nodes receive a default reward (e.g., 0), and
a significant reward is assigned only to terminal nodes sterminal. This terminal reward can be deter-
mined by various means: majority voting as in rStar (Qi et al., 2024), execution against test cases
as in PG-TD (Zhang et al., 2023a) and RethinkMCTS (Li et al., 2024b), or evaluation by another
LLM as in MCTSr and TS-LLM (Feng et al., 2023). HiAR-ICL offers a hybrid approach, capable
of operating with either a PRM, an ORM, demonstrating the flexibility of these evaluation schemes.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

3.3.2 EVALUATOR ARCHITECTURE: EXTERNAL MODELS VS. SELF-EVALUATION

The mechanism for generating rewards is another key design axis. Many advanced systems train
a separate, dedicated model for evaluation. For instance, ReST-MCTS* and TS-LLM fine-tune
specialized value (Vθ) and reward (Rθ) models on datasets of reasoning traces, learning to predict a
trace’s potential or a solution’s correctness. LLaMA-Berry introduces a Pairwise Preference Reward
Model (PPRM), fine-tuning a small LLM to rank solutions against each other.

An alternative, more resource-efficient strategy is to repurpose the same LLM used for policy gen-
eration (π) to also serve as the evaluator. RAP exemplifies this by using its LLM as a ”world model”
to predict not only the next state but also an associated reward ri. Similarly, MCTSr uses the base
LLM to assign scores to solutions through a robust resampling process. This self-evaluation ap-
proach reduces the need for external training data and separate model maintenance.

3.3.3 MULTI-CRITIC AND COMPOSITE REWARD FUNCTIONS

To capture a more holistic view of node quality, some frameworks combine multiple evaluation
signals. ALPHALLM implements a sophisticated multi-critic approach where the node value Qi is
a weighted sum of signals from a value model, a PRM, and an ORM:

Qi ← βvV (pi) + βPRMRPRM(si) + βORME[RORM(sterminal)]

This allows the search to balance long-term potential, immediate step quality, and final outcome
correctness. Similarly, RethinkMCTS combines execution-based rewards from test cases with an
LLM’s self-evaluation score for solutions that pass all public tests, adding a layer of semantic assess-
ment beyond functional correctness. LLaMA-Berry also computes a composite score by blending
a ”local” reward (comparison to adjacent solutions) with a ”global” reward derived from a win-loss
matrix against all other explored solutions.

3.4 ADAPTING THE MCTS ALGORITHM

Beyond evaluation, methods often introduce custom modifications to the classic MCTS selection,
expansion, and backpropagation phases to better suit the domain of LLM reasoning.

In the selection phase, many methods like PG-TD and rStar augment the standard UCB1 formula
with policy network priors, creating a P-UCB (Polynomial Upper Confidence Bound for Trees)
variant. This helps prioritize nodes that are not only promising according to search history but also
likely under the base LLM’s policy.

The expansion phase is also a site of innovation. LLaMA-Berry incorporates a “critique-and-
rewrite” step during expansion, where new nodes are generated by refining existing solutions. Re-
thinkMCTS introduces a “rethink” operation for nodes that fail test cases, using verbal feedback to
guide the correction of erroneous reasoning steps.

Finally, the backpropagation of value updates is tailored to the specific reward structure. While
many methods use standard averaging or maximization (e.g., Qi ← maxj∈Children Qj), others pro-
pose unique update rules. MCTSr, for instance, updates a parent’s value by averaging its cur-
rent value with the maximum value among its children, providing a smoother value progression:
Q′

i ← 1
2 (Qi + maxj Qj). This diversity in algorithmic adaptation highlights the flexibility of the

MCTS framework in addressing the unique challenges of generative reasoning tasks.

3.5 ADVANCED TOPICS AND HYBRID APPROACHES

As the field matures, researchers are exploring more sophisticated techniques that refine the core
search paradigm, create better reward signals, and combine multiple methodologies. One promi-
nent direction involves multi-agent and collaborative search, moving beyond the single-agent
paradigm. Instead of one LLM performing a search, these approaches employ multiple agents that
collaborate, debate, or take on specialized roles to solve problems more effectively (Gan et al., 2025;
Li et al., 2025b; Yang et al., 2025b; Hou et al., 2025). This collaborative model leverages diverse rea-
soning pathways and collective expertise to tackle complex challenges like software issue resolution
and hierarchical task orchestration, mitigating the limitations of a monolithic agent.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Further advancements focus on the core components of the search process itself, particularly in re-
ward model design and optimization and search efficiency. The success of any search algorithm
hinges on its reward function, and the field is moving towards more granular process-supervised re-
ward models (PRMs) that provide step-level feedback, rather than relying solely on final outcomes
Yu et al. (2023a); Ma et al. (2023). To create this fine-grained preference data scalably, many works
now employ MCTS to autonomously generate step-level supervision for training robust reward mod-
els, reducing the need for costly manual annotation (Luo et al., 2024; Ma et al., 2025; Jin et al., 2025;
Brandfonbrener et al., 2024a; Wu et al., 2023). Concurrently, researchers are tackling the high com-
putational cost of tree search. Efforts to improve efficiency include developing more adaptive and
intelligent dynamics, such as information-directed search to prioritize valuable feedback (Chandak
et al.), dynamic node selection (Wang et al., 2024a; Asai, 2025), and dynamic abstraction drop-
ping to manage complexity (Schmöcker et al., 2025). Other strategies boost performance through
improved single-step reasoning (Zhang et al., 2025a) or by making the architecture itself more dy-
namic, such as with test-time depth adaptation of model layers (Li et al., 2025e), all contributing to
a more powerful and efficient search process (Agarwal et al., 2025).

3.6 APPLICATIONS OF MCTS

This section offers a concise, practitioner-oriented guide to choosing effective MCTS configura-
tions for major LLM task domains. Each subsection links applications—such as reasoning, code
generation, agentic tasks, RAG, and self-improvement—to suitable patterns of node representation,
reward modeling, and evaluation. These mappings, together with the algorithmic instantiations in
Appendix E, help practitioners quickly identify components appropriate for their use cases.

3.6.1 MCTS FOR DIRECT TEST-TIME ENHANCEMENT

This category covers methods that apply MCTS at inference to refine an LLM’s response without
altering model weights. Instead of relying on greedy or beam search, these approaches explore a tree
of reasoning paths or generation steps, guided by value or reward signals, to identify higher-quality
outputs. The tradeoff is extra computation at runtime in exchange for greater accuracy, coherence,
or adherence to constraints—particularly useful for tasks where the most probable initial trajectory
is suboptimal.

A significant body of work focuses on creating domain-agnostic enhancements to MCTS for LLMs,
aiming to improve general reasoning and problem-solving capabilities. These studies concentrate on
challenges such as search efficiency, interpretability of the reasoning process, and the overall quality
of the generated thoughts or solutions (Chen et al., 2024e; Gao et al., 2024; Hui et al., 2024; Wang
et al., 2024a; Kang et al., 2024; Zhao et al., 2024; Ding et al., 2023; Pan et al., 2025a). Mathemat-
ical reasoning has become a particularly popular domain for applying MCTS. The discrete nature
of mathematical problems and the existence of clear, verifiable solutions make it an ideal testbed
for defining robust reward functions, which are crucial for guiding the search process effectively
toward a correct final answer (Zhang et al., 2024c; Xu, 2023; Yang et al., 2024; Yu et al., 2023a;
Zhang et al., 2025c; Luo et al., 2024; Lin et al., 2025b). Similarly, in code generation and software
engineering, MCTS is employed to navigate the vast combinatorial space of possible code imple-
mentations. The search is often guided by explicit feedback from compilers, unit tests, or formal
verifiers, allowing the model to explore, backtrack, and refine code snippets to meet functional re-
quirements (DeLorenzo et al., 2024; Li et al., 2024b; Brandfonbrener et al., 2024b;a; Dainese et al.,
2024; Wang et al., 2024d; Zhang et al., 2024e; Xu et al., 2024a; Antoniades et al., 2024; Li et al.,
2025b; Wang et al., 2025c; Hu et al., 2025a).

MCTS also provides a principled planning mechanism for LLM agents operating in interactive en-
vironments, where an agent must execute a sequence of decisions to achieve a specific goal. In these
scenarios, MCTS allows the agent to simulate and evaluate possible action sequences, balancing ex-
ploration of new strategies with exploitation of known successful paths (Koh et al., 2024; Zhao et al.,
2023; Li et al., 2024c; Murthy et al., 2023; Chi et al., 2024; Zhou et al., 2023; Zhang et al., 2025f; Yu
et al., 2023b; Gan et al., 2025; Lin et al., 2025a; Gao et al., 2025; Xie et al., 2025; Li et al., 2025d;
Hou et al., 2025). In the context of Retrieval-Augmented Generation (RAG) and other knowledge-
intensive tasks, MCTS helps the model strategically decide when to query an external knowledge
source and what information to retrieve. This integration of planning with retrieval allows the LLM
to dynamically augment its internal knowledge with relevant, up-to-date facts, thereby improving

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

the accuracy and factuality of its outputs (Wu et al., 2023; Xu et al., 2024b; Jiang et al., 2024; Tran
et al., 2024; Wang et al., 2024i; Huang et al., 2024; Choi et al., 2023; Feng et al., 2025a; Luo et al.,
2025; Xiong et al., 2025; Dou et al., 2025; Hu et al., 2025b; Gu et al., 2025; Kim & Kim, 2025).
Furthermore, MCTS is being explored in the nascent field of multimodal reasoning. For tasks that
involve processing and reasoning over both text and images or videos, the search algorithm can ex-
plore different strategies for grounding textual logic in visual information, effectively bridging the
gap between different modalities to arrive at a coherent and contextually accurate conclusion (Yao
et al., 2024a; Dong et al., 2024; Wu et al., 2025a; Yang et al., 2025a).

3.6.2 MCTS FOR SELF-IMPROVEMENT VIA DATA GENERATION

A powerful paradigm uses Monte Carlo Tree Search (MCTS) not merely to find a single optimal
answer, but to generate extensive sets of high-quality reasoning trajectories. These trajectories serve
as synthetic data to fine-tune either the Large Language Model (LLM) itself or an associated re-
ward model, establishing a virtuous cycle of self-improvement. This approach is heavily inspired
by seminal concepts in reinforcement learning, such as the self-play mechanism of AlphaZero and
preference optimization techniques like Direct Preference Optimization (DPO). Foundational frame-
works have demonstrated how to integrate MCTS into a self-training loop, using process rewards
and iterative preference learning to progressively enhance the model’s reasoning capabilities. These
core methodologies enable the LLM to autonomously generate its own training data, refining its pol-
icy and value functions through repeated exploration and exploitation of the reasoning space (Guan
et al., 2025; Feng et al., 2023; Wang et al., 2024g; Tian et al., 2024b; Xie et al., 2024b; Putta et al.,
2024; Qi et al., 2024; Chen et al., 2024a; Wang et al., 2024f; Chen et al., 2024b; Ding et al., 2025;
Yuan et al., 2025; Shi et al., 2025b; Kim et al., 2025; Wang et al., 2025c).

The self-improvement paradigm has been extended beyond general reasoning to a wide array of
specialized domains. In the context of general LLM capabilities and alignment, MCTS-driven data
generation has been employed for sophisticated instruction tuning, automated prompt optimization,
and enhancing model safety by creating preference data that steers the model away from harmful
outputs (Chaffin et al., 2021; Liu et al., 2023; Khanov et al., 2024; Yu et al., 2024; Wang et al., 2023a;
Singla et al., 2024; Li et al., 2024a; Zhang et al., 2025g; Yin et al., 2025). The methodology has
also proven invaluable in scientific and highly specialized fields; for instance, it has been applied
to accelerate discovery in catalyst design, improve diagnostic accuracy in medicine, create more
strategic and proactive conversational agents, and master complex game environments (Guo et al.,
2024; Volkova et al., 2024; Locowic et al., 2024; Sprueill et al., 2023; Light et al., 2024; Cheng
et al., 2025; Tang et al., 2025; Ye et al., 2024; Ma et al., 2025; Park et al., 2024; Li & Ng, 2024; Du
et al., 2024; Zheng et al., 2025; Duan & Wang, 2025; Jiang et al., 2025b; Pan et al., 2025b; Liu et al.,
2025a; Zou et al., 2025; Garikaparthi et al., 2025; Shi et al., 2025c; Lu et al., 2025a). More recently,
this data generation loop has been adapted for multimodal applications, generating high-quality
visual reasoning trajectories to fine-tune Vision-Language Models (VLMs) and enhance their ability
to solve complex multimodal problems (Wang et al., 2025b; Liu et al., 2025b; Du et al., 2025).

3.7 APPLICABILITY, TRADE-OFFS AND TASK-ORIENTED PRACTITIONER’S GUIDE

Our cross-paper analysis reveals consistent empirical patterns that determine when MCTS is most
beneficial, how compute should be allocated, and how it compares to heuristic alternatives.

Problem Suitability. MCTS is most effective when terminal rewards are reliable and deterministic,
enabling search to exploit combinatorial diversity without being overwhelmed by reward noise.
This holds in mathematics and program synthesis, where unit tests or numeric checkers provide
stable supervision (Qi et al., 2024; Zhang et al., 2024d). Recent work consistently reports large
accuracy gains in such domains: ReST-MCTS* (Zhang et al., 2024b), rStar-Math (Guan et al., 2025),
LLaMA-Berry (Zhang et al., 2025b), SVPO (Chen et al., 2024c), and LE-MCTS (Park et al., 2025)
all show 10–40% improvements over greedy methods. By contrast, open-ended generation tasks
lack verifiable correctness, and our synthesis shows that MCTS rarely exceeds < 3% improvement
over beam search in such settings.

Compute Allocation. Two knobs dominate the compute–accuracy trade-off. (1) Backup strategy:
max backups align with binary-verifier tasks (e.g., code) where discovering a single valid trajectory
suffices, while average backups stabilize high-variance domains such as mathematics (Zhang et al.,

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 2: Practitioner’s Guide: Task-oriented MCTS configurations summarizing common structural
choices and typical hyperparameter ranges.

Task Domain Topology Evaluation Backup Typ. Hyperparams Ref. Methods

Math & Logic Trace-based
(Step or solution-level trees)

PRM / PPRM
or Self-Refine

Avg / Sum
(value-driven)

cpuct ∈ [1, 4]
Rollouts: 16–128
Depth: 8–20

ReST-MCTS* (Zhang et al., 2024b)
rStar-Math (Guan et al., 2025)
LLaMA-Berry (Zhang et al., 2025b)

Code
Generation

Terminal-state
(Block/function-level)

ORM (execution)
+ verbal feedback

Max
(binary success)

Rollouts: 16–64
k samples: 5–50
Temp: 0.6–0.8

PG-TD (Zhang et al., 2023a)
RethinkMCTS (Li et al., 2025c)

RAG /
Knowledge

Hierarchical
(Retrieve→ Reason)

Hybrid
(PRM + ORM)

Min / AND
(weakest link)

Retrieval k: 3–10
Depth: 3–5
≤ 10 MCTS iters

RAG-Star (Jiang et al., 2025a)

Autonomous
Agents

State–Action
(World-model tree)

Composite
(success + shaping)

Max-of-Avg
(planning)

Depth: task horizon
(typically 4–10)
Rollouts: 20–50
High cpuct

RAP (Hao et al., 2023a)
LATS (Zhou et al., 2023)

2024b; Li et al., 2025c). (2) Evaluator cost: high-fidelity PRMs/RMs (e.g., ReST-MCTS*, SVPO)
reduce reward variance but shrink search depth; lighter-weight self-evaluation (e.g., MCTSr) sup-
ports deeper exploration. Across surveyed papers, allocating roughly 20–30% of the total budget to
evaluation tends to yield robust improvements.

PRM vs. ORM: When to Use Which? PRMs provide fine-grained, step-level guidance and work
well in step-driven or self-improvement frameworks such as ReST-MCTS* (Zhang et al., 2024b),
SVPO (Chen et al., 2024c), rStar-Math (Guan et al., 2025), and LE-MCTS (Park et al., 2025). How-
ever, they require expensive annotation and may generalize poorly outside their domain. ORMs, in
contrast, suit goal-driven tasks with verifiable terminal outcomes (e.g., code or mathematical check-
ing), as used in RethinkMCTS (Li et al., 2025c) and RAG-Star (Jiang et al., 2025a). Their sparsity
can cause shallow exploration or “false positives.” Hybrid multi-critic designs (e.g., AlphaLLM
(Tian et al., 2024a)) combine PRM shaping with ORM correctness, trading simplicity for stability.

MCTS vs. Heuristic Search. Heuristic search methods such as Tree-of-Thoughts (Yao et al., 2023)
rely on LLM-generated intermediate heuristics and perform well when reasoning steps are inter-
pretable and heuristics calibrated. MCTS instead accumulates experience-driven statistics (Hao
et al., 2023a), making it better suited to sparse-reward or deceptive-intermediate regimes, common
in long-horizon math proofs, code repair, and multi-step retrieval. Our review indicates that heuris-
tic search excels under tight latency or when intermediate evaluation is reliable, whereas MCTS
dominates when local plausibility diverges from global correctness.

Overall, MCTS is preferable when verifiable rewards exist or long-horizon dependencies matter;
heuristic search fits tasks with strong intermediate heuristics or strict latency; and hybrid designs
provide the best of both worlds in compositional tasks such as RAG or agent-based reasoning. Ta-
ble 2 and Appendix E.2 summarizes recommended configurations across domains.

4 INFORMED SEARCH WITH LLM-GENERATED HEURISTICS

Informed search algorithms guide Large Language Model (LLM) reasoning by using heuristics to
navigate vast problem spaces. Unlike classical methods with manually designed heuristics, modern
approaches dynamically generate guidance using the LLM itself or auxiliary data. These methods
primarily fall into two paradigms based on their heuristic design: direct state evaluation and com-
posite A* cost functions. More details could be found in Appendix F.

This approach, exemplified by the Tree-of-Thoughts (ToT) framework (Yao et al., 2024b), uses an
LLM as a direct, on-the-fly heuristic evaluator. First, an LLM generates multiple candidate next steps
(“thoughts”). Then, a separate LLM-based evaluation assigns a heuristic value to each candidate.
This score subsequently directs classical search algorithms, such as implementing a beam search
(an informed BFS) to retain the top-b states, or a pruned DFS to eliminate branches that fall below a
certain value threshold.

A more sophisticated approach utilizes the A* search algorithm, which seeks to optimize the total
cost function f(n) = g(n) + h(n). This function balances the cost of the path taken so far, g(n),
with an estimated cost to reach the goal, h(n). The primary innovation in methods like ToolChain*

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

(Zhuang et al., 2024) and Q* (Wang et al., 2024c) lies in constructing composite heuristics for g(n)
and h(n) from diverse, LLM-relevant signals. The key components used to formulate these cost
functions are summarized in Table 6.

Table 3: Compact Overview of A* Heuristic Components for LLMs

Heuristic A* Component Mechanism (and Signal Source)
Process-Based Rewards g(n) Aggregates step-wise rewards from execution

feedback (e.g., logits, rule checks).
Statistical Consistency g(n) Favors steps that are frequently proposed across

multiple generation samples.
Memory-Based Comparison g(n), h(n) Scores path similarity against a repository of

high-quality examples (e.g., using LCS).
Learned Future Value h(n) Estimates the cost-to-goal using a trained proxy

model (e.g., a Q-function).

5 EVALUATION FRAMEWORK AND COMPUTE PROTOCOLS

Recent advances in tree-structured decoding—e.g., MCTS-based reasoning (Xie et al., 2024a; Ha
et al., 2025) and rStar-style agents (Guan et al., 2025)—show that test-time compute forms a scal-
able axis, often yielding a model–search equivalence where smaller models with search rival larger
baselines. However, cross-paper comparisons remain infeasible due to heterogeneous assumptions
about model size, evaluator cost, and hardware accounting (summarized in Appendix G).

