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Abstract001

To enhance tourists’ experiences and immer-002
sion, this paper proposes a narrative-driven003
travel planning framework called NarrativeG-004
uide, which generates a geocultural-grounded005
narrative script for travelers, offering a novel,006
role-playing experience for their journey. In007
the initial stage, NarrativeGuide constructs a008
knowledge graph for attractions within a city,009
then configures the worldview, character set-010
ting, and exposition based on the knowledge011
graph. Using this foundation, the knowledge012
graph is combined to generate an independent013
scene unit for each attraction. During the014
itinerary planning stage, NarrativeGuide mod-015
els narrative-driven travel planning as an opti-016
mization problem, utilizing a genetic algorithm017
(GA) to refine the itinerary. Before evaluat-018
ing the candidate itinerary, transition scripts019
are generated for each pair of adjacent attrac-020
tions, which, along with the scene units, form021
a complete script. The weighted sum of script022
coherence, travel time, and attraction scores023
is then used as the fitness value to update the024
candidate solution set. Experimental results025
across four cities, i.e., Nanjing and Yangzhou026
in China, Paris in France, and Berlin in Ger-027
many, demonstrate significant improvements in028
narrative coherence and cultural fit, alongside029
a notable reduction in travel time and an in-030
crease in the quality of visited attractions. Our031
study highlights that incorporating external evo-032
lutionary optimization effectively addresses the033
limitations of large language models in travel034
planning.035

1 Introduction036

Large language models (LLMs) have demonstrated037

significant success in various generation tasks, such038

as role-playing (Wang et al., 2023b). These appli-039

cations not only offer a convenient alternative to040

human labor but also enhance the user’s narrative041

immersion (Ahn et al., 2024; Lu et al., 2024), such042

as the educational chatbot (Wang et al., 2024) and043

the sales agent (Chang and Chen, 2024). More- 044

over, in the tourism domain, some studies (Wei 045

et al., 2024; Vasic et al., 2024; Helmy et al., 2024) 046

have explored employing LLMs as virtual tour 047

guides. Although these systems offer increased 048

convenience, they do not necessarily improve the 049

overall user experience. This is because tourists’ 050

modes of travel remain unchanged, limiting the po- 051

tential for deeper immersion, and LLMs often lack 052

robust itinerary planning capabilities. 053

Figure 1: Comparison between narrative-driven travel
and traditional tourism. In traditional tourism (top fig-
ure), tourists typically search encyclopedias or con-
sult virtual guides to obtain information about attrac-
tions. Narrative-driven travel (bottom figure) immerses
tourists in a personalized storyline, where they assume
roles within a script based on the geocultural back-
ground of the attractions. Guided by the NarrativeG-
uide.

Indeed, the powerful story creation capabilities 054

of LLMs have the potential to transform the tourism 055

industry (Wang et al., 2023a; Mirowski et al., 2023). 056

By combining LLM-driven story generation with 057

agent-based role-playing, narratives can be effort- 058

lessly brought to life (Han et al., 2024; Wu et al., 059

2024). Accordingly, we propose the concept of 060

narrative-driven travel planning, as illustrated in 061
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Figure 1. By generating a geocultural-grounded062

