Scaling LLM Speculative Decoding:
Non-Autoregressive Forecasting in Large-Batch Scenarios

Anonymous ACL submission

Abstract

Speculative decoding accelerates LLM infer-
ence by utilizing otherwise idle computational
resources during memory-to-chip data transfer.
Current approaches typically rely on smaller
causal models to autoregressively sample draft
tokens, often enhanced with prefix trees to ex-
plore multiple potential drafts. However, these
methods face significant performance degrada-
tion as batch size increases, due to reduced sur-
plus computational capacity for speculative de-
coding. To address this limitation, we propose
SpecFormer, a novel architecture that integrates
unidirectional and bidirectional attention mech-
anisms. SpecFormer combines the autoregres-
sive model’s ability to extract information from
the entire input sequence with the parallel gen-
eration benefits of non-autoregressive models.
This design eliminates the reliance on large pre-
fix trees and achieves consistent acceleration,
even in large-batch scenarios. Through loss-
less speculative decoding experiments across
models of various scales, we demonstrate that
SpecFormer sets a new standard for scaling
LLM inference with lower training demands
and reduced computational costs.

1 Introduction

Large language models (LLMs) based on Trans-
former (Vaswani et al., 2017) Decoders have
rapidly become the industry standard in recent
years, owing to their favorable properties such as
scalability in training and lossless handling of long-
context dependencies (OpenAl, 2023). Neverthe-
less, these models continue to follow the conven-
tional sequence-to-sequence generation paradigm:
autoregressive decoding. Autoregressive decod-
ing refers to the process where tokens are gener-
ated one at a time; each newly generated token is
fed back into the model as input for the next step,
alongside the existing context, to perform another
forward pass. This paradigm offers several notable
advantages. With only a causal mask, the attention

mechanism can be readily adapted for generation
tasks, making training straightforward (Chowdhery
et al., 2023). It also allows for the generation of
virtually unlimited-length outputs and enables ac-
celeration through state caching for repeated input
prefixes (Shi et al., 2024).

However, during inference, generating one to-
ken at a time results in low arithmetic intensity
(AL, Williams et al., 2009). Each model parameter,
once loaded from memory into the chip, typically
contributes to only two operations, a multiplication
and an addition. In contrast, modern hardware can
perform dozens to hundreds of operations in the
time it takes to move a single datum from memory,
leading to substantial underutilization of compute
resources. On the infrastructure side, techniques
such as prefill-decoding (PD) separation (Zhong
et al., 2024) and continuous batching (Yu et al.,
2022; Kwon et al., 2023) have been introduced to
improve overall compute utilization and user ex-
perience. Nonetheless, under constraints imposed
by service-level objects (SLOs, Wang et al., 2024),
these techniques often fall short of leveraging the
full computational potential. Increasing Al, the
ratio of computation to data transfer, is the funda-
mental approach to enhancing hardware efficiency
during generation.

Speculative decoding (SD, Xia et al., 2024) is
one of the most effective approaches for improving
arithmetic intensity. Its core idea is to generate
multiple tokens per forward pass of the large model.
The process consists of three main steps (Stern
et al., 2018):

1. Multi-token generation: Based on informa-
tion from the previous forward pass, the model
samples multiple draft tokens.

2. Multi-token verification: The model evalu-
ates all draft tokens simultaneously to deter-
mine whether each one aligns with its own top
prediction, while also extracting and storing



information for the next round of multi-token
generation.

3. Multi-token acceptance: The model decides
whether to accept the draft tokens based on the
verification results and accordingly updates
the contextual information.

Since multiple tokens are generated in one forward
pass, speculative decoding is also referred to as
multi-token prediction (MTP). Multi-token gener-
ation is the most critical component of SD, as the
acceptance rate of the sampled drafts directly deter-
mines how effectively computational resources are
utilized. In this work, we focus specifically on
lossless SD, which adheres to two strict conditions:

1. Only draft tokens that exactly match the out-
puts of the large model are accepted.

2. The LLM itself must remain unmodified.

These constraints make SD a purely acceleration-
oriented technique, ensuring strict mathematical
equivalence with the original model outputs. While
relaxing accuracy requirements can potentially
yield further speedup, the resulting performance
degradation is often difficult to quantify or con-
trol, and may unnecessarily complicate the prob-
lem. Moreover, empirical observations suggest that
algorithms performing well under the lossless SD
setting tend to also exhibit strong performance un-
der lossy conditions.