To address this fragmentation, we propose the Standardized Compute-Reporting Protocol, a domain-
agnostic framework designed to ensure comparability in future Tree-Search TTS research. A com-
prehensive definition of the protocol is provided in Appendix G.2. The core of SCRP involves
decomposing the computational cost into a unified resource vector B = (Cpolicy, Ceval, Cverify, Twall).
To facilitate hardware-agnostic comparison, we standardize the estimation of inference cost Ctotal for
a problem instance x as:

Ctotal(x) ≈ 2 · Ppolicy · Tpolicy(x) + 2 · Peval · Teval(x) + Cverify(x), (3)
where P denotes parameter counts and T denotes token counts. Building on this abstraction, we rec-
ommend reporting Budgeted Accuracy (Pass@FLOPs) and Tokens-per-Solved (TpS) rather than
raw accuracy alone, explicitly quantifying the trade-off between search depth, branching factors,
and verification overhead.

6 CHALLENGES, FUTURE AND CONCLUSION

Despite clear gains in reasoning, tree-search methods face two major bottlenecks: compute and
reward quality. Search introduces substantial overhead relative to greedy decoding (Wang et al.,
2024a), exacerbated by strong models that often overthink simple queries (Chen et al., 2024d; Zeng
et al., 2024a); structural constraints further limit parallelism and slow the self-play cycles required
to distill search behavior into the base model (Xiang et al., 2025). Addressing these issues will
require more adaptive and selectively activated search procedures with dynamic resource allocation
and more aggressive pruning.

A second fundamental challenge is the difficulty of constructing reliable reward models. PRMs pro-
vide finer-grained supervision than ORMs but depend on costly, hard-to-scale annotations (Uesato
et al., 2022; Lightman et al., 2023), and existing automated methods remain limited to narrow do-
mains such as mathematics (Wang et al., 2024e; Luo et al., 2024). Imperfect rewards can misguide
the search process and even induce inverse inference scaling, where additional rollouts degrade ac-
curacy (Gao et al., 2023; Zeng et al., 2024b). The persistent gap between learned PRMs and oracle
verifiers (Anonymous, 2024; Xiang et al., 2025) underscores the need for scalable methods to gen-
erate high-fidelity process rewards.

Our survey unified classical and MCTS-style methods around node representation, reward design,
and algorithmic adjustments for LLMs. Future progress will depend on developing lighter-weight
search dynamics and scalable, high-quality reward signals to fully realize tree search as a general-
purpose reasoning mechanism.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

7 REPRODUCIBILITY STATEMENT

This paper provides a survey and a unified perspective on tree search algorithms for Large Language
Models (LLMs). As a review article, our primary contribution is the systematization and conceptual
analysis of existing work, rather than the presentation of novel experimental results. To ensure the
reproducibility of our analysis, we have based our survey exclusively on publicly available research
papers. Every algorithm, framework, and concept discussed is explicitly cited, with full references
provided in the bibliography. Our proposed taxonomy and unified notation, detailed in Section 3 and
summarized in Tables 2 and 5, are derived directly from the methodologies described in these source
publications. Readers can verify our classifications and synthesis by consulting the original papers,
which form the basis for our claims. We have made every effort to accurately represent the works
surveyed to ensure that our conceptual framework can be independently reviewed and validated by
the research community.

REFERENCES

Dhruv Agarwal, Bodhisattwa Prasad Majumder, Reece Adamson, Megha Chakravorty,
Satvika Reddy Gavireddy, Aditya Parashar, Harshit Surana, Bhavana Dalvi Mishra, Andrew Mc-
Callum, Ashish Sabharwal, et al. Open-ended scientific discovery via bayesian surprise. arXiv
preprint arXiv:2507.00310, 2025.

Anonymous. Improving the efficiency of test-time search in LLMs with backtracking. In Submitted
to The Thirteenth International Conference on Learning Representations, 2024. URL https:
//openreview.net/forum?id=hJ2BCYGvFg. under review.

Antonis Antoniades, Albert Örwall, Kexun Zhang, Yuxi Xie, Anirudh Goyal, and William Wang.
SWE-search: Enhancing software agents with monte carlo tree search and iterative refinement.
arXiv preprint arXiv:2410.20285, 2024.

Masataro Asai. Bilevel MCTS for amortized O(1) node selection in classical planning. arXiv
preprint arXiv:2508.08385, 2025.

Maciej Besta, Nils Blach, Ales Kubicek, Robert Gerstenberger, Lukas Gianinazzi, Joanna Gajda,
Tomasz Lehmann, Michał Podstawski, Hubert Niewiadomski, Piotr Nyczyk, and Torsten Hoefler.
Graph of Thoughts: Solving Elaborate Problems with Large Language Models. Proceedings
of the AAAI Conference on Artificial Intelligence, 38(16):17682–17690, Mar 2024. doi: 10.
1609/aaai.v38i16.29720. URL https://ojs.aaai.org/index.php/AAAI/article/
view/29720.

David Brandfonbrener, Simon Henniger, Sibi Raja, Tarun Prasad, Chloe Loughridge, Federico Cas-
sano, Sabrina Ruixin Hu, Jianang Yang, William E Byrd, Robert Zinkov, et al. VerMCTS: Syn-
thesizing multi-step programs using a verifier, a large language model, and tree search. arXiv
preprint arXiv:2402.08147, 2024a.

David Brandfonbrener, Sibi Raja, Tarun Prasad, Chloe Loughridge, Jianang Yang, Simon Henniger,
William E Byrd, Robert Zinkov, and Nada Amin. Verified multi-step synthesis using large lan-
guage models and monte carlo tree search. arXiv preprint arXiv:2402.08147, 2024b.

Bradley Brown, Jordan Juravsky, Ryan Ehrlich, Ronald Clark, Quoc V. Le, Christopher Ré, and
Azalia Mirhoseini. Large language monkeys: Scaling inference compute with repeated sampling.
In arXiv, 2024. URL https://arxiv.org/abs/2407.21787.

Sébastien Bubeck, Varun Chandrasekaran, Ronen Eldan, Johannes Gehrke, Eric Horvitz, Ece
Kamar, Peter Lee, Yin Tat Lee, Yuanzhi Li, Scott Lundberg, Harsha Nori, Hamid Palangi,
Marco Tulio Ribeiro, and Yi Zhang. Sparks of artificial general intelligence: Early experiments
with gpt-4. In arXiv, 2023. URL https://arxiv.org/abs/2303.12712.

Antoine Chaffin, Vincent Claveau, and Ewa Kijak. Ppl-mcts: Constrained textual generation through
discriminator-guided mcts decoding. arXiv preprint arXiv:2109.13582, 2021.

11

https://openreview.net/forum?id=hJ2BCYGvFg
https://openreview.net/forum?id=hJ2BCYGvFg
https://ojs.aaai.org/index.php/AAAI/article/view/29720
https://ojs.aaai.org/index.php/AAAI/article/view/29720
https://arxiv.org/abs/2407.21787
https://arxiv.org/abs/2303.12712

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Yash Chandak, HyunJi Nam, Allen Nie, Jonathan Lee, and Emma Brunskill. Information di-
rected tree search: Reasoning and planning with language agents. In NeurIPS 2024 Workshop
on Bayesian Decision-making and Uncertainty.

Guoxin Chen, Minpeng Liao, Chengxi Li, and Kai Fan. Alphamath almost zero: process supervision
without process. Advances in Neural Information Processing Systems, 37:27689–27724, 2024a.

Guoxin Chen, Minpeng Liao, Chengxi Li, and Kai Fan. Step-level value preference optimization
for mathematical reasoning. arXiv preprint arXiv:2406.10858, 2024b.

Guoxin Chen, Minpeng Liao, Chengxi Li, and Kai Fan. Step-level value preference optimization
for mathematical reasoning. arXiv preprint arXiv:2406.10858, 2024c.

Xingyu Chen, Jiahao Xu, Tian Liang, Zhiwei He, Jianhui Pang, Dian Yu, Linfeng Song, Qiuzhi Liu,
Mengfei Zhou, Zhuosheng Zhang, et al. Do NOT think that much for 2+ 3=? on the overthinking
of o1-like LLMs. arXiv preprint arXiv:2412.21187, 2024d.

Ziru Chen, Michael White, Raymond Mooney, Ali Payani, Yu Su, and Huan Sun. When is tree
search useful for llm planning? it depends on the discriminator. arXiv preprint arXiv:2402.10890,
2024e.

Xiaoxue Cheng, Junyi Li, Wayne Xin Zhao, and Ji-Rong Wen. Think more, hallucinate less: Miti-
gating hallucinations via dual process of fast and slow thinking. arXiv preprint arXiv:2501.01306,
2025.

Yizhou Chi, Yizhang Lin, Sirui Hong, Duyi Pan, Yaying Fei, Guanghao Mei, Bangbang Liu, Tianqi
Pang, Jacky Kwok, Ceyao Zhang, et al. Sela: Tree-search enhanced llm agents for automated
machine learning. arXiv preprint arXiv:2410.17238, 2024.

Sehyun Choi, Tianqing Fang, Zhaowei Wang, and Yangqiu Song. KCTS: knowledge-constrained
tree search decoding with token-level hallucination detection. arXiv preprint arXiv:2310.09044,
2023.

Rémi Coulom. Efficient selectivity and backup operators in monte-carlo tree search. In Com-
puters and Games, 2006. URL https://api.semanticscholar.org/CorpusID:
16724115.

Nicola Dainese, Matteo Merler, Minttu Alakuijala, and Pekka Marttinen. Generating code
world models with large language models guided by monte carlo tree search. arXiv preprint
arXiv:2405.15383, 2024.

Matthew DeLorenzo, Animesh Basak Chowdhury, Vasudev Gohil, Shailja Thakur, Ramesh Karri,
Siddharth Garg, and Jeyavijayan Rajendran. Make every move count: Llm-based high-quality rtl
code generation using mcts. arXiv preprint arXiv:2402.03289, 2024.

Hongxin Ding, Baixiang Huang, Yue Fang, Weibin Liao, Xinke Jiang, Zheng Li, Junfeng Zhao,
and Yasha Wang. ProMed: Shapley information gain guided reinforcement learning for proactive
medical LLMs. arXiv preprint arXiv:2508.13514, 2025.

Ruomeng Ding, Chaoyun Zhang, Lu Wang, Yong Xu, Minghua Ma, Wei Zhang, Si Qin, Saravan Ra-
jmohan, Qingwei Lin, and Dongmei Zhang. Everything of thoughts: Defying the law of penrose
triangle for thought generation. arXiv preprint arXiv:2311.04254, 2023.

Guanting Dong, Chenghao Zhang, Mengjie Deng, Yutao Zhu, Zhicheng Dou, and Ji-Rong Wen.
Progressive multimodal reasoning via active retrieval. arXiv preprint arXiv:2412.14835, 2024.

Alex ZH Dou, Zhongwei Wan, Dongfei Cui, Xin Wang, Jing Xiong, Haokun Lin, Chaofan Tao,
Shen Yan, and Mi Zhang. Enhancing test-time scaling of large language models with hierarchical
retrieval-augmented MCTS. arXiv preprint arXiv:2507.05557, 2025.

Hanwen Du, Bo Peng, and Xia Ning. SAPIENT: Mastering multi-turn conversational recommen-
dation with strategic planning and monte carlo tree search. arXiv preprint arXiv:2410.09580,
2024.

12

https://api.semanticscholar.org/CorpusID:16724115
https://api.semanticscholar.org/CorpusID:16724115

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Lingxiao Du, Fanqing Meng, Zongkai Liu, Zhixiang Zhou, Ping Luo, Qiaosheng Zhang, and Wenqi
Shao. MM-PRM: Enhancing multimodal mathematical reasoning with scalable step-level super-
vision. arXiv preprint arXiv:2505.13427, 2025.

Zhihua Duan and Jialin Wang. Prompt-based monte carlo tree search for mitigating hallucinations
in large models. arXiv preprint arXiv:2501.13942, 2025.

Jonathan Evans. Heuristic and analytic processes in reasoning. British Journal of Psychology, 75
(4):451–468, 1984.

Wenfeng Feng, Chuzhan Hao, Yuewei Zhang, Jingyi Song, and Hao Wang. AirRAG: Activating
intrinsic reasoning for retrieval augmented generation using tree-based search. arXiv preprint
arXiv:2501.10053, 2025a.

Xidong Feng, Ziyu Wan, Muning Wen, Stephen Marcus McAleer, Ying Wen, Weinan Zhang, and
Jun Wang. Alphazero-like tree-search can guide large language model decoding and training.
arXiv preprint arXiv:2309.17179, 2023.

Zhaopeng Feng, Jiahan Ren, Jiayuan Su, Jiamei Zheng, Zhihang Tang, Hongwei Wang, and Zuozhu
Liu. MT-RewardTree: A comprehensive framework for advancing LLM-based machine transla-
tion via reward modeling. arXiv preprint arXiv:2503.12123, 2025b.

Bingzheng Gan, Yufan Zhao, Tianyi Zhang, Jing Huang, Yusu Li, Shu Xian Teo, Changwang Zhang,
and Wei Shi. MASTER: A multi-agent system with LLM specialized MCTS. arXiv preprint
arXiv:2501.14304, 2025.

Leo Gao, John Schulman, and Jacob Hilton. Scaling laws for reward model overoptimization. In
International Conference on Machine Learning, pp. 10835–10866. PMLR, 2023.

Yifei Gao, Junhong Ye, Jiaqi Wang, and Jitao Sang. WebSynthesis: World-model-guided MCTS for
efficient WebUI-trajectory synthesis. arXiv preprint arXiv:2507.04370, 2025.

Zitian Gao, Boye Niu, Xuzheng He, Haotian Xu, Hongzhang Liu, Aiwei Liu, Xuming Hu,
and Lijie Wen. Interpretable contrastive monte carlo tree search reasoning. arXiv preprint
arXiv:2410.01707, 2024.

Aniketh Garikaparthi, Manasi Patwardhan, Lovekesh Vig, and Arman Cohan. Iris: Interactive re-
search ideation system for accelerating scientific discovery. arXiv preprint arXiv:2504.16728,
2025.

Jiawei Gu, Ziting Xian, Yuanzhen Xie, Ye Liu, Enjie Liu, Ruichao Zhong, Mochi Gao, Yunzhi Tan,
Bo Hu, and Zang Li. Toward structured knowledge reasoning: Contrastive retrieval-augmented
generation on experience. arXiv preprint arXiv:2506.00842, 2025.

Xinyu Guan, Li Lyna Zhang, Yifei Liu, Ning Shang, Youran Sun, Yi Zhu, Fan Yang, and Mao Yang.
rStar-Math: Small LLMs can master math reasoning with self-evolved deep thinking. arXiv
preprint arXiv:2501.04519, 2025.

Hongyi Guo, Zhihan Liu, Yufeng Zhang, and Zhaoran Wang. Can large language models play
games? a case study of a self-play approach. arXiv preprint arXiv:2403.05632, 2024.

R. Ha et al. DSG-MCTS: A dynamic strategy-guided monte carlo tree search for large lan-
guage model reasoning. In Conference on Empirical Methods in Natural Language Processing
(EMNLP), 2025.

Shibo Hao, Yi Gu, Haodi Ma, Joshua Hong, Zhen Wang, Daisy Wang, and Zhiting Hu. Reasoning
with language model is planning with world model. In Proceedings of the 2023 Conference on
Empirical Methods in Natural Language Processing, pp. 8154–8173, Singapore, 2023a. Associ-
ation for Computational Linguistics.

Shibo Hao, Yi Gu, Haodi Ma, Joshua Jiahua Hong, Zhen Wang, Daisy Zhe Wang, and Zhiting Hu.
Reasoning with language model is planning with world model. arXiv preprint arXiv:2305.14992,
2023b.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Shibo Hao, Sainbayar Sukhbaatar, DiJia Su, Xian Li, Zhiting Hu, Jason Weston, and Yuandong
Tian. Training large language models to reason in a continuous latent space. arXiv preprint
arXiv:2412.06769, 2024.

Nathan Herr, Tim Rocktäschel, and Roberta Raileanu. Llm-first search: Self-guided exploration of
the solution space. arXiv preprint arXiv:2506.05213, 2025.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, Tom
Hennigan, Eric Noland, Katie Millican, George van den Driessche, Bogdan Damoc, Aurelia
Guy, Simon Osindero, Karen Simonyan, Erich Elsen, Jack W. Rae, Oriol Vinyals, and Lau-
rent Sifre. Training compute-optimal large language models. In arXiv, 2022a. URL https:
//arxiv.org/abs/2203.15556.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, et al.
Training compute-optimal large language models. In Advances in Neural Information Processing
Systems (NeurIPS), 2022b.

Zhipeng Hou, Junyi Tang, and Yipeng Wang. HALO: Hierarchical autonomous logic-oriented or-
chestration for multi-agent LLM systems. arXiv preprint arXiv:2505.13516, 2025.

Haichuan Hu, Congqing He, Hao Zhang, Xiaochen Xie, and Quanjun Zhang. APRMCTS:
Improving LLM-based automated program repair with iterative tree search. arXiv preprint
arXiv:2507.01827, 2025a.

Yunhai Hu, Yilun Zhao, Chen Zhao, and Arman Cohan. Mcts-rag: Enhancing retrieval-augmented
generation with monte carlo tree search. arXiv preprint arXiv:2503.20757, 2025b.

Jiatan Huang, Mingchen Li, Zonghai Yao, Zhichao Yang, Yongkang Xiao, Feiyun Ouyang, Xiaohan
Li, Shuo Han, and Hong Yu. RiTeK: A dataset for large language models complex reasoning over
textual knowledge graphs. arXiv preprint arXiv:2410.13987, 2024.

Zhongzhen Huang, Gui Geng, Shengyi Hua, Zhen Huang, Haoyang Zou, Shaoting Zhang, Pengfei
Liu, and Xiaofan Zhang. O1 replication journey–part 3: Inference-time scaling for medical rea-
soning. arXiv preprint arXiv:2501.06458, 2025.

HuggingFace. Open r1: A fully open reproduction of deepseek-r1, January 2025. URL https:
//github.com/huggingface/open-r1.

Wenyang Hui, Yan Wang, Kewei Tu, and Chengyue Jiang. Rot: Enhancing large language models
with reflection on search trees. arXiv preprint arXiv:2404.05449, 2024.

Yuichi Inoue, Kou Misaki, Yuki Imajuku, So Kuroki, Taishi Nakamura, and Takuya Akiba. Wider or
deeper? scaling LLM inference-time compute with adaptive branching tree search. arXiv preprint
arXiv:2503.04412, 2025.

Jinhao Jiang, Jiayi Chen, Junyi Li, Ruiyang Ren, Shijie Wang, Wayne Xin Zhao, Yang Song, and
Tao Zhang. Rag-star: Enhancing deliberative reasoning with retrieval augmented verification and
refinement. arXiv preprint arXiv:2412.12881, 2024.

Jinhao Jiang, Jiayi Chen, Junyi Li, Ruiyang Ren, Shijie Wang, Xin Zhao, Yang Song, and Tao Zhang.
RAG-star: Enhancing deliberative reasoning with retrieval augmented verification and refinement.
In Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association
for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers), pp.
7064–7074, Albuquerque, New Mexico, 2025a. Association for Computational Linguistics.

Shuyang Jiang, Yusheng Liao, Zhe Chen, Ya Zhang, Yanfeng Wang, and Yu Wang. MedS3:
Towards medical small language models with self-evolved slow thinking. arXiv preprint
arXiv:2501.12051, 2025b.

Can Jin, Yang Zhou, Qixin Zhang, Hongwu Peng, Di Zhang, Marco Pavone, Ligong Han, Zhang-
Wei Hong, Tong Che, and Dimitris N Metaxas. Your reward function for RL is your best PRM
for search: Unifying RL and search-based TTS. arXiv preprint arXiv:2508.14313, 2025.

14

https://arxiv.org/abs/2203.15556
https://arxiv.org/abs/2203.15556
https://github.com/huggingface/open-r1
https://github.com/huggingface/open-r1

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Thomas Jiralerspong, Xiaoyin Chen, Yash More, Vedant Shah, and Yoshua Bengio. Efficient causal
graph discovery using large language models. arXiv preprint arXiv:2402.01207, 2024.

D. Kahneman. Thinking, Fast and Slow. Farrar, Straus and Giroux, 2011. ISBN 9781429969352.

Jikun Kang, Xin Zhe Li, Xi Chen, Amirreza Kazemi, Qianyi Sun, Boxing Chen, Dong Li, Xu He,
Quan He, Feng Wen, et al. Mindstar: Enhancing math reasoning in pre-trained LLMs at inference
time. arXiv preprint arXiv:2405.16265, 2024.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B. Brown, Benjamin Chess, Rewon Child,
Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language
models. In arXiv, 2020a. URL https://arxiv.org/abs/2001.08361.

