
Scaling LLM Speculative Decoding:
Non-Autoregressive Forecasting in Large-Batch Scenarios

Anonymous ACL submission

Abstract001

Speculative decoding accelerates LLM infer-002
ence by utilizing otherwise idle computational003
resources during memory-to-chip data transfer.004
Current approaches typically rely on smaller005
causal models to autoregressively sample draft006
tokens, often enhanced with prefix trees to ex-007
plore multiple potential drafts. However, these008
methods face significant performance degrada-009
tion as batch size increases, due to reduced sur-010
plus computational capacity for speculative de-011
coding. To address this limitation, we propose012
SpecFormer, a novel architecture that integrates013
unidirectional and bidirectional attention mech-014
anisms. SpecFormer combines the autoregres-015
sive model’s ability to extract information from016
the entire input sequence with the parallel gen-017
eration benefits of non-autoregressive models.018
This design eliminates the reliance on large pre-019
fix trees and achieves consistent acceleration,020
even in large-batch scenarios. Through loss-021
less speculative decoding experiments across022
models of various scales, we demonstrate that023
SpecFormer sets a new standard for scaling024
LLM inference with lower training demands025
and reduced computational costs.026

1 Introduction027

Large language models (LLMs) based on Trans-028

former (Vaswani et al., 2017) Decoders have029

rapidly become the industry standard in recent030

years, owing to their favorable properties such as031

scalability in training and lossless handling of long-032

context dependencies (OpenAI, 2023). Neverthe-033

less, these models continue to follow the conven-034

tional sequence-to-sequence generation paradigm:035

autoregressive decoding. Autoregressive decod-036

ing refers to the process where tokens are gener-037

ated one at a time; each newly generated token is038

fed back into the model as input for the next step,039

alongside the existing context, to perform another040

forward pass. This paradigm offers several notable041

advantages. With only a causal mask, the attention042

mechanism can be readily adapted for generation 043

tasks, making training straightforward (Chowdhery 044

et al., 2023). It also allows for the generation of 045

virtually unlimited-length outputs and enables ac- 046

celeration through state caching for repeated input 047

prefixes (Shi et al., 2024). 048

However, during inference, generating one to- 049

ken at a time results in low arithmetic intensity 050

(AI, Williams et al., 2009). Each model parameter, 051

once loaded from memory into the chip, typically 052

contributes to only two operations, a multiplication 053

and an addition. In contrast, modern hardware can 054

perform dozens to hundreds of operations in the 055

time it takes to move a single datum from memory, 056

leading to substantial underutilization of compute 057

resources. On the infrastructure side, techniques 058

such as prefill-decoding (PD) separation (Zhong 059

et al., 2024) and continuous batching (Yu et al., 060

2022; Kwon et al., 2023) have been introduced to 061

improve overall compute utilization and user ex- 062

perience. Nonetheless, under constraints imposed 063

by service-level objects (SLOs, Wang et al., 2024), 064

these techniques often fall short of leveraging the 065

full computational potential. Increasing AI, the 066

ratio of computation to data transfer, is the funda- 067

mental approach to enhancing hardware efficiency 068

during generation. 069

Speculative decoding (SD, Xia et al., 2024) is 070

one of the most effective approaches for improving 071

arithmetic intensity. Its core idea is to generate 072

multiple tokens per forward pass of the large model. 073

The process consists of three main steps (Stern 074

et al., 2018): 075

1. Multi-token generation: Based on informa- 076

tion from the previous forward pass, the model 077

samples multiple draft tokens. 078

2. Multi-token verification: The model evalu- 079

ates all draft tokens simultaneously to deter- 080

mine whether each one aligns with its own top 081

prediction, while also extracting and storing 082

1

information for the next round of multi-token083

generation.084

3. Multi-token acceptance: The model decides085

whether to accept the draft tokens based on the086

verification results and accordingly updates087

the contextual information.088

Since multiple tokens are generated in one forward089

pass, speculative decoding is also referred to as090

multi-token prediction (MTP). Multi-token gener-091

ation is the most critical component of SD, as the092

acceptance rate of the sampled drafts directly deter-093

mines how effectively computational resources are094

utilized. In this work, we focus specifically on095

lossless SD, which adheres to two strict conditions:096

1. Only draft tokens that exactly match the out-097

puts of the large model are accepted.098

2. The LLM itself must remain unmodified.099

These constraints make SD a purely acceleration-100

oriented technique, ensuring strict mathematical101

equivalence with the original model outputs. While102

relaxing accuracy requirements can potentially103

yield further speedup, the resulting performance104

degradation is often difficult to quantify or con-105

trol, and may unnecessarily complicate the prob-106

lem. Moreover, empirical observations suggest that107

algorithms performing well under the lossless SD108

setting tend to also exhibit strong performance un-109

der lossy conditions.110

A key observation about this paradigm is that SD111

does not reduce the total amount of computation,112

in fact, it often increases it significantly. The accel-113

eration arises from repurposing compute capacity114

that would otherwise be idle while waiting for data115

transfer. In other words, every SD-based method116

has a theoretical upper bound on speedup, corre-117

sponding to the full utilization of previously wasted118

compute. It is important to note that continuous119

batching, mentioned earlier, is also a method for120

reducing idle compute. Consequently, in batched121

settings where unused compute capacity is already122

diminished, speculative decoding methods face a123

stricter efficiency requirement.124

Current SD methods can be broadly catego-125

rized into autoregressive and non-autoregressive126

approaches (Hu et al., 2025). The former typically127

employs a smaller auxiliary causal model: dur-128

ing generation, the small model accesses partial129

states from the large model and uses autoregressive130

decoding to rapidly generate multiple subsequent131

tokens—benefiting from its smaller size and lower 132

computational cost. The latter, in contrast, utilizes 133

non-autoregressive techniques by storing multiple 134

sets of position-specific parameters. These parame- 135

ters are used to directly generate draft tokens from 136

the large model’s internal states, with each param- 137

eter set responsible for predicting a draft token 138

at a specific future position. In both paradigms, 139

these models are often combined with prefix trees, 140

where instead of sampling a single best draft se- 141

quence, multiple suboptimal candidates are sam- 142

pled in parallel (Li et al., 2024). These are merged 143

into a prefix tree and collectively verified by the 144

large model. However, a key challenge arises in 145

batched inference settings, where the residual com- 146

pute capacity available for speculative decoding 147

is significantly reduced. This severely limits the 148

size of the prefix tree, often degenerating it into 149

a single linear sequence, thereby limiting the pre- 150

dictive accuracy that could otherwise be gained 151

from broader exploration. Moreover, the auxiliary 152

model’s parameters are either position-dependent 153

or autoregressive, require repeated memory access 154

for sequential decoding. In both cases, scaling up 155

the auxiliary model to improve prediction quality 156

becomes difficult, as it incurs substantial additional 157

cost or inefficiency. 158

Therefore, we aim to improve the performance 159

of SD under low draft token budgets, by directly 160

enhancing the capability of the draft generation 161

model. This enables SD to be effectively applied 162

in batched inference settings. To avoid fine-tuning 163

the original LLM, the draft model must receive 164

sufficiently rich input information. To this end, 165

we employ a context causal attention to extract 166

contextual information from the hidden states of 167

the input sequence. We observe that in traditional 168

approaches, the parameters used for draft genera- 169

tion are position-dependent, i.e., generating each 170

position in the draft sequence typically requires 171

accessing a large number of parameters tied to that 172