script, tourists can assume the roles of characters063

within the narrative, thereby enhancing their im-064

mersive experience.065

Unlike existing tasks in script generation and vir-066

tual tour guiding, narrative-driven travel planning067

faces two primary challenges. First, for the task of068

generating a travel guide script, LLMs should incor-069

porate geocultural references from authentic tourist070

attractions to ensure an immersive experience. Sec-071

ond, itineraries must satisfy tourists’ constraints,072

such as travel duration, while optimizing narrative073

coherence. However, recent research highlights the074

planning limitations of LLMs. For instance, the075

TravelPlanner benchmark (Xie et al.) reveals that076

LLMs struggle to meet user requirements, achiev-077

ing a success rate of only 0.6%.078

Contributions. We model narrative-driven079

travel planning as an optimization problem. The080

objective is to select a subset of attractions within a081

city and determine an itinerary that traverses them,082

thereby optimizing the narrative coherence, travel083

time, and attraction score. To address this, we pro-084

pose NarrativeGuide, a framework that integrates085

geocultural knowledge graphs with genetic algo-086

rithms (GA). First, we construct a knowledge graph087

incorporating historical, cultural, and geographical088

information for each attraction and generate an in-089

dependent narrative script for each attraction. Then,090

we apply a GA-based optimization approach. In091

each iteration, a new sequence of attraction visits092

is generated, transition scripts are added to ensure093

narrative coherence, and their narrative coherence094

is evaluated. Finally, the itinerary with the optimal095

weighted sum of script quality, travel time, and096

attraction satisfaction is selected along with its cor-097

responding travel script. We evaluate our approach098

using different LLMs across four cities, Nanjing,099

Yangzhou, Paris, and Berlin. Experimental results100

demonstrate that NarrativeGuide significantly im-101

proves script quality compared to baseline methods102

and enhances itinerary planning by reducing travel103

time and selecting more popular attractions.104

2 Related Work105

2.1 Long-Form Script Generation106

Long-form narrative generation is a key research107

area in natural language processing, aiming to108

produce coherent and creative stories. Guo et al.109

(2018) introduced LeakGAN, which combines gen-110

erative adversarial networks (GANs) with policy111

gradients to guide long-text generation. Yao et al. 112

(2019) introduced the "Plan-and-Write" framework, 113

which divides the story generation into two stages: 114

planning and writing. You et al. (2023) proposed 115

the "EIPE-text" method, which refines plans it- 116

eratively using an evaluation mechanism to pro- 117

duce more coherent narratives. In the domain of 118

scriptwriting, Mirowski et al. (2023) developed 119

the Dramatron system, which leverages large lan- 120

guage models (LLMs) to co-write movie and the- 121

atre scripts. Dramatron generates coherent scripts 122

by hierarchically creating titles, characters, story 123

beats, location descriptions, and dialogues. 124

2.2 Automatic Itinerary Planning 125

Numerous studies have addressed automated travel 126

itinerary planning, employing various methods to 127

tackle the problem. Some studies use exact al- 128

gorithms, such as Verbeeck et al. (2014), which 129

applies a branch-and-cut approach to solve self- 130

guided tour planning. Since travel itinerary plan- 131

ning is NP-hard (Liao and Zheng, 2018; Castro 132

et al., 2015; Gavalas et al., 2013), approximation 133

methods are often employed to enhance solution 134

efficiency. Consequently, metaheuristic algorithms 135

are commonly used. For instance, Abbaspour and 136

Samadzadegan (2009) employed a genetic algo- 137

rithm to address itinerary planning, focusing on 138

time and multimodal transport constraints. Zhang 139

et al. (2024) use a cooperative co-evolutionary algo- 140

rithm for cross-city itinerary planning, while Chen 141

et al. (2023) apply an improved ant colony algo- 142

rithm, considering restaurant and hotel selections. 143

More recently, some researchers have explored the 144

use of LLMs for itinerary planning. For example, 145

Singh et al. (2024) leverage LLMs for personal- 146

ized travel route planning, and Li (2023) utilize the 147

ChatGPT model to enable users to generate travel 148

plans and suggestions based on keywords. 149

3 Method 150

Given a travel itinerary for a tourist, LLMs can 151

directly generate a narrative script for the journey. 152

However, this approach encounters challenges such 153

as attention sink and difficulties in maintaining 154

global consistency. To address these issues, this 155

paper adopts a segmented planning approach, di- 156

viding the complete narrative script into scene units 157

based on individual attractions. By pre-configuring 158

the worldview and character settings, the logical 159

consistency of each attraction’s independent nar- 160
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Figure 2: The pipeline of the proposed NarrativeGuide. This framework consists of two stages. The first stage,
preliminary script preparation, involves constructing a knowledge graph based on the historical, cultural, and
geographical background of various attractions in the city. Using this foundation, NarrativeGuide generates a
worldview and character settings, followed by the exposition and independent sub-scripts for each attraction. The
second stage, evolutionary itinerary optimization, begins by generating multiple candidate itineraries and their
corresponding transition scripts. Each itinerary is then evaluated based on script coherence, travel time, and
attraction satisfaction. Finally, GA is employed to optimize the itinerary.