Jared Kaplan, Sam McCandlish, Tom Henighan, TomB. Brown, Benjamin Chess, and Scaling
laws for neural language models. arXiv preprint arXiv:2001.08361, 2020b.

Maxim Khanov, Jirayu Burapacheep, and Yixuan Li. Args: Alignment as reward-guided search.
arXiv preprint arXiv:2402.01694, 2024.

Chaeeun Kim and Seungone Kim. FREESON: Retriever-free retrieval-augmented reasoning via
corpus-traversing MCTS. arXiv preprint arXiv:2505.16409, 2025.

Joongwon Kim, Anirudh Goyal, Liang Tan, Hannaneh Hajishirzi, Srinivasan Iyer, and Tianlu Wang.
ASTRO: Teaching language models to reason by reflecting and backtracking in-context. arXiv
preprint arXiv:2507.00417, 2025.

Levente Kocsis and Csaba Szepesvari. Bandit based monte-carlo planning. In European Conference
on Machine Learning, 2006. URL https://api.semanticscholar.org/CorpusID:
15184765.

Jing Yu Koh, Stephen McAleer, Daniel Fried, and Ruslan Salakhutdinov. Tree search for language
model agents. arXiv preprint arXiv:2407.01476, 2024.

Jakub Kowalski, Mark HM Winands, Stanisław Reda, Anna Wilbik, et al. Towards explaining
monte-carlo tree search by using its enhancements. arXiv preprint arXiv:2506.13223, 2025.

Stepan Kulibaba, Artem Dzhalilov, Roman Pakhomov, Oleg Svidchenko, Alexander Gasnikov,
and Aleksei Shpilman. KompeteAI: Accelerated autonomous multi-agent system for end-to-end
pipeline generation for machine learning problems. arXiv preprint arXiv:2508.10177, 2025.

Chenglin Li, Qianglong Chen, Zhi Li, Feng Tao, Yicheng Li, Hao Chen, Fei Yu, and Yin Zhang.
Optimizing instruction synthesis: Effective exploration of evolutionary space with tree search.
arXiv preprint arXiv:2410.10392, 2024a.

Geng Li, Jinglin Xu, Yunzhen Zhao, and Yuxin Peng. Dyfo: A training-free dynamic focus visual
search for enhancing LMMs in fine-grained visual understanding. In Proceedings of the Computer
Vision and Pattern Recognition Conference, pp. 9098–9108, 2025a.

Han Li, Yuling Shi, Shaoxin Lin, Xiaodong Gu, Heng Lian, Xin Wang, Yantao Jia, Tao Huang, and
Qianxiang Wang. SWE-Debate: Competitive multi-agent debate for software issue resolution.
arXiv preprint arXiv:2507.23348, 2025b.

Junyi Li and Hwee Tou Ng. Think&Cite: Improving attributed text generation with self-guided tree
search and progress reward modeling. arXiv preprint arXiv:2412.14860, 2024.

Qingyao Li, Wei Xia, Kounianhua Du, Xinyi Dai, Ruiming Tang, Yasheng Wang, Yong Yu, and
Weinan Zhang. Rethinkmcts: Refining erroneous thoughts in monte carlo tree search for code
generation. arXiv preprint arXiv:2409.09584, 2024b.

Qingyao Li, Wei Xia, Xinyi Dai, Kounianhua Du, Weiwen Liu, Yasheng Wang, Ruiming Tang, Yong
Yu, and Weinan Zhang. Rethinkmcts: Refining erroneous thoughts in monte carlo tree search
for code generation. In Proceedings of the 2025 Conference on Empirical Methods in Natural
Language Processing, pp. 8103–8121, Suzhou, China, 2025c. Association for Computational
Linguistics.

15

https://arxiv.org/abs/2001.08361
https://api.semanticscholar.org/CorpusID:15184765
https://api.semanticscholar.org/CorpusID:15184765

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Yu Li, Lehui Li, Zhihao Wu, Qingmin Liao, Jianye Hao, Kun Shao, Fengli Xu, and Yong Li.
AgentSwift: Efficient LLM agent design via value-guided hierarchical search. arXiv preprint
arXiv:2506.06017, 2025d.

Zhigen Li, Jianxiang Peng, Yanmeng Wang, Tianhao Shen, Minghui Zhang, Linxi Su, Shang Wu,
Yihang Wu, Yuqian Wang, Ye Wang, et al. Planning with large language models for conversational
agents. arXiv preprint arXiv:2407.03884, 2024c.

Zhiyuan Li, Hong Liu, Denny Zhou, and Tengyu Ma. Chain of thought empowers transformers to
solve inherently serial problems. arXiv preprint arXiv:2402.12875, 2024d.

Ziyue Li, Yang Li, and Tianyi Zhou. Skip a layer or loop it? test-time depth adaptation of pretrained
LLMs. arXiv preprint arXiv:2507.07996, 2025e.

Jonathan Light, Min Cai, Weiqin Chen, Guanzhi Wang, Xiusi Chen, Wei Cheng, Yisong Yue, and
Ziniu Hu. Strategist: Learning strategic skills by LLMs via bi-level tree search. arXiv preprint
arXiv:2408.10635, 2024.

Hunter Lightman, Vineet Kosaraju, Yura Burda, Harri Edwards, Bowen Baker, Teddy Lee, Jan
Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. arXiv preprint
arXiv:2305.20050, 2023.

Jiaye Lin, Yifu Guo, Yuzhen Han, Sen Hu, Ziyi Ni, Licheng Wang, Mingguang Chen, Daxin Jiang,
Binxing Jiao, Chen Hu, et al. SE-Agent: Self-evolution trajectory optimization in multi-step
reasoning with LLM-based agents. arXiv preprint arXiv:2508.02085, 2025a.

Qingwen Lin, Boyan Xu, Zijian Li, Zhifeng Hao, Keli Zhang, and Ruichu Cai. Leveraging con-
strained monte carlo tree search to generate reliable long chain-of-thought for mathematical rea-
soning, 2025b.

Chengyuan Liu, Shihang Wang, Lizhi Qing, Kaisong Song, Junjie Cao, Jun Lin, Ji Zhang, Ang Li,
Kun Kuang, and Fei Wu. Towards stepwise domain knowledge-driven reasoning optimization
and reflection improvement. arXiv preprint arXiv:2504.09058, 2025a.

Jiacheng Liu, Andrew Cohen, Ramakanth Pasunuru, Yejin Choi, Hannaneh Hajishirzi, and Asli
Celikyilmaz. Don’t throw away your value model! generating more preferable text with value-
guided monte-carlo tree search decoding. arXiv preprint arXiv:2309.15028, 2023.

Shuhang Liu, Zhenrong Zhang, Pengfei Hu, Jiefeng Ma, Jun Du, Qing Wang, Jianshu Zhang, Quan
Liu, Jianqing Gao, and Feng Ma. MMC: Iterative refinement of VLM reasoning via MCTS-based
multimodal critique. arXiv preprint arXiv:2504.11009, 2025b.

Leonardo Locowic, Alessandro Monteverdi, and Eleazar Mendoza. Synthetic data generation from
real data sources using monte carlo tree search and large language models. Authorea Preprints,
2024.

Hao Lu, Yanchi Gu, Haoyuan Huang, Yulin Zhou, Ningxin Zhu, and Chen Li. MCTSr-Zero: Self-
reflective psychological counseling dialogues generation via principles and adaptive exploration.
arXiv preprint arXiv:2505.23229, 2025a.

Ximing Lu, Seungju Han, David Acuna, Hyunwoo Kim, Jaehun Jung, Shrimai Prabhumoye, Niklas
Muennighoff, Mostofa Patwary, Mohammad Shoeybi, Bryan Catanzaro, et al. Retro-search: Ex-
ploring untaken paths for deeper and efficient reasoning. arXiv preprint arXiv:2504.04383, 2025b.

Haoran Luo, Yikai Guo, Qika Lin, Xiaobao Wu, Xinyu Mu, Wenhao Liu, Meina Song, Yifan Zhu,
Luu Anh Tuan, et al. Kbqa-o1: Agentic knowledge base question answering with monte carlo
tree search. arXiv preprint arXiv:2501.18922, 2025.

Liangchen Luo, Yinxiao Liu, Rosanne Liu, Samrat Phatale, Harsh Lara, Yunxuan Li, Lei Shu, Yun
Zhu, Lei Meng, Jiao Sun, et al. Improve mathematical reasoning in language models by automated
process supervision. arXiv preprint arXiv:2406.06592, 2024.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Qianli Ma, Haotian Zhou, Tingkai Liu, Jianbo Yuan, Pengfei Liu, Yang You, and Hongxia Yang.
Let’s reward step by step: Step-level reward model as the navigators for reasoning. arXiv preprint
arXiv:2310.10080, 2023.

Yiran Ma, Zui Chen, Tianqiao Liu, Mi Tian, Zhuo Liu, Zitao Liu, and Weiqi Luo. What are step-level
reward models rewarding? counterintuitive findings from mcts-boosted mathematical reasoning.
In Proceedings of the AAAI Conference on Artificial Intelligence, volume 39, pp. 24812–24820,
2025.

Silin Meng, Yiwei Wang, Cheng-Fu Yang, Nanyun Peng, and Kai-Wei Chang. Llm-a*: Large
language model enhanced incremental heuristic search on path planning. arXiv preprint
arXiv:2407.02511, 2024.

E.F. Moore. The Shortest Path Through a Maze. Bell Telephone System. Technical publications.
monograph. Bell Telephone System., 1959. URL https://books.google.ca/books?
id=IVZBHAAACAAJ.

Rithesh Murthy, Shelby Heinecke, Juan Carlos Niebles, Zhiwei Liu, Le Xue, Weiran Yao, Yihao
Feng, Zeyuan Chen, Akash Gokul, Devansh Arpit, et al. Rex: Rapid exploration and exploitation
for ai agents. arXiv preprint arXiv:2307.08962, 2023.

Jianfeng Pan, Senyou Deng, and Shaomang Huang. Coat: Chain-of-associated-thoughts framework
for enhancing large language models reasoning. arXiv preprint arXiv:2502.02390, 2025a.

Zhuoshi Pan, Yu Li, Honglin Lin, Qizhi Pei, Zinan Tang, Wei Wu, Chenlin Ming, H Vicky Zhao,
Conghui He, and Lijun Wu. Lemma: Learning from errors for mathematical advancement in
LLMs. arXiv preprint arXiv:2503.17439, 2025b.

Sungjin Park, Xiao Liu, Yeyun Gong, and Edward Choi. Ensembling large language mod-
els with process reward-guided tree search for better complex reasoning. arXiv preprint
arXiv:2412.15797, 2024.

Sungjin Park, Xiao Liu, Yeyun Gong, and Edward Choi. Ensembling large language models with
process reward-guided tree search for better complex reasoning. In Proceedings of the 2025 Con-
ference of the Nations of the Americas Chapter of the Association for Computational Linguistics:
Human Language Technologies (Volume 1: Long Papers), pp. 10256–10277, Albuquerque, New
Mexico, 2025. Association for Computational Linguistics.

David L. Poole and Alan K. Mackworth. Artificial Intelligence: Foundations of Computational
Agents. Cambridge University Press, 3 edition, 2023.

Pranav Putta, Edmund Mills, Naman Garg, Sumeet Motwani, Chelsea Finn, Divyansh Garg, and
Rafael Rafailov. Agent q: Advanced reasoning and learning for autonomous AI agents. arXiv
preprint arXiv:2408.07199, 2024.

Zhenting Qi, Mingyuan Ma, Jiahang Xu, Li Lyna Zhang, Fan Yang, and Mao Yang. Mutual reason-
ing makes smaller LLMs stronger problem-solvers. arXiv preprint arXiv:2408.06195, 2024.

Yiwei Qin, Xuefeng Li, Haoyang Zou, Yixiu Liu, Shijie Xia, Zhen Huang, Yixin Ye, Weizhe Yuan,
Hector Liu, Yuanzhi Li, et al. O1 replication journey: A strategic progress report–part 1. arXiv
preprint arXiv:2410.18982, 2024.

Yanwei Ren, Haotian Zhang, Fuxiang Wu, Jiayan Qiu, Jiaxing Huang, Baosheng Yu, and Liu Liu.
SIGMA: Refining large language model reasoning via sibling-guided monte carlo augmentation.
arXiv preprint arXiv:2506.06470, 2025.

Stuart Russell and Peter Norvig. Artificial Intelligence: A Modern Approach (4th Edition). Pearson,
2020. ISBN 9780134610993. URL http://aima.cs.berkeley.edu/.

Robin Schmöcker, Lennart Kampmann, and Alexander Dockhorn. Time-critical and confidence-
based abstraction dropping methods. arXiv preprint arXiv:2507.02703, 2025.

17

https://books.google.ca/books?id=IVZBHAAACAAJ
https://books.google.ca/books?id=IVZBHAAACAAJ
http://aima.cs.berkeley.edu/

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Amrith Setlur, Chirag Nagpal, Adam Fisch, Xinyang Geng, Jacob Eisenstein, Rishabh Agarwal,
Alekh Agarwal, Jonathan Berant, and Aviral Kumar. Rewarding progress: Scaling automated
process verifiers for LLM reasoning. arXiv preprint arXiv:2410.08146, 2024.

Haoyuan Shi, Yunxin Li, Xinyu Chen, Longyue Wang, Baotian Hu, and Min Zhang. AniMaker:
Automated multi-agent animated storytelling with MCTS-driven clip generation. arXiv preprint
arXiv:2506.10540, 2025a.

Wentao Shi, Zichun Yu, Fuli Feng, Xiangnan He, and Chenyan Xiong. Efficient multi-agent system
training with data influence-oriented tree search. arXiv preprint arXiv:2502.00955, 2025b.

Zijing Shi, Meng Fang, and Ling Chen. Monte carlo planning with large language model for text-
based game agents. arXiv preprint arXiv:2504.16855, 2025c.

Somanshu Singla, Zhen Wang, Tianyang Liu, Abdullah Ashfaq, Zhiting Hu, and Eric P Xing. Dy-
namic rewarding with prompt optimization enables tuning-free self-alignment of language mod-
els. arXiv preprint arXiv:2411.08733, 2024.

Charlie Snell, Jaehoon Lee, Kelvin Xu, and Aviral Kumar. Scaling llm test-time compute optimally
can be more effective than scaling model parameters. arXiv preprint arXiv:2408.03314, 2024.

Henry W Sprueill, Carl Edwards, Mariefel V Olarte, Udishnu Sanyal, Heng Ji, and Sutanay Choud-
hury. Monte carlo thought search: Large language model querying for complex scientific reason-
ing in catalyst design. arXiv preprint arXiv:2310.14420, 2023.

Yuni Susanti and Michael Färber. Can llms leverage observational data? towards data-driven causal
discovery with llms. arXiv preprint arXiv:2504.10936, 2025.

Sophia Tang, Yinuo Zhang, and Pranam Chatterjee. Peptune: De novo generation of therapeutic
peptides with multi-objective-guided discrete diffusion. ArXiv, pp. arXiv–2412, 2025.

Ye Tian, Baolin Peng, Linfeng Song, Lifeng Jin, Dian Yu, Lei Han, Haitao Mi, and Dong Yu.
Toward self-improvement of llms via imagination, searching, and criticizing. arXiv preprint
arXiv:2404.12253, 2024a.

Ye Tian, Baolin Peng, Linfeng Song, Lifeng Jin, Dian Yu, Haitao Mi, and Dong Yu. To-
ward self-improvement of llms via imagination, searching, and criticizing. arXiv preprint
arXiv:2404.12253, 2024b.

Hieu Tran, Zonghai Yao, Junda Wang, Yifan Zhang, Zhichao Yang, and Hong Yu. RARE: Retrieval-
augmented reasoning enhancement for large language models. arXiv preprint arXiv:2412.02830,
2024.

Jonathan Uesato, Nate Kushman, Ramana Kumar, Francis Song, Noah Siegel, Lisa Wang, Antonia
Creswell, Geoffrey Irving, and Irina Higgins. Solving math word problems with process-and
outcome-based feedback. arXiv preprint arXiv:2211.14275, 2022.

Teon Volkova, Evander Delacruz, and Thaddeus Cavanaugh. A novel approach to optimize large
language models for named entity matching with monte carlo tree search. Authorea Preprints,
2024.

Ante Wang, Linfeng Song, Ye Tian, Baolin Peng, Dian Yu, Haitao Mi, Jinsong Su, and Dong Yu.
Litesearch: Efficacious tree search for LLM. arXiv preprint arXiv:2407.00320, 2024a.

Chaojie Wang, Yanchen Deng, Zhiyi Lyu, Liang Zeng, Jujie He, Shuicheng Yan, and Bo An.
Q*: Improving multi-step reasoning for llms with deliberative planning. arXiv preprint
arXiv:2406.14283, 2024b.

Chaojie Wang, Yanchen Deng, Zhiyi Lyu, Liang Zeng, Jujie He, Shuicheng Yan, and Bo An. Q*:
Improving multi-step reasoning for llms with deliberative planning, 2024c. URL https://
arxiv.org/abs/2406.14283.

Evan Wang, Federico Cassano, Catherine Wu, Yunfeng Bai, Will Song, Vaskar Nath, Ziwen Han,
Sean Hendryx, Summer Yue, and Hugh Zhang. Planning in natural language improves llm search
for code generation. arXiv preprint arXiv:2409.03733, 2024d.

18

https://arxiv.org/abs/2406.14283
https://arxiv.org/abs/2406.14283

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Peiyi Wang, Lei Li, Zhihong Shao, Runxin Xu, Damai Dai, Yifei Li, Deli Chen, Yu Wu, and Zhifang
Sui. Math-shepherd: Verify and reinforce LLMs step-by-step without human annotations. In Pro-
ceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume
1: Long Papers), pp. 9426–9439, 2024e.

Teng Wang, Zhangyi Jiang, Zhenqi He, Shenyang Tong, Wenhan Yang, Yanan Zheng, Zeyu Li, Zifan
He, and Hailei Gong. Towards hierarchical multi-step reward models for enhanced reasoning in
large language models. arXiv preprint arXiv:2503.13551, 2025a.

Tianlong Wang, Junzhe Chen, Xueting Han, and Jing Bai. CPL: Critical plan step learning boosts
LLM generalization in reasoning tasks. arXiv preprint arXiv:2409.08642, 2024f.

Xinyuan Wang, Chenxi Li, Zhen Wang, Fan Bai, Haotian Luo, Jiayou Zhang, Nebojsa Jojic, Eric P
Xing, and Zhiting Hu. Promptagent: Strategic planning with language models enables expert-
level prompt optimization. arXiv preprint arXiv:2310.16427, 2023a.

Xiyao Wang, Linfeng Song, Ye Tian, Dian Yu, Baolin Peng, Haitao Mi, Furong Huang, and Dong
Yu. Towards self-improvement of LLMs via MCTS: Leveraging stepwise knowledge with cur-
riculum preference learning. arXiv preprint arXiv:2410.06508, 2024g.

Xiyao Wang, Zhengyuan Yang, Chao Feng, Hongjin Lu, Linjie Li, Chung-Ching Lin, Kevin Lin,
Furong Huang, and Lijuan Wang. Sota with less: MCTS-guided sample selection for data-
efficient visual reasoning self-improvement. arXiv preprint arXiv:2504.07934, 2025b.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V Le, Ed H. Chi, Sharan Narang, Aakanksha
Chowdhery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language
models. In The Eleventh International Conference on Learning Representations, 2023b. URL
https://openreview.net/forum?id=1PL1NIMMrw.

Yibo Wang, Zhihao Peng, Ying Wang, Zhao Wei, Hai Yu, and Zhiliang Zhu. MCTS-refined
CoT: High-quality fine-tuning data for LLM-based repository issue resolution. arXiv preprint
arXiv:2506.12728, 2025c.

Zihan Wang, Yunxuan Li, Yuexin Wu, Liangchen Luo, Le Hou, Hongkun Yu, and Jingbo Shang.
Multi-step problem solving through a verifier: An empirical analysis on model-induced process
supervision. arXiv preprint arXiv:2402.02658, 2024h.