A key observation about this paradigm is that SD
does not reduce the total amount of computation,
in fact, it often increases it significantly. The accel-
eration arises from repurposing compute capacity
that would otherwise be idle while waiting for data
transfer. In other words, every SD-based method
has a theoretical upper bound on speedup, corre-
sponding to the full utilization of previously wasted
compute. It is important to note that continuous
batching, mentioned earlier, is also a method for
reducing idle compute. Consequently, in batched
settings where unused compute capacity is already
diminished, speculative decoding methods face a
stricter efficiency requirement.

Current SD methods can be broadly catego-
rized into autoregressive and non-autoregressive
approaches (Hu et al., 2025). The former typically
employs a smaller auxiliary causal model: dur-
ing generation, the small model accesses partial
states from the large model and uses autoregressive
decoding to rapidly generate multiple subsequent

tokens—benefiting from its smaller size and lower
computational cost. The latter, in contrast, utilizes
non-autoregressive techniques by storing multiple
sets of position-specific parameters. These parame-
ters are used to directly generate draft tokens from
the large model’s internal states, with each param-
eter set responsible for predicting a draft token
at a specific future position. In both paradigms,
these models are often combined with prefix trees,
where instead of sampling a single best draft se-
quence, multiple suboptimal candidates are sam-
pled in parallel (Li et al., 2024). These are merged
into a prefix tree and collectively verified by the
large model. However, a key challenge arises in
batched inference settings, where the residual com-
pute capacity available for speculative decoding
is significantly reduced. This severely limits the
size of the prefix tree, often degenerating it into
a single linear sequence, thereby limiting the pre-
dictive accuracy that could otherwise be gained
from broader exploration. Moreover, the auxiliary
model’s parameters are either position-dependent
or autoregressive, require repeated memory access
for sequential decoding. In both cases, scaling up
the auxiliary model to improve prediction quality
becomes difficult, as it incurs substantial additional
cost or inefficiency.

Therefore, we aim to improve the performance
of SD under low draft token budgets, by directly
enhancing the capability of the draft generation
model. This enables SD to be effectively applied
in batched inference settings. To avoid fine-tuning
the original LLM, the draft model must receive
sufficiently rich input information. To this end,
we employ a context causal attention to extract
contextual information from the hidden states of
the input sequence. We observe that in traditional
approaches, the parameters used for draft genera-
tion are position-dependent, i.e., generating each
position in the draft sequence typically requires
accessing a large number of parameters tied to that
specific position. Instead, we seek a prediction
mechanism in which the majority of parameters
are position-independent, while retaining only a
limited amount of positional information. Further-
more, we identify a key distinction between draft
generation in SD and open-ended generation in
LLMs: SD only requires a small number of future
tokens, rather than unbounded generation. Mo-
tivated by this, we adopt a Draft Bi-directional
Attention architecture for draft token generation.
This forms the basis of our proposed SpecFormer



architecture.

We evaluate our proposed method on models of
approximately 4B, 7B, and 14B parameters (Yang
et al., 2024a,b), conducting both theoretical and
real-world experiments. In the theoretical exper-
iments, we constrain the number of draft tokens
to simulate varying levels of redundant computa-
tional capacity and draft model cost. Under these
conditions, we measure the average accepted token
length across different methods to assess their effi-
ciency. In the real-world experiments, we evaluate
the acceleration ratio of our method under different
batch size settings using dialogue datasets and stan-
dard benchmarks, demonstrating its effectiveness
in practical deployment scenarios.