rative script is ensured. After the tourist selects a161

segment of the itinerary, transition scripts are gen-162

erated for pairs of adjacent attractions, ultimately163

forming a complete travel narrative script. More-164

over, the challenge of narrative-driven travel plan-165

ning lies not only in the quality of the script but166

also in the ability to plan the itinerary. To this end,167

we model the problem as an optimization task and168

use the GA to determine the final itinerary, opti-169

mizing the script score, travel time, and attraction170

satisfaction. Figure 2 illustrates the pipeline of the171

proposed NarrativeGuide framework.172

3.1 The Optimization Model173

We model narrative-driven travel planning as an174

optimization problem. To formalize this, we define175

an undirected, connected, and weighted graph G =176

(V,E), where the vertex set V = {v1, v2, . . . , vn}177

represents the scenic spots, and the edge set E =178

{e1, e2, . . . , em} represents the relationships be-179

tween the scenic spots. Each edge ek ∈ E connects180

two distinct vertices vi and vj (i ̸= j) and is as-181

sociated with an attribute vector w(vi, vj), which182

encodes the historical or cultural connections be-183

tween these two spots, along with geographical184

attributes such as travel time. Each vertex vi ∈ V185

is also associated with an attribute vector w(vi),186

which encapsulates information about the scenic187

spot, including its historical background, cultural188

significance, main attractions, geographical loca-189

tion, ticket price, and other relevant details.190

The objective is to select a subset S ⊂ V191

and determine an optimal visiting sequence x =192

(x1, x2, . . . , xk) for the selected subset. This ar- 193

rangement is designed to maximize the tourist’s ex- 194

perience, such as the coherence of the correspond- 195

ing narrative script, the quality of the attractions, 196

and the travel time. The objective function can be 197

expressed as follows: 198

max
x

F (x) =w1f1(x) + w2

k−1∑
i=1

f2(xi, xi+1)
−1

+ w3

k∑
i=1

f3(xi)

(1) 199

where f1(x) represents the smoothness score, 200

f2(xi, xi+1) represents the travel time between at- 201

tractions xi and xi+1, and f3(xi) represents the 202

popularity of attraction xi, w1, w2, and w3 are 203

weighting factors that control the relative impor- 204

tance of each component in the optimization. To 205

transform the problem into a maximization prob- 206

lem, we take the reciprocal of the travel time f2 as 207

the second term in the objective function F (x). 208

3.2 Geoculturally-Grounded Narrative Script 209

Generation 210

To create an immersive experience for tourists, the 211

narrative script must be grounded in the geocultural 212

context of the attractions. Therefore, we initially 213

construct a knowledge graph by extracting informa- 214

tion about attractions from Wikipedia and inputting 215

it into the LLM. The LLM is responsible for sum- 216

marizing this information into five key attributes, 217
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i.e., historical background, cultural significance,218

historical stories, main attractions, and geographi-219

cal location. In the knowledge graph, each attrac-220

tion is represented as a node, and each node is221

associated with an attribute vector that includes the222

aforementioned five attributes of the attraction, col-223

lectively referred to as the attraction information.224

Subsequently, we input these attributes into the225

LLM to extract historical or cultural connections226

between the attractions. These connections are227

used as edges to connect the nodes, and each edge228

is associated with an attribute vector that includes229

historical or cultural relevance. In this manner,230

we construct a weighted and connected knowledge231

graph that enables the generation of geocultural-232

grounded narrative scripts, as depicted in Fig. 3.233

Figure 3: Knowledge graph of attraction information.

Consider an itinerary x = (x1, x2, . . . , xk), we234

generate a narrative script for the tourist in a multi-235

level manner, as outlined in Algorithm 1. First,236

we create a personalized worldview and character237

settings for the tourist. Then, we generate the ex-238

position, which immerses the tourist in their role.239

Next, based on the geocultural information of each240

attraction, we generate an independent sub-script241

for each attraction, treating them as scene units.242

Finally, for the itinerary x, we create a transition243

script for each pair xi, xi+1, considering their cul-244

tural, historical, and geographical relationships, en-245

suring smooth scene transitions and maintaining246

the tourist’s immersion.247

Worldview and Character Setting. We in-248

struct the LLM to generate a worldview, denoted249

as W , by integrating the storylines and cultural250

backgrounds of attractions. This process follows251

a predefined format and an example worldview252

provided as reference. The LLM is tasked with pro-253

ducing a foundational description of the fictional254

world, encompassing its history, culture, and geo-255

graphical features, while ensuring consistency with256

the background of the attractions. Additionally, it257

Algorithm 1 Narrative Script Generation for
Tourist Itinerary

1: Initialize knowledge graph G, attractions V ,
and itinerary x

2: Generate world viewW and character settings
C;

