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Abstract

Researchers have long used topic modeling to automatically characterize themes
in a text corpus without supervision. Can we extract similar structures from
collections of images? To do this, we propose visual topic modeling, a method
to analyze image datasets by decomposing images into segments, and grouping
similar segments into visual “words”. These vocabularies of visual “words” enable
us to extract visual topics that capture hidden themes distinct from what is captured
by classic unsupervised approaches. We evaluate our visual topics using standard
topic modeling metrics and confirm the interpretability of our visual topics via a
human study.

1 Introduction

The structure of written language is simple — words are comprised of letters, and documents are
comprised of words. The body of words used in English, or the English vocabulary, allows us to
create meaningful text from this fixed collection of words. This vocabulary-based structure also
allows us to use certain natural language processing (NLP) techniques, like topic modeling, to
understand and interpret language datasets.

Topic modeling is an unsupervised learning algorithm that extracts latent variables from large datasets
in the form of topics [63]]. These topics capture groups of related words within a body of text, and
experts have directly interpreted topics in domains like medicine and social science [[18, 42, |55]
to understand and discover information within datasets. Topic modeling is an especially desirable
explanation technique due to (1) the human-interpretability of topics, and (2) the uncovering of
relationships between words in a document that are not always semantically similar. For example,
“ball”, “field”, and “jersey” are related in that they may appear together in a “sports” topic even though
these three words represent different objects and are not close in a typical word embedding space.

Given its popularity in NLP, we hypothesize that topic modeling could also discover relationships
within images, where topics are distributions over related “words” in an image. These relations are
distinct from image clusters, which often explicitly optimize for visual similarity. However, topic
modeling algorithms process documents of words, whereas images do not have any such obvious
linguistic structure. Getting topics for images in the same way we get linguistic topics first requires a
vocabulary for images. Therefore, we develop a “visual vocabulary”: a mapping of similar segments
into “visual words” that constitute a discrete vocabulary for image data. We then use this visual
vocabulary to transform images into a document representation that is compatible with classic topic
modeling algorithms. The resulting methodology is called visual topic modeling: a procedure for
extracting topical relationships from image datasets.

Our contributions are as follows: (1) We propose visual topic modeling as a way to explain hidden
themes in an image dataset. Our methodology derives a visual vocabulary from images as an interface
between image datasets and topic modeling algorithms. (2) We demonstrate, via experiments and a
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Figure 1: Examples of visual topics for the SUN397 dataset. For each topic 7', we show four exemplar
documents D which maximize P(T'| D), as well as the corresponding segments w with high P(w|T).
Both (P(T'|D) and P(w|T')) are outputs of the topic modeling algorithm. Topic 1 contains leafless
trees in the wintertime, highlighting the bare branches in addition to the skies behind them. Topic 2
contains segments of the Savannah, along with elephants in a similar landscape. Lastly, Topic 3
shows a variety of buildings with different textures and colors, but similar window layouts.

theoretical example, how visual topics capture relationships in images distinct from what existing
dimensionality reduction methods capture. (3) We adopt standard topic modeling evaluations from
the NLP literature to assess our visual topics. We find our topics to be of good quality according to
topic modeling metrics and highly interpretable via human evaluation.

See Appendix [B|for related work.

2 Visual Topics via Visual Vocabularies

Based on its wide-reaching success in NLP, topic modeling can potentially capture meaningful
relationships between components of images. However, there is a type-mismatch: images in vision
are collections of pixels, whereas topic modeling algorithms expect documents consisting of sequences
of words. In order to use topic modeling on image datasets, we must first transform images into
documents of “visual words” to interface with topic modeling algorithms.

We formalize this problem as finding a mapping i : X — V™ from images X to documents V™",
where documents are a sequence of m words from a discrete vocabulary 1. Once we have mapped
our examples into documents with h, we can apply standard topic modeling algorithms. But how
exactly should we map images into documents? As a naive approach, consider implementing h
directly with an image-to-text model, such as CLIP, [54] to directly create a caption for each image.
However, captioning models may fail to translate all key components of an image into text [61].

We instead propose a two-step mapping that preserves all of the components: we first partition an
image into a list of m segments with a segmenter s : X — X™, where s(z) = (z1,...,2zm) for
segments z; € X. To transform these segments into visual words, we define v : X' — V which
maps each image segment to a word from a discrete vocabulary V. Then, we can define our visual
document generator h as h(z) = [v(s(z)1),...,v(s(x)m)].