Ziting Wang, Haitao Yuan, Wei Dong, Gao Cong, and Feifei Li. Corag: A cost-constrained retrieval
optimization system for retrieval-augmented generation. arXiv preprint arXiv:2411.00744, 2024i.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V
Le, Denny Zhou, et al. Chain-of-thought prompting elicits reasoning in large lan-
guage models. Advances in neural information processing systems, 35:24824–24837,
2022. URL https://proceedings.neurips.cc/paper_files/paper/2022/
hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html.

Yifan Wei, Xiaoyan Yu, Tengfei Pan, Angsheng Li, and Li Du. Structural entropy guided agent
for detecting and repairing knowledge deficiencies in LLMs. arXiv preprint arXiv:2505.07184,
2025.

Chung-Wen Wu, Guan-Tang Huang, Yue-Yang He, and Berlin Chen. KNOT-MCTS: An effective
approach to addressing hallucinations in generative language modeling for question answering.
In Proceedings of the 35th Conference on Computational Linguistics and Speech Processing (RO-
CLING 2023), pp. 215–221, 2023.

Jinyang Wu, Mingkuan Feng, Shuai Zhang, Ruihan Jin, Feihu Che, Zengqi Wen, and Jianhua Tao.
Boosting multimodal reasoning with MCTS-automated structured thinking, 2025a.

Mengsong Wu, YaFei Wang, Yidong Ming, Yuqi An, Yuwei Wan, Wenliang Chen, Binbin Lin,
Yuqiang Li, Tong Xie, and Dongzhan Zhou. ChemAgent: Enhancing LLMs for chemistry and ma-
terials science through tree-search based tool learning. arXiv preprint arXiv:2506.07551, 2025b.

19

https://openreview.net/forum?id=1PL1NIMMrw
https://proceedings.neurips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html
https://proceedings.neurips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Tao Wu, Jingyuan Chen, Wang Lin, Jian Zhan, Mengze Li, Kun Kuang, and Fei Wu. Per-
sonalized distractor generation via MCTS-guided reasoning reconstruction. arXiv preprint
arXiv:2508.11184, 2025c.

Yangzhen Wu, Zhiqing Sun, Shanda Li, Sean Welleck, and Yiming Yang. Scaling inference compu-
tation: Compute-optimal inference for problem-solving with language models. In Workshop on
Mathematical Reasoning and AI at NeurIPS’24, 2024. URL https://openreview.net/
forum?id=j7DZWSc8qu.

Violet Xiang, Charlie Snell, Kanishk Gandhi, Alon Albalak, Anikait Singh, Chase Blagden, Duy
Phung, Rafael Rafailov, Nathan Lile, Dakota Mahan, et al. Towards system 2 reasoning in LLMs:
Learning how to think with meta chain-of-thought. arXiv preprint arXiv:2501.04682, 2025.

Yuquan Xie, Zaijing Li, Rui Shao, Gongwei Chen, Kaiwen Zhou, Yinchuan Li, Dongmei Jiang, and
Liqiang Nie. Mirage-1: Augmenting and updating GUI agent with hierarchical multimodal skills.
arXiv preprint arXiv:2506.10387, 2025.

Yuxi Xie, Anirudh Goyal, Wenyue Zheng, Min-Yen Kan, Timothy P. Lillicrap, Kenji Kawaguchi,
and Michael Shieh. Monte carlo tree search boosts reasoning via iterative preference learning.
arXiv preprint arXiv:2405.00451, 2024a.

Yuxi Xie, Anirudh Goyal, Wenyue Zheng, Min-Yen Kan, Timothy P Lillicrap, Kenji Kawaguchi,
and Michael Shieh. Monte carlo tree search boosts reasoning via iterative preference learning.
arXiv preprint arXiv:2405.00451, 2024b.

Ran Xin, Chenguang Xi, Jie Yang, Feng Chen, Hang Wu, Xia Xiao, Yifan Sun, Shen Zheng, and
Kai Shen. Bfs-prover: Scalable best-first tree search for LLM-based automatic theorem proving.
arXiv preprint arXiv:2502.03438, 2025.

Guanming Xiong, Haochen Li, and Wen Zhao. MCTS-KBQA: Monte carlo tree search for knowl-
edge base question answering. arXiv preprint arXiv:2502.13428, 2025.

Bin Xu, Yiguan Lin, Yinghao Li, and Yang Gao. SRA-MCTS: Self-driven reasoning augmentation
with monte carlo tree search for code generation. arXiv preprint arXiv:2411.11053, 2024a.

Haotian Xu. No train still gain. unleash mathematical reasoning of large language models with
monte carlo tree search guided by energy function. arXiv preprint arXiv:2309.03224, 2023.

Shicheng Xu, Liang Pang, Huawei Shen, Xueqi Cheng, and Tat-Seng Chua. Search-in-the-chain:
Interactively enhancing large language models with search for knowledge-intensive tasks. In
Proceedings of the ACM Web Conference 2024, pp. 1362–1373, 2024b.

Qi Yang, Chenghao Zhang, Lubin Fan, Kun Ding, Jieping Ye, and Shiming Xiang. Re-ranking
reasoning context with tree search makes large vision-language models stronger. arXiv preprint
arXiv:2506.07785, 2025a.

Sen Yang, Yafu Li, Wai Lam, and Yu Cheng. Multi-LLM collaborative search for complex problem
solving. arXiv preprint arXiv:2502.18873, 2025b.

Wen Yang, Minpeng Liao, and Kai Fan. Markov chain of thought for efficient mathematical reason-
ing. arXiv preprint arXiv:2410.17635, 2024.

Zhicheng Yang, Zhijiang Guo, Yinya Huang, Xiaodan Liang, Yiwei Wang, and Jing Tang. TreeRPO:
Tree relative policy optimization. arXiv preprint arXiv:2506.05183, 2025c.

Huanjin Yao, Jiaxing Huang, Wenhao Wu, Jingyi Zhang, Yibo Wang, Shunyu Liu, Yingjie Wang,
Yuxin Song, Haocheng Feng, Li Shen, et al. Mulberry: Empowering MLLM with o1-like rea-
soning and reflection via collective monte carlo tree search. arXiv preprint arXiv:2412.18319,
2024a.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Thomas L. Griffiths, Yuan Cao, and Karthik
Narasimhan. Tree of thoughts: Deliberate problem solving with large language models. arXiv
preprint arXiv:2305.10601, 2023.

20

https://openreview.net/forum?id=j7DZWSc8qu
https://openreview.net/forum?id=j7DZWSc8qu

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Thomas L. Griffiths, Yuan Cao, and Karthik
Narasimhan. Tree of thoughts: deliberate problem solving with large language models. In Pro-
ceedings of the 37th International Conference on Neural Information Processing Systems, NIPS
’23, Red Hook, NY, USA, 2024b. Curran Associates Inc.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan Cao, and Karthik
Narasimhan. Tree of thoughts: Deliberate problem solving with large language models. Ad-
vances in Neural Information Processing Systems, 36, 2024c.

Hai Ye, Mingbao Lin, Hwee Tou Ng, and Shuicheng Yan. Multi-agent sampling: Scaling infer-
ence compute for data synthesis with tree search-based agentic collaboration. arXiv preprint
arXiv:2412.17061, 2024.

Huifeng Yin, Yu Zhao, Minghao Wu, Xuanfan Ni, Bo Zeng, Hao Wang, Tianqi Shi, Liangying Shao,
Chenyang Lyu, Longyue Wang, et al. Towards widening the distillation bottleneck for reasoning
models, 2025.

Fei Yu, Anningzhe Gao, and Benyou Wang. OVM, outcome-supervised value models for planning
in mathematical reasoning. arXiv preprint arXiv:2311.09724, 2023a.

Liyang Yu, Tianyi Wang, Junfeng Jiao, Fengwu Shan, Hongqing Chu, and Bingzhao Gao. BIDA:
A bi-level interaction decision-making algorithm for autonomous vehicles in dynamic traffic sce-
narios. In 2025 IEEE Intelligent Vehicles Symposium (IV), pp. 1209–1214. IEEE, 2025.

Xiao Yu, Maximillian Chen, and Zhou Yu. Prompt-based monte-carlo tree search for goal-oriented
dialogue policy planning. arXiv preprint arXiv:2305.13660, 2023b.

Xiao Yu, Baolin Peng, Vineeth Vajipey, Hao Cheng, Michel Galley, Jianfeng Gao, and Zhou Yu.
Improving autonomous AI agents with reflective tree search and self-learning, 2024.

Siyu Yuan, Zehui Chen, Zhiheng Xi, Junjie Ye, Zhengyin Du, and Jiecao Chen. Agent-R: Training
language model agents to reflect via iterative self-training. arXiv preprint arXiv:2501.11425,
2025.

Khadija Zanna and Akane Sano. Uncovering bias paths with llm-guided causal discovery: An active
learning and dynamic scoring approach. arXiv preprint arXiv:2506.12227, 2025.

Zhiyuan Zeng, Qinyuan Cheng, Zhangyue Yin, Bo Wang, Shimin Li, Yunhua Zhou, Qipeng Guo,
Xuanjing Huang, and Xipeng Qiu. Scaling of search and learning: A roadmap to reproduce o1
from reinforcement learning perspective. arXiv preprint arXiv:2412.14135, 2024a.

Zhiyuan Zeng, Qinyuan Cheng, Zhangyue Yin, Bo Wang, Shimin Li, Yunhua Zhou, Qipeng Guo,
Xuanjing Huang, and Xipeng Qiu. Scaling of search and learning: A roadmap to reproduce o1
from reinforcement learning perspective, 2024b. URL https://arxiv.org/abs/2412.
14135.

Yuanzhao Zhai, Tingkai Yang, Kele Xu, Dawei Feng, Cheng Yang, Bo Ding, and Huaimin Wang.
Enhancing decision-making for LLM agents via step-level q-value models. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 39, pp. 27161–27169, 2025.

Beichen Zhang, Yuhong Liu, Xiaoyi Dong, Yuhang Zang, Pan Zhang, Haodong Duan, Yuhang
Cao, Dahua Lin, and Jiaqi Wang. Booststep: Boosting mathematical capability of large language
models via improved single-step reasoning. arXiv preprint arXiv:2501.03226, 2025a.

Dan Zhang, Sining Zhoubian, Ziniu Hu, Yisong Yue, Yuxiao Dong, and Jie Tang. Rest-mcts*: Llm
self-training via process reward guided tree search. arXiv preprint arXiv:2406.03816, 2024a.

Dan Zhang, Sining Zhoubian, Ziniu Hu, Yisong Yue, Yuxiao Dong, and Jie Tang. ReST-MCTS*:
LLM self-training via process reward guided tree search. In The Thirty-eighth Annual Confer-
ence on Neural Information Processing Systems, 2024b. URL https://openreview.net/
forum?id=8rcFOqEud5.

21

https://arxiv.org/abs/2412.14135
https://arxiv.org/abs/2412.14135
https://openreview.net/forum?id=8rcFOqEud5
https://openreview.net/forum?id=8rcFOqEud5

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Di Zhang, Xiaoshui Huang, Dongzhan Zhou, Yuqiang Li, and Wanli Ouyang. Accessing gpt-4 level
mathematical olympiad solutions via monte carlo tree self-refine with llama-3 8b. arXiv preprint
arXiv:2406.07394, 2024c.

Di Zhang, Jianbo Wu, Jingdi Lei, Tong Che, Jiatong Li, Tong Xie, Xiaoshui Huang, Shufei Zhang,
Marco Pavone, Yuqiang Li, et al. Llama-berry: Pairwise optimization for o1-like olympiad-level
mathematical reasoning. arXiv preprint arXiv:2410.02884, 2024d.

Di Zhang, Jianbo Wu, Jingdi Lei, Tong Che, Jiatong Li, Tong Xie, Xiaoshui Huang, Shufei Zhang,
Marco Pavone, Yuqiang Li, Wanli Ouyang, and Dongzhan Zhou. Llama-berry: Pairwise op-
timization for olympiad-level mathematical reasoning via o1-like monte carlo tree search. In
Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association
for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers), pp.
7315–7337, Albuquerque, New Mexico, 2025b. Association for Computational Linguistics.

Di Zhang, Jianbo Wu, Jingdi Lei, Tong Che, Jiatong Li, Tong Xie, Xiaoshui Huang, Shufei Zhang,
Marco Pavone, Yuqiang Li, et al. LLaMA-Berry: Pairwise optimization for olympiad-level math-
ematical reasoning via O1-like monte carlo tree search. In Proceedings of the 2025 Conference
of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human
Language Technologies (Volume 1: Long Papers), pp. 7315–7337, 2025c.

Shun Zhang, Zhenfang Chen, Yikang Shen, Mingyu Ding, Joshua B Tenenbaum, and Chuang Gan.
Planning with large language models for code generation. arXiv preprint arXiv:2303.05510,
2023a.

Tao Zhang, Jia-Shu Pan, Ruiqi Feng, and Tailin Wu. T-SCEND: Test-time scalable MCTS-enhanced
diffusion model, 2025d.

Xiang Zhang, Juntai Cao, Jiaqi Wei, Chenyu You, and Dujian Ding. Why prompt design matters and
works: A complexity analysis of prompt search space in llms. arXiv preprint arXiv:2503.10084,
2025e.

Yao Zhang, Zijian Ma, Yunpu Ma, Zhen Han, Yu Wu, and Volker Tresp. Webpilot: A versatile and
autonomous multi-agent system for web task execution with strategic exploration. In Proceedings
of the AAAI Conference on Artificial Intelligence, volume 39, pp. 23378–23386, 2025f.

Yichi Zhang, Siyuan Zhang, Yao Huang, Zeyu Xia, Zhengwei Fang, Xiao Yang, Ranjie Duan, Dong
Yan, Yinpeng Dong, and Jun Zhu. Stair: Improving safety alignment with introspective reasoning.
arXiv preprint arXiv:2502.02384, 2025g.

Yuxiang Zhang, Shangxi Wu, Yuqi Yang, Jiangming Shu, Jinlin Xiao, Chao Kong, and Jitao Sang.
o1-coder: an o1 replication for coding. arXiv preprint arXiv:2412.00154, 2024e.

Zheyu Zhang, Zhuorui Ye, Yikang Shen, and Chuang Gan. Autonomous tree-search ability of large
language models. arXiv preprint arXiv:2310.10686, 2023b.

Yu Zhao, Huifeng Yin, Bo Zeng, Hao Wang, Tianqi Shi, Chenyang Lyu, Longyue Wang, Weihua
Luo, and Kaifu Zhang. Marco-o1: Towards open reasoning models for open-ended solutions.
arXiv preprint arXiv:2411.14405, 2024.

Zirui Zhao, Wee Sun Lee, and David Hsu. Large language models as commonsense knowledge for
large-scale task planning. Advances in neural information processing systems, 36:31967–31987,
2023.

Zhi Zheng, Zhuoliang Xie, Zhenkun Wang, and Bryan Hooi. Monte carlo tree search for compre-
hensive exploration in LLM-based automatic heuristic design. arXiv preprint arXiv:2501.08603,
2025.

Andy Zhou, Kai Yan, Michal Shlapentokh-Rothman, Haohan Wang, and Yu-Xiong Wang. Lan-
guage agent tree search unifies reasoning acting and planning in language models. arXiv preprint
arXiv:2310.04406, 2023.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Xiang Zhuang, Bin Wu, Jiyu Cui, Kehua Feng, Xiaotong Li, Huabin Xing, Keyan Ding, Qiang
Zhang, and Huajun Chen. Boosting LLM’s molecular structure elucidation with knowledge
enhanced tree search reasoning. In Wanxiang Che, Joyce Nabende, Ekaterina Shutova, and
Mohammad Taher Pilehvar (eds.), Proceedings of the 63rd Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1: Long Papers), pp. 22561–22576, Vienna, Aus-
tria, July 2025. Association for Computational Linguistics. ISBN 979-8-89176-251-0. URL
https://aclanthology.org/2025.acl-long.1100/.

Yuchen Zhuang, Xiang Chen, Tong Yu, Saayan Mitra, Victor Bursztyn, Ryan A Rossi, Somdeb
Sarkhel, and Chao Zhang. Toolchain*: Efficient action space navigation in large language models
with A* search. arXiv preprint arXiv:2310.13227, 2023.

Yuchen Zhuang, Xiang Chen, Tong Yu, Saayan Mitra, Victor Bursztyn, Ryan A. Rossi, Somdeb
Sarkhel, and Chao Zhang. Toolchain*: Efficient action space navigation in large language models
with a* search. In The Twelfth International Conference on Learning Representations, 2024. URL
https://openreview.net/forum?id=B6pQxqUcT8.

Wei Zou, Sen Yang, Yu Bao, Shujian Huang, Jiajun Chen, and Shanbo Cheng. Trans-Zero: Self-
play incentivizes large language models for multilingual translation without parallel data. arXiv
preprint arXiv:2504.14669, 2025.

23

https://aclanthology.org/2025.acl-long.1100/
https://openreview.net/forum?id=B6pQxqUcT8

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

APPENDIX

A Organization of the Appendix 26

B Foundational Search Paradigms in General AI 27

B.1 Uninformed Search: Blind Exploration . 27

B.2 Informed Search: Heuristic-Guided Exploration 27

B.3 Monte Carlo Tree Search: Learning from Experience 28

B.4 Comparison of Exploration Strategies . 29

C Test-time Scaling via Search 30

C.1 A Tale of Two Optimizations for LLM Scaling: Training-Time vs. Test-Time . . . 30

C.2 Operationalizing Search in the Objective Space 30

C.3 Decomposing the Objective Space: Prompt and Answer Spaces 31

D Reward as a Unified Signal for RL and Search : One Objective, Two Optimizers 32

D.1 RL via Policy Shaping: Internalizing Rewards for Generalization 32

D.2 Search via Deliberative Planning: Externalizing Rewards for Specificity 32

D.3 A Symbiotic Framework . 33

E Monte Carlo Tree Search (MCTS) 33

E.1 Unified Notation and Problem Formation . 33

E.2 Practitioner’s Guide: Task-oriented MCTS guide 35

E.3 Advanced Topics and Hybrid Approaches for MCTS 37

E.3.1 Multi-Agent and Collaborative Search . 37

E.3.2 Reward Model Design and Optimization 37

E.3.3 Search Efficiency and Dynamics . 37

E.4 MCTS for Direct Test-Time Enhancement . 38

E.4.1 General Reasoning & Problem Solving 38

E.4.2 Mathematical Reasoning . 38

E.4.3 Code Generation & Software Engineering 38

E.4.4 LLM Agents & Interactive Environments 39

E.4.5 Retrieval-Augmented Generation (RAG) & Knowledge-Intensive Tasks . . 39

E.4.6 Multimodal Reasoning . 39

E.5 MCTS for Self-Improvement via Data Generation 40

E.5.1 Foundational Self-Improvement Frameworks 40

E.5.2 General Capabilities & Alignment . 40

E.5.3 Scientific & Specialized Domains . 41

E.5.4 Multimodal Applications . 41

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

F Informed Search Based Method 41

F.1 Informed BFS/DFS . 41

F.2 A* . 42

G Unified Evaluation and Compute Accounting for Tree-Search 44

G.1 The Landscape of Mathematical Reasoning and the Infeasibility of Retrospective
Comparison . 44

G.2 Proposed Protocol: A Universal Framework for Compute Accounting (SCRP) . . . 45

H Challenges and Future of Tree-Search Methods 45

I The Use of Large Language Models (LLMs) 46

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

A ORGANIZATION OF THE APPENDIX

The appendix is organized to provide a coherent, hierarchical progression from foundational con-
cepts to methodological taxonomies, and finally to implementation-level guidance and evaluation
standards. This structure is intended to support both conceptual understanding and practical adop-
tion, enabling readers to navigate the diverse landscape of inference-time tree search through a
unified lens. To address the complexity of the field, we utilize visual taxonomies and comparative
tables to enhance skimmability. The supplementary material is divided into six modules:

Foundational Paradigms (Appendix B): We begin by revisiting three foundational search
paradigms—uninformed search (BFS, DFS), informed search (heuristic-guided), and Monte Carlo
Tree Search (learning from experience). These establish the algorithmic primitives, representational
assumptions, and computational tradeoffs that underpin the subsequent design space and provide a
common vocabulary for modern LLM-based adaptations.