3: Generate exposition S0 based onW , C;
4: for each attraction vi in V do
5: Generate scene unit Si for vi based onW

and C;
6: end for
7: for i← 1 to k − 1 do
8: Generate transition script Tij between

scripts Sxi and Sxi+1 ;
9: end for

10: Return Narrative script
{S0, Sx1 , T12, Sx2 , . . . , Tk−1,k, Sxk

}

defines world rules that align with these elements. 258

The generated worldviewW serves as the basis 259

for creating two characters, i.e., the user character 260

and the guide character. Using W , a predefined 261

character setting format, and example character 262

profiles, the LLM determines the names, identi- 263

ties, personality traits, background stories, and rela- 264

tionships with the user or travel purposes for both 265

characters. The complete character settings are 266

represented as C = {Cu, Cg}, where Cu and Cg 267

correspond to the user character and guide charac- 268

ter, respectively. 269

Exposition. The LLM synthesizes the world- 270

viewW and character settings C to generate an en- 271

gaging exposition, denoted as S0. This introduction 272

establishes the narrative framework by presenting 273

the initial encounter between the user and the guide, 274

defining the journey’s starting point and purpose, 275

and offering a glimpse into the forthcoming adven- 276

ture. The LLM is tasked with crafting S0 to ensure 277

coherence with the predefined elements, effectively 278

setting the stage for the unfolding storyline. 279

Geocultural-Grounded Attraction Script. We 280

begin by extracting detailed attraction information 281

vi from the knowledge graph. Using this data, we 282

construct a comprehensive prompt that integrates 283

vi, the overarching worldviewW , and character set- 284

tings C. The prompt specifies the script structure, 285

divided into “Intro,” “Development,” “Climax,” and 286

“Ending”, along with the desired narrative style, 287

character interactions, and key plot elements. This 288

structured prompt guides the LLM in generating 289
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complete and coherent attraction scripts. Follow-290

ing these guidelines, the LLM produces multiple291

scripts Si that align with the specified criteria.292

Transition Script. After designing a travel route293

S = {S0, Sx1 , Sx2 , . . . , Sxk
} consisting of multi-294

ple attraction scripts, we focus on generating the295

transitional script Tij for adjacent attraction scripts296

Sxi and Sxj using the LLM. To guide the LLM, we297

establish several requirements: a common cultural298

theme, a time-space portal triggered by historical299

events, clear reasoning for the scene transitions,300

and consistency in character goals. Based on these301

instructions, the LLM generates Tij .302

Next, we combine Sxi , Tij , and Sxj and input303

them back into the LLM for evaluation. The LLM304

assesses the transitional script Tij according to a305

predefined questionnaire, considering four aspects,306

i.e., narrative coherence, character interaction, spa-307

tiotemporal consistency, and immersion (each di-308

mension contains three sub-questions). The aver-309

age evaluation score serves as the smoothness score310

for Tij , providing valuable data for travel planning.311

Upon completion, we obtain the full travel script312

T (x, S) = {S0, Sx1 , T12, Sx2 , . . . , Tk−1,k, Sxk
}.313

3.3 Genetic Algorithm for Narrative-Driven314

Travel Planning315

NarrativeGuide utilizes the GA to determine the316

final itinerary. The following sections introduce the317

algorithm from two aspects: the encoding scheme318

and the update of candidate solutions.319

Encoding Scheme and Population Initialization.320

In the GA, each candidate solution represents a can-321

didate itinerary, and the dimension of the solution322

indicates the upper bound of the number of attrac-323

tions that can be visited. Since a single attraction324

may correspond to multiple different scripts, once325

the sequence of attractions is determined, it is nec-326

essary to further specify the script number for each327

attraction. To achieve this, the encoding consists328

of two main pieces of information: the attraction329

number and the script choice for each attraction.330

Therefore, a two-dimensional encoding scheme is331

used, where the first row contains the attraction332

numbers or 0 (indicating a placeholder that does333

not correspond to any attraction). The second row334

contains the script choices for the corresponding335

attractions. Fig. 4 provides an encoding example,336

representing an itinerary from attraction 1→ attrac-337

tion 2→ attraction 3, with corresponding scripts 3,338

2, and 1, respectively.339

Figure 4: The encoding example of a candidate solution
in GA.

