OmniTry: Virtual Try-On Anything without Masks
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Figure 1: Try-on results of various wearable objects generated by OmniTry, which supports object
images with white or natural backgrounds, and even try-on results as input.

Abstract

Virtual Try-ON (VTON) is a practical and widely-applied task, for which most of
existing works focus on clothes. This paper presents OmniTry, a unified framework
that extends VTON beyond garment to encompass any wearable objects, e.g.,
jewelries and accessories, with mask-free setting for more practical applications.
When extending to various types of objects, data curation is challenging for
obtaining paired images, i.e., the object image and the corresponding try-on
result. To tackle this problem, we propose a two-staged pipeline: For the first
stage, we leverage large-scale unpaired images, i.e., portraits with any wearable
items, to train the model for mask-free localization. Specifically, we repurpose
the inpainting model to automatically draw objects in suitable positions given
an empty mask. For the second stage, the model is further fine-tuned with
paired images to transfer the consistency of object appearance. We observed

TProject Leader. ¥Corresponding Author.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).



that the model after the first stage shows quick convergence even with few paired
samples. OmniTry is evaluated on a comprehensive benchmark consisting of 12
common classes of wearable objects, with both in-shop and in-the-wild images.
Experimental results suggest that OmniTry shows better performance on both
object localization and ID-preservation compared with existing methods. The
code, model weights, and evaluation benchmark of OmniTry are available at
https://omnitry.github.io/.

1 Introduction

The image-based virtual try-on (VTON) [19] has received tremendous attention due to its wide
application in e-commerce. Given a person image and a garment image, the purpose of VTON is
to transfer the garment onto the person as a preview. Thanks to the success of large-scale image
generative models 50,147, 14} 132]] with their photorealistic aesthetics, recent efforts [60} 28 9} [10} [66]]
have achieved satisfying performance on both generation quality and garment identity preservation.

Despite the advancement of VTON, existing methods mainly concentrate on clothing try-on. Though
some works have explored the extension to non-clothing, such as shoes [11] and ornaments [42],
there still lacks a unified framework in the literature, supporting any types of wearable objects.
Furthermore, most methods require the indication of wearing area on person (e.g., masks or bounding
boxes), or use automatic human-body parsers [62] to identify the area. When extending to anything
try-on, it would be impractical to expect users to draw the targeting area, as the interaction between the
model and various objects can be more considerably more complex. It is also challenging to leverage
existing parsers to detect appropriate try-on areas for diverse objects. Thus, we follow the mask-free
setting [24, [16} 66| for the model to automatically localize the area with natural composition.

When confronting anything try-on, one key challenge is the data collection. Generally, the training
of VTON requires large-scale paired images, consisting of a single-shot of the garment, and a
corresponding person try-on result. Most datasets are curated from e-commerce websites, with at
least thousands of samples, e.g., VITON-HD [8]] and DressCode [43]]. While for many common types
of wearable objects, such as hats and ties, there is no abundant quantity of paired data, but only the
product pictures. This limitation makes it necessary to develop an efficient training framework.

In this paper, we present OmniTry, targeting mask-free virtual try-on for any wearable object.
OmniTry reduces the heavy reliance on paired training samples, leveraging large-scale unpaired
images for prior learning. The unpaired images refer to the image containing a person with any
wearable objects, which can be easily obtained from existing database. The training of OmniTry can
be separated into two stages: (i) The first stage is completely conducted on unpaired data. We use
multi-modal large language models (MLLMs) [[1] to list all wearable items with descriptions. Each
item is detected and erased from the image, forming a training pair. Then an image generative model
is trained to re-paint the item, prompted by the corresponding text description. After stage one, the
model is expected to know how to transfer various objects onto the person in proper position, size
and orientation. (ii) For the second stage, we further leverage high-quality paired data to fine-tune the
model. Object image is introduced into the context, modulating the model to preserve the consistency
of object appearance. Building upon the model from stage one, we observe that ID-consistency
is quickly adapted even fine-tuned with few samples. To summarize, the two stages in OmniTry
contributes the ability of mask-free localization and ID-preservation, respectively.

Regarding the model design, we leverage the diffusion transformer as backbone, and compare two
variants, i.e., text-to-image and inpainting model. Experimental results show that the inpainting
model can be rapidly repurposed as a mask-free generative model, by simply setting the mask input
with all-zero values. Image tokens from different images are concatenated in the sequence dimension,
and processed with full-attention mechanism for consistency learning [53} 167, (7, 23]]. We employ
efficient adapter tuning techniques for transferring the model to this task. More specifically, we
implement two distinct adapters that handle the tokens from person and object images, individually.

The erasure of wearable object is observed with critical impact. A naive solution is to call object-
removal models [[52, 71} 27]] to fill the area of objects. However, we notice that while the processed
area appears visually normal, it contains imperceptible artifacts. Thus, the model learn undesirable
shortcuts by identifying these traces, resulting in poor generalization to natural images. To tackle this
problem, we propose traceless erasing to eliminate the artifacts. We conduct image-to-image [41] to
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subtly re-paint the entire image after erasure. Subsequently, the original try-on image is blended with
the re-painted image, ensuring the non-object area remains unchanged. Traceless erasing disrupts the
erasure boundaries, thereby compelling the model to learn genuine try-on capability.

We construct a comprehensive evaluation benchmark covering 12 common types of wearable objects,
divided into clothes, shoes, jewelries and accessories. To fully investigate the model robustness, the
objects are set on white and natural backgrounds, or try-on images, referring to Fig.[T] Metrics are
designed to evaluate the object consistency, person preservation and wearing position. Experimental
results indicate that OmniTry outperforms existing methods, and achieves efficient few-shot training.

2 Related Works

Controllable Image Generation. The breakthrough of diffusion model [20] has driven extensive
research on controllable image generation. ControlNet [64] and related pioneering works [45] 48| [68]]
explore precise control with diverse conditions. IP-Adapter [63]] and related studies [[15} 22311134} (39]]
investigate online concept control to achieve subject customized generation. Recent developments
in DiT [46] have further propelled generalized image generation and editing. In-context LoRA [23]
enables diverse thematic generation with image concatenation. OminiControl [53]] introduces task-
agnostic condition control with minimal model modification. OmniGen [58] unifies multi-task
processing via large vision-language models. UniReal [[7] achieves unified image editing via full-
attention and video data prior. VisualCloze [35] enhances visual in-context learning for cross-domain
generalization. For localized image customization, Anydoor [6] pioneers to transfer subject into
specified region. MimicBrush [5] extends to local components transferring with imitative editing.
ACE++ [40] establishes a unified paradigm for generation and editing tasks.

