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ABSTRACT

GNN-to-MLP distillation aims to utilize knowledge distillation (KD) to learn
computationally-efficient multi-layer perceptron (student MLP) on graph data by
mimicking the output representations of teacher GNN. Existing methods mainly
make the MLP to mimic the GNN predictions over a few class labels. However,
the class space may not be expressive enough for covering numerous diverse local
graph structures, thus limiting the performance of knowledge transfer from GNN
to MLP. To address this issue, we propose to learn a new powerful graph represen-
tation space by directly labeling nodes’ diverse local structures for GNN-to-MLP
distillation. Specifically, we propose a variant of VQ-VAE (Van Den Oord et al.,
2017) to learn a structure-aware tokenizer on graph data that can encode each
node’s local substructure as a discrete code. The discrete codes constitute a code-
book as a new graph representation space that is able to identify different local
graph structures of nodes with the corresponding code indices. Then, based on
the learned codebook, we propose a new distillation target, namely soft code as-
signments, to directly transfer the structural knowledge of each node from GNN
to MLP. The resulting framework VQGRAPH achieves new state-of-the-art per-
formance on GNN-to-MLP distillation in both transductive and inductive settings
across seven graph datasets. We show that VQGRAPH with better performance
infers faster than GNNs by 828×, and also achieves accuracy improvement over
GNNs and stand-alone MLPs by 3.90% and 28.05% on average, respectively. Our
code is available at https://github.com/YangLing0818/VQGraph

1 INTRODUCTION

Graph Neural Networks (GNNs) (Yang & Hong, 2022; Li et al., 2020a; Perozzi et al., 2014; Xu
et al., 2019; Morris et al., 2019; Yang et al., 2020; Chen et al., 2020b) have been widely used due to
their effectiveness in dealing with non-Euclidean structured data, and have achieved remarkable per-
formances in various graph-related tasks (Hamilton et al., 2017; Kipf & Welling, 2017; Veličković
et al., 2018). Modern GNNs rely on message passing mechanism to learn node representations (Yang
et al., 2020). GNNs have been especially important for recommender systems (Fan et al., 2019; He
et al., 2020; Wu et al., 2022; Xiao et al., 2023; Zhang et al., 2024), fraud detection (Dou et al., 2020;
Liu et al., 2021; Yang et al., 2023), and information retrieval (Li et al., 2020b; Mao et al., 2020).
Numerous works (Pei et al., 2020b) focus on exploring more effective ways to leverage informative
neighborhood structure for improving GNNs (Park et al., 2021; Zhu et al., 2021; Zhao et al., 2022;
Tang et al., 2022; Lee et al., 2021; Chien et al., 2022; Abu-El-Haija et al., 2019).

It is challenging to scale GNNs to large-scale applications which are constrained by latency and
require fast inference (Zhang et al., 2020; 2022a; Jia et al., 2020), because message passing neces-
sitates fetching topology and features of many neighbor nodes for inference on a target node, which
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Figure 1: The t-SNE visualization of the learned graph representation space in two kinds of teacher
GNNs: (a) previous SOTA “class-based” NOSMOG (Tian et al., 2023b) and (b) our “structure-
based” VQGraph. “class-based” denotes learning with class labels, and “structure-based” denotes
learning with our local structure reconstruction. Our learned space is more compact. We here pro-
vide both class labels and our structure labels along with illustrative substructures for demonstration.

is time-consuming and computation-intensive. Multi-layer perceptrons (MLPs) are efficient alter-
natives to deploy on graphs that only depend on node feature without the need of explicit message
passing (Zhang et al., 2022b). Thus, recent methods use knowledge distillation (Hinton et al., 2015;
Tian et al., 2023a; Gou et al., 2021; Yuan et al., 2020; Zhou & Song, 2021) to transfer the learned
structural knowledge from GNNs to MLPs (Zhang et al., 2022b; Zheng et al., 2022; Tian et al.,
2023b), which build the statistical associations between node features and class labels by making
the MLP mimic the (well-trained) GNN’s predictions. Then only MLPs are deployed for inference,
which can also perform well in real-world graphs.