specific position. Instead, we seek a prediction 173

mechanism in which the majority of parameters 174

are position-independent, while retaining only a 175

limited amount of positional information. Further- 176

more, we identify a key distinction between draft 177

generation in SD and open-ended generation in 178

LLMs: SD only requires a small number of future 179

tokens, rather than unbounded generation. Mo- 180

tivated by this, we adopt a Draft Bi-directional 181

Attention architecture for draft token generation. 182

This forms the basis of our proposed SpecFormer 183

2

architecture.184

We evaluate our proposed method on models of185

approximately 4B, 7B, and 14B parameters (Yang186

et al., 2024a,b), conducting both theoretical and187

real-world experiments. In the theoretical exper-188

iments, we constrain the number of draft tokens189

to simulate varying levels of redundant computa-190

tional capacity and draft model cost. Under these191

conditions, we measure the average accepted token192

length across different methods to assess their effi-193

ciency. In the real-world experiments, we evaluate194

the acceleration ratio of our method under different195

batch size settings using dialogue datasets and stan-196

dard benchmarks, demonstrating its effectiveness197

in practical deployment scenarios.198

2 Background and Related Works199

2.1 Non-autoregressive SD Approaches200

Non-autoregressive methods refer to SD algorithms201

in which the draft tokens are generated without202

causal dependencies among them. The most com-203

mon examples include Multi-Token Prediction204

(MTP, Gloeckle et al., 2024) and Medusa (Cai et al.,205

2024). These approaches share a common princi-206

ple: leveraging the last hidden state (LHS) of the207

LLM, originally used for predicting the next token,208

to predict multiple future tokens simultaneously.209

Medusa trains a separate MLP layer for each tar-210

get position, projecting the LHS into a new token211

space, which is then fed into the LM_Head to gen-212

erate the corresponding draft token. In contrast,213

MTP designs multiple LM_Heads, each dedicated214

to generating the draft token at a specific future215

position. Positional-sharing parameters are typi-216

cally less while Positional-specific ones remains217

fairly many for these methods. These methods of-218

ten suffer from limited predictive capacity due to219

their inability to access information from the entire220

sequence, and they typically require fine-tuning the221

entire model.222

2.2 Autoregressive SD Approaches223

Autoregressive methods employ a smaller sequence224

model to generate future tokens autoregressively225

based on the input sequence. Autoregressive de-226

coding can operate at three levels:227

1. Token level: These methods use a standalone228

small language model (SLM) to generate fu-229

ture tokens autoregressively. The SLM typi-230

cally shares the same vocabulary as the LLM.231

It receives the input tokens from the LLM,232

samples several future tokens autoregressively, 233

and then passes them to the LLM for valida- 234

tion. A key advantage is that, if a suitable 235

SLM exists, no additional training is required. 236

However, such models are difficult to obtain, 237

and the approach introduces significant KV 238

cache overhead. A representative method is 239

BiLD (Kim et al., 2023) decoding (Xia et al., 240

2023; Huang et al., 2024; Zhou et al., 2024; 241

Bachmann et al., 2025). 242

2. LHS level: These methods perform autore- 243

gressive decoding over LHS representations. 244

A small model consumes the LHS output from 245

the LLM, predicts the next-step LHS, and re- 246

cursively feeds it into itself. The resulting 247

LHS representations are then converted to to- 248

ken predictions and validated by the LLM. 249

The small model is typically a decoder layer 250

and requires additional training, but since the 251

LLM itself is not modified, the training cost in 252

both time and memory is significantly lower 253

than fine-tuning. The primary limitation lies 254

in the difficulty of aligning the small model 255

to the LHS space, which can impair its per- 256

formance. Representative methods include 257

EAGLE (Li et al., 2025b), HASS (Zhang 258

et al., 2025), Deepseek-V3 MTP (DeepSeek- 259

AI et al., 2024), etc.(Gao et al., 2025) 260

3. Independent representation : These meth- 261

ods construct a separate latent space by com- 262

bining the LLM’s LHS with auxiliary infor- 263

mation, and perform autoregressive decoding 264

in this space. A notable example is EAGLE- 265

3 (Li et al., 2025a). 266

A common challenge across autoregressive de- 267

coding models is that the repeated invocation of 268

the small model means that, even with identical 269

content, its parameters remain position-dependent, 270

leading to higher computational costs. Further- 271

more, due to the limited capacity of the small 272

model, these methods often require a very wide pre- 273

fix tree to explore multiple hypotheses in parallel, 274

in order to achieve acceptable prediction accuracy. 275

3 Methods 276

3.1 From Arithmetic Intensity to SD 277

Evaluation 278

Arithmetic intensity (AI) is defined as the ratio 279

between the number of required floating-point op- 280

erations and the number of bytes of data that must 281

3

be read. For a model with M parameters operating282

in half-precision, the arithmetic intensity AIm is283

given in Equation 1.284

AIm =
Model FLOPS

Memory I/O

=
2 ·M

bytes(bf16) ·M
= 1

(1)285

For an acceleration chip, we can estimate the ideal286

arithmetic intensity AIc required to fully utilize287

its compute capacity by examining the ratio of its288

peak FLOPs to memory bandwidth (typically DDR,289

GDDR, or HBM). For Tesla A100-80G, the AIc as290

shown in Equation 2.291

AIc(A100) =
Peak FLOPS bf16

Memory Bandwidth

=
311.84 TFLOPS/s

2.04 TB/s
= 152.86

(2)292

We define the redundancy ratio ρ as the ratio293

AIc/AIm, which represents both the ideal batch294

size and the theoretical upper bound of speedup295

achievable through batching effects. It should be296

noted that due to practical factors such as schedul-297

ing overhead, ρ does not reflect actual performance298

precisely, but it provides a useful baseline for299

system-level analysis. We prefer smaller values300

of ρ, as a lower ρ indicates less wasted compute,301

with ρ = 1 representing the ideal case where no302

redundancy remains.303

Previous work on SD has typically focused on304

average accepted token length, i.e., the average305

number of tokens accepted per invocation of the306

LLM. However, we argue that this metric is overly307

coarse-grained: it obscures the underlying total308

computational cost, making it difficult to adapt309

methods to different deployment scenarios. We310

contend that a more meaningful and necessary cri-311

terion for evaluating an SD method is to examine312

its performance under a fixed draft token budget.313

For a given SD algorithm, suppose it increases314

the total computation by a factor of p, generates k315

draft tokens per step, and among them, an average316

of a tokens are accepted. Then, the effective AI317

gain relative to standard LLM decoding which we318

want to maximize, denoted as r1, and the on-chip319

AI gain, denoted as r2, can be derived as a function320

of ρ in Equation 3, with bs representing the batch321

size.322

max r1 =
a

p
AIm, s.t. r2 = k ≤ ρ

bs
(3)323

Moreover, if the SD model requires mp parameters 324

to generate draft token of each position, and ms 325

parameters that shares within all positions, with 326

the draft sequence length ld, the p is given in Equa- 327

tion 4. 328

p = 1 +
ms + ld ·mp

M
(4) 329

Finally, we define an optimization coefficient κ in 330

Equation 5, which captures the model’s ability to 331

accelerate under constrained resources. We aim to 332

maximize κ, or increase the draft token acceptance 333

rate while minimizing the computational overhead 334

of the draft model. In prior work, k was often 335

either ignored or fixed to a relatively large constant, 336

owing to the availability of abundant redundant 337

compute. However, as the batch size increases, the 338

available redundant compute rapidly diminishes, 339

making k a critical factor that significantly impacts 340

performance. 341

κ =
a · ld
k

(5) 342

3.2 General Notations 343

We define C as our training corpus with |C| en- 344

tries. An entry c ∈ C is a list a tokens x1x2 . . . x|c|. 345

The training goal of next-token prediction for LLM 346

pretraining is to find the θLM that minimize the 347

cross entropy loss, given in Equation 6a. For an 348

SD module with parameters θSD and maximum 349

drafting length ld, the optimizing goal is given in 350

Equation 6b. 351

argmin
θLM

∑
c∈C

|c|∑
i=2

− logPθLM (xi | x1 . . . xi−1)