2 Background and Related Works

2.1 Non-autoregressive SD Approaches

Non-autoregressive methods refer to SD algorithms
in which the draft tokens are generated without
causal dependencies among them. The most com-
mon examples include Multi-Token Prediction
(MTP, Gloeckle et al., 2024) and Medusa (Cai et al.,
2024). These approaches share a common princi-
ple: leveraging the last hidden state (LHS) of the
LLM, originally used for predicting the next token,
to predict multiple future tokens simultaneously.
Medusa trains a separate MLP layer for each tar-
get position, projecting the LHS into a new token
space, which is then fed into the LM_Head to gen-
erate the corresponding draft token. In contrast,
MTP designs multiple LM_Heads, each dedicated
to generating the draft token at a specific future
position. Positional-sharing parameters are typi-
cally less while Positional-specific ones remains
fairly many for these methods. These methods of-
ten suffer from limited predictive capacity due to
their inability to access information from the entire
sequence, and they typically require fine-tuning the
entire model.

2.2 Autoregressive SD Approaches

Autoregressive methods employ a smaller sequence
model to generate future tokens autoregressively
based on the input sequence. Autoregressive de-
coding can operate at three levels:

1. Token level: These methods use a standalone
small language model (SLM) to generate fu-
ture tokens autoregressively. The SLM typi-
cally shares the same vocabulary as the LLM.
It receives the input tokens from the LLM,

samples several future tokens autoregressively,
and then passes them to the LLM for valida-
tion. A key advantage is that, if a suitable
SLM exists, no additional training is required.
However, such models are difficult to obtain,
and the approach introduces significant KV
cache overhead. A representative method is
BiLLD (Kim et al., 2023) decoding (Xia et al.,
2023; Huang et al., 2024; Zhou et al., 2024;
Bachmann et al., 2025).

2. LHS level: These methods perform autore-
gressive decoding over LHS representations.
A small model consumes the LHS output from
the LLM, predicts the next-step LHS, and re-
cursively feeds it into itself. The resulting
LHS representations are then converted to to-
ken predictions and validated by the LLM.
The small model is typically a decoder layer
and requires additional training, but since the
LLM itself is not modified, the training cost in
both time and memory is significantly lower
than fine-tuning. The primary limitation lies
in the difficulty of aligning the small model
to the LHS space, which can impair its per-
formance. Representative methods include
EAGLE (Li et al., 2025b), HASS (Zhang
et al., 2025), Deepseek-V3 MTP (DeepSeek-
Al et al., 2024), etc.(Gao et al., 2025)

3. Independent representation : These meth-
ods construct a separate latent space by com-
bining the LLM’s LHS with auxiliary infor-
mation, and perform autoregressive decoding
in this space. A notable example is EAGLE-
3 (Liet al., 2025a).

A common challenge across autoregressive de-
coding models is that the repeated invocation of
the small model means that, even with identical
content, its parameters remain position-dependent,
leading to higher computational costs. Further-
more, due to the limited capacity of the small
model, these methods often require a very wide pre-
fix tree to explore multiple hypotheses in parallel,
in order to achieve acceptable prediction accuracy.

3 Methods
3.1 From Arithmetic Intensity to SD
Evaluation

Arithmetic intensity (Al) is defined as the ratio
between the number of required floating-point op-
erations and the number of bytes of data that must



be read. For a model with M parameters operating
in half-precision, the arithmetic intensity Al is
given in Equation 1.

Model FLOPS
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Memory I/0O
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For an acceleration chip, we can estimate the ideal
arithmetic intensity Al. required to fully utilize
its compute capacity by examining the ratio of its
peak FLOPs to memory bandwidth (typically DDR,
GDDR, or HBM). For Tesla A100-80G, the Al as
shown in Equation 2.

Peak FLOPS bf16
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(A100) Memory Bandwidth
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We define the redundancy ratio p as the ratio
Al./AlI,, which represents both the ideal batch
size and the theoretical upper bound of speedup
achievable through batching effects. It should be
noted that due to practical factors such as schedul-
ing overhead, p does not reflect actual performance
precisely, but it provides a useful baseline for
system-level analysis. We prefer smaller values
of p, as a lower p indicates less wasted compute,
with p = 1 representing the ideal case where no
redundancy remains.