Despite some progress, current GNN-to-MLP distillation methods have a common fundamental is-
sue: their graph representation spaces of GNN are mainly learned by a few class labels, and the class
space may not be expressive enough for covering numerous diverse local graph structures of nodes,
limiting the distillation performance. We explain this problem by using t-SNE (Van der Maaten &
Hinton, 2008) to visualize the graph representation space as in Figure 1. We can observe that the
graph representation space in previous teacher GNN is not expressive enough for identifying fine-
grained local structural differences between nodes of the same class, which may limit the structural
knowledge transfer from GNN to MLP.

Here we introduce a new powerful graph representation space for bridging GNNs and MLPs by
directly labeling diverse nodes’ local structures. Specifically, we propose a variant of VQ-VAE (Van
Den Oord et al., 2017) to learn a structure-aware tokenizer on graph data that can encode each node
with its substructure as a discrete code. The numerous codes constitute a codebook as our new
graph representation space that is able to identify different local neighborhood structures of nodes
with the corresponding code indices. As demonstrated in Figure 1, our learned representation space
is more expressive and can identify subtle differences between nodes’ local structures. Based on the
learned codebook, we can effectively facilitate the structure-based distillation by maximizing the
consistency of soft code assignments between GNN and MLP models, given by the KL divergence
between GNN predictions and MLP predictions over the discrete codes of the codebook.

We highlight our main contributions as follows: (i) To the best of our knowledge, we for the first time
directly learn to label nodes’ local neighborhood structures to acquire a powerful node representation
space (i.e., a codebook) for bridging GNNs and MLPs. (ii) Based on the learned codebook, we
utlize a new distillation target with soft code assignments to effectively facilitate the structure-aware
knowledge distillation. We further conduct both visualization and statistical analyses for better
understanding with respect to our superior local and global structure awareness for GNN-to-MLP
distillation. (iii) Extensive experiments across seven datasets show VQGRAPH can consistently
outperform GNNs by 3.90% on average accuracy, while enjoying 828× faster inference speed. Also
VQGRAPH outperforms MLPs and SOTA distillation method NOSMOG (Tian et al., 2023b) by
28.05% and 1.39% on average accuracy across datasets, respectively.

2 RELATED WORK

Inference Acceleration for GNNs Pruning (Zhou et al., 2021) and quantizing GNN parameters
(Zhao et al., 2020) have been studied for inference acceleration (Chen et al., 2016; Judd et al.,
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2016; Han et al., 2015; Gupta et al., 2015). Although these approaches accelerate GNN inference to
a certain extent, they do not eliminate the neighbor-fetching latency. Graph-MLP (Hu et al., 2021)
proposes to bypass GNN neighbor fetching by learning a computationally-efficient MLP model with
a neighbor contrastive loss, but its paradigm is only transductive and can be not applied in the more
practical inductive setting. Besides, some works try to speed up GNN in training stage from the
perspective of node sampling (Zou et al., 2019; Chen et al., 2018c), which are complementary to our
goal on inference acceleration.

Knowledge Distillation for GNNs Existing GNN-based knowledge distillation methods try to dis-
till teacher GNNs to smaller student GNNs (GNN-GNN distillation) or MLPs (GNN-to-MLP dis-
tillation). Regarding the GNN-GNN distillation, LSP (Yang et al., 2021c), TinyGNN (Yan et al.,
2020), GFKD (Deng & Zhang, 2021), and GraphSAIL (Xu et al., 2020) conduct KD by enabling
student GNN to maximally preserve local information that exists in teacher GNN. The student in
CPF (Yang et al., 2021b) is not a GNN, but it is still heavily graph-dependent as it uses LP (Zhu &
Ghahramanih, 2002; Huang et al., 2021). Thus, these methods still require time-consuming neigh-
bors fetching. To address these latency issues, recent works focus on GNN-to-MLP distillation that
does not require message passing, as seen in (Hu et al., 2021; Zhang et al., 2022b; Zheng et al.,
2022; Tian et al., 2023b). For example, recent sota methods GLNN (Zhang et al., 2022b) and NOS-
MOG (Tian et al., 2023b) train the student MLP with node features as inputs and class predictions
from the teacher GNN as targets. However, class predictions over a few labels, as their distilla-
tion targets, can not sufficiently express structural knowledge of graph structures as discussed in
Sec. 1. Hence, we for the first time propose to directly label nodes’ local neighborhood structures to
facilitate structure-aware knowledge distillation.