|C| · |c|
(6a) 352353

argmin
θSD∑

c∈C

ld+1∑
j=2

|c|∑
i=1+j

− logP(θLM,θSD) (xi | x1 . . . xi−j)

|C| · |c| · ld
(6b) 354

We further denote L as the layer count of the 355

base LLM and dh as the hidden size. Hidden states 356

HS ∈ R(L+1)×|c|×dh are the states that traversing 357

between layers, where HS[i] represents the i-th 358

layer of HS. Specifically, HS[0] = Embedding(c) 359

and LHS = HS[L]. 360

Finally, we define Equation 7 to simplify the de- 361

scription of pre-norm residual connected units (He 362

et al., 2016). 363

(Ops ·Norm+I)(X) ⇐⇒ Ops(Norm(X))+X
(7) 364

4

Context Sequence
Masked

Multi-head
Self-attention

Positional
FFN

Draft Sequence
Multi-head

Self-attention

FFN

Context Causal
Attention

Draft Bidirectional
Attention

Figure 1: An overview of proposed SpecFormer speculative decod-
ing method.

Causal Attention

Context Sequence

D
ra

ft
Se

qu
en

ce

Po
si

tio
na

l F
FN

Bi
-d

ire
ct

io
na

l
At

te
nt

io
n

Figure 2: A depiction of uni and bi-
directional attention.

3.3 SpecFormer365

Our proposed SpecFormer architecture comprises366

a Context Causal Attention layer and a Draft Bi-367

directional Attention layer, depicted in Figure 1,368

incorporating both unidirectional and bidirectional369

attention along two dimensions, as shown in Fig-370

ure 2.371

3.3.1 Context Causal Attention372

The Context Causal Attention module consists of373

three components: Hook and Downsampler, Causal374

Attention, and a Positional Feedforward Network375

(Positional FFN). Each component takes inputs376

passed through root-mean-square normalization377

(RMS Norm, Zhang and Sennrich, 2019), with the378

Downsampler employing Grouped RMS Norm and379

the Causal Attention module utilizing a residual380

connection.381

The hook module extracts information from382

the HS, following the approach introduced by Li383

et al.. Specifically, we select four layers: HS[0],384

HS[L/2], HS[L− 1], and HS[L], and concatenate385

them to form a tensor I ∈ Rbs×|c|×4×dh. We ap-386

ply Grouped RMS Norm over the last dimension,387

assigning a group of scale parameters (initialized388

to 1) to each slice along the second-to-last dimen-389

sion. The normalized tensor is then reshaped into390

ICat ∈ Rbs×|c|×4dh , which serves as the input to391

the Downsampler, a linear module with weights of392

WD and no bias. The output ID ∈ Rbs×|c|×dh is393

RMS-normalized again before being passed into394

the masked self-attention (MSA), which can be395

viewed as an additional (L + 1)-th layer of the396

LLM. This design allows for easy integration with 397

existing KV cache management frameworks. For- 398

malized in Equation 8. 399

ID =(MSA · RMS + I) (WD · ICat)