In summary, we break an image into segments and map each segment to a word in a discrete visual
vocabulary. Each image’s corresponding words are then concatenated together to create a document.
These documents can then be fed into a topic modeling algorithm such as Latent Dirichlet Allocation
(LDA). The whole approach, which we call visual topic modeling, is detailed in Algorithm [T}



Algorithm 1 Visual Topic Modeling

Require: Images x1,2,...,2Zn, Segmenter s, Embedding Model f
Require: Integers K,T where K < num clusters, T <— num topics
fori=1...ndo > Segmenting
s; < s(xs)
end for
c1,¢2,. .., cx < k-means(J]" f(s:)) > Clustering
fori=1...ndo > Document Construction

forj=1...|s;| do
dij  argmin,_; || f(sij) — f(c)l3

end for
end for
t1,t2,...,tr < LDA(d1,d2,...,dy) > Visual Topic Modeling

Creating a Visual Vocabulary. While there exist standard segmentation methods for s, we need to
create a suitable vocabulary generator v for vision. A key part of our approach is to therefore construct
a discrete, visual vocabulary ), and define a mapping v from segments to V. After segmenting our

image into segments (21, . .., 2, ) = s(z), we use an image embedding model f from Dosovitskiy
et al. [20] to extract embeddings for each unique segment. We then cluster the resulting segment
embeddings into K clusters (c1, ..., cx) using k-means. Each of the K clusters then is taken to be a

discrete word in the visual vocabulary, resulting in a vocabulary of size |[V| = K. Lastly, we assign
each segment to its nearest cluster in embedding space to map segments to words. This procedure
results in the following vocabulary generator: v(z) = argminge gy [|f(2) — f(c)l3

Note that this vocabulary is not the English language; however, it mimics the structure of language.
English has a fixed set of words that appear across documents. Similarly, the visual vocabulary is a
fixed set of clusters shared across different images. Figure [2] shows an example visual vocabulary.

Visual Documents and Topic Modeling. With our mapping from images to a discrete visual
vocabulary, we now have a natural way to form documents. We concatenate the words corresponding
to the segments in an image to get a visual document (see Figure[2)). With these documents, we can
directly apply any topic modeling algorithm to our image dataset, creating visual topics. The resulting
topics serve as an interpretable dimensionality reduction to explain an image dataset. In this work,
we use LDAE] as our topic modeling algorithm, given its simplicity and establishment in the field.

3 Topic Modeling Uncovers Relations in Images

The hallmark of topic models in language is the ability to discover relations between words that
constitute overall themes. For example, a political topic in language can include words such as
“egovernment”, “president”, and “state” even though these are distinct entities. Our visual topics
can uncover similar structures in image data, with several examples shown in Figure [T} Topic 1
contains bare tree branches, clear skies, and cloudy backdrops. Crucially, these three components
have different shapes and colors and are not clustered together. In this section, we analyze what

makes these topic relations different from classic interpretable structures for images such as clusters.

Topic Relations for Images are Different from Classes and Clusters. Clustering has been used
as the predominant approach to group and understand patterns in images [24} 58, 5], whereas topic
modeling is a more popular approach in language [29, 63]]. However, clusters and topics extract
fundamentally distinct structures from the underlying data.

In vision, Clustering algorithms explicitly optimize for groups with high similarity, and thus clusters
tend to contain only visually similar images of homogeneous classes [3]. On the other hand, topics
capture related words that co-occur together but may not be similar. For example, the words “torment”
and “torrent” are both similar in character distance, but have very different meanings and are not

?Latent Dirichlet Allocation (LDA) is probabilistic topic modeling technique that assumes each document in
a corpus is a mixture of topics, and each topic is a distribution over words. The algorithm uses Bayesian inference
to return the most likely topic-word distributions — P(w|T") for all words w and topics T', and document-topic
distributions — P(T'| D) for all topics 7" and documents D.
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Figure 2: Mapping an image from the Pets dataset [52] to a visual document using our constructed
visual vocabulary. We construct a discrete vocabulary for an image dataset by segmenting each image
and clustering similar segments together, treating each cluster as a “word”. We then map each image
to a visual document by mapping each segment to its visual “word”.

related. Conversely, “government” and “president” are quite different in character distance, but are
related political entities. So, we expect the resulting visual topics to capture different information
from clusters, potentially structures that span across multiple classes instead of being homogeneous.