Image-based Virtual Try-On (VTON) has emerged as a critical task attracting tremendous
efforts. VITON [19] introduces Thin Plate Spline transformations [2]] for multi-stage garment
processing. CP-VTON [55] formalizes explicit geometric warping and texture synthesis stages.
GP-VTON [59]] combines local flow estimation with global parsing to improve detail preservation.
These warping-based approaches, however, face persistent challenges in cross-sample alignment and
generalization. This motivates the adoption of diffusion models [20]], including TryOnDiffusion’s
parallel U-Net [70], LADIVTON’s garment tokenization [44], and DCI-VTON’s hybrid warping-
diffusion framework [17]. OOTDiffusion [60] and FitDiT [25] enhance detail fidelity through
specialized attention mechanisms. Though with advanced results, most of them remain constrained by
intensive preprocessing requirements (e.g., wearing masks and pose estimation). Boow-VTON [66]]
creates a mask-free approach through in-the-wild data augmentation. Any2AnyTryon [18] pioneers
fully mask-free implementations, eliminating dependency on masks or poses.

3 Method

3.1 Preliminary

Diffusion Transformer (DiT). OmniTry is developed on DiT [46], a scalable transformer architecture
for diffusion-based generation. The image is encoded into latent space through an autoencoder [29],
and patchified into tokens [13]. Diffusion process [20] is conducted on tokens with a transformer
consuming the noisy tokens and predicts for denoising. Recent advancement in DiT, i.e., recified flow
matching [37] and rotary position embedding (RoPE) [51], are also involved in this paper.

Virtual Try-On (VTON). Given a person image Zp and a wearable object image Zo, the try-on
result image is noted as Zp. Suppose the segmentation mask of the object in Zp is M, then the
target of VTON is three-fold: (i) the consistency between objects in original and try-on images, i.e.
min similarity(Zr M, Zo), (ii) the preservation of non-wearing areas, i.e., Zr(1—-M) = Zp(1-M),
(iii) the object is properly located on person, evaluated through the quality of Zp.

3.2 Stage-1: Mask-Free Localization

As illustrated in Fig. |2} the training of OmniTry consists of two stages, corresponding to the abilities
of localization and ID-preservation, respectively. In the first stage, the objective of training can be
regarded as “garment-free VTON”, in contrast to the “model-free VTON” in the literature [18]. Given
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Figure 2: The two-staged training pipeline of OmniTry. The first stage is built on in-the-wild
portrait images to add wearable object onto the person in mask-free manner. The second stage
introduces in-shop paired images, and targets to control the consistency of object appearance.

the person image Zp and the object description, the model aims to edit Zp by adding the object as
described. The type and detailed appearance of object are only prompted by input text. Control signal
indicating the wearing area, e.g., bounding boxes, masks or selecting point, is not introduced here.
Such an objective enforces the model to concentrate on where to paint the object, and how to blend it
harmoniously with the person image. The training of stage one can be easily supervised by a portrait
image database, for which we introduce how to construct the training samples in the next paragraph.

Unpaired Data Pre-process. We refer single portrait image as unpaired image with only try-on
result Zr, in contrast to the paired images (Zr,Zo) in next stage. We start by curating a large-scale
dataset containing any human-related images. The dataset is filtered by a classifier for images with
a person wearing at least one object. Following that, we leverage a MLLM, Qwen-VL 2.5 [1]], to
list all potential wearable objects in each image. The output includes both the type of object and its
appearance description. We also prompt MLLM to add an interaction description, e.g., “wearing
sunglasses” and “holding sunglasses in hand”, to distinguish various cases. To erase each object
for training, we use GroundingDINO [36] and SAM [30] to obtain the object mask, and remove the
object with an inpainting-based erasing model. Specifically, we fine-tune an internal erasing model
based on Flux.1 Fill [32]. Though without erasing capability, it is observed to quickly adapt to this
task with a few training samples. To summarize, the pre-precessing pipeline outputs a set of triples,
including the original image as Zr, the object-erased image as Zp, and the object textual description.

Model Architecture: Text-to-Image v.s. Inpainting Model. There are two candidate variants of
model to implement the mask-free try-on task, i.e., the text-to-image (T2I) model, and the mask-based
inpainting model. Generally, mask-based VTON models [28| [10] leverage the fill-in capacity of
inpainting model, while mask-free methods 66} 18] adapt the T2I model, by injecting subject features
into the backbone. Following the recent success in controllable image generation [53 23, 67], a
straightforward solution with T2I model is to concatenate the person image tokens into the sequence
of noisy tokens, then processed with the full-attention mechanism in DiT. This strategy effectively
transfers the person appearance into the target image, while also doubles the computation cost.

In contrast, OmniTry explores to repurpose the inpainting model for mask-free generation. The
inpainting model is generally finetuned from the T2I model via extending the input channels. Suppose
the noisy latent as X, the input image as I., and the inpainting mask as M. Then the extended input
is concat(X; I.(1 — M); M), where concat(-) denotes channel-wise concatenation. For repurposing
the model, we simply set M = 0, thus the input turns to be concat(X; I.; 0). At the initialization,
the zero mask leads the output image directly repeating the input. Therefore, compared with T2I-
based solution, the model effortlessly learns to copy the person condition, thus attentively focusing
on locating the modification area. We inject a location adapter (implemented as LoRA [21]]) for
finetuning. In practice, the model converges rapidly to adapt the mask-free generative manner.

Traceless Erasing. Early experimental results suggest that the model learn unexpected shortcut. We
visualize the training monitoring result in Fig. [3|(a), where we evaluate the model on erased training
samples. It is shown that the output image almost perfectly recovers the position and shape of the
object in ground-truth image, which indicates information leakage. We attribute the problem to the
erasing model that leaves invisible traces in the filling area [56, 69]]. The model tends to figure out
these abnormal area for editing, instead of predicting the reasonable position. When applying to
real-world images, the model frequently fails to locate the try-on area, and directly repeat the input.
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Figure 3: Study on traceless erasing. (a) Shortcuts learned by model with naive erasing, where the

model recovers the same shape and position as the ground-truth. (b) The pipeline of traceless erasing,
where image-to-image model is introduced to disturb the traces (indicated in the red boxes).