Theoretical Distinctions (Appendices C and D):

• Appendix C (Test-Time Optimization): This section formalizes the shift from parameter-
centric training to computation-centric inference. We introduce the notion of a task-defined
objective space, decomposed into a Prompt Space (algorithm selection) and an Answer
Space (solution generation). This framework provides the theoretical grounding for under-
standing MCTS as a form of structured test-time optimization.

• Appendix D (Reward as Guidance vs. Learning Signal): Here we provide a principled
disentanglement of the “reward” construct. We contrast the persistent, parameter-updating
role of reward in Reinforcement Learning with the transient, instance-specific role of re-
ward in deliberative search. This distinction clarifies how inference-time reward shaping
can guide reasoning without inducing long-term policy drift.

Methodological Taxonomy (Appendices E and F): These modules map the algorithmic design
space underlying both MCTS and informed search.

• Appendix E (Monte Carlo Tree Search): We provide a comprehensive treatment of
MCTS for LLMs, structured hierarchically to facilitate comparison. We first visualize
the field’s full typology and establish a unified notation. To aid practical adoption, we
offer a practitioner’s guide that synthesizes optimal search configurations across domains
into a comparative summary. We then survey advanced topics and logically categorize
applications into two distinct functional paradigms: direct test-time enhancement and self-
improvement via synthetic data generation.

Figure 4: A map of the field’s rapid growth on tree search algorithms.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

• Appendix F (Heuristic-Guided Search): We analyze informed search meth-
ods—including LLM-augmented BFS/DFS and A∗—emphasizing heuristic construction,
cost shaping, and admissibility tradeoffs. These techniques surface as complementary tools
to MCTS within the broader space of inference-time reasoning.

Standardized Evaluation Protocols (Appendix G): To support reproducible and hardware-
agnostic comparison, we propose a unified protocol for evaluating test-time compute. This includes
practical recipes for FLOP estimation, wall-clock profiling, and rigorous metrics such as Budgeted
Accuracy and Tokens-per-Solved, establishing a principled foundation for benchmarking search-
based methods.

Challenges and Future Directions (Appendix H): We conclude with a discussion of emerging
challenges, including overthinking behaviors on simple tasks, efficiency bottlenecks in deep search,
and the heavy reliance on high-quality reward models. These issues motivate several directions for
future research at the intersection of search, learning, and scalable inference.

The reorganized structure ensures that readers can first understand the conceptual axes and method-
ological design space before encountering algorithm-level details, eliminating the need to navigate
long sequential listings.

B FOUNDATIONAL SEARCH PARADIGMS IN GENERAL AI

Solving complex problems can be formalized as a search task: finding an optimal path from an ini-
tial state to a goal state within a state-action space, conventionally represented as a tree TQ. While
classical AI has developed a rich toolkit for navigating such trees, the state spaces implicit in lan-
guage model reasoning present unique challenges. They are not merely large; they are combinato-
rially vast, high-dimensional, and semantically structured, rendering exhaustive exploration compu-
tationally infeasible. This section revisits three foundational paradigms of tree search—uninformed,
informed, and Monte Carlo-based—to establish a conceptual vocabulary for understanding their
modern adaptations for LLM-based reasoning, where the goal is to identify optimal reasoning paths
efficiently.

B.1 UNINFORMED SEARCH: BLIND EXPLORATION

Traditional search algorithms, such as Breadth-First Search (Moore (1959), BFS), Depth-First
Search (DFS), and Uniform Cost Search (UCS, or Dijkstra’s algorithm), are uninformed search
algorithms that operate with minimal knowledge about the goal. These algorithms can recognize
the goal state when reached but lack any additional information to guide them toward it efficiently
(Russell & Norvig, 2020; Poole & Mackworth, 2023). While some uninformed search algorithms,
like UCS, consider the cost of the path taken so far, none can estimate the remaining distance to the
goal or determine which paths are more promising.

The key characteristic of uninformed search is that it must rely solely on the problem’s basic defini-
tion - the available actions, their costs, and the goal recognition criteria - to systematically explore
the search space. As a result, these algorithms differentiate between possible solution paths pri-
marily through their order of exploration and accumulated costs. Each algorithm offers different
guarantees: BFS finds the shortest path in terms of steps, while UCS finds the lowest-cost path.
Additional variants like Depth-Limited Search (DLS) and Iterative Deepening Search (IDS) address
memory limitations of basic DFS while maintaining completeness. The choice between these al-
gorithms often depends on the problem’s characteristics and computational constraints, particularly
memory requirements.

B.2 INFORMED SEARCH: HEURISTIC-GUIDED EXPLORATION

Informed search, or heuristic search, refers to algorithms that leverage additional knowledge about
the goal’s location through domain-specific hints (Russell & Norvig, 2020). These hints are encoded
in a heuristic function, denoted h(n) (Poole & Mackworth, 2023):

h(n) = estimated non-negative cost of the cheapest path from node n to a goal state (4)

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

Table 4: A comparative taxonomy of foundational search algorithms in AI. Notation: g(n) is the
accumulated path cost to node n; h(n) is the heuristic estimate of the cost from n to the goal; qi is
the estimated quality value of a search tree node Ci.

Family Algorithm Guiding Signal / Principle Typical Use Case

Uninformed

BFS Explores layer-by-layer; guarantees
shortest path in steps.

Shortest path, unweighted graphs.

DFS Explores a single branch to its
depth before backtracking.

Path existence, memory efficiency.

UCS Expands node with the lowest
accumulated path cost g(n).

Optimal path, weighted graphs.

IDS Depth-first search with an
incrementally increasing depth
limit.

Optimal path, low memory overhead.

Informed

Greedy BeFS Expands node closest to goal via
heuristic h(n) alone.

Quick, non-optimal solutions.

A* Search Balances path cost g(n) & heuristic
h(n).

General-purpose optimal planning.

Weighted A* Biases toward heuristic via
g(n) + w · h(n), w > 1.

Speed-optimality trade-offs.

IDA* Iterative deepening applied to the
A* cost function f(n).

Memory-efficient optimal search.

Beam Search Keeps top-k most promising
candidates at each step.

High branching factor problems.

Monte Carlo
(Sampling)

UCT-MCTS UCT balances exploitation (qj) &
exploration.

Games/planning in vast state spaces.

LLM-MCTS LLM acts as policy prior π and/or
rollout policy.

Test-time deliberative reasoning.

PUCT Variants Integrates a policy network’s prior
π into UCT bonus.

Integrating learned priors into search.

Let c(n, n′) denote the cost of the path between nodes n and n′. By incorporating heuristics, in-
formed search algorithms can make educated decisions about which paths are most promising to
explore, potentially reducing the computational resources required to find a solution. The effective-
ness and properties of these algorithms depend critically on the quality of their heuristic functions.
A heuristic is considered admissible if it never overestimates the true cost to the goal, and consistent
if it satisfies the triangle inequality h(n) ≤ c(n, n′) + h(n′) for any successor n′ of n. The choice
of heuristic function significantly impacts performance. A heuristic h1 is considered more informed
than h2 if h1(n) ≥ h2(n) for all nodes n and h1(n) > h2(n) for some nodes. More informed
heuristics generally lead to more efficient search, as they provide better guidance toward the goal.

However, there is often a trade-off between the computational cost of calculating the heuristic and
the savings it provides in search efficiency. Common informed search algorithms include Greedy
Best-First Search (BeFS), A* Search, Weighted A* Search, Iterative Deepening A* (IDA*), Beam
Search, and Recursive Best-First Search (RBFS) . These algorithms vary in how they balance the
heuristic estimates with path costs, leading to different trade-offs between optimality and efficiency.
For instance, A* search, when used with an admissible heuristic, guarantees finding an optimal
solution if one exists. The success of these algorithms in practical applications often depends on de-
signing effective problem-specific heuristics. Common techniques for developing heuristics include
relaxing problem constraints, pattern databases, and learning from experience (Russell & Norvig,
2020). While informed search algorithms generally outperform uninformed search in practice, their
effectiveness relies heavily on the quality of their heuristic functions and the specific characteristics
of the problem domain.

B.3 MONTE CARLO TREE SEARCH: LEARNING FROM EXPERIENCE

Monte Carlo Tree Search (MCTS) was first introduced by Coulom (2006) in the context of com-
puter Go as an adversarial search algorithm, which aims to maximize winning probability against

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

Figure 3 改

Highest h(⋅) Lowest h(⋅) Rollout

S
earch P

riority

High

Low

BFS DFS A* MCTS
Reward

Back-propagation

Figure 5: A visual comparison of four fundamental tree search algorithms, where node color inten-
sity represents search priority. BFS explores exhaustively level by level, while DFS commits to a
single path until a leaf is reached. In contrast, informed search like A* uses a heuristic function h(·)
to prioritize nodes with the lowest estimated total cost, regardless of their depth. MCTS introduces
a statistical approach, using simulated rollouts from leaf nodes and backpropagating the outcomes
to dynamically guide the search toward high-reward regions of the tree.

an optimal opponent. While adversarial MCTS alternates between players and models opponent
responses, the MCTS variant used in LLM’s inference-time search is a single-agent formulation,
where the algorithm explores different action sequences without modeling opposing players. This
adaptation maintains MCTS’s core strengths in balancing exploration and exploitation through sta-
tistical sampling, while refocusing the objective from competitive game-playing to finding optimal
sequences of actions in a non-adversarial environment.

Inference-time MCTS (hereafter referred to simply as MCTS) retains the four fundamental phases
of the original algorithm: selection, expansion, simulation, and backpropagation. During selection,
the algorithm traverses the tree using the Upper Confidence bounds applied to Trees (UCT) policy,
which balances exploration and exploitation by selecting nodes (states) that maximize:

a∗ = arg max
a∈A(s)

[
Qi + c

√
lnni

N(s, a)

]
(5)

where Q(s, a) estimates the expected future reward of taking action a in node s, N(s) is the number
of times node s has been visited, N(s, a) is the number of times action a has been selected in node s,
c is an exploration constant, and A(s) is the set of available actions at node s (Kocsis & Szepesvari,
2006). In the expansion phase, new nodes sampled by LLMs (e.g. subsequent steps in reasoning)
are added to the tree to gradually build a model of the search space. The simulation phase performs
rollouts from leaf nodes using a default policy to estimate long-term rewards, replacing the win/loss
outcomes of adversarial MCTS with domain-specific reward measures.

Unlike traditional uninformed search algorithms such as BFS or DFS that systematically explore
the state space, MCTS offers a statistical sampling approach that can handle much larger search
spaces. Compared to informed search algorithms like A*, which rely on pre-defined heuristics,
MCTS builds its evaluation function through experience. This makes it particularly suitable for
LLM inference where defining accurate heuristics is challenging. The algorithm’s ability to balance
between exploration and exploitation, combined with its flexibility in handling large state spaces,
makes it a powerful tool for guiding LLM inference, though its effectiveness depends on carefully
managing the trade-offs between computational resources and search depth.

B.4 COMPARISON OF EXPLORATION STRATEGIES

Figure 5 provides a conceptual illustration of these distinct exploration strategies. Uninformed al-
gorithms like BFS and DFS are governed by rigid, topology-driven expansion protocols. Informed
search, exemplified by A*, introduces goal-directedness by prioritizing search based on a heuristic
cost-to-go estimate, h(·), allowing it to focus on promising regions irrespective of tree topology.
Finally, MCTS replaces the static heuristic with a dynamically learned value function, estimated via

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

statistical sampling. This adaptive, self-correcting mechanism allows it to focus computational re-
sources on the most promising regions of the search space without requiring prior domain knowledge
encoded in a heuristic. This very property makes it the preeminent search paradigm for navigating
the vast and ill-defined reasoning spaces of large language models.

C TEST-TIME SCALING VIA SEARCH

As the scaling of model parameters and training data yields diminishing returns, a new frontier has
emerged: test-time scaling. This paradigm investigates how to optimally allocate computational re-
sources during inference to enhance a model’s effective reasoning capabilities. Unlike training-time
scaling, which refines a global, amortized policy by encoding knowledge into a model’s weights,
test-time scaling performs instance-specific optimization for a given problem Q. This section pro-
vides a detailed, mathematically-grounded analysis of these two orthogonal paradigms, contrasting
how they operate in fundamentally different optimization landscapes: the latent parameter space for
training versus the task-defined objective space for inference.

C.1 A TALE OF TWO OPTIMIZATIONS FOR LLM SCALING: TRAINING-TIME VS. TEST-TIME

The figure referenced illustrates two distinct approaches for improving model performance, each
defined by its unique objective signal and the space over which it optimizes.

Training-Time Scaling: Optimization in Latent Parameter Space. During training, the pri-
mary goal is to learn a set of parameters θ∗ that minimizes an expected loss function L over a data
distribution D. The optimization problem is formally stated as:

θ∗ = argmin
θ∈Θ

E(i,o)∼D[L(fθ(i), o)],

where Θ ⊆ RN is the high-dimensional latent parameter space. The objective signal in this
paradigm is the gradient of the loss with respect to the parameters,∇θL. Optimization proceeds via
iterative updates, such as stochastic gradient descent. The result is a static artifact—a trained model
π—that implicitly represents a posterior distribution over solutions.

Test-Time Scaling: Optimization in Task-Defined Objective Space. Given a fixed, pretrained
model π, test-time scaling seeks to find an optimal reasoning trace p∗ for a specific problem instance
Q. This process constitutes a second, distinct optimization loop. The search occurs in a discrete,
structured task-defined objective space, the solution space P(Q), which consists of all possible
reasoning traces. The objective signal is a scalar reward or value that evaluates the quality of a
trace. The optimization problem at inference is therefore:

p∗ = arg max
p∈A(π,Q,Cinfer)

V (p),

where A(π,Q, Cinfer) is the search algorithm that explores a subset of P(Q) guided by the model’s
prior π and constrained by the inference compute budget Cinfer, and V (p) is a function evaluating the
final trace. Scalable inference techniques, such as tree search, use intermediate rewards rs or partial
trace values vi to dynamically allocate compute to more promising regions.

C.2 OPERATIONALIZING SEARCH IN THE OBJECTIVE SPACE

The conceptual shift from gradients in latent space to rewards in objective space necessitates a
different class of optimization algorithms. While training relies on gradient-based methods, test-
time scaling is operationalized by search procedures that can navigate complex, non-differentiable
solution spaces.

Tree Search as a Scalable Inference Optimizer. Tree search methods, particularly MCTS, pro-
vide a principled framework for this optimization. They build a search tree TQ where each node
Ci corresponds to a partial reasoning trace pi. At each node, an action selection policy balances
exploiting known high-reward paths and exploring novel ones. For LLM-based search, this policy

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

often uses a PUCT-style rule that incorporates the policy network’s prior. The next action a∗ is
selected by choosing the action that leads to the most promising child node:

a∗ = argmax
a∈A(si)

(qj + U(Ci, Cj)) ,

where si is the state at the parent node Ci, and action a leads to the child node Cj with quality value
qj . The uncertainty bonus U(Ci, Cj) is formulated as:

U(Ci, Cj) = cexp · π(a|pi, Q) ·
√
ni

1 + nj
.

Here, ni and nj are the visit counts of the parent and child nodes, respectively. The policy π provides
a prior probability for taking action a given the history pi, and cexp is an exploration hyperparameter.
This synthesis allows the algorithm to scale reasoning performance effectively with the allocated
inference compute budget.

C.3 DECOMPOSING THE OBJECTIVE SPACE: PROMPT AND ANSWER SPACES

The task-defined objective space, over which test-time search operates, is not monolithic. It can
be productively decomposed into two distinct, hierarchically-related search spaces: the Prompt
Space and the Answer Space. This decomposition clarifies the mechanisms of Chain-of-Thought
(CoT) reasoning and reveals the limitations of many current test-time search methods. The overall
optimization problem is thus a search for an optimal reasoning trace, which involves finding both
the right algorithm and its correct execution.

The Prompt Space (P): Searching for an Algorithm. The prompt space, P , encompasses the set
of all possible reasoning structures or “step templates” an LLM can adopt to solve a problem. Each
template p ∈ P represents a specific strategy for externalizing and manipulating information from
the model’s latent state h into its textual output space (Zhang et al., 2025e). In essence, selecting
a template p is equivalent to selecting an algorithm. For example, one template for a complex
arithmetic task might involve explicitly tracking a running total, while another might only verbalize
intermediate calculations without a canonical state representation.

The choice of template is paramount because it dictates the computational graph the model simu-
lates through its autoregressive generation. While theoretical work suggests that a CoT-augmented
Transformer can be Turing-complete (Li et al., 2024d), this potential is contingent on generating the
correct computational trace. An suboptimal template can lead to an inefficient or even intractable
search by failing to surface the necessary state information for subsequent steps, effectively breaking
the simulated recurrence. The search for an optimal p∗ ∈ P is therefore a meta-level optimization:
discovering the most effective procedure for solving the task instance.

The Answer Space (S): Searching for a Solution. For any given prompt template p, there exists
a corresponding answer space, Sp, which contains all possible reasoning traces (i.e., potential solu-
tions) that can be generated by adhering to that template’s structure. The complexity of navigating
this space is critically conditioned on the choice of p. An effective template p∗ dramatically prunes
the answer space, simplifying the path to a correct solution. Conversely, a poorly chosen template
p′ can render the answer space vast and unstructured, making the search computationally infeasible
even with a large compute budget.

Many contemporary test-time search methods, such as Tree-of-Thought (Yao et al., 2024c) and
Graph-of-Thought (Besta et al., 2024), operate primarily within this second level of the hierarchy.
They typically fix a single, heuristically-defined prompt template (e.g., via a generic instruction like
“think step by step”) and then deploy sophisticated search algorithms to navigate the resulting an-
swer space Sp. These approaches excel at mitigating execution errors and exploring diverse solution
paths within a fixed algorithmic strategy. However, they do not address the foundational challenge
of selecting the algorithm itself. If the governing template p is flawed, even an exhaustive search of
Sp is unlikely to yield a correct solution.

A Unified View of Test-Time Search. A comprehensive framework for test-time search must
therefore account for the joint optimization over both spaces. The ultimate objective is to discover a

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

solution trace s∗ that maximizes the value function V (·), where the search spans all possible traces
allowed by all possible templates:

s∗ = arg max
p∈P,s∈Sp

V (s)

This formulation highlights a critical gap in current research. While significant effort has been
invested in optimizing search algorithms within a given answer space Sp, the systematic exploration
of the prompt space P remains a largely open challenge. The true potential of test-time scaling lies
not merely in executing a known algorithm more robustly, but in dynamically discovering the most
effective algorithm for the specific problem at hand.

D REWARD AS A UNIFIED SIGNAL FOR RL AND SEARCH : ONE OBJECTIVE,
TWO OPTIMIZERS

In advanced AI systems, a reward signal is the fundamental currency for guiding behavior. However,
its role bifurcates into two distinct yet complementary functions depending on the temporal scope of
the objective: shaping a durable, long-term policy versus guiding a transient, short-term plan. This
distinction is not one of paradigm but of application—whether the reward is used to permanently
update the model’s internal parameters (RL learning) or to direct a temporary search with fixed
parameters (planning).

D.1 RL VIA POLICY SHAPING: INTERNALIZING REWARDS FOR GENERALIZATION

When a reward signal is coupled with a learning algorithm, such as in Reinforcement Learning
(RL), its purpose is to be internalized. The feedback from the reward directly modifies the model’s
weights, creating lasting changes in its behavior. This process is analogous to skill acquisition,
where experience is distilled into a robust, general-purpose policy that governs the agent’s ”in-
stincts” across all future tasks. Formally, this involves optimizing policy parameters θ to maximize
an objective JRL that integrates task rewards with adherence to a set of universal principles P .

The optimization objective can be expressed as finding the optimal parameters θ∗ that balance ex-
pected cumulative rewards G(τ) over trajectories τ with a regularization term that enforces align-
ment with a foundational policy prior πP :

θ∗ = argmax
θ

Eτ∼πθ
[G(τ)]− λ

∫
s∈τ

DKL (πθ(·|s)∥πP(·|s)) ds

where DKL is the Kullback-Leibler divergence, measuring the ”cost” of deviating from the in-
grained principles, and λ is a hyperparameter controlling the strength of this alignment imperative.
Because this learning is permanent, the reward function is designed to instill universal, founda-
tional principles—for example, promoting logical consistency, ensuring truthfulness, or encour-
aging methodical reasoning. The objective is not to solve a single problem but to forge a broadly
capable and aligned agent. The reward here acts as a long-term teacher, shaping the agent’s intrinsic
character for future, unseen challenges.