ICat =GroupRMS (HS[0, L/2, L− 1, L])
(8) 400

The Positional FFN is a simple linear projection 401

from dimension dh to ld · dh with weights WP, 402

effectively decomposing a representation into ld 403

position-specific components with added biases 404

bP. We argue that position-specific information in 405

draft tokens should not be too simplistic, such as 406

assigning a basic mask per position, yet using a full 407

MLP for each position would be overly redundant. 408

Therefore, we adopt this middle-ground approach. 409

The number of position-related parameters is ld ·d2h, 410

which, while still quadratic in dh, is significantly 411

smaller than methods like Medusa, which require 412

at least 8 · ld · d2h, placing our method on the more 413

efficient end of the spectrum. The output of the 414

Context Causal Attention stage is a tensor D ∈ 415

Rbs×|c|×ld×dh . Formalized in Equation 9. 416

D = WP · RMS(ID) + bP (9) 417

3.3.2 Draft Bi-directional Attention 418

The Draft Bi-directional Attention layer applies 419

self-attention mechanisms within the draft token 420

sequence, utilizing a standard self-attention (SA) 421

module with residual connections and a Swish 422

Gated Linear Unit (SwiGLU, Shazeer, 2020) feed- 423

forward network. All components are normal- 424

ized using RMS Normalization. The output E ∈ 425

5

Rbs×|c|×ld×dh . Formalized in Equation 10.426

E = (SwiGLU ·RMS+ I)((SA ·RMS+ I)(D))
(10)427

It is important to emphasize that the attention mech-428

anism operates along the draft token dimension;429

that is, for a sequence of length ld, the effective430

batch size becomes bs · |c|. In our implementation,431

we observed that FlashAttention 2 (Dao, 2024; Dao432

et al., 2022) cannot handle batch sizes larger than433

4095. To address this limitation, we partition the434

computation along the batch dimension, processing435

the attention in groups of 3072 samples per batch436

segment.437

3.4 Implementation Improvements438

3.4.1 Efficient Grouped RMS Norm439

Through profiling, we found that RMS Normaliza-440

tion often becomes a performance bottleneck, pri-441

marily due to its significant consumption of CPU442

time slices. As a result, implementing Grouped443

RMS Norm with a loop-based approach tends to444

be inefficient. To address this, we customized a445

GPU kernel using Triton (Tillet et al., 2019) to im-446

plement the Grouped RMS Norm operation more447

efficiently.448

3.4.2 Intra-batch Gradient Accumulation449

We adopted the gradient accumulation strategy450

around the LM Head as proposed by Gloeckle et al..451

Specifically, for each position j ∈ {1, 2, . . . , ld},452

we compute the loss sequentially, rather than si-453

multaneously. This is because the vocabulary454

size in modern language models often exceeds455

128K (Dubey et al., 2024), making the full soft-456

max projection very expensive in storage. Instead,457

we sequentially map each position’s hidden state458

to the vocabulary, compute gradients, and store459

them within the hidden states via backpropagation.460

Once gradients for all positions are computed, we461

continue the remaining backward pass together.462

4 Experiment463

4.1 Setups464

4.1.1 Training Corpus465

We trained our model on the UltraChat-200K (UC,466

Ding et al., 2023) dataset, which contains approx-467

imately 460K dialogue samples. Although the468

dataset itself is distilled from ChatGPT outputs,469

in our implementation, we opted to perform self-470

distillation (Zhang et al., 2022; Lasby et al., 2025)471

first. Specifically, we retained only the question 472

(prompt) parts from the original samples and regen- 473

erated the completions using the base LLM. This 474

ensures that the distribution learned by the draft 475

model strictly aligns with that of the base model, 476

rather than being influenced by another teacher 477

model. Our experiments demonstrate that this ad- 478

justment leads to significant performance improve- 479

ments. 480

4.1.2 Base LLM 481

We selected foundation models from the Qwen and 482

LLaMA families, including Qwen2.5-3B, Qwen3- 483

8B, Qwen3-14B, and LLaMA-3.1-8B. Unlike 484

many previous works, we did not adopt the Vi- 485

cuna (Zheng et al., 2023) series. This decision is 486

based on two considerations: First, both the Vicuna 487

model and its training dataset (ShareGPT) are rela- 488

tively outdated. Second, as a chat model built on 489

early versions of LLaMA (Touvron et al., 2023), 490

Vicuna uses a small vocabulary (about 32K). Vocab- 491

ulary size is closely correlated with the difficulty 492

of token prediction in draft generation—larger vo- 493

cabularies increase prediction difficulty. Modern 494

models typically use vocabularies exceeding 128K, 495

with some, such as Gemma (Kamath et al., 2025), 496

reaching 256K, making Vicuna unrepresentative of 497

current LLMs. 498

4.1.3 Evaluation 499

Our evaluation set includes the test split of the 500

UC dataset along with several popular benchmarks: 501

MT-Bench (Zheng et al., 2023), HumanEval (Chen 502

et al., 2021), GSM8K (Cobbe et al., 2021), Al- 503

paca (Taori et al., 2023), and CNN/DM (See et al., 504

2017; Yu et al., 2021). For reporting purposes, 505

we present averaged results across this combined 506

set, as there is no strong evidence suggesting per- 507

formance varies significantly across these datasets 508

in our no-regression setting. Since we focus on 509

lossless LLM acceleration, correctness is not a con- 510

cern—the model’s outputs remain identical before 511

and after acceleration. 512

4.1.4 Implementation 513

Our method is implemented and trained using the 514

PyTorch framework with few Triton and FlashAt- 515

tention components. For inference, we leverage the 516

Medusa decoding framework, as well as custom 517

SD-compatible decoding code based on the Hug- 518

gingFace Transformers (Wolf et al., 2019) library. 519

We conducted tests under various batch sizes, and 520

6

bs k
W/o SD HASS EAGLE-3 Ours

κ TPS κ TPS κ TPS κ TPS

1
4 1 41 (1×) 2.14 69 (1.70×) 2.16 70 (1.73×) 2.20 73 (1.78×)
6 1 41 (1×) 2.17 71 (1.74×) 2.18 72 (1.75×) 2.22 74 (1.81×)
8 1 41 (1×) 2.17 72 (1.75×) 2.19 72 (1.76×) 2.23 73 (1.80×)

4
4 1 162 (1×) 2.14 275 (1.70×) 2.16 277 (1.71×) 2.18 289 (1.78×)
6 1 162 (1×) 2.17 282 (1.74×) 2.17 282 (1.73×) 2.22 293 (1.81×)
8 1 162 (1×) 2.18 284 (1.75×) 2.18 279 (1.72×) 2.23 291 (1.80×)

16
4 1 681 (1×) 2.14 1164 (1.71×) 2.16 1175 (1.72×) 2.19 1212 (1.78×)
6 1 681 (1×) 2.16 1190 (1.74×) 2.17 1185 (1.74×) 2.22 1233 (1.81×)
8 1 681 (1×) 2.17 1189 (1.75×) 2.17 1192 (1.75×) 2.24 1220 (1.79×)

64
4 1 2590 (1×) 2.13 4454 (1.72×) 2.15 4429 (1.71×) 2.19 4610 (1.78×)
6 1 2590 (1×) 2.17 4530 (1.75×) 2.17 4515 (1.74×) 2.22 4688 (1.81×)
8 1 2590 (1×) 2.17 4541 (1.75×) 2.18 4507 (1.74×) 2.24 4610 (1.78×)

128
4 1 5143 (1×) 2.14 8800 (1.71×) 2.16 8846 (1.72×) 2.18 9154 (1.78×)
6 1 5143 (1×) 2.16 8956 (1.74×) 2.17 8901 (1.73×) 2.22 9308 (1.81×)
8 1 5143 (1×) 2.17 8945 (1.74×) 2.16 8845 (1.72×) 2.24 9206 (1.79×)

Table 1: The comparison between SpecFormer and baselines under different batch size and settings. The baseline
methods may underperform compared to their reported values, as we impose a constraint on the draft token budget.

report the theoretical speedup, efficiency factor κ,521

and actual speed gains. Our detailed training hy-522

perparameters is given in Appendix A.523

4.2 Throughput Comparison524

We constrain the available draft token budget to525

a relatively small value and then evaluate the sys-526

tem’s throughput under varying batch sizes. We527

measure the throughput of our method using to-528

kens per second (TPS), as shown in Table 1. We529

observe that our approach consistently outperforms530

the baseline methods. Notably, the baselines do531

not reach their reported performance levels in our532

setting because we constrain the available token533

budget to simulate scenarios with limited compu-534

tational redundancy, such as those arising in large-535

batch inference. In contrast, our method achieves536

high throughput without relying on a large num-537

ber of draft tokens, owing to its superior predictive538

capability.539

Furthermore, we evaluate the conversion rate540

from κ-to-TPS, and find that our method exhibits541

a higher conversion efficiency. This is primarily542

because our design adopts a non-autoregressive for-543

mulation, which results in higher arithmetic inten-544

sity and lower average per-token overhead, thereby545

improving overall efficiency.546

4.3 Special Case Study 547

4.3.1 Self Distillation 548

We evaluate the impact of self-distillation by com- 549

paring models trained with and without it on 550

Qwen2.5-3B. Specifically, we first train an No-Self- 551

Distill model using the original UC-200K dialogue 552

dataset. Then, we apply self-distillation by retain- 553

ing only the prompt side of each dialogue and gen- 554

erating completions using the base LLM, which are 555

subsequently used to train the Self-Distill model. 556

Notably, the self-distilled dataset is smaller in size, 557

as it contains fewer dialogue turns. 558

The κ value and acceleration performance are 559

reported in Table 2. We observe that without self- 560

distillation, the model demonstrates negligible ac- 561

celeration, as the learned token distribution does 562

not originate from the base model, but rather from 563

a different teacher model. While traditional distilla- 564

tion may partially mitigate this issue, we argue that 565

self-distillation remains a necessary step, particu- 566

larly in light of modern deployment frameworks 567

like vLLM, which offer highly efficient offline in- 568

ference and make strict alignment with the base 569

model’s output even more critical. 570

4.3.2 Base LLM Size 571

To investigate the performance gains of our archi- 572

tecture under speculative decoding across differ- 573

7

bs k
W/o SD No-Self-Distill Self-Distill

ld κ TPS ld κ TPS ld κ TPS

1 8 1 1 32 (1.00×) 8 1.19 30 (0.94×) 8 1.90 56 (1.76×)

Table 2: The comparison between to use or not to use self-distillation.

bs k
Qwen3-4B Qwen3-8B Qwen3-14B

κ TPS θ κ TPS θ κ TPS θ

1
0 1 30 (1.00×) 1 1 31 (1.00×) 1 1 26 (1.00×) 1
4 1.81 45 (1.50×) 1.21 1.74 45 (1.45×) 1.20 1.71 38 (1.46×) 1.17
8 1.81 46 (1.54×) 1.18 1.76 46 (1.49×) 1.18 1.72 39 (1.46×) 1.18

4
0 1 147 (1.00×) 1 1 120 (1.00×) 1 1 105 (1.00×) 1
4 1.84 224 (1.53×) 1.20 1.76 178 (1.48×) 1.19 1.71 157 (1.49×) 1.14
8 1.86 227 (1.56×) 1.19 1.76 182 (1.49×) 1.18 1.72 154 (1.47×) 1.17