Previous work on SD has typically focused on
average accepted token length, i.e., the average
number of tokens accepted per invocation of the
LLM. However, we argue that this metric is overly
coarse-grained: it obscures the underlying total
computational cost, making it difficult to adapt
methods to different deployment scenarios. We
contend that a more meaningful and necessary cri-
terion for evaluating an SD method is to examine
its performance under a fixed draft token budget.

For a given SD algorithm, suppose it increases
the total computation by a factor of p, generates k
draft tokens per step, and among them, an average
of a tokens are accepted. Then, the effective Al
gain relative to standard LLM decoding which we
want to maximize, denoted as r1, and the on-chip
Al gain, denoted as 2, can be derived as a function
of p in Equation 3, with bs representing the batch
size.

maxry = gAIm, st.ro =k < L4 3)
P bs

Moreover, if the SD model requires m,, parameters
to generate draft token of each position, and m
parameters that shares within all positions, with
the draft sequence length /4, the p is given in Equa-
tion 4. ;
W %)
Finally, we define an optimization coefficient « in
Equation 5, which captures the model’s ability to
accelerate under constrained resources. We aim to
maximize s, or increase the draft token acceptance
rate while minimizing the computational overhead
of the draft model. In prior work, k was often
either ignored or fixed to a relatively large constant,
owing to the availability of abundant redundant
compute. However, as the batch size increases, the
available redundant compute rapidly diminishes,
making k a critical factor that significantly impacts
performance.

p=1+

k=—20 ®)

3.2 General Notations

We define C as our training corpus with |C| en-
tries. Anentry ¢ € C is a list a tokens z1z2 ... ||
The training goal of next-token prediction for LLM
pretraining is to find the 6,4 that minimize the
cross entropy loss, given in Equation 6a. For an
SD module with parameters #sp and maximum
drafting length /4, the optimizing goal is given in
Equation 6b.

. —logPQLM (.’EZ |£L‘1...ﬂ;'i,1)
arg min E Z - 1d]
(6a)
arg min
0sp

lg+1  |c|

Z Z Z —log P(GLMﬁSD) (zi |21 .. 'wi*j)
IC| - el - la

c€C j=2 i=1+j
(6b)

We further denote L as the layer count of the
base LLM and d}, as the hidden size. Hidden states
HS € RUEADXIelxdn gre the states that traversing
between layers, where HS[i] represents the i-th
layer of HS. Specifically, HS[0] = Embedding(c)
and LHS = HS[L].

Finally, we define Equation 7 to simplify the de-
scription of pre-norm residual connected units (He
et al., 2016).

(Ops-Norm+1)(X) < Ops(Norm(X))+X
(N
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Figure 1: An overview of proposed SpecFormer speculative decod-

ing method.

3.3 SpecFormer

Our proposed SpecFormer architecture comprises
a Context Causal Attention layer and a Draft Bi-
directional Attention layer, depicted in Figure 1,
incorporating both unidirectional and bidirectional
attention along two dimensions, as shown in Fig-
ure 2.

3.3.1 Context Causal Attention

The Context Causal Attention module consists of
three components: Hook and Downsampler, Causal
Attention, and a Positional Feedforward Network
(Positional FFN). Each component takes inputs
passed through root-mean-square normalization
(RMS Norm, Zhang and Sennrich, 2019), with the
Downsampler employing Grouped RMS Norm and
the Causal Attention module utilizing a residual
connection.

The hook module extracts information from
the HS, following the approach introduced by Li
et al.. Specifically, we select four layers: HS[0],
HS[L/2], HS[L — 1], and HS[L], and concatenate
them to form a tensor I € Rbsxlclx4xdh e ap-
ply Grouped RMS Norm over the last dimension,
assigning a group of scale parameters (initialized
to 1) to each slice along the second-to-last dimen-
sion. The normalized tensor is then reshaped into
Icar € Rbsxlelx4dn which serves as the input to
the Downsampler, a linear module with weights of
Whp and no bias. The output Iy € Rbs*lelxdn jg
RMS-normalized again before being passed into
the masked self-attention (MSA), which can be
viewed as an additional (L + 1)-th layer of the

Draft Bidirectional
Attention

Bi-directional

|

Figure 2: A depiction of uni and bi-
directional attention.