Each candidate solution in the population is ini- 340

tialized as follows. For the first row, each position 341

is randomly selected from the set of attractions V , 342

with a certain probability of being set to 0. For 343

the second row, if a position corresponds to a vis- 344

ited attraction, a random script is selected from the 345

available scripts for that attraction; otherwise, the 346

value is set to 0. 347

Update of Candidate Solutions The population 348

update process consists of two core steps, i.e., 349

crossover and mutation. To prevent duplicate attrac- 350

tions during these operations, adjustments are made 351

to the crossover and mutation strategies. Although 352

the encoding is two-dimensional, with attraction 353

numbers and their corresponding scripts located 354

in the same column, only the attraction numbers 355

need to be checked for duplication. Therefore, the 356

encoding is treated as one-dimensional for both 357

crossover and mutation operations. 358

In the crossover strategy, two crossover points, 359

n1 and n2 (n1 < n2), are selected. The encoding 360

between columns n1 and n2 is exchanged between 361

two individuals. During this exchange, we check 362

for duplicate attraction numbers within the seg- 363

ment, ensuring no duplication occurs with other 364

parts of the encoding. If any duplication is found, 365

the exchange is aborted. 366

In the mutation strategy, a mutation point m is 367

selected, and a random attraction number, not al- 368

ready present in the encoding, is chosen. The script 369

choice for this attraction is then selected randomly. 370

The pseudocode of the algorithm is shown in 2. 371

4 Experiment 372

In this section, we conduct tests in four cities, i.e., 373

Nanjing and Yangzhou in China, Paris in France, 374

and Berlin in Germany. We evaluate both the qual- 375

ity of the scripts generated by the proposed algo- 376

rithm and its ability to plan travel itineraries. The 377
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Algorithm 2 Genetic Algorithm for Narrative-
Driven Travel Planning

1: Initialize population P = {x1, . . . ,xλ}
2: while Termination condition not satisfied do
3: for i← 1 to λ do
4: Perform Crossover operation;
5: Perform Mutation operation;
6: Generate new x′;
7: {S0, Sx′

1
, T12, . . . , Tk−1,k, Sx′

k
} =

T (x′, S);
8: Evaluate the fitness of x′, f(x′);
9: If x′ is better than x, replace x;

10: end for
11: end while
12: Return x∗ ← argmin(f(x))

section begins with a description of the experimen-378

tal setup, followed by an analysis of the results.379

4.1 Experimental Design380

The experiment consists of two parts. The first381

part aims to evaluate the quality of the generated382

travel scripts based on predefined criteria. For this,383

we use OpenAI’s GPT-4 model as the evaluation384

model. The model receives as input the algorithm-385

generated narrative scripts, which represent travel386

itineraries for various destinations, including de-387

scriptions of attractions, historical and cultural con-388

text, character interactions, and attraction infor-389

mation. First, the model is paired with relevant390

attraction information, followed by the use of cus-391

tom evaluation prompts. The evaluation focuses on392

four aspects: plot coherence, character interaction,393

time and space coherence, and cultural fit. Weight394

adjustment rules are applied based on script length:395

a factor of 0.7 for scripts under 1500 characters,396

no adjustment for scripts between 1500 and 7000397

characters, and a factor of 1.2 for scripts exceeding398

7000 characters. The detailed evaluation criteria399

and weights are included in Appendix A.400

The second part of the experiment aims to eval-401

uate the quality of the generated travel itineraries.402

The comparison focuses on two metrics, i.e., travel403

time and attraction score. The attraction score is404

calculated as the product of the number of reviews405

and the rating for each attraction on the Ctrip web-406

site. Each model is tested ten times, and the average407

values are used for comparison.408

4.2 Experimental Results 409

4.2.1 Script Quality 410

Table 1 presents the experimental results of the pro- 411

posed algorithm across different LLMs, including 412

Deepseek-v3, GPT-4o, GPT-4o-mini, GPT-4, and 413

Qwen2.5-max. We use pure GPT-4 as the baseline 414

algorithm for comparison. The evaluation dimen- 415

sions include narrative coherence (NC), character 416

interaction (CI), spatiotemporal consistency (SC), 417

cultural fit (CF), and the overall score. Here, we 418

generate Chinese scripts for Nanjing and Yangzhou 419

in China, while English scripts are generated for 420

Paris and Berlin in France and Germany, respec- 421

tively. 422

City Model NC CI SC CF Overall

Berlin

Baseline 7.40 2.40 8.00 7.50 25.30
Deepseek-v3 7.92 2.52 9.12 9.00 28.56
GPT-4o-mini 10.08 2.52 8.88 10.20 31.68
GPT-4o 9.36 2.52 9.12 9.60 30.60
GPT-4 8.88 2.88 8.40 9.00 29.16
Qwen2.5-max 8.88 2.52 9.12 9.00 29.52

NanJing

Baseline 5.18 1.68 5.18 5.25 17.29
Deepseek-v3 7.40 2.10 7.00 7.50 24.00
GPT-4o-mini 7.40 2.10 7.00 7.00 23.50
GPT-4o 7.40 2.10 7.00 7.50 24.00
GPT-4 7.20 2.10 7.00 7.50 23.80
Qwen2.5-max 7.40 2.10 7.60 7.50 24.60

Paris

Baseline 7.40 2.40 7.00 7.50 24.30
Deepseek-v3 8.88 2.88 9.12 9.00 29.88
GPT-4o-mini 8.64 2.52 8.40 9.00 28.56
GPT-4o 7.40 2.40 7.40 7.50 24.70
GPT-4 9.84 2.88 9.12 9.00 30.84
Qwen2.5-max 9.84 2.88 9.60 10.80 33.12