16
0 1 588 (1.00×) 1 1 488 (1.00×) 1 1 436 (1.00×) 1
4 1.84 899 (1.53×) 1.20 1.76 726 (1.49×) 1.18 1.71 636 (1.47×) 1.16
8 1.86 917 (1.56×) 1.19 1.77 726 (1.49×) 1.19 1.72 639 (1.46×) 1.18

64
0 1 2346 (1.00×) 1 1 1904 (1.00×) 1 1 1713 (1.00×) 1
2 1.72 3435 (1.46×) 1.18 1.68 2734 (1.44×) 1.17 1.64 2454 (1.41×) 1.16
4 1.84 3621 (1.53×) 1.20 1.75 2834 (1.48×) 1.18 1.71 2524 (1.47×) 1.16

128
0 1 4582 (1.00×) 1 1 3882 (1.00×) 1 1 3458 (1.00×) 1
2 1.73 6725 (1.47×) 1.18 1.68 5586 (1.43×) 1.17 1.64 4834 (1.41×) 1.16
4 1.84 7263 (1.53×) 1.20 1.75 5761 (1.48×) 1.18 1.71 5090 (1.47×) 1.16

Table 3: The comparison between our proposed method SpecFormer and baselines under size of base LLMs.

ent model sizes, we conducted experiments on the574

Qwen-3 series, including 4B, 8B, and 14B vari-575

ants—covering a representative range of commonly576

used model scales. The acceleration results across577

these models are presented in Table 3. We also cal-578

culate the κ-to-TPS conversion ratio θ to measure579

how the draft module itself impact the efficiency.580

We observe that as the model size increases, the581

predictor’s ability to accurately guess future tokens582

are weakened, resulting in less acceleration gains.583

For instance, the 4B model achieves a speedup584

of 1.56×, whereas the 14B model sees a reduced585

speedup of 1.47×. However, we also find that larger586

models exhibit a more favorable θ, meaning that587

the relative overhead introduced by the predictor is588

smaller. This can be attributed to two main reasons:589

The increased number of layers in larger models590

leads to a smaller parameter percentage for the pre-591

dictor, and the larger weight matrices in big models592

dilute the overhead from scheduling. Overall, these593

results demonstrate that our method remains appli-594

cable across various model sizes, although it shows595

particularly strong benefits on smaller models. 596

5 Conclusion 597

We first analyze that the batch execution environ- 598

ment imposes constraints on the effectiveness of 599

speculative decoding by decreasing the idle com- 600

putational resources. Then we proposed a novel 601

speculative decoding method for LLMs, termed 602

SpecFormer, which leverages two types of attention 603

mechanisms operating along different dimensions, 604

one unidirectional and one bidirectional. This de- 605

sign enables efficient parallel generation of future 606

tokens while extracting information from the whole 607

context, resulting in a more capable draft model. 608

Consequently, our approach maintains high pre- 609

diction accuracy under a limited draft token bud- 610

get. We further conduct experiments across varying 611

batch sizes, demonstrating that our method sustains 612

comparable performance as batch size increases. 613

Lastly, evaluations on models of different scales 614

confirm the general applicability of our approach 615

across a broad range of LLM configurations. 616

8

Limitations617

Our method has several limitations that highlight618

possible directions for future work. First, it re-619

quires training, even though we only train the draft-620

module, which imposes relatively modest demands621

in terms of compute and supervision, the inclu-622

sion of a self-distillation stage still entails a non-623

trivial number of GPU-hours. Fully training-free624

approaches may represent a promising avenue for625

further research.626

Moreover, our method, as with any non-627

autoregressive decoding strategy, faces inherent628

challenges when integrated with prefix tree struc-629

tures, where autoregressive methods currently hold630

a clear advantage. Developing more effective and631

efficient mechanisms to couple non-autoregressive632

predictors with prefix-based verification remains633

an open and valuable research problem.634

Ethics Statement635

This work does not involve the collection or use636

of any personally identifiable data, human sub-637

jects, or sensitive information. All experiments638

are conducted using publicly available datasets and639

open-source models. We adhere to the principles640

of responsible AI research, including transparency,641

reproducibility, and fairness. Any use of large lan-642

guage models complies with the respective licens-643

ing terms. Our proposed methods are intended for644

research purposes only and should be deployed645

with care to avoid misuse or unintended conse-646

quences.647

References648

Gregor Bachmann, Sotiris Anagnostidis, Albert649
Pumarola, Markos Georgopoulos, Artsiom650
Sanakoyeu, Yuming Du, Edgar Schönfeld, Ali651
Thabet, and Jonas K Kohler. 2025. Judge decoding:652
Faster speculative sampling requires going beyond653
model alignment. In The Thirteenth International654
Conference on Learning Representations.655

Tianle Cai, Yuhong Li, Zhengyang Geng, Hongwu Peng,656
Jason D. Lee, Deming Chen, and Tri Dao. 2024.657
Medusa: Simple LLM inference acceleration frame-658
work with multiple decoding heads. In Forty-first In-659
ternational Conference on Machine Learning, ICML660
2024, Vienna, Austria, July 21-27, 2024. OpenRe-661
view.net.662

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan,663
Henrique Pondé de Oliveira Pinto, Jared Kaplan,664
Harri Edwards, Yuri Burda, Nicholas Joseph, Greg665
Brockman, Alex Ray, Raul Puri, Gretchen Krueger,666

Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela 667
Mishkin, Brooke Chan, Scott Gray, and 39 others. 668
2021. Evaluating large language models trained on 669
code. CoRR, abs/2107.03374. 670

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, 671
Maarten Bosma, Gaurav Mishra, Adam Roberts, 672
Paul Barham, Hyung Won Chung, Charles Sutton, 673
Sebastian Gehrmann, Parker Schuh, Kensen Shi, 674
Sasha Tsvyashchenko, Joshua Maynez, Abhishek 675
Rao, Parker Barnes, Yi Tay, Noam Shazeer, Vinodku- 676
mar Prabhakaran, and 48 others. 2023. Palm: Scaling 677
language modeling with pathways. J. Mach. Learn. 678
Res., 24:240:1–240:113. 679

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, 680
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias 681
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro 682
Nakano, Christopher Hesse, and John Schulman. 683
2021. Training verifiers to solve math word prob- 684
lems. CoRR, abs/2110.14168. 685

Tri Dao. 2024. Flashattention-2: Faster attention with 686
better parallelism and work partitioning. In The 687
Twelfth International Conference on Learning Rep- 688
resentations, ICLR 2024, Vienna, Austria, May 7-11, 689
2024. OpenReview.net. 690

Tri Dao, Dan Fu, Stefano Ermon, Atri Rudra, and 691
Christopher Ré. 2022. Flashattention: Fast and 692
memory-efficient exact attention with io-awareness. 693
In Advances in Neural Information Processing Sys- 694
tems, volume 35, pages 16344–16359. Curran Asso- 695
ciates, Inc. 696

DeepSeek-AI, Aixin Liu, Bei Feng, Bing Xue, Bingx- 697
uan Wang, Bochao Wu, Chengda Lu, Chenggang 698
Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan, 699
Damai Dai, Daya Guo, Dejian Yang, Deli Chen, 700
Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, 701
and 81 others. 2024. Deepseek-v3 technical report. 702
CoRR, abs/2412.19437. 703

Ning Ding, Yulin Chen, Bokai Xu, Yujia Qin, Zhi 704
Zheng, Shengding Hu, Zhiyuan Liu, Maosong Sun, 705
and Bowen Zhou. 2023. Enhancing chat language 706
models by scaling high-quality instructional conver- 707
sations. Preprint, arXiv:2305.14233. 708