LLM. This design allows for easy integration with
existing KV cache management frameworks. For-
malized in Equation 8.

Ip =(MSA - RMS +I) (Wp - Icat)

8
Icat =GroupRMS (HS[0, L/2, L — 1, L]) ®

The Positional FFN is a simple linear projection
from dimension dj, to lg - dj with weights Wp,
effectively decomposing a representation into [
position-specific components with added biases
bp. We argue that position-specific information in
draft tokens should not be too simplistic, such as
assigning a basic mask per position, yet using a full
MLP for each position would be overly redundant.
Therefore, we adopt this middle-ground approach.
The number of position-related parameters is [+ d?,
which, while still quadratic in d},, is significantly
smaller than methods like Medusa, which require
atleast 8- 14 - di, placing our method on the more
efficient end of the spectrum. The output of the
Context Causal Attention stage is a tensor D €
Rbsxlelxlaxdn  Formalized in Equation 9.

D = Wp - RMS(Ip) + bp 9)

3.3.2 Draft Bi-directional Attention

The Draft Bi-directional Attention layer applies
self-attention mechanisms within the draft token
sequence, utilizing a standard self-attention (SA)
module with residual connections and a Swish
Gated Linear Unit (SwiGLU, Shazeer, 2020) feed-
forward network. All components are normal-
ized using RMS Normalization. The output E' €



Rbsxlelxlaxdn  Formalized in Equation 10.

E = (SwiGLU - RMS +I)((SA - RMS +1)(D))

(10)
It is important to emphasize that the attention mech-
anism operates along the draft token dimension;
that is, for a sequence of length [;, the effective
batch size becomes bs - |¢|. In our implementation,
we observed that FlashAttention 2 (Dao, 2024; Dao
et al., 2022) cannot handle batch sizes larger than
4095. To address this limitation, we partition the
computation along the batch dimension, processing
the attention in groups of 3072 samples per batch
segment.

3.4 Implementation Improvements

3.4.1 Efficient Grouped RMS Norm

Through profiling, we found that RMS Normaliza-
tion often becomes a performance bottleneck, pri-
marily due to its significant consumption of CPU
time slices. As a result, implementing Grouped
RMS Norm with a loop-based approach tends to
be inefficient. To address this, we customized a
GPU kernel using Triton (Tillet et al., 2019) to im-
plement the Grouped RMS Norm operation more
efficiently.

3.4.2 Intra-batch Gradient Accumulation

We adopted the gradient accumulation strategy
around the LM Head as proposed by Gloeckle et al..
Specifically, for each position j € {1,2,... 14},
we compute the loss sequentially, rather than si-
multaneously. This is because the vocabulary
size in modern language models often exceeds
128K (Dubey et al., 2024), making the full soft-
max projection very expensive in storage. Instead,
we sequentially map each position’s hidden state
to the vocabulary, compute gradients, and store
them within the hidden states via backpropagation.
Once gradients for all positions are computed, we
continue the remaining backward pass together.

4 Experiment

4.1 Setups

4.1.1 Training Corpus

We trained our model on the UltraChat-200K (UC,
Ding et al., 2023) dataset, which contains approx-
imately 460K dialogue samples. Although the
dataset itself is distilled from ChatGPT outputs,
in our implementation, we opted to perform self-
distillation (Zhang et al., 2022; Lasby et al., 2025)

first. Specifically, we retained only the question
(prompt) parts from the original samples and regen-
erated the completions using the base LLM. This
ensures that the distribution learned by the draft
model strictly aligns with that of the base model,
rather than being influenced by another teacher
model. Our experiments demonstrate that this ad-
justment leads to significant performance improve-
ments.