YangZhou

Baseline 5.18 1.68 5.18 5.25 17.29
Deepseek-v3 7.40 2.10 7.40 7.50 24.40
GPT-4o-mini 8.16 2.52 8.40 8.40 27.48
GPT-4o 7.40 2.10 7.00 7.50 24.00
GPT-4 7.00 2.10 7.00 7.00 23.10
Qwen2.5-max 7.40 2.10 7.00 7.50 24.00

Table 1: The experimental results of the proposed al-
gorithm across Deepseek-v3, GPT-4o, GPT-4o-mini,
GPT-4, and Qwen2.5-max are compared with the base-
line GPT-4.

From the results in Table 1, it can be observed 423

that the proposed algorithm outperforms the base- 424

line method across all four cities and various 425

LLMs. Among the LLMs tested, Qwen2.5-max 426

performed the best in Nanjing (China) and Paris 427

(France), while GPT-4o-mini showed the best re- 428

sults in Yangzhou (China) and Berlin (Germany). 429

Compared to the baseline algorithm, the scores 430

improved by 28%–59%, demonstrating that the 431

proposed algorithm significantly enhances LLM- 432

driven narrative-based travel planning tasks. Fur- 433

thermore, the experimental results indicate that bet- 434
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ter LLM performance did not lead to a significant435

improvement in script generation tasks. In fact, our436

approach decomposes a large itinerary script into437

several scene units (representing individual attrac-438

tions) and constructs the complete narrative script439

through transition scripts. This reduces the demand440

for LLMs’ long-text generation capabilities.441

By comparing the scores across the four detailed442

metrics, we can observe significant improvements443

in narrative coherence (NC), cultural fit (CF), and444

spatiotemporal consistency (SC), while the im-445

provement in character interaction (CI) was rel-446

atively modest. The improvements in narrative447

coherence and spatiotemporal consistency can be448

attributed to the evolutionary algorithm’s optimiza-449

tion of the itinerary, which considers both the geo-450

graphical proximity of attractions and their cultural451

and historical relevance. The enhancement in cul-452

tural fit arises from the algorithm’s approach of453

assigning an independent narrative to each attrac-454

tion, ensuring that the attraction’s script aligns with455

its cultural background. However, when generating456

the overall script, the occurrence of hallucinations457

may reduce the cultural fit score.458

Moreover, the experiments also indicate that the459

language of the script (Chinese versus English) has460

a significant impact on the quality of the generated461

scripts. As shown in Table 1, the overall scores462

for Chinese scripts (Nanjing and Yangzhou) were463

consistently lower than those for English scripts464

(Berlin and Paris). This suggests inherent differ-465

ences in how models process historical content466

across various linguistic and cultural contexts.467

4.2.2 Travel Itinerary Planning468

This section compares the proposed NarrativeG-469

uide with several representative LLMs, including470

GPT-4o, GPT-4o-mini, and Qwen2.5-max, focus-471

ing on their travel itinerary planning capabilities.472

The comparison primarily examines travel time and473

the quality of the planned attractions, as shown in474

Tables 2 and 3. Note that the base LLM used in475

NarrativeGuide is GPT-4o.476

From the results in Table 2, it is evident that with477

the introduction of GA optimization, the algorithm478

tends to recommend attractions that are clustered479

together, significantly reducing travel time. For480

example, for the city of Berlin, the travel time for481

the itinerary recommended by GPT-4o is 27 times482

greater than that of the NarrativeGuide. These re-483

sults once again highlight that pure LLMs lack the484

capability for itinerary planning and are unable to485

NarrativeGuide GPT-4o-mini GPT-4o Qwen2.5-max

Nanjing 0.384 1.659 1.935 1.854

Yangzhou 0.786 2.656 1.645 1.288

Paris 0.249 3.283 3.143 3.566

Berlin 0.212 3.836 5.886 3.595

Table 2: The travel time (h) of NarrativeGuide with
GPT-4o are compared with the baseline GPT-4o, GPT-
4o-mini, and Qwen2.5-max.