D.2 SEARCH VIA DELIBERATIVE PLANNING: EXTERNALIZING REWARDS FOR SPECIFICITY

Conversely, during test-time search, the reward signal functions as an external, ephemeral guide. It
directs a deliberative process, like Monte Carlo Tree Search (MCTS), to navigate the solution space
for a single, immediate task. The reward evaluates candidate action sequences (plans), allowing the
system to identify a high-quality solution for the specific problem at hand. For a given task with
a specific external reward function Rext, the goal is to find an optimal plan p∗ that maximizes a
combination of this external signal and an internal, path-dependent heuristic Hθ provided by the
frozen model.

The optimal plan p∗ for a state sequence s0, s1, . . . , sT resulting from the plan’s actions is found by
solving:

p∗ = arg max
p∈Pplan

[
T−1∑
t=0

γtRext(st, at) +Hθ(sT , p)

]

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

where the heuristic Hθ is not just a simple state evaluation but a complex function of the final state
sT and the path p taken, potentially incorporating penalties for path irregularity or deviation from
the model’s learned priors:

Hθ(sT , p) = Vθ(sT)− β · log

(∫
p̃∈N (p)

e−E(p̃)/τcdp̃

)
Here, Vθ(sT) is the model’s intrinsic value estimate, while the second term acts as a complexity
penalty based on the ”free energy” over a neighborhood of paths N (p), discouraging overly sur-
prising or convoluted solutions. Crucially, this feedback is discarded once the task is complete; the
model’s underlying parameters θ remain untouched. This makes the reward an ideal tool for task-
specific, localized objectives without the risk of corrupting the model’s general-purpose policy.

D.3 A SYMBIOTIC FRAMEWORK

Ultimately, policy shaping and deliberative planning are not competing methodologies but two inte-
grated components of a sophisticated decision-making architecture. The RL-trained policy provides
the foundational intuition, offering high-quality, pre-compiled heuristics that make the search space
tractable. Search then provides the focused deliberation needed to refine these intuitions into a pre-
cise plan for the current context. This symbiotic relationship can be captured in a single, bi-level
optimization objective, where the outer loop learns the policy parameters θ by anticipating the out-
come of the inner-loop search process over a distribution of tasks I ∈ D.

The overarching goal is to find policy parameters θ∗ that maximize the true, ground-truth reward
Rtrue of the plans generated by the search algorithm:

θ∗ = argmax
θ

EI∼D

[
Rtrue

(
arg max

p∈Pplan

{
T−1∑
t=0

γtRext,I(st, at) +Hθ(sT , p)

})]
This formulation reveals the deep connection between the two processes. The outer optimization
(learning) seeks to create a model whose internal heuristic, Hθ, is maximally useful for the inner
optimization (planning), which in turn must produce plans that score well on the final, external
metric Rtrue. In essence, one process builds the artist’s foundational skill over a lifetime, while the
other guides the brushstrokes for the single masterpiece they are creating now.

E MONTE CARLO TREE SEARCH (MCTS)

E.1 UNIFIED NOTATION AND PROBLEM FORMATION

We adopt the notation conventions introduced in ReST-MCTS∗ (Zhang et al., 2024a) to formalize
MCTS in the context of LLM reasoning in a unified manner. This approach ensures that all the
articles surveyed adhere to a consistent notation system (with minor adjustments to accommodate
unique designs), allowing for a clear comparison of their methods without the reader having to
navigate the discrepancies in notation.

We first introduce the table of notations:

With this set of notations defined, a search problem in LLM based reasoning can be generalized as
finding the correct solution or the optimal reasoning trace p′ = [s′1, s

′
2, · · · , s′n] for a given problem

Q.

We categorize approaches for finding correct final solution (a specific terminal state s′) as goal-
driven. Goal-driven methods focus primarily on arriving at the correct final answer for given reason-
ing problems, paying less attention to the reasoning trace that leads to it. In contrast, approaches that
aim to identify good or optimal reasoning steps for a given problem are categorized as step-driven.
Step-driven methods not only seek to find the correct solution but also emphasize discovering high-
quality intermediate steps that contribute meaningfully to the reasoning process and minimize the
reasoning distance.

In the search process, the reasoning LLM acts as a policy network π(·|Q, c). where it generates a se-
quence of reasoning steps or actions to solve the problem Q, under a given instruction prompt c. The

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

Symbol Definition
Q Input question or problem for which reasoning is being performed

c User prompt or conditioning input used to bias the reasoning traces

ai Reasoning action at step i generated by the LLM (policy network), where ai ∈
A

si Reasoning state at step i resulting from action ai

pi Partial reasoning trace up to step i, defined as pi = [s1, s2, . . . , si]

rsi Single-step reward for state si, measuring its quality independent of previous
states

vi Value of partial solution pi, indicating its potential to reach a correct final answer

TQ Search tree for problem Q, where each node uniquely identifies a reasoning trace

π Policy model (LLM) used to generate reasoning steps during tree search

Vθ Value model that computes partial trace values: vi = Vθ(pi)

Rθ Reward model that generates single-step rewards: rsi = Rθ(si)

A Action space available at state si, representing all possible next actions

Ci Search tree node, represented as Ci = (ti, ni, qi) where:
• ti: tree node that identifies Ci

• ni: Visit count of node Ci, tracking exploration frequency
• qi: Quality value of the partial solution at node Ci, indicating its potential to
lead to a correct answer

Table 5: Unified Notations for MCTS-Based Methods in LLM Reasoning

sequence of generated state-action pairs by π(·|Q, c) is denoted as [s1, a1, s2, a2, s3, a3, · · · , sn],
where s1 is the initial state (often a dummy answer or system prompt) and sn is the terminal state.
The terminal state sn is reached when [eos] (i.e. end of sequence) token is produced, which may
signify the generation of a final answer (correct or incorrect) or the exhaustion of the step limit (e.g.
max context length).

Note that, unlike most other reinforcement learning (RL) problems, where an action ai leads to
different states si+1 based on a state transition probability, a reasoning action ai in LLM-based
reasoning deterministically leads to a fixed next reasoning state. This deterministic nature is due
to the structure of reasoning (with rare exceptions). As a result, we clarify the usage of certain
notations, which may differ from those in typical RL formulations:

• A reasoning trace, or partial solution, pi, can be expressed in two equivalent forms:
pi = [s1, a1, s2, a2, s3, a3, . . . , si]

or
pi = [s1, s2, s3, . . . , si].

The first form treats actions as distinct from states, while the second combines actions and
resulting states into s. There is no inherent difference between the two representations,
as LLM outputs both si and ai into a sentence in each reasoning step during Chain of
Thought. Some looks at it separately (such as RAP) while others take a joint view (such as
ReST-MCTS∗).

• Unlike traditional RL, where the reward is calculated based on the state-action pair, de-
noted as R(a, s), and depends on the different state transitions resulting from action a, the
reward of a single LLM reasoning step can be evaluated based on either the action ai or the
resulting state si+1, or even on state action pairs (s, a), due to the deterministic nature of
reasoning (each a deterministically determines s).

For simplicity, we typically consider si to be a natural language sentence generated as one chain-
of-thought (CoT) reasoning step. Consequently, pi = [s1, s2, s3, . . . , si] represents a CoT trace
consisting of i sentences generated in i sequential steps by LLMs.

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

During reasoning, a given reasoning state si can transition to different next reasoning states si+1,
deterministically, depending on the different action ai that is chosen (from the action space A) by
the LLM policy π, forming a tree structure, denoted as TQ.

Monte Carlo Tree Search (MCTS) optimizes the search for the reasoning trace [s1, s2, . . . , sn] in
TQ to find correct answers. Each partial solution trace pi = [s1, s2, . . . , si] forms a unique path (or
even node) in this tree, associated with its estimated value vi and visit count ni. The value vi defines
how promising such partial trace is to reach the correct answer. MCTS process is guided by this
promising indicator vi.

Unsurprisingly, the design and computation of vi become one of the most critical challenges in
search algorithm design for LLM reasoning. Our survey places particular emphasis on the methods
used to design the value function V (·) in each of the surveyed papers.

All of the search to be discussed here is done in Answer Space of problem Q, for the discussion of
searching in Prompt Space of LLM, refer to Section.

E.2 PRACTITIONER’S GUIDE: TASK-ORIENTED MCTS GUIDE

We observe that optimal search configurations—specifically node granularity, evaluation signals,
and backpropagation logic—are distinct functions of the task domain’s reward sparsity and error
propagation characteristics. Table 2 synthesizes these domain-specific primitives.

Mathematical Reasoning: Mitigating Variance via Trace-Based Search. In mathematical do-
mains, the primary challenge is error accumulation, where a single logical fault invalidates the
subsequent trajectory. Consequently, relying solely on Outcome Reward Models (ORMs) induces
high variance due to ”false positives” (correct answers derived from flawed reasoning).

• Topology & Evaluation: We recommend Trace-based nodes (pi = [s1...si]), enabling the
value function to condition on the full derivation history rather than the immediate state.
Evaluation should leverage Process Reward Models (PRMs) to verify intermediate steps.
In the absence of trained PRMs, methods like MCTSr effectively substitute the model with
LLM-based self-refinement.

• Backup Dynamics: The objective is robustness. Practitioners should employ Average or
Sum backup rules rather than Maximization. A reasoning path is only reliable if the density
of correct rollouts is high, thereby filtering out lucky guesses.

Code Generation: Exploiting Binary Oracles. Code generation is distinct from reasoning due to
the availability of a deterministic oracle (the compiler/test suite). The search objective shifts from
maximizing expected utility to ensuring the existence of a solution.

• Topology & Evaluation: Terminal-State nodes are sufficient, as the intermediate logic
is often opaque until execution. The primary signal is Execution Feedback (ORM). Ad-
vanced implementations (e.g., RethinkMCTS) integrate verbal feedback from failed tests
into the prompt state for subsequent iterations.

• Backup Dynamics: Because the reward signal is binary (pass/fail), Max backup updates
(Qi ← max(Qi, rnew)) are optimal. Finding a single passing solution satisfies the task
requirements; the average quality of failed attempts is irrelevant to the final utility.

RAG & Knowledge Tasks: The Weakest Link Principle. Knowledge-intensive tasks require a
strict logical conjunction between retrieval relevance and answer correctness. A high-fidelity answer
derived from irrelevant documents constitutes a hallucination.

• Topology & Evaluation: The search space should be modeled via State-Action nodes
explicitly separating “Retrieval” actions from “Reasoning” actions. Evaluation demands a
Hybrid signal: a PRM for document relevance and an ORM for factual consistency.

• Backup Dynamics: To enforce factual integrity, we recommend Min-based aggregation
(V (s) = min(rsteps)), as utilized in HiAR-ICL. This enforces a “weakest link” logic,
ensuring that a hallucination or retrieval failure in any single step penalizes the value of the
entire reasoning chain, preventing the propagation of grounded but irrelevant text.

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2026

Autonomous Agents: Lookahead in Latent World Models. Agents operate in partially observable
environments where actions induce irreversible state transitions. MCTS here serves as a planner
using the LLM as a simulator.

• Topology & Evaluation: Nodes must represent State-Action pairs (st, at), where the
LLM functions as a World Model predicting st+1. Effective rewards are composite: rt =
rαprob · r

1−α
utility, balancing the prior likelihood of an action (naturalness) with its task utility.

• Backup Dynamics: Given the long search horizons, getting stuck in local optima is a sig-
nificant risk. Practitioners should increase exploration constants (cpuct) and employ Max
of Averages for backup, isolating the single best plan from a diverse set of simulations.

Ta
xo

no
m

y

MCTS for
Direct Test-Time
Enhancement

General Reasoning
& Problem Solving

Discriminator-based Tree Search (Chen et al., 2024e), Interpretable Contrastive MCTS (Gao et al., 2024),
RoT (Hui et al., 2024), LiteSearch (Wang et al., 2024a), MindStar (Kang et al., 2024),
MARCO-O1 (Zhao et al., 2024), Everything of Thoughts (Ding et al., 2023), CoAT (Pan et al., 2025a)

Mathematical Reasoning
MCTS Self-Refine (Zhang et al., 2024c), Energy Function MCTS (Xu, 2023), OVM (Yu et al., 2023a),
LLaMA-Berry (Zhang et al., 2025c), Automated Process Supervision (Luo et al., 2024),
Constrained MCTS (Lin et al., 2025b), Markov Chain of Thought (Yang et al., 2024)

Code Generation
& Software Engineering

RTL Code Gen MCTS (DeLorenzo et al., 2024), RethinkMCTS (Li et al., 2024b),
Verified Multi-step Synthesis (Brandfonbrener et al., 2024b), VerMCTS (Brandfonbrener et al., 2024a),
Code World Models MCTS (Dainese et al., 2024), Planning in NL (Wang et al., 2024d),
O1-Coder (Zhang et al., 2024e), SRA-MCTS (Xu et al., 2024a), SWE-Search (Antoniades et al., 2024),
SWE-Debate (Li et al., 2025b), MCTS-Judge (Wang et al., 2025c),
APRMCTS (Hu et al., 2025a), MCTS-Refined CoT (Wang et al., 2025c)

LLM Agents
& Interactive Environments

LATS (Zhou et al., 2023), SeLa (Chi et al., 2024), BIDA (Yu et al., 2025),
WebPilot (Zhang et al., 2025f), Prompt-based MCTS (Yu et al., 2023b), MASTER (Gan et al., 2025),
SE-Agent (Lin et al., 2025a), WebSynthesis (Gao et al., 2025),
AgentSwift (Li et al., 2025d), HALO (Hou et al., 2025)

Knowledge-Intensive
& RAG Tasks

KNOT-MCTS (Wu et al., 2023), Search-in-the-Chain (Xu et al., 2024b),
Contrastive RAG (Gu et al., 2025), RARE (Tran et al., 2024), CoRaG (Wang et al., 2024i),
RITEK (Huang et al., 2024), AirRAG (Feng et al., 2025a), KBQA-O1 (Luo et al., 2025),
MCTS-KBQA (Xiong et al., 2025), Hierarchical RAG (Dou et al., 2025),
Explainable MCTS (Kowalski et al., 2025), KCTS (Choi et al., 2023),
RAG-Star (Jiang et al., 2024), FREESON (Kim & Kim, 2025)

Multimodal Reasoning Mulberry (Yao et al., 2024a), Progressive Multimodal Reasoning (Dong et al., 2024),
MCTS-Automated Structured Thinking (Wu et al., 2025a), Dyfo (Li et al., 2025a)

MCTS for
Self-Improvement
via Data Generation

Self-Improvement
Foundational Frameworks

rStar-Math (Guan et al., 2025), Alphazero-like tree-search (Feng et al., 2023),
Curriculum Preference Learning (Wang et al., 2024g), Agent Q (Putta et al., 2024),
Iterative Preference Learning (Xie et al., 2024b), Imagination, Searching, and Criticizing (Tian et al., 2024b),
Mutual Reasoning (Qi et al., 2024), AlphaMath Almost Zero (Chen et al., 2024a), CPL (Wang et al., 2024f),
Step-level Value Preference Optimization (Chen et al., 2024b), TreeRPO (Yang et al., 2025c),
Data Influence-Oriented Tree Search (Shi et al., 2025b), MCTS-Refined CoT (Wang et al., 2025c),
ASTRO (Kim et al., 2025),

General Capabilities
& Alignment

PPL-MCTS (Chaffin et al., 2021), Value-Guided MCTS (Liu et al., 2023), ARGS (Khanov et al., 2024),
Reflective Tree Search (Yu et al., 2024), PromptAgent (Wang et al., 2023a), STAIR (Zhang et al., 2025g),
Dynamic Rewarding (Singla et al., 2024), Evolutionary Space Search (Li et al., 2024a),
APRMCTS (Hu et al., 2025a)

Scientific
& Specialized Domains

Self-Play Approach (Guo et al., 2024), Named Entity Matching (Volkova et al., 2024),
Synthetic Data Generation (Locowic et al., 2024), Monte Carlo Thought Search (Sprueill et al., 2023),
STRATEGIST (Light et al., 2024), Fast and Slow Thinking (Cheng et al., 2025), Peptune (Tang et al., 2025),
Multi-Agent Sampling (Ye et al., 2024), Step-level (Ma et al., 2025),
Process Reward-guided Tree Search (Park et al., 2024), Think&Cite (Li & Ng, 2024), SAPIENT (Du et al., 2024),
Automatic Heuristic Design (Zheng et al., 2025), Trans-Zero (Zou et al., 2025),
Prompt-Based MCTS (Duan & Wang, 2025), MedS3 (Jiang et al., 2025b), MCTSr-Zero (Lu et al., 2025a),
K-MSE (Zhuang et al., 2025) Stepwise Domain Knowledge-Driven Reasoning (Liu et al., 2025a)
IRIS (Garikaparthi et al., 2025), ChemAgent (Wu et al., 2025b)

Multimodal Applications MCTS-guided Sample Selection (Wang et al., 2025b), MMC (Liu et al., 2025b), MM-PRM (Du et al., 2025)

Advanced Topics and
Hybrid Approaches

Multi-Agent and
Collaborative Search

Reflective Tree Search Yu et al. (2024), Multi-agent sampling Ye et al. (2024),
Process reward-guided tree search Park et al. (2024), Webpilot Zhang et al. (2025f), MASTER Gan et al. (2025),
Data Influence-Oriented Tree Search Shi et al. (2025b), Multi-LLM collaborative search Yang et al. (2025b),
KompeteAI Kulibaba et al. (2025), SWE-Debate Li et al. (2025b),
AniMaker Shi et al. (2025a), HALO Hou et al. (2025)

Reward Model Design
and Optimization

rStar-Math Guan et al. (2025), AlphaZero-like tree-search Feng et al. (2023),
Iterative preference learning Xie et al. (2024b), Step-level q-value models Zhai et al. (2025),
Curriculum Preference Learning Wang et al. (2024g), Interpretable contrastive MCTS Gao et al. (2024),
Energy function guided MCTS Xu (2023), AlphaMath Almost Zero Chen et al. (2024a),
CPL Wang et al. (2024f), OVM Yu et al. (2023a), Value-Guided MCTS Liu et al. (2023),
Step-Level reward model Ma et al. (2023), Step-level value preference optimization Chen et al. (2024b),
Automated process supervision Luo et al. (2024), MCTS-boosted mathematical reasoning Ma et al. (2025),
Think&Cite Li & Ng (2024), STAIR Zhang et al. (2025g), MT-RewardTree Feng et al. (2025b),
Hierarchical Multi-Step Reward Models Wang et al. (2025a), ProMed Ding et al. (2025),
TreeRPO Yang et al. (2025c), Unifying RL and Search-Based TTS Jin et al. (2025),
Re-ranking Reasoning Context with Tree Search Yang et al. (2025a)

Search Efficiency
and Dynamics

Tree search for agents Koh et al. (2024), Discriminator-dependent tree search Chen et al. (2024e),
Information Directed Tree Search Chandak et al., RoT Hui et al. (2024), LiteSearch Wang et al. (2024a),
BoostStep Zhang et al. (2025a), Everything of Thoughts Ding et al. (2023),
Dual process of fast and slow thinking Cheng et al. (2025), T-SCEND Zhang et al. (2025d),
BFS-Prover Xin et al. (2025), MCTS-Judge Wang et al. (2025c),
Adaptive branching tree search Inoue et al. (2025), Retro-Search Lu et al. (2025b),
Bilevel MCTS Asai (2025), Test-Time Depth Adaptation Li et al. (2025e),
Abstraction dropping methods Schmöcker et al. (2025), SIGMA Ren et al. (2025), AgentSwift Li et al. (2025d),
FREESON Kim & Kim (2025), Structural Entropy Guided Agent Wei et al. (2025)

Figure 6: A comprehensive taxonomy of MCTS.

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2026

E.3 ADVANCED TOPICS AND HYBRID APPROACHES FOR MCTS

As the field matures, researchers are exploring more sophisticated techniques that refine the core
search paradigm, create better reward signals, and combine multiple methodologies.