4.1.2 Base LLM

We selected foundation models from the Qwen and
LLaMA families, including Qwen2.5-3B, Qwen3-
8B, Qwen3-14B, and LLaMA-3.1-8B. Unlike
many previous works, we did not adopt the Vi-
cuna (Zheng et al., 2023) series. This decision is
based on two considerations: First, both the Vicuna
model and its training dataset (ShareGPT) are rela-
tively outdated. Second, as a chat model built on
early versions of LLaMA (Touvron et al., 2023),
Vicuna uses a small vocabulary (about 32K). Vocab-
ulary size is closely correlated with the difficulty
of token prediction in draft generation—larger vo-
cabularies increase prediction difficulty. Modern
models typically use vocabularies exceeding 128K,
with some, such as Gemma (Kamath et al., 2025),
reaching 256K, making Vicuna unrepresentative of
current LLMs.

4.1.3 Evaluation

Our evaluation set includes the test split of the
UC dataset along with several popular benchmarks:
MT-Bench (Zheng et al., 2023), HumanEval (Chen
et al., 2021), GSM8K (Cobbe et al., 2021), Al-
paca (Taori et al., 2023), and CNN/DM (See et al.,
2017; Yu et al., 2021). For reporting purposes,
we present averaged results across this combined
set, as there is no strong evidence suggesting per-
formance varies significantly across these datasets
in our no-regression setting. Since we focus on
lossless LLM acceleration, correctness is not a con-
cern—the model’s outputs remain identical before
and after acceleration.

4.1.4 Implementation

Our method is implemented and trained using the
PyTorch framework with few Triton and FlashAt-
tention components. For inference, we leverage the
Medusa decoding framework, as well as custom
SD-compatible decoding code based on the Hug-
gingFace Transformers (Wolf et al., 2019) library.
We conducted tests under various batch sizes, and



b i W/o SD HASS EAGLE-3 Ours
5 k  TPS K TPS K TPS K TPS
401 41(1x) | 214 69(1.70x) |2.16 70(1.73x) | 220 73 (1.78x)
1 6|1 41(x) | 217 71 (1.74x%) | 218 72(1.75%) | 222 74 (1.81x)
811 41(1x) | 217 72(1.75%) | 2.19  72(1.76x) | 2.23 73 (1.80%)
401 162(1x) | 214 275(1.70x) | 2.16 277 (1.71x) | 2.18 289 (1.78x)
4 6|1 162(1x) | 217 282(1.74x) | 217 282 (1.73%) | 222 293 (1.81x)
811 162(1x) | 2.18 284(1.75%) | 2.18 279 (1.72x) | 2.23 291 (1.80%)
411 681(1x) | 2.14 1164 (1.71x) | 2.16 1175 (1.72x) | 2.19 1212 (1.78x)
16 6|1 681(1x) | 216 1190 (1.74%) | 217 1185 (1.74%) | 2.22 1233 (1.81x)
811 681(Ix) | 217 1189 (1.75%) | 2.17 1192 (1.75%) | 2.24 1220 (1.79%)
411 2590 (1x) | 2.13 4454 (1.72x) | 2.15 4429 (1.71x) | 2.19 4610 (1.78x)
64 6|1 2590 (1x) | 2.17 4530 (1.75%) | 2.17 4515 (1.74x) | 2.22 4688 (1.81x)
8|1 2590 (1x) | 217 4541 (1.75%) | 2.18 4507 (1.74x) | 2.24 4610 (1.78x)
411 5143(1x) | 2.14 8800 (1.71x) | 2.16 8846 (1.72x) | 2.18 9154 (1.78x)
128 6|1 5143(1x) | 2.16 8956 (1.74x) | 2.17 8901 (1.73%) | 2.22 9308 (1.81x)
8|1 5143(1x) | 217 8945 (1.74%) | 2.16 8845 (1.72x) | 2.24 9206 (1.79x)

Table 1: The comparison between SpecFormer and baselines under different batch size and settings. The baseline
methods may underperform compared to their reported values, as we impose a constraint on the draft token budget.

report the theoretical speedup, efficiency factor «,
and actual speed gains. Our detailed training hy-
perparameters is given in Appendix A.