To address this problem, we propose a traceless erasing strategy, as shown in Fig. 3] (b). After erasing
the object with inpainting model, we apply with an image-to-image (I12]) translation [41]] to subtly
re-paint the image. We first add noise to the erased image Ip, referring a specific timestep ¢ € [0, 1]
in diffusion schedule (t = 0.2 in this paper), i.e., z = enc(Zp) x (1—t)+ € x t, where enc(-) denotes
the VAE encoder and ¢ is a standard Gaussian noise. Then a T2I model denoises z into normal image
with partial diffusion process from ¢ to 0. In this manner, the artificial effects in inpainting area are
confused with the whole re-painted image, thus avoid information leakage. Since the I2I process
modifies the detail of person image, the original try-on image should be correspondingly adjusted. To
achieve smooth transition in the object boundary, we modulate the original mask M into a blending
mask Mpjeng by blurring the boundary area for gradual blending effect. The final try-on image is:

I%lend - IT X Mblend + lngImg(jP) X (1 - Mblend) (1)

3.3 Stage-2: ID Consistency Preservation

The second stage of OmniTry inherits the location adapter from stage one, and steps further to
control the consistency of object appearance. Referring to Fig. 2] in-shop image pairs are leveraged
containing try-on image Z7 and object image Z. We pre-process the data with traceless erasing, and
gather a list of triple (Zr, Zp, Zo) for training. Considering the lack of enough samples, the objective
is to conduct efficient training with minimal adjustment to the model architecture in stage one.

Masked Full-Attention. Following the recent full-attention customization researches [53} 23], we
directly append the object image tokens into the existing sequence in DiT, and shift their position
embedding in the width dimension. Under this settings, OminiControl-2 [54] and EasyControl [[67]]
also explore to block some information flow in attention. In detail, the attention mask is set to zero
where the condition tokens serve as query and the generated tokens as key. Such an attention mask
improves the inference efficiency, but leads to performance decrease to a certain extent.

The main difference between the above works and OmniTry is that the condition image is also
concatenated with noisy latents and all-zero mask, for adaption to inpainting model. To cope with
such variance, we design two strategies in training: (i) We compute diffusion loss on object image
with itself as supervision, i.e., directly copying the input, which is aligned with the zero-mask input.
(i) We block all the data flow from the generating try-on image to object image, thus avoid the
detailed object appearance to be interrupted. In practice, we find it helpful to better preserve object
identity with the above masked full-attention.

Two-Stream Adapters. To fully preserve the ability of mask-free localization, we maintain the
forward process of person image tokens exactly consistent with the first stage. Then an identity adapter
is initialized for the newly introduced object image tokens. The two adapters, in same architecture,
serve for a two-stream computation process, i.e., we switch different adapters by identifying tokens
from different image sources. The inference is similar to the multi-modality DiT [14] coping with
vision and language information separately.
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Figure 4: Qualitative comparison among OmniTry and existing methods on multiple objects.

3.4 Evaluation Benchmark

As the first work exploring unified virtual try-on task, we establish a comprehensive benchmark,
dubbed OmniTry-Bench, for better evaluation and comparison with existing works.

Benchmark Collection. We gather evaluation samples within 12 common types of wearable objects,
which can be summarized into 4 major classes: (i) clothes consisting of top, bottom and full-body
garments, (ii) shoes in common styles, (iii) jewelries, including bracelets, earrings, necklaces and
rings, (iv) accessories, including bags, belts, hats, glasses, sunglasses and ties. We consider detailed
sub-types if necessary, such as the backpack, shoulder and tote bags. For each sub-type, we collect
15 paired test images for man and woman, separately. The object images are assigned in white
background, natural background, and try-on setting, with 5 pairs for each. The person images are
also set in white and natural backgrounds. Such settings ensure to fully evaluate the robustness of
model. Overall, the evaluation benchmark contains 360 pairs of images.

Evaluation Metrics. As discussed in Sec. [3.1] the objectives of try-on can be divided into three
aspects. Since there is no ground-truth result in mask-free setting, we redesign the metrics as follows:

Object Consistency: We crop the objects from the try-on and object images via masking, and compute
the visual similarity using DINO [3]] and CLIP [49], with metrics noted as M-DINO and M-CLIP-I.

Person Preservation: In contrast, we crop out the person from try-on and person images, and compute
spatial-aligned similarity between them, i.e., LPIPS [65]] and SSIM [57]].



Table 1: Evaluation results on OmniTry-Bench, which is separated into two groups: results on the
whole set and the clothes subset, for fair comparison with methods only optimized on clothes data.

Object Consistency  Person Presevation Object Localization

method mask M-DINO 1 M-CLIP-I11 LPIPS|  SSIMtT G-Acc. 1 CLIP-Tt
on the whole set
Paint-by-Example [61] 0.4565 0.7727 0.3903 0.8033 0.9861 0.2804
MimicBrush [5]] v 0.4693 0.7253 0.3033 0.8575 0.9250 0.2781
ACE++ [40] 0.4565 0.7474 0.4561 0.7519 0.9667 0.2791
OneDiffusion [33]] 0.4731 0.7749 0.7001 0.5831 0.9972 0.2309
VisualCloze [35] X 0.5292 0.7782 0.4471 0.6190 0.9639 0.2524
OmniGen [58]] 0.5435 0.7869 0.6703 0.5965 0.9944 0.2535
OmniTry (Ours) 0.6160 0.8327 0.0542 0.9333 0.9972 0.2831
on the clothes subset
Magic Clothing [4] 0.5665 0.7634 0.2761 0.8786 1.0 0.2700
CatVTON [10] v 0.5744 0.7906 0.2084 0.8828 1.0 0.2797
OOTDiffusion [60] 0.5961 0.8016 0.2178 0.8865 1.0 0.2761
FitDiT [23] 0.6733 0.8340 0.1618 0.9027 1.0 0.2831
Any2AnyTryon [18]] X 0.6747 0.8537 0.2089 0.8969 1.0 0.2832

OmniTry (Ours) 0.6995 0.8560  0.1021 0.9105 1.0 0.2799

Object Localization: (i) Counting the success rate whether a visual grounding model [36]] detects the
object, denoted as G-Accuracy. (ii) Computing the image-text similarity, noted as CLIP-I, between
try-on image and a text describing the person trying on the object (generated by MLLM [11]).