To measure this difference, we get visual topics for all datasets listed in Appendix[A.3]and calculate
the entropy of the top 50 images within each tOplCEl — see Figure An entropy of 0 indicates
the top images in each topic all originate from a singular class, Wh1le an entropy of 1 indicates a
uniform distribution across all classes. We observe that vast majority ( > 95%) of our topics have an
exceptionally high entropy of 0.125 or greater, indicating they capture more than just visual similarity.

Given that clusters of images are built to be homogeneous with respect to class, they do not capture
relations that span multiple classes as visual topics do. To capture more fine-grained structure than
classes, another line of work has explored clustering segments instead of the entire image [24].
Although Ghorbani et al. [24] focuses on per-class clusters, segment clusters are analogous to word
clusters in our visual vocabulary. As we well see in the next section, segment clusters are theoretically
unable to capture relations of segments.

The Inability of Clusters to Capture Relations. In this section, we theoretically analyze the
difference between clusters and topics. Using the example shown in Figure 3b} we prove that
similarity-based clustering techniques cannot capture relatedness. For example, assume features,
or “words”, 21, za, . .. zq are generated from one of two topics. Each topic is a mixture of two
Gaussian distributions. Informally, two features are highly related if they are generated from the same
topic. Figure 3B plots a sample of these generated features, where blue points are generated from
Topic 1 and orange points are generated from Topic 2. Examples, or “documents”, are generated by
concatenating a sequence of words, or features from the same topic. Example[T]in Appendix [A22]
formalizes this generation procedure as a Mixture of Related Gaussians.

Theorem 1. Let z;; be generated according to ExampleElwith o < 0.288. With probability at least
0.99 there does not exist a clustering of the features z;; that has two clusters containing only related
points from each pair of opposing quadrants.

To quantify the relatedness of two features, we use pointwise mutual information (PMI) [40, [8]]. Two
words in a topic, or two features from the same topic, should have a high PMI. For example, two blue
points in Figure [3b will have a higher PMI than an orange/blue pair. Property [T formalizes this claim
in Appendix

3For a given topic 7', we use the document-topic distribution returned by LDA to select the set of documents
D1, Ds, ... Dy where P(T'|D) is maximized. We call this set the top N documents for 7.
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(a) Entropy of visual topics on a suite of image datasets (b) Mixture of Related Gaussians. “Words”
(A73). Our topics originate from a diverse set of classes, are generated from orange and blue topics,
highlighting the difference between topics and clusters. where opposite quadrants are highly related.

Figure 3: Topics are different than clusters: (a) graphs the class entropy of each visual topic, showing
that our topics span multiple classes. (b) exemplifies the relatedness property as a mixture of related
Gaussians; there does not exist a clustering that separates the two topics while keeping them intact.

The data from Example[I]can be viewed as a mixture of 4 Gaussian distributions with a twist: data
from opposite Gaussians are highly correlated. In other words, pairs of features with the same sign
are likely to show up together in examples. Conversely, pairs of features with opposite signs are
unlikely to appear together in an example. These pairs of opposing quadrants satisfy the relatedness
property, while adjacent quadrants are not related. From a language perspective, x; is analogous to a
visual document, and z;; is analogous to the jth visual word in the ¢th document.

In Appendix [A.2] we prove that (1) we cannot cluster distinct but related features from opposite
quadrants simultaneously for both topics, and (2) a topic model can successfully group all related
blue and orange words into two different topics — see Theorem [I]and Corollary [T} We theoretically
prove that topics discover relationships that clusters cannot represent. Our topics capture themes
grounded in relatedness and are thus a complimentary addition to classic unsupervised explanations.

4 Visual Topic Evaluation

To assess the strength of our visual topics as explanation tools, we evaluate them with well-established
metrics in the topic modeling literature [40, [1]]: (1) Human Interpretability: We conduct a word
intrusion test [[13] for our visual topics to evaluate their human-interpretability. (2) Internal Coher-
ence: We measure how semantically similar the words within each obtained topic are to maximize
topic clarity [48]]. (3) Relatedness: We measure how related the words within each topic are. (e.g.
“ball” and “jersey” are related, whereas “jersey” and “uniform” are similar.) [17]. (4) Diversity: We
measure topic diversity to minimize redundancy [16].