3 PRELIMINARIES

Notation and Graph Neural Networks We denote a graph as G = (V,A), with V =
{v1,v2, · · · ,vn} represents all nodes, and A denotes adjacency matrix, with Ai,j = 1 if node vi
and node vj are connected, and 0 otherwise. Let N denote the total number of nodes. X ∈ RN×D

represents the node feature matrix with each raw being a D-dimensional node attribute v. For node
classification, the prediction targets are Y ∈ RN×K , where row yv is a K-dim one-hot vector for
node v. For a given G, usually a small portion of nodes will be labeled, which we mark using su-
perscript L, i.e. VL, XL and Y L. The majority of nodes will be unlabeled, and we mark using
the superscript U , i.e. VU , Y U and Y U . For a given node v ∈ V , GNNs aggregate the messages
from node neighbors N (v) to learn node embedding hv ∈ Rdn with dimension dn. Specifically, the
node embedding in l-th layer h(l)

v is learned by first aggregating (AGG) the neighbor embeddings
and then updating (UPDATE) it with the embedding from the previous layer. The whole learning
process can be denoted as: h(l)

v = UPDATE(h(l−1)
v ,AGG({h(l−1)

u : u ∈ N (v)})).

Vector Quantized-Variational AutoEncoder (VQ-VAE) for Continuous Data The VQ-VAE
model (Van Den Oord et al., 2017) is originally proposed for modeling continuous data distri-
bution, such as images, audio and video. It encodes observations into a sequence of discrete
latent variables, and reconstructs the observations from these discrete variables. Both encoder
and decoder use a shared codebook. More formally, the encoder is a non-linear mapping from
the input space, x, to a vector E(x). This vector is then quantized based on its distance to
the prototype vectors (tokens) in the codebook ek, k ∈ 1 . . .K such that each vector E(x) is
replaced by the index of the nearest code in the codebook, and is transmitted to the decoder:
quantize(E(x)) = ek,where k = argminj ||E(x) − ej ||. To learn these mappings, the gradient
of the reconstruction error is then back-propagated through the decoder, and to the encoder using
the straight-through gradient estimator (Bengio et al., 2013). Besides reconstruction loss, VQ-VAE
has two additional terms to align the token space of the codebook with the output of the encoder.
The codebook loss, which only applies to the codebook variables, brings the selected code e close to
the output of the encoder, E(x). The commitment loss, which only applies to the encoder weights,
encourages the output of the encoder to stay close to the chosen code to prevent it from fluctuating
too frequently from one code vector to another. The overall objective is:

L(x, D(e)) = ||x−D(e)||22 + ||sg[E(x)]− e||22 + η||sg[e]− E(x)||22, (1)

where E is the encoder function and D is the decoder function. The operator sg refers to a stop-
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Figure 2: The schematic diagram of VQGRAPH, including graph tokenizer training (Top) and
structure-aware code-based GNN-to-MLP Distillation (Bottom).

gradient operation that blocks gradients from flowing into its argument, and η is a hyperparameter
which controls the reluctance to change the code corresponding to the encoder output. In this paper,
we explore the potential of VQ-VAE for representing discrete graph-structured data.

4 VQGRAPH

The critical insights of VQGRAPH is learning an expressive graph representation space that directly
labels nodes’ diverse local neighborhood structures with different code indices for facilitating ef-
fective structure-aware GNN-to-MLP distillation. First, we learn a structure-aware graph tokenizer
to encode the nodes with diverse local structures to corresponding discrete codes, and constitute
a codebook (Sec. 4.1). Then we utilize the learned codebook for GNN-to-MLP distillation, and
propose a tailored structure-aware distillation objective based on soft code assignmnets (Sec. 4.2).