4 Experiment

4.1 Experimental Setup

Training Data. For the first stage, we gather a diverse dataset containing both in-the-wild portrait
images and in-shop model shots. Considering each image could contain multiple wearable objects,
the total amount of training pairs is 188,694. For the second stage, we collect paired samples
following the 12 basic types in our benchmark. The whole dataset contains 51, 195 pairs, which
shows class-unbalanced distribution (14, 861 pairs for clothes and 295 for ties). During training, each
pair is equipped with a brief text description, such as “trying on sunglasses”, to help distinguishing
different classes. We note that the clothes and shoes are not erased but replaced with another one.
Thus, we exchange the prefix as “replacing” for their prompts.

Implementation Details. We train the first stage with batch-size of 32 for 50K steps, and the second
stage with batch-size of 16 for 25K steps. All the experiments are conducted on 4 NVIDIA H800
GPUs. The location and identity adapters are implemented as LoRA [21] with rank 16. We employ
the AdamW [38]] optimizer with learning rate of 1=* and weight decay of 0.01. All the images are
resized to a maximum of 1 million pixels while preserving their original aspect ratios to training.

Compared Methods. We primarily compare with methods in two basic paradigms:

Image-based Virtual Try-On: Most VTON methods focus exclusively on garments. We compare on
the clothes subset with representative works, including CatVTON [10], OOTDiffusion [60], Magic
Clothing [4], FitDiT [25]], and Any2AnyTryon [[18]] (the only open-sourced mask-free model).

General Customized Image Generation: Recent works explore to unify customization-related tasks
into a single model, e.g., transferring the whole subject or local components, in mask-based or
mask-free manners. We compare with notable implementations, including Paint-by-Example [61],
MimicBrush [5]], ACE++ [40], OneDiffusion [33]], OmniGen [58] and VisualCloze [35]].

To cope with the methods requiring masks of editing areas, we manually draw the masks in person
image regarding the type of objects. Thus, the results of these methods are listed for reference, instead
of direct comparison with the remaining mask-free methods.
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Figure 5: Ablation study on the two-staged training framework in few-shot settings. We show the
evaluation metrics given varying amounts of paired training samples.

4.2 Results on Unified Virtual Try-on

Qualitative Results. We visualize the try-on examples generate by representative compared methods
in Fig. 4| For the general customization methods, mask-based works only modify the given areas, but
show unstable object identity transferring. While for the mask-free works, the results tend to be a free
combination of the input person and object. Though with better consistency, they fail to precisely
preserve the person image. OmniTry achieves accurate object consistency, in the meanwhile only
edits the proper try-on areas of person image in mask-free manner. On the clothes subset evaluation,
we observe that the existing VTON methods show unnatural output when evaluated on in-the-wild
data. OmniTry is empowered by the compounded training on both in-the-wild and in-shop data, and
shows more generalized ability of adapting various styles of garments.

Quantitative Results. Tab. [l|incorporates the evaluation results on the proposed OmniTry-Bench,
conducted on the whole benchmark and the clothes subset, respectively. OmniTry outperforms
existing methods on both sets. For the mask-based customization methods, though the input mask
helps to localize the editing area, they sometimes fail to transfer the complete appearance of objects,
resulting in lower consistency metrics. For the generalized customization methods in mask-free
manner, they achieve better subject-ID preservation, but suffers to maintain the person image, thus
show worse LPIPS and SSIM. Such quantitative results are consistent with the visualized comparison
results. When evaluated on clothes subset, though OmniTry is not specifically optimized on clothes
dataset, it still shows advancing performance compared with state-of-the-art works in mask-based and
mask-free settings. We note that the mask-free try-on could not be evaluated on previous benchmarks
(e.g., VITON-HD [8]) for the missing of person images.

4.3 Ablation Study

On the Training Strategy. We study one of the key designs in OmniTry, i.e., the two-staged training
framework. The first stage is intended to leverage large-scale unpaired data, and boost the training
efficiency in the second stage. To demonstrate this, we evaluate models initialized by the first stage
and from scratch, respectively. For the comparison of efficiency, the models are fine-tuned in few-shot
settings, ranging from 1 to 200 training samples per class. The results with representative metrics are
illustrated in Fig.[5] For metrics related to person preservation (LPIPS and SSIM), we note that they
could be higher when the model fails and directly repeats the input, thus not included.

It is observed that model from scratch shows
increasing performance with more training sam-
ples per class. While for model initialized from
the first stage, it already achieves satisfying
performance even with only one example for

Table 2: Ablation study on the model architecture
and erasing strategies of OmniTry.
method M-DINO 1 M-CLIP-11 LPIPS | CLIP-T 1

on the model architecutre (the whole subset)

training. The results demonstrate that the first ~ Full Method 05991 0.8272  0.0557 02830
hine sienificantly boosts the effici - tx2img model 0.5005 07727  0.0676 0.2767
stage tramning significantly boosts the etficiency  _y, ; object loss 05851  0.8222  0.0420 0.2824
for fine-tuning, and is especially friendly to un- - full attention 05752 08130  0.0384 0.2832
common types of objects. It is noted that though ~ -one-streamadapter 05840  0.8186  0.0502 0.2802
the few-shot tuning achieves good performance, on the erasing strategy (the jewelry subset)
we still fine-tune it with all available paired paive erasing 0.4964 07554  0.0413 02727
data to further increase the stability of model, traceless erasing 0.5389  0.7782  0.0288  0.2732

referring to the results in Tab.



Figure 6: Try-on results of OmniTry fine-tuned on uncommon classes of wearable or holdable objects.

On the Model Architecture. We then conduct ablation study on all the explored design of model
architecture in OmniTry. The results are shown in Tab. 2] where the “full method” indicates the final
solution. (i) We start with the comparison using text-to-image and inpainting model as backbone.
Results show that the inpainting backbone performs better on all metrics which is consistent with
our assumption that inpainting model takes no efforts to preserve the original image and converges
faster. (ii) For the additional loss computation on object image, we observe that removing the loss
decreases the model performance to a certain extent. (iii) For the attention mechanism, full attention
additionally introduces flow from person to object image, thus the object consistency metrics decrease
correspondingly. (iv) We also investigate to use a single adapter for this task, i.e. applying the
adapter from the first stage to all image tokens. The one-stream framework also decreases the model
performance, since it plays different roles in the inference of person and object images.