4.2 Throughput Comparison

We constrain the available draft token budget to
a relatively small value and then evaluate the sys-
tem’s throughput under varying batch sizes. We
measure the throughput of our method using to-
kens per second (TPS), as shown in Table 1. We
observe that our approach consistently outperforms
the baseline methods. Notably, the baselines do
not reach their reported performance levels in our
setting because we constrain the available token
budget to simulate scenarios with limited compu-
tational redundancy, such as those arising in large-
batch inference. In contrast, our method achieves
high throughput without relying on a large num-
ber of draft tokens, owing to its superior predictive
capability.

Furthermore, we evaluate the conversion rate
from k-to-TPS, and find that our method exhibits
a higher conversion efficiency. This is primarily
because our design adopts a non-autoregressive for-
mulation, which results in higher arithmetic inten-
sity and lower average per-token overhead, thereby
improving overall efficiency.

4.3 Special Case Study
4.3.1 Self Distillation

We evaluate the impact of self-distillation by com-
paring models trained with and without it on
Qwen2.5-3B. Specifically, we first train an No-Self-
Distill model using the original UC-200K dialogue
dataset. Then, we apply self-distillation by retain-
ing only the prompt side of each dialogue and gen-
erating completions using the base LLM, which are
subsequently used to train the Self-Distill model.
Notably, the self-distilled dataset is smaller in size,
as it contains fewer dialogue turns.

The x value and acceleration performance are
reported in Table 2. We observe that without self-
distillation, the model demonstrates negligible ac-
celeration, as the learned token distribution does
not originate from the base model, but rather from
a different teacher model. While traditional distilla-
tion may partially mitigate this issue, we argue that
self-distillation remains a necessary step, particu-
larly in light of modern deployment frameworks
like vLLM, which offer highly efficient offline in-
ference and make strict alignment with the base
model’s output even more critical.

4.3.2 Base LLM Size

To investigate the performance gains of our archi-
tecture under speculative decoding across differ-



bs & W/o SD No-Self-Distill Self-Distill
ld K TPS ld K TPS ld KR TPS
1 8 ‘ 1 1 32(1.00%) ‘ 8 1.19 30(0.94x) ‘ 8 190 56(1.76x%)
Table 2: The comparison between to use or not to use self-distillation.
bs K Qwen3-4B Qwen3-8B Qwen3-14B
K TPS 6 K TPS 0 K TPS 0
0 1 30 (1.00x) 1 1 31 (1.00x) 1 1 26 (1.00x) 1
1 4181 45(.50x%) 1.21 | 1.74 45 (1.45%) 1.20 | 1.71 38 (1.46 %) 1.17
8 | 1.81 46 (1.54x%) 1.18 | 1.76 46 (1.49x%) 1.18 | .72 39 (1.46x%) 1.18
0 1 147 (1.00x) 1 1 120 (1.00x) 1 1 105 (1.00x) 1
4 41184 224(1.53x) 120|176 178(1.48x) 1.19| 1.71 157(1.49x) 1.14
8| 1.86 227(1.56x) 1.19 | 1.76 182(1.49x) 1.18 | 1.72 154 (147x) 1.17
0 1 588 (1.00x) 1 1 488 (1.00x) 1 1 436 (1.00x) 1
16 4184 899(1.53x) 120|176 726(1.49%x) 1.18 | 1.71 636(1.47x) 1.16
8186 917(1.56x) 1.19 | 1.77 726(1.49x) 1.19 | 1.72 639 (1.46x) 1.18
0 1 2346 (1.00x) 1 1 1904 (1.00x) 1 1 1713 (1.00x) 1
64 2| 172 3435(1.46x) 1.18 | 1.68 2734 (1.44x) 1.17 | 1.64 2454 (1.41x) 1.16
41 1.84 3621 (1.53x) 1.20 | 1.75 2834 (1.48x) 1.18 | 1.71 2524 (1.47x) 1.16
0 1 4582 (1.00x) 1 1 3882 (1.00x) 1 1 3458 (1.00x) 1
128 2| 1.73 6725(1.47x) 1.18 | 1.68 5586 (1.43x) 1.17 | 1.64 4834 (1.41x) 1.16
41184 7263 (1.53x) 1.20 | 1.75 5761 (1.48x) 1.18 | 1.71 5090 (1.47%x) 1.16

Table 3: The comparison between our proposed method SpecFormer and baselines under size of base LLMs.

ent model sizes, we conducted experiments on the
Qwen-3 series, including 4B, 8B, and 14B vari-
ants—covering a representative range of commonly
used model scales. The acceleration results across
these models are presented in Table 3. We also cal-
culate the x-to-TPS conversion ratio 6 to measure
how the draft module itself impact the efficiency.