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, 709
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman, 710
Akhil Mathur, Alan Schelten, Amy Yang, Angela 711
Fan, Anirudh Goyal, Anthony Hartshorn, Aobo Yang, 712
Archi Mitra, Archie Sravankumar, Artem Korenev, 713
Arthur Hinsvark, Arun Rao, Aston Zhang, and 82 714
others. 2024. The llama 3 herd of models. CoRR, 715
abs/2407.21783. 716

Xiangxiang Gao, Weisheng Xie, Yiwei Xiang, and 717
Feng Ji. 2025. Falcon: Faster and parallel inference 718
of large language models through enhanced semi- 719
autoregressive drafting and custom-designed decod- 720
ing tree. Proceedings of the AAAI Conference on 721
Artificial Intelligence, 39(22):23933–23941. 722

9

https://openreview.net/forum?id=mtSSFiqW6y
https://openreview.net/forum?id=mtSSFiqW6y
https://openreview.net/forum?id=mtSSFiqW6y
https://openreview.net/forum?id=mtSSFiqW6y
https://openreview.net/forum?id=mtSSFiqW6y
https://openreview.net/forum?id=PEpbUobfJv
https://openreview.net/forum?id=PEpbUobfJv
https://openreview.net/forum?id=PEpbUobfJv
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://jmlr.org/papers/v24/22-1144.html
https://jmlr.org/papers/v24/22-1144.html
https://jmlr.org/papers/v24/22-1144.html
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2110.14168
https://openreview.net/forum?id=mZn2Xyh9Ec
https://openreview.net/forum?id=mZn2Xyh9Ec
https://openreview.net/forum?id=mZn2Xyh9Ec
https://proceedings.neurips.cc/paper_files/paper/2022/file/67d57c32e20fd0a7a302cb81d36e40d5-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/67d57c32e20fd0a7a302cb81d36e40d5-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/67d57c32e20fd0a7a302cb81d36e40d5-Paper-Conference.pdf
https://doi.org/10.48550/ARXIV.2412.19437
https://arxiv.org/abs/2305.14233
https://arxiv.org/abs/2305.14233
https://arxiv.org/abs/2305.14233
https://arxiv.org/abs/2305.14233
https://arxiv.org/abs/2305.14233
https://doi.org/10.48550/ARXIV.2407.21783
https://doi.org/10.1609/aaai.v39i22.34566
https://doi.org/10.1609/aaai.v39i22.34566
https://doi.org/10.1609/aaai.v39i22.34566
https://doi.org/10.1609/aaai.v39i22.34566
https://doi.org/10.1609/aaai.v39i22.34566
https://doi.org/10.1609/aaai.v39i22.34566
https://doi.org/10.1609/aaai.v39i22.34566

Fabian Gloeckle, Badr Youbi Idrissi, Baptiste Rozière,723
David Lopez-Paz, and Gabriel Synnaeve. 2024. Bet-724
ter & faster large language models via multi-token725
prediction. In Forty-first International Conference726
on Machine Learning, ICML 2024, Vienna, Austria,727
July 21-27, 2024. OpenReview.net.728

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian729
Sun. 2016. Deep residual learning for image recog-730
nition. In Proceedings of the IEEE Conference on731
Computer Vision and Pattern Recognition (CVPR).732

Yunhai Hu, Zining Liu, Zhenyuan Dong, Tianfan Peng,733
Bradley McDanel, and Sai Qian Zhang. 2025. Spec-734
ulative decoding and beyond: An in-depth survey of735
techniques. CoRR, abs/2502.19732.736

Kaixuan Huang, Xudong Guo, and Mengdi Wang. 2024.737
Specdec++: Boosting speculative decoding via adap-738
tive candidate lengths. CoRR, abs/2405.19715.739

Aishwarya Kamath, Johan Ferret, Shreya Pathak, Nino740
Vieillard, Ramona Merhej, Sarah Perrin, Tatiana741
Matejovicova, Alexandre Ramé, Morgane Rivière,742
Louis Rouillard, Thomas Mesnard, Geoffrey Cideron,743
Jean-Bastien Grill, Sabela Ramos, Edouard Yvinec,744
Michelle Casbon, Etienne Pot, Ivo Penchev, Gaël745
Liu, and 79 others. 2025. Gemma 3 technical report.746
CoRR, abs/2503.19786.747

Sehoon Kim, Karttikeya Mangalam, Suhong Moon, Ji-748
tendra Malik, Michael W Mahoney, Amir Gholami,749
and Kurt Keutzer. 2023. Speculative decoding with750
big little decoder. In Advances in Neural Information751
Processing Systems, volume 36, pages 39236–39256.752
Curran Associates, Inc.753

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying754
Sheng, Lianmin Zheng, Cody Hao Yu, Joseph Gon-755
zalez, Hao Zhang, and Ion Stoica. 2023. Efficient756
memory management for large language model serv-757
ing with pagedattention. In Proceedings of the 29th758
Symposium on Operating Systems Principles, SOSP759
’23, page 611–626, New York, NY, USA. Association760
for Computing Machinery.761

Mike Lasby, Nish Sinnadurai, Valavan Manohararajah,762
Sean Lie, and Vithursan Thangarasa. 2025. Sd2: Self-763
distilled sparse drafters. Preprint, arXiv:2504.08838.764

Yuhui Li, Fangyun Wei, Chao Zhang, and Hongyang765
Zhang. 2024. EAGLE-2: faster inference of language766
models with dynamic draft trees. In Proceedings767
of the 2024 Conference on Empirical Methods in768
Natural Language Processing, EMNLP 2024, Miami,769
FL, USA, November 12-16, 2024, pages 7421–7432.770
Association for Computational Linguistics.771

Yuhui Li, Fangyun Wei, Chao Zhang, and Hongyang772
Zhang. 2025a. EAGLE-3: scaling up inference ac-773
celeration of large language models via training-time774
test. CoRR, abs/2503.01840.775

Yuhui Li, Fangyun Wei, Chao Zhang, and Hongyang776
Zhang. 2025b. Eagle: Speculative sampling re-777
quires rethinking feature uncertainty. Preprint,778
arXiv:2401.15077.779

OpenAI. 2023. GPT-4 technical report. CoRR, 780
abs/2303.08774. 781

Abigail See, Peter J. Liu, and Christopher D. Manning. 782
2017. Get to the point: Summarization with pointer- 783
generator networks. In Proceedings of the 55th An- 784
nual Meeting of the Association for Computational 785
Linguistics, ACL 2017, Vancouver, Canada, July 30 - 786
August 4, Volume 1: Long Papers, pages 1073–1083. 787
Association for Computational Linguistics. 788

Noam Shazeer. 2020. GLU variants improve trans- 789
former. CoRR, abs/2002.05202. 790

Luohe Shi, Hongyi Zhang, Yao Yao, Zuchao Li, and 791
Hai Zhao. 2024. Keep the cost down: A review on 792
methods to optimize llm’ s kv-cache consumption. 793
CoRR, abs/2407.18003. 794

Mitchell Stern, Noam Shazeer, and Jakob Uszkoreit. 795
2018. Blockwise parallel decoding for deep autore- 796
gressive models. In Advances in Neural Information 797
Processing Systems, volume 31. Curran Associates, 798
Inc. 799

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann 800
Dubois, Xuechen Li, Carlos Guestrin, Percy Liang, 801
and Tatsunori B. Hashimoto. 2023. Stanford alpaca: 802
An instruction-following llama model. https:// 803
github.com/tatsu-lab/stanford_alpaca. 804