On the Traceless Erasing. To verify the effectiveness of traceless erasing, we conduct ablation study
on the jewelry subset with naive and traceless erasing. Results in Tab. [2] suggest that removing the
traceless erasing leads to dramatic decrease in all metrics. Therefore, we adopt traceless erasing as a
fundamental pre-processing strategy in OmniTry.

4.4 Extension to Uncommon Classes

We evaluate OmniTry on 12 common types of objects in the main experiments. To further demonstrate
the efficiency of OmniTry, we extend it to some uncommon types, for which the paired training
samples are limited to be obtained. The experiment is conducted on types including gloves, earphones,
watches, hairbands, books and electronic products, with roughly 20 samples per class. It is noted that
some types like books are actually in broader definition of try-on, i.e., holdable items.

The visualization results are shown in Fig. [f] Thanks to the generalized training of the first stage,
though with few paired samples, OmniTry succeeds in transferring these relatively uncommon objects
onto the correct position. The results encourage broader extension of OmniTry into more application
scenarios, without preparing a large amount of paired images.

5 Limitations

In this section, we discuss the limitations of OmniTry observed in practice. As the first work exploring
unified VTON, OmniTry is still restricted by the object types in training dataset. For the efficient
tuning in stage-2, it could be challenging to extend to uncommon objects not involved in the unpaired
dataset in stage-1. Larger pre-training dataset is expected to further boost the generalization ability.
For the mainly-focused 12 common types, experimental results show that OmniTry could also fail to
transfer the object consistency or output poor appearance in some cases, especially for the objects
with larger transformation, e.g., bags. The above limitations encourage future works to build upon
OmniTry and develop more advanced models towards unified try-on task.



6 Conclusion

This paper presents OmniTry, a unified mask-free framework extending the existing garment try-on
into any wearable objects. To tackle the problem of lacking abundant paired samples, i.e., object and
the try-on image, for many types of objects, we propose a two-staged training pipeline in OmniTry.
During the first stage, large-scale unpaired images are leveraged to supervise the model for mask-free
object localization. While the second stage tames the model to maintain the object consistency. We
elaborate the design of OmniTry, including a traceless erasing for avoiding shortcut learning, an
inpainting-based re-purposing strategy for mask-free generation, and a masked full-attention for
identity transferring. A new benchmark targeting unified try-on is introduced, and demonstrates the
effectiveness of OmniTry compared with existing methods. Extensive experiments also verify that
OmniTry achieves efficient learning even with few paired images for training.
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NeurIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction claim to present a unified framework of virtual try-
on to any wearable objects, which is the key contribution and fully evaluated in experiments
on both common and uncommon objects.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It s fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitations in Sec.
Guidelines:
* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.
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* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used
by reviewers as grounds for rejection, a worse outcome might be that reviewers
discover limitations that aren’t acknowledged in the paper. The authors should use
their best judgment and recognize that individual actions in favor of transparency play
an important role in developing norms that preserve the integrity of the community.
Reviewers will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
Justification: This paper does not include theoretical result.
Guidelines:

» The answer NA means that the paper does not include theoretical results.

 All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the
main experimental results of the paper to the extent that it affects the main claims and/or
conclusions of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]
Justification: We report the training details in Sec. 4.1]
Guidelines:

» The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

* If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

* Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

* While NeurIPS does not require releasing code, the conference does require all
submissions to provide some reasonable avenue for reproducibility, which may depend
on the nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
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(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient
instructions to faithfully reproduce the main experimental results, as described in
supplemental material?

Answer:
Justification: We will release the code, weights and benchmark after formal publication.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

¢ The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits,
hyperparameters, how they were chosen, type of optimizer, etc.) necessary to understand
the results?

Answer: [Yes]
Justification: The experimental setup is presented in Sec.[d.T]
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

16


https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

Answer: [Yes]

Justification: We report the design of evaluation metrics in Sec. which will be further
presented in detail in the appendix.

Guidelines:

» The answer NA means that the paper does not include experiments.

e The authors should answer "Yes" if the results are accompanied by error bars,
confidence intervals, or statistical significance tests, at least for the experiments that
support the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

e It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the
computer resources (type of compute workers, memory, time of execution) needed to
reproduce the experiments?

Answer: [Yes]
Justification: We include the compute resources information in Sec. @.T}
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: We have reviewed and followed the Code of Ethics for presenting the paper.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special
consideration due to laws or regulations in their jurisdiction).

10. Broader impacts
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11.

12.

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: In both abstract, introduction and conclusion, we discuss the positive impacts
of OmniTry for broader application in e-commerce. The negative impacts mainly rely on
whether users distribute the try-on results with inconsistent object appearance, which will
be considered with model release.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

o If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The model to be released is restricted on virtual try-on in e-commerce.
Guidelines:

» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
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13.

14.

15.

Justification: This paper is built upon FLUX with Apache License 2.0. The data-source
consists of open-sourced stock websites and internal datasets.

Guidelines:

* The answer NA means that the paper does not use existing assets.
 The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: This paper presents a new benchmark on unified try-on, and the details of
benchmark is introduced in Sec.

Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: This paper does not involve crowdsourcing or research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Including this information in the supplemental material is fine, but if the main
contribution of the paper involves human subjects, then as much detail as possible
should be included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects
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16.

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper is conducted on automatic data preparation and evaluation, without
crowdsourcing or human interactions.

Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: The core method design does not involve any LLM usage.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Details of Benchmark and Metrics

As the pioneering work investigating the unified virtual try-on task, we construct a comprehensive
evaluation benchmark named OmniTry-Bench, accompanied by six dedicated metrics to systematically
assess the quality of synthesized try-on images.
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Figure 7: The visualization of the OmniTry-Bench constitution.

A.1 Constitution of Benchmark

As the Figure[7} we gather evaluation samples within 12 common types of wearable objects, which
can be summarized into 4 major classes: (i) clothes consisting of top, bottom and full-body garments,
(ii) shoes in common styles, (iii) jewelries, including bracelets, earrings, necklaces and rings, (iv)
accessories, including bags, belts, hats, glasses, sunglasses and ties.

We consider detailed sub-types if necessary, such as the class bag consisted of the backpack, shoulder
and tote bags. Clothes are divided into top cloth, bottom cloth, and dress. Each sub-type contains two
gender groups (woman and man), with the exceptions that jewelries and dress exclusively contain
woman samples, while fie contains only man samples.