Experiments. We apply our visual vocabularies algorithm outlined in Algorithm|[T]to a range of
image datasets (see Appendix[A.3|for descriptions). We then run LDA [I0] on the resulting documents
for each dataset, setting Nropics = |Num Classes|/2. See Appendix for experimental setup
detailing choice of segmenter S, number of clusters K, embedding model F’, and LDA priors.

4.1 Human Evaluation

A goal of any good explanation method is human-interpretability [66, [19]. Linguistic topics have
been shown to be understandable to humans [[10], hence their popularity as an explanation tool in
NLP. To assess the human-interpretability of our visual topics, we conduct a user study. A standard
way to assess how well linguistic topics match human concepts is through a task known as word
intrusion [13]] — users are given a set of words with high probability in Topic A, with the exception of
an “intruder”, or a word with very low probability in Topic A. Users are then asked to identify this
intruder word. If topic A is highly coherent and has some common underlying theme, it should be
clear to a user which word is not part of topic A.
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Internal Coherence

Visual 08 091 084 085 079 095 099 0.74 087 093 085 0.87

Text 024 025 024 025 021 024 024 025 026 026 025 025
Shuffled 069 056 059 055 061 070 078 059 067 0.67 060 0.55
Topic Relatedness

Visual 0.15  0.17 02 019 0.02 019 0.24 01 017 021 02 0.17
Text 0.22 0.19 0.1 0.08 014 0.12 0.09 0.08 0.06 0.1 0.05 0.1

Shuffled -0.29 -025 -032 -0.28 -029 -0.05 -0.16 -035 -034 -0.11 -02 -0.22

Topic Diversity

Visual 076 083 088 0.89 077 097 087 099 092 089 097 0.89
Text 0.14 0.11 037 032 02 026 038 036 023 033 035 023
Random 056 056 058 058 057 065 060 058 057 061 062 0.60

Table 1: As is standard in topic modeling literature, we evaluate our visual topics for internal
coherence, relatedness, and diversity. We compare against text topics (i.e. LDA on the text captions
of each image) and randomly shuffled/sampled topics, where we report the mean of 100 runs.

Visual word intrusion. We design a parallel intrusion task for vision. Given a topic 7', we first
select 4 “exemplar” images D1, ... D, for that topic, or the images with the largest P(T'|D). We
highlight all segments w with where P(w|T") in the upper quartile. We dim the remaining image so
users can focus on the relevant words, while still having the context of the full image to make sense
of the unobscured segments. Users are then shown the 4 exemplar images for each topic, along with
a randomly chosen intruder image, which is an exemplar document for a different topic. Users are
then asked to identify the intruder (see Figure 4] for example).

We run LDA on the SUN397 dataset using 150 topics, and have a group of 12 volunteer users analyze
25 topics each (2 users evaluate each topic). We observe exceptionally high performance on this
task — on average, users select the correct intruder 87.67% of the time. We also observe high
agreement between users (average Cohen’s kappa = 0.828). We evaluate against Chang et al. [13]]’s
word intrusion task on two text corpora, using an identical topic modeling setup — 82.5% correct for
the NYT corpus, and 84.0% correct for the Wikipedia corpus. Given users perform better on our
visual word intrusion task, this suggests that humans find our visual topics to be as interpretable and
coherent as linguistic topics. Additional information regarding study setup is given in Appendix [A.4]

4.2 Coherence, Relatedness, & Diversity

Table [I] contains the results for these well-established metrics to evaluate our visual topics. We
compare against two baselines: a text baseline, where we use ViT-GPT2 [39] to caption each image
and run LDA on the generated captions, and a random baseline, where we randomly shuffle or sample
words in each topic. See Appendix[A.5]for equations to compute each metric, as well as additional
discussion about the results.