We observe that as the model size increases, the
predictor’s ability to accurately guess future tokens
are weakened, resulting in less acceleration gains.
For instance, the 4B model achieves a speedup
of 1.56x, whereas the 14B model sees a reduced
speedup of 1.47x. However, we also find that larger
models exhibit a more favorable 6, meaning that
the relative overhead introduced by the predictor is
smaller. This can be attributed to two main reasons:
The increased number of layers in larger models
leads to a smaller parameter percentage for the pre-
dictor, and the larger weight matrices in big models
dilute the overhead from scheduling. Overall, these
results demonstrate that our method remains appli-
cable across various model sizes, although it shows

particularly strong benefits on smaller models.

5 Conclusion

We first analyze that the batch execution environ-
ment imposes constraints on the effectiveness of
speculative decoding by decreasing the idle com-
putational resources. Then we proposed a novel
speculative decoding method for LLMs, termed
SpecFormer, which leverages two types of attention
mechanisms operating along different dimensions,
one unidirectional and one bidirectional. This de-
sign enables efficient parallel generation of future
tokens while extracting information from the whole
context, resulting in a more capable draft model.
Consequently, our approach maintains high pre-
diction accuracy under a limited draft token bud-
get. We further conduct experiments across varying
batch sizes, demonstrating that our method sustains
comparable performance as batch size increases.
Lastly, evaluations on models of different scales
confirm the general applicability of our approach
across a broad range of LLM configurations.



Limitations

Our method has several limitations that highlight
possible directions for future work. First, it re-
quires training, even though we only train the draft-
module, which imposes relatively modest demands
in terms of compute and supervision, the inclu-
sion of a self-distillation stage still entails a non-
trivial number of GPU-hours. Fully training-free
approaches may represent a promising avenue for
further research.

Moreover, our method, as with any non-
autoregressive decoding strategy, faces inherent
challenges when integrated with prefix tree struc-
tures, where autoregressive methods currently hold
a clear advantage. Developing more effective and
efficient mechanisms to couple non-autoregressive
predictors with prefix-based verification remains
an open and valuable research problem.

Ethics Statement

This work does not involve the collection or use
of any personally identifiable data, human sub-
jects, or sensitive information. All experiments
are conducted using publicly available datasets and
open-source models. We adhere to the principles
of responsible Al research, including transparency,
reproducibility, and fairness. Any use of large lan-
guage models complies with the respective licens-
ing terms. Our proposed methods are intended for
research purposes only and should be deployed
with care to avoid misuse or unintended conse-
quences.
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A Training Hyperpameters

Reference Table 4. Training takes about 72, 50 and
40 GPU-hours for 14B, 8B and 4B variants, with
about 16, 12, 10 GPU-hours for data preparing in
self-distillation.

Hyperparameter Value
Batch Size 2
Grad. Acc. 8
Max Seq. Len. 4096
Num Epochs 2
Total Steps 463, 888

S5e-4 (4B Model)
Max Learning Rate | 3e-4 (8B Model)
2e-4  (14B Model)
le-5 (4B Model)
Min Learning Rate | le-5 (8B Model)
le-5 (14B Model)

Warm Up 5% Total steps
Scheduler Cosine Annealing
Optimizer AdamW
Adam € 2e-4
Adam fs (0.9, 0.999)
Weight Decay 0.01

Table 4: Hyperparameters used for training.

B Hardware Detail

Please reference Table 5.

Item ‘ Value

CPU | 24 * Intel(R) Xeon(R) Silver
4314 CPU @ 2.40GHz

GPU | NVIDIA A800 PCle 80 GB

RAM | 212GB DDR4-2667

Table 5: Hardware used.
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