Philippe Tillet, Hsiang-Tsung Kung, and David D. Cox. 805
2019. Triton: an intermediate language and com- 806
piler for tiled neural network computations. In Pro- 807
ceedings of the 3rd ACM SIGPLAN International 808
Workshop on Machine Learning and Programming 809
Languages, MAPL@PLDI 2019, Phoenix, AZ, USA, 810
June 22, 2019, pages 10–19. ACM. 811

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al- 812
bert, Amjad Almahairi, Yasmine Babaei, Nikolay 813
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti 814
Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton- 815
Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, 816
Jude Fernandes, Jeremy Fu, Wenyin Fu, and 49 oth- 817
ers. 2023. Llama 2: Open foundation and fine-tuned 818
chat models. CoRR, abs/2307.09288. 819

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob 820
Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz 821
Kaiser, and Illia Polosukhin. 2017. Attention is all 822
you need. In Advances in Neural Information Pro- 823
cessing Systems, volume 30. Curran Associates, Inc. 824

Zhibin Wang, Shipeng Li, Yuhang Zhou, Xue Li, Rong 825
Gu, Nguyen Cam-Tu, Chen Tian, and Sheng Zhong. 826
2024. Revisiting SLO and goodput metrics in LLM 827
serving. CoRR, abs/2410.14257. 828

Samuel Williams, Andrew Waterman, and David A. Pat- 829
terson. 2009. Roofline: an insightful visual perfor- 830
mance model for multicore architectures. Commun. 831
ACM, 52(4):65–76. 832

10

https://openreview.net/forum?id=pEWAcejiU2
https://openreview.net/forum?id=pEWAcejiU2
https://openreview.net/forum?id=pEWAcejiU2
https://openreview.net/forum?id=pEWAcejiU2
https://openreview.net/forum?id=pEWAcejiU2
https://doi.org/10.48550/ARXIV.2502.19732
https://doi.org/10.48550/ARXIV.2502.19732
https://doi.org/10.48550/ARXIV.2502.19732
https://doi.org/10.48550/ARXIV.2502.19732
https://doi.org/10.48550/ARXIV.2502.19732
https://doi.org/10.48550/ARXIV.2405.19715
https://doi.org/10.48550/ARXIV.2405.19715
https://doi.org/10.48550/ARXIV.2405.19715
https://doi.org/10.48550/ARXIV.2503.19786
https://proceedings.neurips.cc/paper_files/paper/2023/file/7b97adeafa1c51cf65263459ca9d0d7c-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/7b97adeafa1c51cf65263459ca9d0d7c-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/7b97adeafa1c51cf65263459ca9d0d7c-Paper-Conference.pdf
https://doi.org/10.1145/3600006.3613165
https://doi.org/10.1145/3600006.3613165
https://doi.org/10.1145/3600006.3613165
https://doi.org/10.1145/3600006.3613165
https://doi.org/10.1145/3600006.3613165
https://arxiv.org/abs/2504.08838
https://arxiv.org/abs/2504.08838
https://arxiv.org/abs/2504.08838
https://aclanthology.org/2024.emnlp-main.422
https://aclanthology.org/2024.emnlp-main.422
https://aclanthology.org/2024.emnlp-main.422
https://doi.org/10.48550/ARXIV.2503.01840
https://doi.org/10.48550/ARXIV.2503.01840
https://doi.org/10.48550/ARXIV.2503.01840
https://doi.org/10.48550/ARXIV.2503.01840
https://doi.org/10.48550/ARXIV.2503.01840
https://arxiv.org/abs/2401.15077
https://arxiv.org/abs/2401.15077
https://arxiv.org/abs/2401.15077
https://doi.org/10.48550/ARXIV.2303.08774
https://doi.org/10.18653/V1/P17-1099
https://doi.org/10.18653/V1/P17-1099
https://doi.org/10.18653/V1/P17-1099
https://arxiv.org/abs/2002.05202
https://arxiv.org/abs/2002.05202
https://arxiv.org/abs/2002.05202
https://doi.org/10.48550/ARXIV.2407.18003
https://doi.org/10.48550/ARXIV.2407.18003
https://doi.org/10.48550/ARXIV.2407.18003
https://proceedings.neurips.cc/paper_files/paper/2018/file/c4127b9194fe8562c64dc0f5bf2c93bc-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/c4127b9194fe8562c64dc0f5bf2c93bc-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/c4127b9194fe8562c64dc0f5bf2c93bc-Paper.pdf
https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca
https://doi.org/10.1145/3315508.3329973
https://doi.org/10.1145/3315508.3329973
https://doi.org/10.1145/3315508.3329973
https://doi.org/10.48550/ARXIV.2307.09288
https://doi.org/10.48550/ARXIV.2307.09288
https://doi.org/10.48550/ARXIV.2307.09288
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://doi.org/10.48550/ARXIV.2410.14257
https://doi.org/10.48550/ARXIV.2410.14257
https://doi.org/10.48550/ARXIV.2410.14257
https://doi.org/10.1145/1498765.1498785
https://doi.org/10.1145/1498765.1498785
https://doi.org/10.1145/1498765.1498785

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien833
Chaumond, Clement Delangue, Anthony Moi, Pier-834
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz,835
and Jamie Brew. 2019. Huggingface’s transformers:836
State-of-the-art natural language processing. CoRR,837
abs/1910.03771.838

Heming Xia, Tao Ge, Peiyi Wang, Si-Qing Chen, Furu839
Wei, and Zhifang Sui. 2023. Speculative decod-840
ing: Exploiting speculative execution for accelerating841
seq2seq generation. In Findings of the Association842
for Computational Linguistics: EMNLP 2023, Singa-843
pore, December 6-10, 2023, pages 3909–3925. Asso-844
ciation for Computational Linguistics.845

Heming Xia, Zhe Yang, Qingxiu Dong, Peiyi Wang,846
Yongqi Li, Tao Ge, Tianyu Liu, Wenjie Li, and Zhi-847
fang Sui. 2024. Unlocking efficiency in large lan-848
guage model inference: A comprehensive survey of849
speculative decoding. In Findings of the Associa-850
tion for Computational Linguistics ACL 2024, pages851
7655–7671, Bangkok, Thailand and virtual meeting.852
Association for Computational Linguistics.853

An Yang, Baosong Yang, Binyuan Hui, Bo Zheng,854
Bowen Yu, Chang Zhou, Chengpeng Li, Chengyuan855
Li, Dayiheng Liu, Fei Huang, Guanting Dong, Hao-856
ran Wei, Huan Lin, Jialong Tang, Jialin Wang, Jian857
Yang, Jianhong Tu, Jianwei Zhang, Jianxin Ma, and858
40 others. 2024a. Qwen2 technical report. arXiv859
preprint arXiv:2407.10671.860

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui,861
Bo Zheng, Bowen Yu, Chengyuan Li, Dayiheng Liu,862
Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jian-863
hong Tu, Jianwei Zhang, Jianxin Yang, Jiaxi Yang,864
Jingren Zhou, Junyang Lin, Kai Dang, and 22 others.865
2024b. Qwen2.5 technical report. arXiv preprint866
arXiv:2412.15115.867

Dian Yu, Kai Sun, Dong Yu, and Claire Cardie. 2021.868
Self-teaching machines to read and comprehend with869
large-scale multi-subject question-answering data. In870
Findings of the Association for Computational Lin-871
guistics: EMNLP 2021, Virtual Event / Punta Cana,872
Dominican Republic, 16-20 November, 2021, pages873
56–68. Association for Computational Linguistics.874