Each gender group includes 15 model images, where the garments are categorized into three settings:
white background, natural background, and try-on setting. Every garment setting include 5 images.
Following previous work’s categorization of virtual try-on scenarios into in-shop and in-the-wild, we
further divide the model images for clothes and shoes into 15 shop-style and 15 wild-style samples
per gender group, resulting in 30 model images per sub-type.

The benchmark predominantly sources images from public repositories (PexelsEI), supplemented with
brand website materials and social media content under compliant data usage protocols.

Pairing Strategy. For each gender group, we establish combinatorial pairs between model and
garment images through:

* Maximum Pair Calculation: maz_pairs = 15 x15x17+30x 15x 7 = 6,975 pairs, where
17 and 7 denote model settings counts for regular and style -specific categories respectively.

“https://wuw.pexels.com

21


https://www.pexels.com

o Sampled Pair Selection: selected_pairs = 15 x 15 x 24 = 360 paired samples, constrained
by single-use garment policy and balanced sampling (15 models per clothes/shoes type,
include 7 shop-style and 8 wild-style).

Overall, our experiments are all evaluated on the selected benchmark contains 360 pairs of images

A.2 Evaluation Metrics

As discussed before, the objectives of try-on can be divided into three aspects. Since there is no
ground-truth result in mask-free setting, we redesign the metrics as follows:

Object Consistency: We crop the objects from the try-on and object images via masking, then perform
white-background normalization on the extracted objects. We compute the visual similarity using
DINO [3]] and CLIP [49]] visual encoders, with metrics denoted as M-DINO and M-CLIP-1. As these
metrics measure cosine similarity in the embedding space, their values range in [—1, 1] where higher
values indicate better object preservation. The M-DINO scores generally exhibit lower values than
M-CLIP-I, as DINO-extracted features are more sensitive to geometric variations compared to CLIP’s
semantic-aligned embeddings. Our experiments quantitatively validate this behavior across different
object categories. This discrepancy stems from their distinct learning objectives:

e M-DINO [3]]: Learns dense local features through self-supervised distillation, emphasizing
spatial consistency of object parts. Then compute the cosine similarity of two features.

* M-CLIP-I [49]: Optimizes global semantic alignment between object images, prioritizing
category-level coherence. Then compute the cosine similarity of two features. Then compute
the cosine similarity of two object features.

Person Preservation: We extract the person regions by cropping try-on and original person images,
masking the target object areas with black pixels. We then compute spatial-aligned similarity between
these aligned image pairs using two complementary metrics:

e SSIM (Structural Similarity Index) [S7]: Measures structural, luminance, and contrast
similarity between images. The metric ranges in [—1, 1] with values approaching 1 indicating
higher structural consistency.

» LPIPS (Learned Perceptual Image Patch Similarity) [65]: Computes deep feature differences
using pretrained VGG networks, better aligning with human perception than traditional
metrics. Its values lie in [0, 1] where lower scores denote better preservation quality.

Object Localization: We propose a dual-strategy evaluation framework to assess spatial rationality
through complementary approaches:

* G-Accuracy: Quantifies detection reliability using GroundingDINO [36] with the following
implementation protocol: Invoke predict_with_classes API with target object categories as
classes parameter. Configure detection thresholds: box_threshold = 0.25 (bounding box
confidence) and text_threshold = 0.25 (text-image alignment). Last, calculate success rate
as total test cases correct detections.

e CLIP-I: Evaluates semantic alignment through multi-modal similarity measurement:
Generate descriptive prompts via Qwen2 [1] MLLM. Compute CLIP [49] embedding
similarity between try-on images and generated text. Normalize scores to [0,1] range using
min-max scaling.

The final prompt template is formally defined as follows:

"""Generate a detailed description of a composite image by combining
elements from the two provided images:
1. Image 1: The model’s appearance (pose, clothing, facial featur-
es), background and style
2. Image 2: Only the <{garment_class}>, without any other infos
(e.g., background, model)
Describe the synthesized image with the model wearing the {garment_cl-
ass}, in 65 words. Only describe the final imagined scene, without the
detail or information of composite. The main description is from
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Image 1. Briefly and shortly describe the {garment_class} in 6 wor-

ds,

no details needed. No words like (e.g., from the Image 2). If

{garment_class} is cloth or dress , the model from the Image 1, re-
place with the {garment_class} from Image 2, no words like (replace
the hair/shirt), using "wear" the {garment_class}.

Examples outputs:

- "A young woman standing in a studio with a white background.

She is wearing a denim dress with a button-down collar and long
sleeves. The dress is knee-length and falls above her knees. T-
he woman is also wearing black ankle boots with a pointed toe

and a low heel. She has a brown crossbody bag with a strap acr-
oss her shoulder. The bag appears to be made of leather and has
a small flap closure. The overall style of the outfit is casual

and minimalistic."

- "A close-up portrait of a young woman’s face and upper body.
She is wearing a black strapless top with a thin silver chain n-
ecklace around her neck. Her hair is styled in loose waves and
she is wearing large hoop earrings. The woman is looking off to
the side with a serious expression on her face. The background

is plain white."

- "A close-up portrait of a woman’s upper body. She is wearing
a black collared shirt with a button-down collar and long slee-
ves. Her hair is styled in loose curls and she is wearing large,
dangling earrings. Her hand is resting on her chest, with a lar-
ge ring on her ring finger. The background is plain white. The
woman appears to be looking off to the side with a serious expr-

ession on her face."
nnn

B Details of Training Dataset

B.1 Dataset for Stage-1

The model in the first stage is jointly trained
on two datasets, i.e., the unpaired in-the-wild
images, and the dataset of stage-2 without
the object image. We train on the datasets
with sampling ratios of 2 : 1. To further
investigate the class distribution in the unpaired
dataset, we count the highly-frequent words in
the object text descriptions. After filtering out
the prepositions and verbs, the top-5 words are
necklace, hat, glasses, sunglasses and watch.
We also observe some classes excluded in our
final 12 common classes, e.g., smartphone, cup,
scarf, crown and mask. The rich distribution of
wearable or holdable objects enhances the gen-
eralization of OmniTry to uncommon classes.