5 Conclusion

In this paper, we proposed visual topic modeling to uncover co-occurrence based relationships in
images. We empirically show that topics capture structures that differ from what classic unsupervised
learning methods capture for images. We support these results with a theoretical example, which
demonstrates that similarity-based clustering is fundamentally unable to model relationships. Our
approach generates a visual vocabulary, which can then interface images with topic modeling
algorithms from natural language processing. Topic modeling has long been used to understand text
documents in fields such as the social sciences, medicine, and psychology. We hope this paper paves
the way for researchers to analogously explain image datasets in these domains.
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A Appendix

A.1 Experimental Setup
We discuss all details in our visual topic modeling experiments:

Visual vocabulary construction We use SLIC [2] to obtain the segments for each image. We then
follow Ghorbani et al. [24]] and crop + resize each segment to get the segment embeddings. We use a
vision transformer [20] to embed these cropped and resized segments. To construct the vocabulary,
we use k-means clustering and group similar segments together to create visual words. The total
number of clusters for each dataset is 25 x Num Classes, following [56]].

In our preliminary experiments with SLIC, we experiment with both zeroing (i.e. blacking out) the
rest of the image, cropping the segments, and resizing to the max image size. We find that following
Ghorbani et al. [24] generates the best visual topics upon manual inspection, so we follow this
proceduce for our remaining experiments. We also experiment with the Segment Anything Model
[33]], and find that it performs worse than SLIC, upon manual inspection of the resulting topics.

Topic modeling We run LDA implemented using collapsed Gibbs sampling, due to its efficiency
and quicker runtime. We set Nyopics = |Num Classes|/2 for all datasets. For our LDA prior
parameters, we set « = 0.05 and 5 = 0.005. The standard LDA priors for linguistic topics are
a = 0.1 and 8 = 0.01. Given our visual vocabulary does not follow a Zipfian distribution, like the
English vocabulary does, we half the standard priors, as we expect each document to have fewer
topics and each topic to have fewer words. For our text baselines, we use the ViT-GPT2 model []
from HuggingFace to generate the captions for each image. We run LDA for 2,000 iterations to
ensure enough time for convergence.

A.2 Proofs

Property 1. Two subsets of features S, S" are related if their PMI, )~ ¢ sze g %, is high,

where p(z;, z;) is the probability of observing the feature subsets z; and z; within the same example
x and p(z;) is the probability of observing z; in the entire dataset.

Example 1. (Mixture of Related Gaussians) Let z; € R*?, 2ij € R? be observations from the
following generative process:

* Let R; be a Rademacher variable representing the topic, which is drawn from {—1,+1}

with % probability each.

o Let zij ~ Y geq—1,1y P(2|RiS, S)p(S) where p(z|R;S,S) = Gaussian ([Ri,S], o)
and p(S) is a Rademacher variable for j =1 .. .d,

» Then, x; = (21, . .., 2iq) is the concatenation of all the z;; for j =1...d.

Theorem[1} Let z;; be generated according to Example[l|with o < 0.288. With probability at least
0.99 there does not exist a clustering of the features z;; that has two clusters containing only related
points from each pair of opposing quadrants.

Proof. For sake of contradiction, suppose there exists a cluster centroid p; that contains two points
z1, 22 generated from p(z|1,1) and p(z| — 1, —1), and a second centroid x5 that contains two points
23, z4 generated from p(z|1, —1) and p(z| — 1,1).

Let D be the Mahalanobis distance with probability 1 — « of being within distance D of the mean.
Since o < 0.288, the probability that z; is at least D > 1 away from its corresponding centroid
is at at most F' () = F(11.983) = 0.0025 = a, since D* = > (=i — ;)% /o follows a x3
distribution. Then, With probability p = (1 — a)* = 0.99 (via union bound), all four points z; are
within radius 1 from their respective centroids. This implies that each z; must lie within one of the

four quadrants.

However, note that cluster centroids partition the space into convex partitions. Thus, if 21 and 2o
are in the same cluster, then the line connecting them must also be in the same cluster. However,
this must also be true of z3 and z4—the line connecting these points must be within the same cluster.
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Since each of these points exist in opposite quadrants, there must be a point where these two lines
intersect that is in the interior of both cluster partitions. However, this is a contradiction, as this point
cannot simultaneously be in the interior of two partitions.

O

Corollary 1. A visual topic model with T' = 2 topics is sufficient to divide the data from Examplel]]
into two subsets with high relatedness.