E.3.1 MULTI-AGENT AND COLLABORATIVE SEARCH

Instead of a single LLM performing a search, these approaches use multiple LLM agents that col-
laborate, debate, or take on specialized roles to solve a problem more effectively. This paradigm
shifts from a monolithic searcher to a coordinated team, enabling more robust and diverse problem-
solving. For instance, some frameworks use MCTS to orchestrate multiple agents, dynamically ad-
justing their number and communication based on task complexity Gan et al. (2025). Others employ
hierarchical structures with specialized agents for high-level planning, role design, and low-level
execution Hou et al. (2025). In competitive settings, such as software issue resolution, multi-agent
debate frameworks encourage diverse reasoning paths and lead to more consolidated solutions Li
et al. (2025b). Another collaborative approach, the Mixture-of-Search-Agents (MOSA), leverages
the collective expertise of multiple LLMs by combining their independent explorations with iterative
refinement, which helps mitigate the limitations of any single model Yang et al. (2025b).

E.3.2 REWARD MODEL DESIGN AND OPTIMIZATION

The success of any search algorithm hinges on the quality of its reward function. This area focuses
on designing, training, and analyzing reward models that can accurately guide the search process. A
significant trend is the shift from coarse, outcome-based rewards to more granular, step-level feed-
back. Process-Supervised Reward Models (PRMs) provide this step-by-step guidance, improving
reasoning in tasks like mathematics and code generation Ma et al. (2023). However, annotating
these steps is costly, leading to automated data collection pipelines that use MCTS to generate large-
scale, step-level supervision data efficiently Luo et al. (2024). Research also explores alternatives,
such as Outcome-supervised Value Models (OVMs), which are trained only on final outcomes but
effectively learn to assess the potential of incomplete reasoning paths, acting as a value function
for planning Yu et al. (2023a). More advanced hybrid approaches unify reinforcement learning and
search by demonstrating that a reward function learned via RL can serve as an ideal PRM for guid-
ing search, eliminating the need for labeled process data Jin et al. (2025). Other innovations include
Hierarchical Reward Models (HRMs) that evaluate both individual steps and their coherence in se-
quence Wang et al. (2025a) and comprehensive frameworks for building domain-specific reward
models, such as for machine translation Feng et al. (2025b). Analysis of these models reveals coun-
terintuitive findings; for instance, step-level reward models are more adept at assessing the logical
coherence of mathematical language than the nuances of natural language descriptions Ma et al.
(2025).

E.3.3 SEARCH EFFICIENCY AND DYNAMICS

A major challenge for tree search is its high computational cost. These works focus on making the
search process more efficient and adaptive. To reduce wasted computation, methods like LiteSearch
introduce dynamic node selection and node-level exploration budgets based on guidance from a
value network Wang et al. (2024a). Algorithmic enhancements, such as bilevel MCTS, can achieve
amortized O(1) runtime for node selection, significantly speeding up planning in domains with deep
search trees Asai (2025). Another strategy is to guide the search more intelligently; Information
Directed Tree Search (IDTS), for example, uses a Bayesian approach to quantify the information
gain from different feedback types, steering the search toward more informative paths Chandak
et al.. The search process can also be made more dynamic and adaptive. Adaptive Branching MCTS
(AB-MCTS) dynamically decides at each node whether to ”go wider” by expanding new candidates
or ”go deeper” by refining existing ones, effectively generalizing repeated sampling Inoue et al.
(2025). Some approaches even adapt the model’s architecture at inference time, creating a custom
”chain-of-layers” for each sample by skipping or repeating layers from the pretrained model as
needed Li et al. (2025e). Other works focus on improving the quality of reasoning within the search;
BoostStep, for instance, enhances single-step reasoning through a step-aligned in-context learning
mechanism that provides more relevant examples Zhang et al. (2025a). For MCTS variants that use

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2026

abstractions to simplify the search space, new methods have been proposed to dynamically drop
these abstractions in time-critical settings to ensure optimal performance Schmöcker et al. (2025).

E.4 MCTS FOR DIRECT TEST-TIME ENHANCEMENT

This category includes methods that use Monte Carlo Tree Search (MCTS) primarily to improve
the quality of the LLM’s output for a single, given prompt at inference time, without updating the
model’s weights. These approaches treat the generation of a solution as a sequential decision-making
problem, where the MCTS algorithm explores a tree of possible reasoning steps or text segments
to find an optimal path. The core idea is to leverage lookahead planning to overcome the greedy,
left-to-right nature of standard autoregressive decoding, thereby enhancing the model’s performance
on tasks that require strategic thinking, exploration, or backtracking.

E.4.1 GENERAL REASONING & PROBLEM SOLVING

This area focuses on creating domain-agnostic frameworks to enhance the fundamental reasoning
capabilities of LLMs. Research here aims to make MCTS-based inference more efficient, inter-
pretable, and robust. For instance, some works seek to improve search efficiency by designing more
lightweight algorithms or dynamic resource allocation strategies, reducing the substantial computa-
tional overhead typically associated with tree search Wang et al. (2024a); Gao et al. (2024). Others
incorporate meta-cognitive strategies like reflection, where the model learns from previous search
experiences within the same problem to avoid repeating mistakes, effectively summarizing success-
ful strategies to guide future steps Hui et al. (2024). Another line of inquiry investigates the core
components and limitations of tree search, finding that its effectiveness is often contingent on the
accuracy of a reward model or discriminator that evaluates intermediate steps Chen et al. (2024e).
To broaden the search space and emulate human-like associative thinking, methods like Chain-of-
Associated-Thoughts (CoAT) integrate MCTS with dynamic memory modules, allowing the model
to incorporate new information during the reasoning process Pan et al. (2025a). These general-
purpose enhancements treat complex problem-solving as a formal search task, building frameworks
that integrate external knowledge and planning capabilities to handle open-ended challenges Ding
et al. (2023); Zhao et al. (2024); Kang et al. (2024).

E.4.2 MATHEMATICAL REASONING

Mathematics provides an ideal testbed for MCTS because its problems have clear, verifiable solu-
tions, which simplifies the design of effective reward functions. This verifiability allows for precise
feedback on the correctness of intermediate reasoning steps or the final outcome. Many approaches
in this domain focus on improving the quality of the reasoning path. For example, MCT Self-Refine
(MCTSr) integrates a self-correction mechanism directly into the MCTS loop, allowing the LLM
to refine its own reasoning steps during exploration Zhang et al. (2024c). Similarly, LLaMA-Berry
employs a pairwise preference reward model to globally evaluate and compare different reasoning
trajectories, guiding the search toward more promising solutions Zhang et al. (2025c). Other works
focus on the efficiency and scalability of the search process. To handle long chains of thought with-
out excessive computational cost, Markov Chain of Thought (MCoT) compresses previous steps
into a concise state representation Yang et al. (2024). Some methods circumvent the need for ex-
pensive, step-by-step human annotations by training value models on final outcomes alone Yu et al.
(2023a) or by using MCTS to automate the collection of process supervision data Luo et al. (2024).
To further refine the search, techniques like Constrained MCTS (CMCTS) limit the action space to
more rational steps Lin et al. (2025b), while others use lightweight energy functions as path verifiers
to guide the search without additional model fine-tuning Xu (2023).

E.4.3 CODE GENERATION & SOFTWARE ENGINEERING

In this domain, MCTS is employed to navigate the vast and complex search space of possible code
implementations. A significant advantage here is the availability of immediate, objective feedback
from external tools like compilers, unit tests, and formal verifiers, which can serve as powerful re-
ward signals. Several works leverage this feedback to guide the search toward correct and efficient
code. For instance, RethinkMCTS searches over the reasoning process (i.e., the ”thoughts” behind
the code) and uses detailed execution feedback to refine erroneous thoughts and steer the search

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2026

Li et al. (2024b). Going a step further, VerMCTS generates formally verified programs by using a
logical verifier to check the correctness of partial programs at each node in the search tree, providing
strong guarantees of soundness Brandfonbrener et al. (2024b). The application of MCTS is broad,
spanning from hardware design, where it optimizes for power, performance, and area (PPA) in RTL
code DeLorenzo et al. (2024), to complex, repository-level software engineering tasks. In these
larger-scale scenarios, multi-agent frameworks like SWE-Search and SWE-Debate use MCTS to
manage self-improvement mechanisms and coordinate patch generation Antoniades et al. (2024); Li
et al. (2025b). Beyond code generation, MCTS is also used for automated program repair (APRM-
CTS) Hu et al. (2025a) and even for evaluating code correctness in an LLM-as-a-Judge paradigm
(MCTS-Judge) Wang et al. (2025c). These methods often improve performance by searching over
abstract plans rather than raw code, which helps generate more diverse and effective solutions Wang
et al. (2024d).

E.4.4 LLM AGENTS & INTERACTIVE ENVIRONMENTS

For LLM agents operating in interactive environments, where a sequence of decisions is required
to achieve a goal, MCTS provides a principled planning mechanism to explore possible action tra-
jectories. These agents must navigate dynamic states and often rely on environmental feedback to
guide their choices. A common approach is to use the LLM itself as both a world model to predict
future states and a policy to suggest promising actions, effectively combining the LLM’s common-
sense knowledge with the structured exploration of MCTS Zhao et al. (2023); Yu et al. (2023b).
This paradigm has been successfully applied to complex web navigation tasks, where tree search al-
lows agents to perform explicit exploration and multi-step planning, significantly improving success
rates on benchmarks like VisualWebArena and WebArena Koh et al. (2024); Zhang et al. (2025f).
To manage the immense search space, some frameworks use learned world models to create sim-
ulated environments for efficient planning Gao et al. (2025) or leverage learned skills to prune the
action space Xie et al. (2025). The versatility of MCTS also extends to specialized domains such
as automated machine learning (AutoML), where agents like SELA explore different pipeline con-
figurations Chi et al. (2024), and conversational agents, where MCTS helps plan dialogue actions
to ensure conversations are both goal-oriented and compliant with predefined procedures Li et al.
(2024c). These frameworks, like Language Agent Tree Search (LATS), unify reasoning, acting, and
planning, often incorporating self-reflection to enhance decision-making Zhou et al. (2023).

E.4.5 RETRIEVAL-AUGMENTED GENERATION (RAG) & KNOWLEDGE-INTENSIVE TASKS

In knowledge-intensive tasks, MCTS enhances RAG by transforming the typically static, one-shot
retrieval process into a dynamic and iterative reasoning loop. Instead of retrieving all necessary in-
formation at the beginning, MCTS-based approaches strategically decide when to query an external
knowledge source and what to ask for at each step of the reasoning process. This allows the LLM to
build a solution incrementally, using retrieved information to verify facts, fill knowledge gaps, and
correct its trajectory. Frameworks like SearChain and RAG-Star explicitly model this process, using
MCTS to explore a tree of reasoning steps where each node can trigger a retrieval and verification
action Xu et al. (2024b); Jiang et al. (2024). This dynamic integration of retrieval and reasoning is
crucial for mitigating hallucinations and improving factual accuracy, especially in complex multi-
hop question answering Wu et al. (2023); Choi et al. (2023). The search can be structured to navigate
complex knowledge bases Luo et al. (2025); Xiong et al. (2025); Huang et al. (2024) or to select an
optimal combination of retrieved text chunks to feed into the LLM’s context Wang et al. (2024i).
Some innovative approaches, like FREESON, even empower the LLM to perform the retrieval itself
by traversing the corpus using a specialized MCTS, eliminating the need for a separate retriever
model Kim & Kim (2025). This tight coupling of search and retrieval enhances the deliberative rea-
soning capabilities of LLMs, allowing smaller models to tackle complex knowledge-intensive tasks
effectively Hu et al. (2025b); Dou et al. (2025).

E.4.6 MULTIMODAL REASONING

For tasks that require reasoning over both text and other modalities like images or video, MCTS
serves as a powerful tool to explore the complex interplay between different data types. It helps to
structure the reasoning process by breaking down a multimodal problem into a sequence of steps,
where each step can involve grounding textual concepts in visual evidence. For example, the AR-

39

2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2026

MCTS framework uses an active retrieval mechanism within the MCTS loop to fetch relevant sup-
porting insights from a hybrid-modal corpus at each reasoning step, ensuring that the generated
explanation is well-supported by both visual and textual facts Dong et al. (2024). Other approaches,
such as AStar, leverage MCTS in a training-free manner to first abstract a library of high-level rea-
soning patterns, or ”thought cards”, from a small set of example problems. During inference, the
most relevant thought card is retrieved to provide a strategic scaffold for solving a new multimodal
problem, guiding the model’s reasoning process without requiring extensive fine-tuning Wu et al.
(2025a). Some works also explore using multiple models in a collaborative MCTS framework to
jointly search for the best reasoning path, leveraging collective intelligence to tackle difficult multi-
modal questions Yao et al. (2024a). By systematically exploring how to combine and re-rank multi-
modal reasoning contexts, these methods make vision-language models more robust and capable of
handling complex, multi-step visual reasoning Yang et al. (2025a).

E.5 MCTS FOR SELF-IMPROVEMENT VIA DATA GENERATION

This powerful paradigm uses MCTS not just to find a single good answer, but to generate high-
quality reasoning trajectories. These trajectories are then used as synthetic data to fine-tune the
LLM or a reward model, creating a virtuous cycle of self-improvement.

E.5.1 FOUNDATIONAL SELF-IMPROVEMENT FRAMEWORKS

These papers introduce the core methodologies for using MCTS within a self-training loop, of-
ten inspired by reinforcement learning concepts like AlphaZero and preference optimization. A
central theme is the creation of a self-evolutionary cycle where a policy model (the LLM) and a
value/reward model are iteratively improved. For example, frameworks like rStar-Math and Al-
phaLLM use MCTS to perform extensive rollouts, generating vast amounts of verified, step-by-step
reasoning data that is then used to train both the LLM and a process preference model Guan et al.
(2025); Tian et al. (2024b). This AlphaZero-like approach, where the model learns from its own
planned-out explorations, can be adapted to various tasks and model sizes, leveraging a learned
value function to guide the search more effectively than relying on a pretrained LLM’s priors alone
Feng et al. (2023). The data generated from MCTS rollouts is often formatted into preference pairs
(i.e., comparing a better reasoning step to a worse one) and used with algorithms like Direct Prefer-
ence Optimization (DPO) to update the model’s policy Xie et al. (2024b); Chen et al. (2024b). This
process can be entirely self-contained, as demonstrated by frameworks like AlphaMath, which auto-
matically generate both process supervision and step-level evaluation signals without any human or
superior-model annotations Chen et al. (2024a). These methods often focus on learning from both
successful and unsuccessful trajectories to enhance generalization Putta et al. (2024); Yuan et al.
(2025) and use the search process to explicitly find and correct errors, thereby teaching the model
robust recovery skills Kim et al. (2025); Wang et al. (2024g).

E.5.2 GENERAL CAPABILITIES & ALIGNMENT

MCTS is used to generate synthetic data for enhancing core LLM capabilities and ensuring align-
ment with human values. This includes optimizing prompts, where frameworks like PromptAgent
treat prompt engineering as a strategic planning problem and use MCTS to explore the space of
possible instructions, learning from errors to generate expert-level prompts Wang et al. (2023a). A
similar search-based optimization can be used for tuning-free self-alignment, crafting optimal align-
ment instructions at inference time without costly model updates Singla et al. (2024). In the context
of safety, MCTS can generate step-level reasoning data to teach models how to identify and mitigate
risks, balancing helpfulness and harmlessness Zhang et al. (2025g). The data generation process can
also be used for instruction tuning, where MCTS helps explore the ”evolutionary space” of instruc-
tions to synthesize high-quality, diverse, and complex training data Li et al. (2024a). By generating
data from MCTS trajectories that include both successes and recoveries from failure, models can
be trained to be more robust and reflective agents Yu et al. (2024). Some methods guide generation
with a discriminator to ensure outputs adhere to constraints like non-toxicity Chaffin et al. (2021),
while others leverage the value model from a prior alignment process (like PPO) to guide the search
Liu et al. (2023); Khanov et al. (2024).

40

2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Under review as a conference paper at ICLR 2026

E.5.3 SCIENTIFIC & SPECIALIZED DOMAINS

The self-improvement paradigm is being adapted to a wide array of specialized domains. This
includes generating high-quality synthetic tabular data Locowic et al. (2024), creating data for
multi-agent collaboration Ye et al. (2024), and developing domain-specific models through self-
evolution, such as for clinical reasoning in medicine Jiang et al. (2025b). In conversational AI,
MCTS-generated dialogue plans are used to train more strategic and effective recommender agents
Du et al. (2024). The approach is also used at a meta-level, for tasks like discovering optimal
heuristics for optimization problems Zheng et al. (2025) or even optimizing hyperparameters for
fine-tuning Volkova et al. (2024). In strategic domains like game-playing, MCTS guides the learn-
ing of high-level strategies through self-play simulations Guo et al. (2024); Light et al. (2024).
While some applications use MCTS strictly for test-time guidance in specialized areas like thera-
peutic peptide generation Tang et al. (2025) or catalyst design Sprueill et al. (2023), the broader
trend is to use the explored trajectories to create a feedback loop that continually improves the
model’s domain-specific expertise. Similarly, in molecular structure elucidation, K-MSE Zhuang
et al. (2025) leverages MCTS to enhance LLMs with a knowledge base and a molecule-spectrum
scorer, significantly improving their chemical reasoning capabilities. This is also seen in multilin-
gual translation, where MCTS is used to generate synthetic data without parallel corpora Zou et al.
(2025), and in educational applications for generating personalized test questions Wu et al. (2025c).

E.5.4 MULTIMODAL APPLICATIONS

The data generation paradigm extends to multimodal contexts, where MCTS is used to enhance the
reasoning capabilities of Vision-Language Models (VLMs). To overcome the lack of fine-grained
supervision in multimodal reasoning, MCTS-based pipelines can automatically generate millions of
step-level annotations for training powerful process reward models (PRMs) without human labeling
Du et al. (2025). Another approach involves creating a multimodal actor-critic framework where
MCTS guides an actor model to explore diverse reasoning paths. An annotator model then compares
pairs of paths-one leading to a correct outcome and one to an incorrect one-to generate critique data
that teaches the VLM to correct its own errors Liu et al. (2025b). An alternative, data-efficient
strategy uses MCTS to quantify the difficulty of visual reasoning samples by measuring the number
of search iterations required to solve them. This allows for the selection of a small but highly
informative subset of challenging examples for reinforcement fine-tuning, achieving state-of-the-art
performance with significantly less data Wang et al. (2025b).

F INFORMED SEARCH BASED METHOD

To enhance the reasoning capabilities of Large Language Models beyond simple sequential genera-
tion, researchers have increasingly turned to informed search algorithms. This paradigm structures
problem-solving as a tree traversal, where heuristic guidance helps navigate vast and complex so-
lution spaces efficiently. Early frameworks such as Tree-of-Thoughts (ToT) adapted classical al-
gorithms like Breadth-First Search (BFS) and Depth-First Search (DFS), using the LLM itself to
evaluate intermediate ’thoughts’ and prioritize promising reasoning paths. Building on this, more
recent approaches have implemented A* search, a more sophisticated heuristic method, to further
optimize exploration. Methods like ToolChain* and Q* exemplify this trend by designing intricate
cost and heuristic functions that incorporate memory, self-consistency, and learned value estimates
to guide the search for optimal solutions. This section explores these key informed search strategies,
detailing how they formalize and direct the LLM’s reasoning process.

F.1 INFORMED BFS/DFS

The Tree-of-Thoughts (ToT) framework (Yao et al., 2024b) enables Large Language Models (LMs)
to systematically explore multiple reasoning paths. It formulates problem-solving as a tree search,
where each node is a state s = [x, z1...i] comprising the input x and a sequence of thoughts z1...i
generated thus far. The ToT framework is defined by four key components: problem structuring,
thought generation, state evaluation, and a search strategy.

The framework first decomposes the problem into intermediate steps. Then, at each step i + 1, a
generator G(pθ, s, k) produces k candidate thoughts from a given state s = [x, z1...i] using an LM

41

2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

Under review as a conference paper at ICLR 2026

pθ. This generation occurs via two distinct methods: (1) sampling k independent and identically
distributed (i.i.d.) thoughts from a Chain-of-Thought (CoT) prompt, a method effective for expan-
sive thought spaces (e.g., text generation); or (2) proposing thoughts sequentially using a ”propose
prompt” to prevent redundancy, which is better suited for constrained reasoning tasks. To guide
the search, an evaluation function V (pθ, S) leverages an LM pθ to provide heuristic assessments of
progress for a set of states S. The evaluation can be performed in two modes: (1) a value-based
approach, where each state is scored independently, yielding a scalar or categorical assessment; or
(2) a voting-based approach, where the LM selects the most promising state from the set S.