Gyeong-In Yu, Joo Seong Jeong, Geon-Woo Kim, Soo-875
jeong Kim, and Byung-Gon Chun. 2022. Orca: A876
distributed serving system for Transformer-Based877
generative models. In 16th USENIX Symposium878
on Operating Systems Design and Implementation879
(OSDI 22), pages 521–538, Carlsbad, CA. USENIX880
Association.881

Biao Zhang and Rico Sennrich. 2019. Root mean square882
layer normalization. In Advances in Neural Informa-883
tion Processing Systems, volume 32. Curran Asso-884
ciates, Inc.885

Lefan Zhang, Xiaodan Wang, Yanhua Huang, and Rui-886
wen Xu. 2025. Learning harmonized representations887
for speculative sampling. In The Thirteenth Interna-888
tional Conference on Learning Representations.889

Linfeng Zhang, Chenglong Bao, and Kaisheng Ma. 890
2022. Self-distillation: Towards efficient and com- 891
pact neural networks. IEEE Transactions on Pat- 892
tern Analysis and Machine Intelligence, 44(8):4388– 893
4403. 894

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan 895
Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin, 896
Zhuohan Li, Dacheng Li, Eric P. Xing, Hao Zhang, 897
Joseph E. Gonzalez, and Ion Stoica. 2023. Judging 898
llm-as-a-judge with mt-bench and chatbot arena. In 899
Advances in Neural Information Processing Systems 900
36: Annual Conference on Neural Information Pro- 901
cessing Systems 2023, NeurIPS 2023, New Orleans, 902
LA, USA, December 10 - 16, 2023. 903

Yinmin Zhong, Shengyu Liu, Junda Chen, Jianbo Hu, 904
Yibo Zhu, Xuanzhe Liu, Xin Jin, and Hao Zhang. 905
2024. DistServe: Disaggregating prefill and decod- 906
ing for goodput-optimized large language model serv- 907
ing. In 18th USENIX Symposium on Operating Sys- 908
tems Design and Implementation (OSDI 24), pages 909
193–210, Santa Clara, CA. USENIX Association. 910

Yongchao Zhou, Kaifeng Lyu, Ankit Singh Rawat, 911
Aditya Krishna Menon, Afshin Rostamizadeh, San- 912
jiv Kumar, Jean-François Kagy, and Rishabh Agar- 913
wal. 2024. Distillspec: Improving speculative de- 914
coding via knowledge distillation. In The Twelfth 915
International Conference on Learning Representa- 916
tions, ICLR 2024, Vienna, Austria, May 7-11, 2024. 917
OpenReview.net. 918

11

https://arxiv.org/abs/1910.03771
https://arxiv.org/abs/1910.03771
https://arxiv.org/abs/1910.03771
https://doi.org/10.18653/V1/2023.FINDINGS-EMNLP.257
https://doi.org/10.18653/V1/2023.FINDINGS-EMNLP.257
https://doi.org/10.18653/V1/2023.FINDINGS-EMNLP.257
https://doi.org/10.18653/V1/2023.FINDINGS-EMNLP.257
https://doi.org/10.18653/V1/2023.FINDINGS-EMNLP.257
https://doi.org/10.18653/v1/2024.findings-acl.456
https://doi.org/10.18653/v1/2024.findings-acl.456
https://doi.org/10.18653/v1/2024.findings-acl.456
https://doi.org/10.18653/v1/2024.findings-acl.456
https://doi.org/10.18653/v1/2024.findings-acl.456
https://doi.org/10.18653/V1/2021.FINDINGS-EMNLP.6
https://doi.org/10.18653/V1/2021.FINDINGS-EMNLP.6
https://doi.org/10.18653/V1/2021.FINDINGS-EMNLP.6
https://www.usenix.org/conference/osdi22/presentation/yu
https://www.usenix.org/conference/osdi22/presentation/yu
https://www.usenix.org/conference/osdi22/presentation/yu
https://www.usenix.org/conference/osdi22/presentation/yu
https://www.usenix.org/conference/osdi22/presentation/yu
https://proceedings.neurips.cc/paper_files/paper/2019/file/1e8a19426224ca89e83cef47f1e7f53b-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/1e8a19426224ca89e83cef47f1e7f53b-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/1e8a19426224ca89e83cef47f1e7f53b-Paper.pdf
https://openreview.net/forum?id=T9u56s7mbk
https://openreview.net/forum?id=T9u56s7mbk
https://openreview.net/forum?id=T9u56s7mbk
https://doi.org/10.1109/TPAMI.2021.3067100
https://doi.org/10.1109/TPAMI.2021.3067100
https://doi.org/10.1109/TPAMI.2021.3067100
http://papers.nips.cc/paper_files/paper/2023/hash/91f18a1287b398d378ef22505bf41832-Abstract-Datasets_and_Benchmarks.html
http://papers.nips.cc/paper_files/paper/2023/hash/91f18a1287b398d378ef22505bf41832-Abstract-Datasets_and_Benchmarks.html
http://papers.nips.cc/paper_files/paper/2023/hash/91f18a1287b398d378ef22505bf41832-Abstract-Datasets_and_Benchmarks.html
https://www.usenix.org/conference/osdi24/presentation/zhong-yinmin
https://www.usenix.org/conference/osdi24/presentation/zhong-yinmin
https://www.usenix.org/conference/osdi24/presentation/zhong-yinmin
https://www.usenix.org/conference/osdi24/presentation/zhong-yinmin
https://www.usenix.org/conference/osdi24/presentation/zhong-yinmin
https://openreview.net/forum?id=rsY6J3ZaTF
https://openreview.net/forum?id=rsY6J3ZaTF
https://openreview.net/forum?id=rsY6J3ZaTF

A Training Hyperpameters919

Reference Table 4. Training takes about 72, 50 and920

40 GPU-hours for 14B, 8B and 4B variants, with921

about 16, 12, 10 GPU-hours for data preparing in922

self-distillation.923

Hyperparameter Value

Batch Size 2
Grad. Acc. 8
Max Seq. Len. 4096
Num Epochs 2
Total Steps 463, 888

Max Learning Rate
5e-4 (4B Model)
3e-4 (8B Model)
2e-4 (14B Model)

Min Learning Rate
1e-5 (4B Model)
1e-5 (8B Model)
1e-5 (14B Model)

Warm Up 5% Total steps
Scheduler Cosine Annealing

Optimizer AdamW
Adam ϵ 2e-4
Adam βs (0.9, 0.999)
Weight Decay 0.01

Table 4: Hyperparameters used for training.

B Hardware Detail924

Please reference Table 5.925

Item Value

CPU 24 * Intel(R) Xeon(R) Silver
4314 CPU @ 2.40GHz

GPU NVIDIA A800 PCIe 80 GB
RAM 212GB DDR4-2667

Table 5: Hardware used.

12

	Introduction
	Background and Related Works
	Non-autoregressive SD Approaches
	Autoregressive SD Approaches

	Methods
	From Arithmetic Intensity to SD Evaluation
	General Notations
	SpecFormer
	Context Causal Attention
	Draft Bi-directional Attention

	Implementation Improvements
	Efficient Grouped RMS Norm
	Intra-batch Gradient Accumulation

	Experiment
	Setups
	Training Corpus
	Base LLM
	Evaluation
	Implementation

	Throughput Comparison
	Special Case Study
	Self Distillation
	Base LLM Size

	Conclusion
	Training Hyperpameters
	Hardware Detail