NarrativeGuide GPT-4o-mini GPT-4o Qwen2.5-max

Nanjing 3.79E+05 1.65E+05 8.87E+04 9.63E+04

Yangzhou 4.24E+05 9.40E+04 1.28E+05 1.71E+05

Paris 5.17E+04 1.08E+04 9.55E+03 9.55E+03

Berlin 1.30E+04 4.11E+03 3.25E+03 3.67E+03

Table 3: The attraction score of NarrativeGuide with
GPT-4o are compared with the baseline GPT-4o, GPT-
4o-mini, and Qwen2.5-max.

suggest a reasonable travel plan. Additionally, the 486

results in Table 3 further support this conclusion. 487

The itineraries generated by NarrativeGuide have 488

higher attraction scores, indicating that they fea- 489

ture popular destinations. However, this advantage 490

is not as significant as the travel time reduction, 491

as LLMs possess enough internal knowledge to 492

recommend popular attractions. Yet, due to the in- 493

ability to collect real-time data from the real world, 494

this outcome is based on prior knowledge rather 495

than updated, accurate data. Overall, the use of GA 496

as an external planner in NarrativeGuide proves 497

to be beneficial, significantly enhancing the ability 498

of LLMs to address real-world problems and meet 499

practical demands. 500

5 Conclusion 501

This study introduces NarrativeGuide, a novel 502

framework that combines geocultural knowledge 503

graphs with evolutionary algorithms to improve 504

narrative-driven travel planning. By grounding 505

script generation in real-world attractions and op- 506

timizing itineraries using GA, our approach ad- 507

dresses the dual challenges of narrative coherence 508

and practical travel constraints. Experimental eval- 509

uations across four cities, i.e., Nanjing, Yangzhou, 510

Paris, and Berlin, show significant improvements: 511

script quality metrics, including narrative coher- 512

ence, cultural fit, and spatiotemporal consistency, 513

increased by 28%–59% compared to baseline meth- 514

ods, while travel time was reduced by up to 27-fold 515

in cities such as Berlin. The framework’s integra- 516
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tion of LLM-generated scene units with GA-driven517

itinerary optimization ensures both immersive sto-518

rytelling and efficient route planning, overcoming519

the limitations of traditional LLMs in handling real-520

world constraints.521

Limitations522

Data Dependency The quality of generated523

scripts heavily relies on the completeness and ac-524

curacy of the knowledge graph, which may limit525

scalability to regions with sparse cultural or histori-526

cal data.527

Character Interaction While narrative coher-528

ence and cultural fit were strengths, charac-529

ter interaction scores remained suboptimal (e.g.,530

1.68–2.88), indicating a need for deeper modeling531

of dynamic character behaviors.532

Language and Cultural Gaps A performance533

disparity (23%) was observed between English534

and Chinese scripts, suggesting potential biases in535

LLMs’ handling of non-Western cultural contexts.536

Algorithm Scalability The genetic algorithm’s537

efficiency may degrade for large-scale cities538

or highly complex constraints (e.g., multi-day539

itineraries).540

User Personalization The current framework pri-541

oritizes narrative fluency over individualized pref-542

erences, such as varying travel interests or activity543

types. Future work could incorporate adaptive user544

profiling to address this gap.545
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Appendix A: Evaluation Criteria and Weights674

Dimension Criteria Score Range Weight Description
1. Plot Coherence Event Logic 0-10 0.4 Logic of event connections and cause-

effect relationships
Attraction Relevance 0-10 0.4 Connection of attractions to the overall

plot
Transition Smoothness 0-10 0.2 Smoothness and naturalness of transi-

tions between events and locations
2. Character Interaction Dialogue Authenticity 0-10 0.3 Authenticity of dialogue in relation to

character identities and historical/cul-
tural context

Cultural-Driven Actions 0-10 0.4 Actions of characters based on cultur-
al/historical context

Metaphorical Dialogue 0-10 0.3 Use of dialogue that adds deeper, sym-
bolic meanings related to the attractions
or historical context

3. Time and Space Co-
herence

Spatiotemporal Corridor 0-10 0.6 Logic of time/space transitions and their
relevance to the storyline and attractions

Route Rationality 0-10 0.4 Historical and geographical logic in se-
lecting travel paths

4. Cultural Fit Cultural Depth 0-10 0.5 Depth of cultural integration in the nar-
rative (impact on decisions, symbolism,
etc.)

Multi-Dimensional Linkage 0-10 0.5 Complexity of connections between his-
torical, cultural, and geographical ele-
ments across attractions

Table 4: Evaluation Criteria and Weights

Appendix B: Prompt675

1. Generating Worldview676

Description Content

Table Input
Location Features/Culture/History/Legends
{item[’location’]} {item[’features’]}

Requirement Construct a travel script worldview based on the table. Connect
various attractions’ storylines and describe basic information
about this world.