Proof. Letv : R? — {£1}? be defined as v(z;) = argmin,,c(41y2 [[2i; — p|3, which is the hard

assignment of each feature subset z;; to the quadrant that z;; resides in. Let g : R¥2 — {£1}4%2
v(zi1)

be defined as g(x;) = : which maps each example z; to a sequence of words, where each
v(2ia)

word comes from the vocabulary {#+1}2. Then, the topic model defined by the topic-term distribution

p(1,1T =1) =p(-1,-1T =1) = 0.5and p(—1,1|T = 2) = p(1, —1|T = 2) = 0.5 perfectly

clusters the examples into two topics with high relatedness. O

A.3 Datasets

We follow Salman et al. [57] and use the following 12 datasets for our experiments.

Dataset Num Images Num Classes Content
Birdsnap [6] 40,754 500 North American birds
Caltech-101 [22] 8,677 101 Objects
Caltech-256 [25]] 30,607 256 Objects
CIFAR-10 [37] 60,000 10 Objects
CIFAR-100 [37] 60,000 100 Objects
Describable Textures (DTD) [[14] 5,640 47 Textured images
FGVC Aircraft [45] 10,200 102 Aircrafts
Food-101 [[11]] 101,000 101 Food dishes
Oxford 102 Flowers [50] 8,189 102 Flowers
Oxford-IIIT Pets [52] 7,349 37 Cats and dogs
SUN397 [63] 39,700 397 Various scenes
Stanford Cars [36]] 16,185 397 Types of cars

Table 2: Summary of datasets used to generate visual topics.

A.4 Human Evaluation

We sourced users to participate in our human evaluation by asking graduate students to volunteer
in our study. Our users came from varying academic backgrounds. Of the 12 users, 5 had prior
familiarity with topic modeling. As identifying topics requires users to clearly distinguish things
like colors and shapes, we additionally required users that users have no visual impairments (e.g.
red-green color blindness).

These were the instructions our users received prior to participating in the study:

In this study, you will be asked to evaluate the output of a topic modeling study.
Topic modeling is a technique used to find related themes in large datasets. For
example, if you were to run a topic model on Wikipedia articles, an example topic
could be words related to politics, and may contain words like "government", "war",
"Iraq", "Obama", etc.

We have applied a topic modeling algorithm to images, so you will be asked to
evaluate a set of 25 visual topics. You will see a collection of 5 images. 4 of
these images have segments highlighted that belong to one visual topic. 1 image has
segments highlighted for a different topic, or is an "intruder" image. Your task

is to look at the set of 5 images and then highlighted segments and identify the
intruder.
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Figure 4: Example of our visual word intrusion task. Users are asked to identify which image they
believe is the “imposter”, or which image’s colored segments belong to a different topic than those of
the other four images. In this example, the colored segments in images A, B, C, and E are part of
topic that mainly contains clouds, lush forests, and blue skies. Image D, the intruder image, contains
segments that belong to a different topic, one that includes grassy fields.

We then showed users an example from the dataset that they were not responsible for annotating, and
asked if they understood the task. All users indicated they understood the task after receiving the
instructions.

A.5 Description of Metrics
A.5.1 Internal Coherence

Internal coherence, introduced by Newman et al. [48]], measures coherence via pairwise similarity
of the top N words wy, . . . w,, with highest P(w|T') in each topic. We follow Bianchi et al. [9] and
use centroid similarity to calculate pairwise coherence scores for the top /N words in each topic. We
define the internal coherence of a topic as follows, where ©; corresponds to the centroid of the cluster
containing word . Following Bianchi et al. [9], Grootendorst [26], we use N = 10.

ICtoe = 58 =T Z Z cos(0;,0;) e

i=1 j=i+1

We compare against two baselines:

e Text baseline: we use ViT-GPT2 [39] to caption each image and run LDA on the generated
captions. We use word embeddings [31]] for cosine similarity.

* Shuffled baseline: we conduct a permutation test [23]], where we take the top N words from
each visual topic and shuffle them across topics. We calculate coherence for the new shuffled
topics and report the mean of 100 runs.

Table [T]shows the internal coherence of our visual topics and baselines. For all datasets, our visual
topics outperform both baselines. These high coherence scores empirically support the findings of
our user study — our topics are highly coherent by both human evaluation and automatic metrics.