ToT implements two primary search algorithms. The informed Breadth-First Search (BFS) algo-
rithm emulates a beam search, maintaining a beam of b states at each step. This process constrains
the number of states at any depth to b, avoiding exponential growth and making it efficient for prob-
lems with a fixed depth T . In contrast, the informed Depth-First Search (DFS) algorithm explores
a single path until its value, as determined by the evaluator, falls below a threshold, at which point
the path is pruned.

Building on these foundational search strategies, recent works have adapted BFS-style exploration
for a variety of specialized domains. In causal discovery, LLM-guided BFS has been employed
to efficiently uncover causal graphs from both textual knowledge and observational data, using dy-
namic scoring and active learning to navigate the hypothesis space (Jiralerspong et al., 2024; Susanti
& Färber, 2025; Zanna & Sano, 2025). Beyond structured discovery, researchers have also explored
the LLM’s intrinsic capacity for search. For instance, the Autonomous Tree-Search (ATS) paradigm
demonstrates that LLMs can execute a BFS-like exploration internally with a fixed system prompt,
eliminating the need for external control logic (Zhang et al., 2023b). Other work has proposed
LLM-First Search (LFS), where the model itself dynamically decides whether to broaden the search
(go wider) or deepen the current path, offering a more adaptive alternative to the fixed beam width
of ToT-BFS (Herr et al., 2025). In more fundamental architectural explorations, a novel paradigm
called Coconut (Chain of Continuous Thought) has shown that by reasoning in a continuous latent
space, LLMs can implicitly perform BFS to explore multiple reasoning steps simultaneously (Hao
et al., 2024). For highly structured domains like automated theorem proving, BFS-Prover integrates
Best-First Search with an expert iteration framework, achieving state-of-the-art results by strate-
gically filtering problems and refining its policy with Direct Preference Optimization (DPO) (Xin
et al., 2025).

F.2 A*

To mitigate the computational overhead associated with methods like Monte Carlo Tree Search
(MCTS), recent work has explored A*-based search algorithms. These methods have been particu-
larly prominent in robotics, where frameworks like LLM-A* leverage the commonsense knowledge
of LLMs to generate heuristics for path planning, synergizing the precise pathfinding of A* with the
global reasoning of LLMs (Meng et al., 2024). Notably, ToolChain* (Zhuang et al., 2023) and Q*
(Wang et al., 2024b) apply A* search at inference time for general reasoning tasks.

These methods guide exploration using a specialized cost function f(n) = g(n) + h(n), which
prioritizes nodes that appear to be on the most promising path to a solution. This function balances
the cost of the path taken so far, g(n), with an estimated cost to reach the goal, h(n). The primary
innovation in methods like ToolChain* (Zhuang et al., 2024) and Q* (Wang et al., 2024c) lies in
constructing composite heuristics for g(n) and h(n) from diverse, LLM-relevant signals. The key
components used to formulate these cost functions are summarized in Table 6. The key components
used to formulate these cost functions are summarized in Table 6.

ToolChain*

In ToolChain*, the cost function for a node n is the standard A* formulation, f(n) = g(n) + h(n),
where g(n) is the cumulative cost from the start node to n, and h(n) is a heuristic estimate of the
future cost to the goal. The cumulative cost g(n) is the sum of single-step costs over all ancestors
of n, denoted an(n). Each single-step cost is derived from two value functions, gt,1 and gt,2, whose
outputs are bounded in [0, 1]. The cost is formulated as the geometric mean of the complements of

42

2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321

Under review as a conference paper at ICLR 2026

Table 6: Compact Overview of A* Heuristic Components for LLMs

Heuristic A* Component Mechanism (and Signal Source)
Process-Based Rewards g(n) Aggregates step-wise rewards from execution

feedback (e.g., logits, rule checks).

Statistical Consistency g(n) Favors steps that are frequently proposed across
multiple generation samples.

Memory-Based Comparison g(n), h(n) Scores path similarity against a repository of high-
quality examples (e.g., using LCS).

Learned Future Value h(n) Estimates the cost-to-goal using a trained proxy
model (e.g., a Q-function).

these values. The cumulative cost is thus:

g(n) =
∑

i∈{an(n),n}

(1− gt,1(i))
α · (1− gt,2(i))

1−α, (6)

where the hyperparameter α weights the contribution of each value function.

The first value function, gt,1(n), is task-specific and draws from a long-term memoryM, which is
initialized with seed demonstrations and augmented with successful plans discovered during search.
Each memory entry mj is a plan sequence (sj,0, aj,1, . . . , aj,Tj

). This function evaluates the current
plan sn by computing its maximum longest common subsequence (LCS) score against all plans in
memory: gt,1(n) = maxmj∈M

LCS(sn,mj)
min(L(sn),L(mj))

, where L is the sequence length. The second value
function, gt,2(n), is based on self-consistency frequency. It measures the frequency with which
node n is proposed as the next step across k independently sampled reasoning paths, reflecting its
reliability.

The future cost h(n) is formulated analogously to g(n):

h(n) =
∑

i∈{an(n),n}

(1− ht,1(i))
β · (1− ht,2(i))

1−β , (7)

where β is the geometric mean weight. The first heuristic, ht,1(n), leverages the long-term mem-
ory M. For an action node n, it finds the action a in each memory plan mj with the highest
lexical similarity to n. The heuristic is the sum of these actions’ relative positions: ht,1(n) =∑

mj∈M 1a∈mj

pos(a,mj)
Tj

. The second heuristic, ht,2(n), is an LLM imagination score. An LLM
generates a plausible future plan toward a target node nT , and the heuristic value is the ratio of
the current path length to the total imagined path length: ht,2(n) = |an(n)|

|an(nT)| , where |an(·)| is the
number of ancestors. A higher score signifies closer proximity to the goal.

Q*

In Q*, the cost function is f(n) = g(n)+λh(n), where λ is a weighting hyperparameter. The accu-
mulated cost g(n) is an aggregation of process-based rewards for the current node and its ancestors:
g(n) = Agg({R(s) | s ∈ an(n)∪ {n}}). The reward functionR can be derived from human feed-
back, ground-truth labels, predefined rules, or LM logit scores. The aggregation function, Agg, can
be chosen from {max,min,

∑
, [−1]}, where [−1] indicates selecting the reward of the last node.

The heuristic cost h(n) is a Q-function that estimates the expected future reward. As an ex-
haustive search over subsequent steps is intractable, the heuristic is approximated by taking
the maximum Q-value among the top-k actions proposed by the LLM policy πθ: h(n) =
maxat∈top-k(πθ(·|n)) Q(n, at). A primary challenge is estimating optimal Q-values when the frozen
policy πθ is suboptimal. The authors propose three methods for learning a proxy Q-value model: (1)
offline reinforcement learning on curated data, (2) learning from MCTS rollouts, or (3) distillation
from a stronger LLM. However, this approach may have limited generalization, and the anticipated
computational savings are not guaranteed.

43

2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375

Under review as a conference paper at ICLR 2026

G UNIFIED EVALUATION AND COMPUTE ACCOUNTING FOR TREE-SEARCH

To characterize the current capabilities of Tree-Search Test-Time Scaling (TTS), we select math-
ematical reasoning as the representative domain. We prioritize this domain because, unlike
open-ended generation, mathematical problems offer deterministic success criteria, enabling high-
resolution analysis. While our case study focuses on GSM8K and MATH, the fragmentation it re-
veals in reporting and compute accounting is systemic (Kaplan et al., 2020b; Hoffmann et al., 2022b;
Snell et al., 2024). Consequently, the framework we propose here is deliberately domain-agnostic
and intended as a reusable standard.

G.1 THE LANDSCAPE OF MATHEMATICAL REASONING AND THE INFEASIBILITY OF
RETROSPECTIVE COMPARISON

To concretely visualize the state of the art, we examine canonical benchmarks where tree-structured
decoding has shown substantial gains (Xie et al., 2024a; Ha et al., 2025; Guan et al., 2025). As
visualized in Figure 7, MCTS-based variants like MCTSr and rStar-Math populate a Pareto frontier
that dominates standard baselines, reinforcing a form of model–search equivalence where smaller
models with search rival larger static models.

However, we emphasize that a strictly fair, compute-normalized comparison of existing litera-
ture is currently infeasible. Unlike controlled studies (Snell et al., 2024), published tree-search
papers exhibit substantial methodological heterogeneity that prevents retrospective normalization.
First, verifier costs are frequently opaque; many methods employ deep neural Reward Models with-
out reporting the associated token overhead (Teval), making it impossible to calculate total FLOPs
without original logs. Second, hardware platforms diverge significantly (e.g., A100 clusters vs. con-
sumer GPUs), rendering wall-clock comparisons invalid. Third, baselines span massive parameter
scales (∼7B to 70B+), preventing simple step-based comparisons.

Logical Implication: Constructing a truly apples-to-apples ranking under a unified protocol would
require re-implementing and re-evaluating all surveyed methods from scratch. Such an undertaking
constitutes a comprehensive benchmarking study in its own right, distinct from the scope of this
methodological survey. Therefore, rather than attempting an imprecise retrofit of past results, we
propose a forward-looking protocol to resolve this fragmentation in future work.

60 65 70 75 80 85 90 95
GSM8K Score

30

40

50

60

70

80

90

M
AT

H
 S

co
re

Q*, GPT-3.5
Q*, GPT-4
Q*, Llama-2-7B
MCTSr, LLaMA-3-8B
LLaMA-Berry, LLaMA-3.1-8B-Instruct
ALPHALLM, LLaMA-2-70B
MCTS-DPO, Mistral-7B
AlphaMath, DeepSeekMath-Base-7B
Mindstar, Llama-2-13B
CPL, DeepSeekMath-7B-Base
MCoT, Llama-2-7b
MCoT, Mistral-7B
MCoT, Llama3-8B-instruct
SVPO, DeepSeek-Math-7B-Base
SRM, DeepSeek-Math-7B-Base
SRM, Qwen2-7B
HiAR-ICL, Yi-1.5-6B-Chat
HiAR-ICL, Llama-3-8B-Instruct
HiAR-ICL, Llama-3.1-8B-Instruct
HiAR-ICL, Qwen2-7B-instruct
HiAR-ICL, Qwen2.5-7B-instruct
HiAR-ICL, Qwen2.5-14B-instruct
rStar-Math, Qwen2.5-Math-7B

Figure 7: Performance landscape of tree-search methods across GSM8K and MATH. Caveat: The
scatter plot aggregates reported metrics from heterogeneous experimental setups. Due to missing
data on verifier costs and unstandardized compute budgets in the original papers, re-computing
these data points under a unified FLOPs standard is impossible. This visualization conveys the
qualitative state-of-the-art rather than a controlled iso-compute ranking.

44

2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429

Under review as a conference paper at ICLR 2026

G.2 PROPOSED PROTOCOL: A UNIVERSAL FRAMEWORK FOR COMPUTE ACCOUNTING
(SCRP)

To address the systemic issues identified above, we propose the Standardized Compute-Reporting
Protocol (SCRP). This protocol provides a minimal, actionable recipe for comparability without
requiring retroactive adjustments to baseline data.

Unified Resource Vector and FLOPs Abstraction. We first disentangle compute sources by defin-
ing a budget vector B = (Cpolicy, Ceval, Cverify, Twall), which explicitly separates policy expansion,
node scoring, and external verification. To normalize across heterogeneous hardware, we advocate
using FLOPs as the primary independent variable. Specifically, for a P -parameter dense trans-
former, we approximate the inference cost as C ≈ 2 · P · T . The total compute cost for an instance
x aggregates all components:

Ctotal(x) ≈ 2 · Ppolicy · Tpolicy(x)︸ ︷︷ ︸
generation

+2 · Peval · Teval(x)︸ ︷︷ ︸
evaluation

+Cverify(x) (8)

where Tpolicy and Teval track the cumulative tokens generated and processed, and Cverify accounts for
symbolic execution costs.

Standardized Metrics. Based on this budget, we recommend reporting three key metrics: (1) Bud-
geted Accuracy (Pass@FLOPs), defined as Q(b) = E[Acc | Ctotal ≤ b], which explicitly visualizes
the trade-off between search depth and accuracy; (2) Tokens-per-Solved (TpS), a model-agnostic
proxy for search algorithm efficiency; and (3) Parallelism Efficiency, the ratio between theoretical
FLOPs and realized wall-clock speedup. Adopting SCRP allows future research to produce natu-
rally comparable compute-performance curves, eliminating the opacity that currently plagues the
field.

H CHALLENGES AND FUTURE OF TREE-SEARCH METHODS

Search Efficiency and Intelligence. Tree search algorithms, despite their power, often require sig-
nificantly greater computational resources than greedy decoding, as noted by Wang et al. (2024a),
with resource demands exceeding 10 times that of greedy approaches in certain cases due to ineffi-
ciencies in search strategies. This high computational overhead presents a substantial barrier to the
practical deployment of these methods. Algorithms like MCTSr and LLaMA-Berry, which generate
multiple solutions sequentially at each node, exacerbate these resource demands. To mitigate these
limitations, future research could prioritize improving the efficiency of tree search algorithms by
investigating trade-offs between policy and reward models, incorporating dynamic control mecha-
nisms, and employing effective pruning techniques to optimize tree expansion.

Overthinking Issues in Simple Queries. Task complexity is closely related to the length of reason-
ing chains, highlighting the need for extended cognitive processing in more difficult problems (Qin
et al., 2024; Huang et al., 2025). However, Chen et al. (2024d) and Zeng et al. (2024a) observe that
O1-like models often overanalyze simple questions, dedicating excessive computational resources
to tasks that have clear and obvious answers. For instance, a query like ”3-2=?” does not require
complex reasoning, yet these models may engage in unnecessary computations, wasting resources
and potentially introducing errors. Forcing models to reason through such trivial tasks not only
consumes valuable computational power but also causes delays. Future research should focus on
methods to reduce these inefficiencies, improving models’ ability to quickly recognize and handle
straightforward queries while dynamically allocating computational resources across diverse prob-
lem types.

Self-play Between Policy Models and Reward Models. Certain tree-search algorithms encounter
challenges due to limited parallelism, which constrains their search speed, especially in resource-
intensive settings. As detailed in Section E, various tree-search techniques can generate traces that
are then employed to iteratively refine reward and policy models, such as ReST-MCTS and rStar-
Math. This self-play paradigm is crucial for internalizing the reasoning system into the policy model,
thereby endowing LLMs with sophisticated reasoning abilities (Xiang et al., 2025). By internalizing
tree-search reasoning into LLMs, the tree-search process can be structured within a CoT framework,
facilitating sequential reasoning. This not only enhances reasoning efficiency but also mitigates

45

2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483

Under review as a conference paper at ICLR 2026

parallelism limitations, thereby improving scalability. Future research should investigate strategies
to optimize this self-play paradigm further, facilitating more efficient problem-solving.

Reward Modeling and Reward Model Training. Section E examines various MCTS-based eval-
uation strategies. A central element of the search strategies is the reward or evaluation model,
which provides essential supervision to guide search processes effectively (Lightman et al., 2023;
Setlur et al., 2024; Xiang et al., 2025). Reward models are broadly categorized into two types:
the Outcome Reward Model (ORM) and the Process Reward Model (PRM). Unlike outcome re-
wards, which deliver feedback only at the task’s conclusion, process rewards provide signals at
both intermediate steps and the final outcome, enabling finer-grained and more frequent supervi-
sion. Nevertheless, learning process rewards present significant challenges. For example, Uesato
et al. (2022); Lightman et al. (2023) relies on human annotators for process supervision, a costly
and inherently unscalable method. While automated methods for constructing process rewards have
been proposed (Wang et al., 2024e; Luo et al., 2024; Wang et al., 2024h), they are predominantly
designed for specialized areas such as mathematics and programming. These approaches struggle
to generalize to broader domains, such as scientific reasoning and complex problem-solving, where
human evaluation remains essential. Overcoming these limitations necessitates the development
of more efficient methods to generate high-quality fine-grained rewards and scalable techniques to
advance reward model capabilities, which remain open and pressing research challenges.

Reward Model Quality and Its Effect on Search. The performance and efficiency of search during
testing depend on the quality of the Process Reward Model (PRM)(Setlur et al., 2024; Xiang et al.,
2025). However, searches guided by an oracle verifier are more efficient than those relying on a
learned PRM(Anonymous, 2024). Numerous studies have shown that an imperfect reward model
can give rise to inverse inference scaling (Zeng et al., 2024b). For instance, Gao et al. (2023)
identified an inverse scaling effect, where expanding the search space in best-of-n search negatively
impacts performance due to a distribution shift between the imperfect reward model and the policy
model. These findings underscore the critical need to bridge the performance gap between oracle and
learned reward models. Xiang et al. (2025) shows that while the PRM’s ability to verify complete
solutions improves with additional data, a notable gap persists between trained PRMs and oracle
PRMs. Therefore, understanding how scaling laws for process supervision models influence their
effectiveness and efficiency in large-scale search tasks remains a pivotal challenge.

I THE USE OF LARGE LANGUAGE MODELS (LLMS)

Large Language Models (LLMs) were used as assistive tools in the preparation of this work. Specif-
ically, we employed GPT-5 to make minor edits to academic writing, such as drafting and refining
sections. All scientific claims, methodological contributions, and experimental results were con-
ceived, implemented, and validated by the authors. The authors take full responsibility for the
content presented in this paper.

46

	Introduction
	Search in General AI
	Uninformed Search
	Informed Search
	Monte Carlo Tree Search (MCTS)
	Reward as a Guiding Signal: Search vs. RL

	Monte Carlo Tree Search (MCTS) for LLMs
	Unified Problem Formulation and Notation
	Structuring the Search: Node Representation and Granularity
	The Core Challenge: Designing the Evaluation Function
	Evaluation Locus: Process vs. Outcome Rewards
	Evaluator Architecture: External Models vs. Self-Evaluation
	Multi-Critic and Composite Reward Functions

	Adapting the MCTS Algorithm
	Advanced Topics and Hybrid Approaches
	Applications of MCTS
	MCTS for Direct Test-Time Enhancement
	MCTS for Self-Improvement via Data Generation

	Applicability, Trade-offs and Task-oriented Practitioner's Guide

	Informed Search with LLM-Generated Heuristics
	Evaluation Framework and Compute Protocols
	Challenges, Future and Conclusion
	Reproducibility Statement
	Organization of the Appendix
	Foundational Search Paradigms in General AI
	Uninformed Search: Blind Exploration
	Informed Search: Heuristic-Guided Exploration
	Monte Carlo Tree Search: Learning from Experience
	Comparison of Exploration Strategies

	Test-time Scaling via Search
	A Tale of Two Optimizations for LLM Scaling: Training-Time vs. Test-Time
	Operationalizing Search in the Objective Space
	Decomposing the Objective Space: Prompt and Answer Spaces

	Reward as a Unified Signal for RL and Search : One Objective, Two Optimizers
	RL via Policy Shaping: Internalizing Rewards for Generalization
	Search via Deliberative Planning: Externalizing Rewards for Specificity
	A Symbiotic Framework

	Monte Carlo Tree Search (MCTS)
	Unified Notation and Problem Formation
	 Practitioner's Guide: Task-oriented MCTS guide
	Advanced Topics and Hybrid Approaches for MCTS
	Multi-Agent and Collaborative Search
	Reward Model Design and Optimization
	Search Efficiency and Dynamics

	MCTS for Direct Test-Time Enhancement
	General Reasoning & Problem Solving
	Mathematical Reasoning
	Code Generation & Software Engineering
	LLM Agents & Interactive Environments
	Retrieval-Augmented Generation (RAG) & Knowledge-Intensive Tasks
	Multimodal Reasoning

	MCTS for Self-Improvement via Data Generation
	Foundational Self-Improvement Frameworks
	General Capabilities & Alignment
	Scientific & Specialized Domains
	Multimodal Applications

	Informed Search Based Method
	Informed BFS/DFS
	A*

	Unified Evaluation and Compute Accounting for Tree-Search
	The Landscape of Mathematical Reasoning and the Infeasibility of Retrospective Comparison
	Proposed Protocol: A Universal Framework for Compute Accounting (SCRP)

	Challenges and Future of Tree-Search Methods
	The Use of Large Language Models (LLMs)