Example Travel Script Worldview Setting
Name: Time Journey: Dream Hunting in Jinling
Background:
At the intersection of modern technology and ancient wisdom exists a secret
organization - ’Time Guardians’. This group consists of individuals who can
travel through historical periods to protect cultural heritage. They can access a
parallel world called ’Historical Realm’ that preserves the most glorious cultural
legacies and captivating stories from history.
In this realm, Nanjing (known as ’Jinling’) is a mysterious place full of historical
charm. Each attraction represents a temporal node containing rich history and
hidden passages to other eras. These passages only appear during specific his-
torical moments, and the Time Guardians’ mission is to guide travelers through
these nodes while protecting cultural heritage from temporal erosion.

Table 5: Worldview Generation Template
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2. Generating Characters 677

Description Content
Worldview {worldview}

Character 1: User’s Role
Name {Example: Lin Yi}

Identity {Example: Traveler}

Personality {Example: Curious, observant}

Character 2: Guide
Name {Example: Murong Yun}

Identity {Example: Time Guardian}

Expertise {Example: Temporal navigation}

Example Character Settings:
– Traveler: Lin Yi (Modern history enthusiast)
– Guide: Murong Yun (Time Guardian)
▷ Goal: Protect cultural heritage nodes
▷ Key traits: Temporal navigation abilities

Table 6: Character Generation Template

3. Generating Opening Script 678

Description Content
Worldview {worldview}
Characters {characters}
Requirements

• Brief introduction of worldview

• First meeting between user and guide

• Journey starting point and purpose

• Preview of upcoming travels

• Make the opening engaging and intriguing

Example Travel Script Opening
Worldview: {worldview}
Characters: {characters}
Key Elements:

• Introduced the "Historical Realm" parallel world

• Established mentor-protégé relationship in first encounter

• Set journey goal: Protect cultural heritage nodes

• Foreshadowed conflicts with temporal erosion

Table 7: Opening Script Generation Template
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4. Generating Script for Attraction679

Description Content
Background and Worldview Setting {worldview}
Character Setting {characters}
Attraction Setting Location: {attraction[’name’]}

Historical Context: {attraction[’history’]}
Cultural Features: {attraction[’culture’]}
Legends: {attraction[’legends’]}

Script Requirements
• Four-act structure: Intro/Development/Climax/Ending

• Historical accuracy with emotional character arcs

• Adventure elements with environmental interactions

• Action-driven climax with tangible conflicts

• Self-contained narrative resolution

Special Requirements
• Temporal transition effects between eras

• Cultural symbolism in dialogue/actions

• Consistent character voices

• Skip redundant introductions

• Explicit section markers

Table 8: Attraction Script Generation Template

5. Generate Transition Scripts680

Description Content
Current Scenic Spot Script {script1}
Next Scenic Spot Script {script2}
Transition Script Example Transition:

• Used shared cultural motif (e.g., "Dragon Gate" legend)

• Introduced time portal triggered by historical event

• Added guide’s explanation linking both locations

• Maintained character goals across transition

Table 9: Transition Script Generation Template
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6. Score with Transition Script 681

Description Content
Previous Script {previous_script}
Transition Script {transition_script}
Next Script {next_script}
Combined Script {combined_script}
Survey Questions {survey_text}
Scoring Requirement Example Scoring:

4,5,3,2,3,4,1,2,3,1,3,3
Interpretation:

• First 3 scores: Plot Coherence (Q1-Q3)

• Next 3: Character Interaction (Q4-Q6)

• Next 3: Spatiotemporal Coherence (Q7-Q9)

• Last 3: Immersion (Q10-Q12)

Table 10: Script Scoring Template

Appendix C: Fluency Survey 682

Category Question Rating (1-5)

Plot Coherence
1. Plot continuity across transition
scripts

1: Fragmented – 5:
Seamless

2. Logical story progression 1: Forced – 5: Nat-
ural

3. Utilization of prior plot elements 1: Incoherent – 5:
Coherent

Character Interaction
4. Consistency with character profiles 1: Inconsistent – 5:

Faithful
5. Dialogue/action naturalness 1: Artificial – 5: Or-

ganic
6. Engagement level 1: Disconnected –

5: Immersive

Spatiotemporal Coherence
7. Historical/geographical accuracy 1: Anachronistic –

5: Authentic
8. Environmental consistency 1: Jarring – 5: Con-

tinuous
9. Transition clarity 1: Confusing – 5:

Intuitive

Immersion
10. Narrative depth 1: Superficial – 5:

Layered
11. Multimedia support 1: Distracting – 5:

Enhancing
12. Innovative storytelling 1: Generic – 5:

Original

Table 11: Transition Script Evaluation Criteria
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