4.1 GRAPH TOKENIZER TRAINING

Labeling Nodes’ Local Structure with Discrete Codes Similar to the tokenization in NLP (Sen-
nrich et al., 2016; Wu et al., 2016), we tokenize the nodes with different neighborhood structures as
discrete codes using a variant of VQ-VAE (Van Den Oord et al., 2017), i.e., a graph tokenizer that
consists of a GNN encoder and a codebook. More concretely, the nodes V = {v1,v2, · · · ,vn} of
a graph G are tokenized to Z = {z1, z2, · · · , zn} , where the codebook contains M discrete codes.
Firstly, the teacher GNN encoder encodes the nodes to nodes embeddings. Next, our graph tokenizer
looks up the nearest neighbor code embedding in the codebook for each node embedding hi. Let
E = [e1, e2, · · · , eM ] ∈ RM×D denote the codebook embeddings, which are randomly initialized
and are then optimized in pretraining. The assigned code of i-th node is:

zi = argminj∥hi − ej∥2, (2)

We feed the corresponding codebook embeddings {ez1 , ez2 , · · · , ezn} to the linear decoder (pψ :
ezi → v̂i) to reconstruct the input graph including both nodes attributes X ∈ RN×D and adjacency
matrix A ∈ RN×N for an end-to-end optimization of our graph tokenizer.

Graph Tokenizer Optimization We adapt VQ-VAE (first term in Equation (1)) to fit our graph
tokenization. In addition, the categorical information is also critical for node representations, thus
we integrate it into the optimization of our graph tokenizer:

LRec =
1

N

N∑
i=1

(
1− vi

T v̂i

∥vi∥ · ∥v̂i∥

)γ

︸ ︷︷ ︸
node reconstruction

+

∣∣∣∣∣
∣∣∣∣∣A− σ(X̂ · X̂T )

∣∣∣∣∣
∣∣∣∣∣
2

2︸ ︷︷ ︸
edge reconstruction

,

LTokenizer = LRec + LCE(y{vi}, ŷ{ezi
}) +

1

N

N∑
i=1

∥sg[hi]− ezi∥
2
2 +

η

N

N∑
i=1

∥sg[ezi ]− hi∥22,

(3)
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where v̂ ∈ RD and X̂ ∈ RN×D denote the predicted node embedding and node embedding matrix,
respectively. sg[·] stands for the stopgradient operator, and the flow of gradients is illustrated in
Figure 2. LRec denotes the graph reconstruction loss, aiming to preserve node attributes by the first
node reconstruction term with the scaled cosine error (γ ≥ 1), and recover graph structures by the
second topology reconstruction term. LCE is the cross-entropy loss between labels y{vi} and the
GNN predictions ŷ{ezi

} that are based on the assigned codes {ezi}. In LTokenizer, the third term
is a VQ loss aiming to update the codebook embeddings and the forth term is a commitment loss
that encourages the output of the GNN encoder to stay close to the chosen code embedding. η is
a hyper-parameter set to 0.25 in our experiments. With the learned graph tokenizer, we acquire a
powerful codebook that not only directly identifies local graph structures, but also preserves class
information for node representations, facilitating later GNN-to-MLP distillation.

Clarifying Superiority over VQ-VAE and Graph AutoEncoders In contrast to vanilla VQ-
VAE, we provide a new variant of VQ-VAE for modeling discrete graph data instead of continuous
data, and utilize the learned codebook for distillation task instead of generation tasks. In contrast
to traditional graph autoencoders (Kipf & Welling, 2016), our model does not suffer from large
variance (Van Den Oord et al., 2017). And with our expressive latent codes, we can effectively
avoid “posterior collapse” issue which has been problematic with many graph AE models that have
a powerful decoder, often caused by latents being ignored. We provide experimental comparison to
demonstrate our superiority in Sec. 5.3.