We also report the scale of dataset during the

Figure 8: The class distribution of training dataset.
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data preparation. The initial dataset contains 152K in-the-wild images, which are filtered to be 111K
images with person and wearable objects. After listing, grounding and removing objects, the total
amount of images containing at least one object is 94K, and the corresponding number of objects is

189K (roughly 2 objects per image).
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B.2 Dataset for Stage-2

For the training dataset of the second stage, we visualize the amount of samples for each class in
Appendix [B]. It is shown that the most common classes, i.e., clothes and shoes, constitute more half
of the total dataset, while most classes lay in the long-tail of distribution with less than 3%. Such a
distribution is aligned with our basic assumption that it is hard to obtained paired samples for many
wearable objects. For class-balanced training, we manfully assign the sampling weights for clothes,
shoes and bags as 4, 4, 3, and set weights as 1 for remaining classes.

C Details of Training and Model Architecture

C.1 Training Configuration

During training, we resize the image with fixed aspect ratio to be no larger than 1 million, which
means that the model could receive images with varying aspect ratios in one batch. To handle this,
we pad the image tokens into the same length of sequence, and modify the attention block to forward
only on the valid tokens.

For both training of stage-1 and stage-2, we set the learning rate as 1~4, gradient accumulation steps
as 1, weight decay as 0.01 and gradient norm clipping as 1.0. We use the AdamW [38]] optimizer
with hyper-parameters 5, = 0.9 and 82 = 0.999. The model is trained with mixed precision of
bfloat16. We note that since we fine-tune based on the distilled version of FLUX [32], the guidance
scale is fixed as 1 during training, and set as 30 during inference.

C.2 Details of Re-purposing Inpainting Model

We elaborate the details of adapting the inpainting model, FLUX.1-Fill in this paper, towards mask-
free try-on task. During training, the input of model can be split into two sets in sequence dimension:

* The try-on image. Along the channel dimension, it contains the noisy ground-truth try-on
image, the input person image and a zero mask in the same shape.

* The object image. Along the channel dimension, it contains the noisy object image, the
clean noisy image and a zero mask.

Then during the inference stage, we initialize the above input while replacing the noisy latents with
standard Gaussian noise. Through the above formulation, it is shown that the inputs of person and
object images are different. The person branch aims to modify the input person image in proper area,
while the object branch simply targets to maintain the input, and transfers the object appearance via
full attention mechanism.

C.3 Details of Masked Full-Attention

We discuss the details of applying masked full-attention in the second stage. We set text prompts for
both try-on and object images, like “trying on sunglasses”. Suppose the length of tokens to be: L
for try-on image, L7 for try-on text, Lo for object image, and Lp- for object text. We concatenate
all tokens in the above order. Then the attention mask is:

1L11 XL 1L11><LT1 1L11 X L2 0L11><L11
1L11><L11 1L11 X L1 OLI1><L12 OLII x L1 )
0L11 XL OL11><LT1 1L11 XLz 1L11><L11

LrixLn OLIL x L1 1L11 X L2 1L11 x L1

where 1,,x, denotes all-one matrix and 0,,,x,, denotes all-zero matrix. More specifically, we apply
such a full-attention in both the multi-modality blocks and single blocks of FLUX [32], and figure
out the text tokens to achieve the masking. We leverage the attention function with varying length in
FlashAttention [12]] to implement the block-wise masked attention.
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C.4 LoRA Implementation

We implement the location and identity adapters with LoRA [21]. In detail, we set the rank and « to
be 16. We insert the LoORA module into the following layers: the projection into query/key/value,
output projection of attention, the linear layers in feedforward block, the layer normalization layer,
the input patch projection, and the final output projection.

D Details of Compared Methods

In this section, we present the details of compared methods and our implementation of them on try-on
task. We also report more results of the variants of each method, among which we only report the
best result in main experiment.

D.1 General Customized Image Generation

OneDiffusion [33]]: A large-scale diffusion framework supporting bidirectional image synthesis
across tasks. We evaluated its performance on mask-free/mask-based try-on through instruction-based
cases. We also modify its original instructing prompt to achieve better performance.

OmniGen [58]: A vision-language unified framework consolidating multiple tasks, supporting both
mask-free/mask-based generation. We also test it with both standard and our optimized prompts.

VisualCloze [35] implements visual in-context learning for domain generalization. We conduct
experiments with single example and multiple examples in the context.

Paint-by-Example [61] enables to re-paint a given subject into image via CLIP-based object
representation with mask dependency.

MimicBrush [5] achieves imitative inpainting for region-specific edits, requiring the input image
with mask, together with the reference image without mask.

ACE++ [40] extends long-context conditioning for instruction-driven generation that tackles various.

D.2 Image-based Virtual Try-On
OOTDiffusion [60] designs a two-branch U-Net architecture to consume the person and garment
images, which requires masked input in the person branch.

Magic Clothing [4] introduces a garment extractor to progressively insert garment features into the
main backbone of try-on generation. Magic Clothing supports the input of either masked person
image, or the targeting pose and person ID image. We adapt the former setting to better preserve the
person image.FI

CatVTON [10] proposes to transfer the identity of garment by simply concatenating it with the
person image, and achieve mask-based try-on with inpainting model.

FitDiT [25] introduces diffusion transformer (DiT) model into VTON, and designs a GarmentDiT
and a DenoisingDiT to implement this task.

Any2AnyTryon [18] is the only open-source mask-free VTON model, eliminates the dependence on
masks, poses, or any other such conditions.

D.3 More Comparison Results

We report more comparison results in Tab. [3] including variants of methods with mask/mask-free
setting, varying image size and different prompt design. We report only the best result of all variants
in the main experiment.

E More Visualization Results

We visualize more try-on results in Fig. [0] where we include all classes in OmniTry-Bench and
different sub-types for full visualization.
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Table 3: More evaluation results of the compared methods with different settings.