A.5.2 Topic Relatedness

To highlight how visual topics are distinct from segment clusters, we additionally measure relatedness
of topics [17]]. The intuition behind this test is that visual words that are not necessarily similar, but
co-occur in visual documents (i.e. dogs and grass, boats and lakes, etc.) should still be in the same
topic. Relatedness is measured via pointwise mutual information, as discussed in Property [T We use
normalized pointwise mutual information (NPMI) between each pair of words in the top N words.
We follow Lau et al. [40], Grootendorst [26] and use N = 10.

N-1 N Pwi,wy)
2 long YP(wj)
R opic — . ? 2
Topt N x (N -1) ZZ: ; —log P(w;, w;) @

We compare against two baselines:

o Text baseline: we use ViT-GPT2 [39] to caption each image and run LDA on the generated
captions, using Equation [2]to measure relatedness.
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» Shuffled baseline: we conduct a permutation test [23], where we take the top N words
from each visual topic and shuffle them across topics. We calculate the relatedness of these
shuffled topics and report the mean of 100 runs.

Table E] shows the relatedness of our visual topics and baselines. For 9 of the 12 datasets, visual
topics are more related than the text topics. For all datasets, our visual topics are more related than
the shuffled topics. As discussed in Section [3] the high relatedness of our visual topics indicates we
have successfully captured relationships of co-occurring structures in images.

A.5.3 Topic Diversity

Dieng et al. [[16] introduce topic diversity as a way to evaluate topic quality. Topic diversity looks
at the top N words wy, . .. wy, with highest P(w|T") in each topic, and computes the percentage of
unique words. A word is considered unique if it is not present in the top /N words of any other topics.
The intuition behind this metric (ranging from zero to one) is that topic models should generate
diverse topics — a lower diversity score suggests redundant topics, indicating the topics cannot
sufficiently disentangle the corpus’s themes. A higher score indicates more varied topics. We follow
Dieng et al. [[16] and use N = 25.

We compare against two baselines:

* Text baseline: we use ViT-GPT2 [39] to caption each image and run LDA on the generated
captions. We then calculate diversity.

* Random baseline: As shuffling the top [N words in each topic will not impact the diversity
score, we randomly sample N words from our dataset to create random topics. We calculate
diversity of the randomized topics and report the mean of 100 runs.

Table [T] shows the diversity of our visual topics. We outperform both baselines across all datasets.
The low diversity of our text baseline indicates that captioning via an image-to-text model loses
valuable information needed to create unique and useful topics.

B Related Work

Dimensionality Reduction. We first discuss relevant past work in dimensionality reduction meth-
ods. Linear dimensionality reduction methods like PCA [28]] and non-linear dimensionality reduction
methods like t-SNE [62], MDS [38]], Isomap [60], UMAP [46], etc. have long been used to find
patterns in image data. Cluster memberships of examples can also be used as a form of dimensionality
reduction [30L 51} [7]]. More recent work in this space includes extracting concepts specific to a trained
model or class, such as Automatic Concept Extraction [24] or Concept Bottlenecks [34].

Unsupervised Interpretability. Another line of research attempts to explain image datasets via
unsupervised methods. Segmentation [43] divides images into structured sub-parts. Image-to-text
models [64] explain images via captioning, grounding an image in language. Linear probes [4,[35]]
are simple linear classifiers trained on top of existing learned representations and are used to measure
the quality of these learned features. Shift explanation techniques, such as those from Kifer et al.
[32], Rabanser et al. [53]], Stein et al. [59]] work towards explaining shifts in data distribution using
unsupervised methods. Clustering methods like KMeans [44]], DBSCAN [21]], HDBSCAN [12],
Agglomerative Hierarchical Clustering [47]], Spectral Clustering [49], etc. also aim at organizing data
using intrinsic structure, which provides unsupervised interpretability.

Topic Modeling. Topic modeling is a long-standing field in NLP, and includes fully unsupervised
methods such as Latent Dirichlet Allocation [[10], Latent Semantic Analysis [[15]], and Non-Negative
Matrix Factorization [41]. Neural-based topics models, such as BERTopic [26]] and Contexualized
Topic Models [8] incorporate pre-trained embeddings in the topic generation process. Topics have
been used to compare models [[27] and used for downstream tasks such as summarization, information
retrieval, etc. in variety of domains [29].
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