Object Consistency  Person Presevation Object Localization

method mask M-DINO1 M-CLIP-I{1 LPIPS|  SSIMT G-Acc. T CLIP-T 1
on the whole set
Paint-by-Example (5122) [61] 0.4171 0.7328 0.4577 0.7968 0.9833 0.2831
Paint-by-Example (10242) [61] 0.4565 0.7727 0.3903 0.8033 0.9861 0.2804
MimicBrush [5]] 0.4693 0.7253 0.3033 0.8575 0.9250 0.2781
ACE++ (prompt v1) [40] 0.4565 0.7474 0.4561 0.7519 0.9667 0.2791
ACE++ (prompt v2) [40] v 0.4449 0.7427 0.4554 0.7517 0.9722 0.2793
VisualCloze (1-example) [35] 0.4705 0.7533 0.6685 0.5320 0.9972 0.2283
VisualCloze (2-example) [33] 0.4236 0.7307 0.6767 0.4908 0.9917 0.2260
OmniGen (prompt v2) [58] 0.5151 0.7761 0.6888 0.5870 0.9917 0.2557
OneDiffusion (prompt v1) [33] 0.5515 0.8137 0.6607 0.6166 1.0 0.2290
OneDiffusion (prompt v2) [33] 0.5580 0.7950 0.5795 0.6628 0.9972 0.2401
OneDiffusion (prompt v1) [33] 0.4178 0.7358 0.7606 0.4951 1.0 0.2309
OneDiffusion (prompt v2) [33] 0.4731 0.7749 0.7001 0.5831 0.9972 0.2309
VisualCloze (1-example) [35] 0.5292 0.7782 0.4471 0.6190 0.9639 0.2524
VisualCloze (2-example) [33] X 0.4915 0.7619 0.4730 0.5868 0.9806 0.2540
OmniGen (prompt v1) [58] 0.5299 0.7689 0.7009 0.5727 0.9778 0.2533
OmniGen (prompt v2) [58] 0.5435 0.7869 0.6703 0.5965 0.9944 0.2535
OmniTry (Ours) 0.6160 0.8327 0.0542 0.9333 0.9972 0.2831
on the clothes subset
Magic Clothing (4] 0.5665 0.7634 0.2761 0.8786 1.0 0.2700
CatVTON [10] 0.5744 0.7906 0.1664 0.9283 1.0 0.2818
CatVTON (w. garment mask) [[10] 0.5534 0.7843 0.2084 0.8828 1.0 0.2797
OOTDiffusion [60] v 0.5961 0.8016 0.2178 0.8865 1.0 0.2761
FitDiT (768 x 1024) [25]] 0.6718 0.8324 0.1972 0.8952 1.0 0.2822
FitDiT (1152 x 1536) [23] 0.6733 0.8340 0.1618 0.9027 1.0 0.2831
FitDiT (1536 x 2048) [23] 0.5961 0.8016 0.2178 0.8865 1.0 0.2761
Any2AnyTryon [18] X 0.6747 0.8537 0.2089 0.8969 1.0 0.2832

OmniTry (Ours) 0.6995 0.8560 0.1021 0.9105 1.0 0.2799

Table 4: Human evaluation results of OmniTry and garment-only methods.

Method Magic Clothing  CatVTON  OOTDiffusion  FitDiT ~ Any2AnyTryon  OmniTry (Ours)
Avg. Rank | 427 3.36 3.70 2.28 0.77 0.62

F Human Evaluation of the Generated Try-ons

We conduct a human evaluation to assess the realism and usefulness of the generated try-on results,
especially in comparison with garment-only methods. Specifically, we invite five annotators to rank
the outputs of different methods based on three aspects: try-on success rate, garment consistency, and
overall realism. The average ranking results are summarized in Tab. ] where a lower value indicates
a better ranking. As shown, OmniTry achieves the best overall performance among all compared
methods.

G Differences between Stage-1 of OmniTry and Editing Methods

The key differences between the stage-1 of OmniTry and the editing methods that support the “Add”
operation can be summarized as follows. (1) Task and performance: The general editing methods
typically involve a wide range of editing tasks, thus may show restricted performance on specific
operation, especially on try-on cases requiring fine-grained combination of the added object and the
original image. The added object could be more likely to be an independent item, while OmniTry
focuses on natural combination with parts of input person. (2) Method: The stage-1 of OmniTry is
designed by re-purposing an inpainting-based model to mask-free editing, leveraging its ability of
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Table 5: Compraison between OmniTry (stage-1) and editing methods supporting “Add” operation.

Method LPIPS SSIM G-Acc. CLIP-T
AnyEdit 0.1112 0.8455 0.8167 0.2415
OmniGen 0.3381 0.6394 0.9889  0.2654

OmniTry (stage-1) 0.0711 0.8959 0.9944  0.2613

Table 6: Additional ablation study on one-stream vs. two-stream adapter.

Method trainable params. M-DINO M-CLIP LPIPS SSIM G-Acc. CLIP-T

two-stream  172M (2 LoRA with r=16) 0.5845 0.8159 0.0425 09403 0.9806  0.2620
one-stream  172M (1 LoRA with r=32) 0.5619 0.8149 0.0439 09478 0.9861  0.2604

detailed local editing. Specifically, the original image and generated image are concatenated in the
channel dimension. However, the general editing methods require larger divergence between the input
and output, and are concatenated in the sequential dimension (e.g., UniReal [7] and OmniGen [38])),
showing higher computation cost (2x sequence length).

We compare AnyEdit [26] and OmniGen [58]] with the stage-one model of OmniTry in Tab. E], with
the metrics of object localization and person preservation. We observe that OmniGen could not
guarantee to preserve the original image (similar to its performance in stage-2). For AnyEdit, though
it preserve the input image, it could sometimes fail to add any object (worse G-Acc.) or properly
combine the object onto the person. We will also include visualization result in revised version.

H Additional Ablation Study on One-Stream vs. Two-Stream Adapter

To further ensure the alignment of trainable parameters, we train a new location adapter with double
LoRA rank (r=32) from stage-1, and initialize it into the second stage for one-stream training. We note
that the additional computation cost is doubled than two-stream adapters with r=16. We initialize both
settings from an earlier checkpoints of stage-1 with the same training steps to ensure fair comparsion.
The results in Tab. [6] show that though with less computation cost, the two-stream setting still shows
better performance to seperately cope with different capabilities of OmniTry.

I More Discussion on Unexpected Shortcut in Stage-1

In stage-1, we observe that using naively erased training samples leads the model to produce output
images that almost perfectly recover the position and shape of the object in the ground-truth image.
We hypothesize that this phenomenon is likely caused by information leakage, for the following
reasons. (1) The reconstruction shown in Fig. [3| primarily reflects shape and position reconstruction,
rather than appearance reconstruction. Since no object image is provided to the first stage, the model
generates objects with diverse appearances but consistently reproduces the same shape and position
as the ground-truth object. This observation suggests that the model might exploit the boundary
of the erased region, enabling it to perfectly reconstruct the object’s location and outline. (2) A
stronger piece of evidence is observed when we train the model with traceless erasing under the same
number of training steps. In this case, the model produces objects with random shapes, positions, and
appearances, even when evaluated on the training samples, indicating that the shape recovery in the
naive erasing setup indeed stems from boundary leakage.
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