Scaling to Large-Scale Graphs We have introduced the main pipeline of graph tokenizer training
based on the entire graph input. Nevertheless, for large-scale industrial applications, one can not
feed the whole graph due to the latency constraint (Fey et al., 2021; Bojchevski et al., 2020; Ying
et al., 2018; Chen et al., 2020a). Numerous researches choose subgraph-wise sampling methods as
a promising class of mini-batch training techniques (Chen et al., 2018b;a; Zeng et al., 2020; Huang
et al., 2018; Chiang et al., 2019; Zou et al., 2019; Shi et al., 2023), implicitly covering the global
context of graph structure through a number of stochastic re-sampling. We follow this technique to
perform large-scale graph tokenizer training. For example, we adopt GraphSAGE (Hamilton et al.,
2017) as teacher GNN, we samples the target nodes as a mini-batch Vsample and samples a fixed
size set of neighbors for feature aggregation. We utilize the connections between the target nodes
as the topology reconstruction target (the second term of LRec in Equation (3)) for approximately
learning global graph structural information.

4.2 STRUCTURE-AWARE CODE-BASED GNN-TO-MLP DISTILLATION

After the graph tokenizer optimization, we obtain a pre-trained teacher GNN encoder and a set of
codebook embeddings E. We hope to distill the structure knowledge node-by-node from the GNN
to a student MLP based on the codebook. Next, we will introduce our tailored structure-aware
GNN-to-MLP distillation with the soft code assignments over the learned codebook.

Aligning Soft Code Assignments Between GNN and MLP Different from previous class-based
distillation methods (Zhang et al., 2022b; Tian et al., 2023b) that constrain on class predictions be-
tween GNN and MLP, we utilize a more expressive representation space of graph data, i.e., our
structure-aware codebook, and propose code-based distillation to leverage more essential informa-
tion of graph structures for bridging GNN and MLP. Formally, for each node vi, we have its GNN
representation hGNN

i ∈ RD and the MLP representation hMLP
i ∈ RD. Then we respectively compare

their node representations with all M codes of the codebook embeddings E ∈ RM×D and obtain
corresponding soft code assignments rGNN

i ∈ RM and rMLP
i ∈ RM :

rGNN
i = COMP(hGNN

i ,E), rMLP
i = COMP(hMLP

i ,E), (4)

where COMP : [RD,RM×D] → RM can be arbitrary relation module for computing 1-vs-M code-
wise relations, and such relations can be viewed as assignment possibilities. We use L2 distance in
our experiments (more studies in Appendix C.1). Kindly note that the codebook size M can be large,
especially for large-scale graphs, thus the soft code assignment of each node contains abundant 1-
vs-M global structure-discriminative information. Therefore we choose the soft code assignment as
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the target for final distillation:

Lcode distill =
1

N

N∑
i=1

τ2 KL(pGNN
i ∥ pMLP

i ) =
1

N

N∑
i=1

τ2 pGNN
i log

pGNN
i

pMLP
i

, (5)

where KL refers to Kullback–Leibler divergence with:

pGNN
i = Softmax(rGNN

i /τ), pMLP
i = Softmax(rMLP

i /τ), (6)

being the scaled code assignments, and τ is the temperature factor to control the softness. Kindly
note that the code assignment is only used for optimizing the training, and we remove it for deploying
the pure MLP model. In this way, VQGRAPH is able to effectively distill both local neighborhood
structural knowledge and global structure-discriminative ability from GNNs to MLPs, without in-
creasing inference time. The overall training loss of VQGRAPH is composed of classification loss
Lcls, traditional class-based distillation loss Lclass distill, and our code-based distillation loss, i.e.,

LVQGRAPH = Lcls + αLclass distill + βLcode distill. (7)

where α and β are factors for balancing the losses.

5 EXPERIMENTS

Datasets and Evaluation We use five widely used public benchmark datasets (Zhang et al., 2022b;
Yang et al., 2021a) (Citeseer, Pubmed, Cora, A-computer, and A-photo), and two large
OGB datasets (Hu et al., 2020a) (Arxiv and Products) to evaluate the proposed model. In our
experiments, we report the mean and standard deviation of ten distinct runs with randomized seeds to
ensure robustness and reliability of our findings. We also extend our VQGRAPH to heterophilic
graphs and make performance improvement in Appendix A.2. We utilize accuracy to gauge
model performance. More details are in Appendix B.1.

Model Architectures For fair comparison, we adopt GraphSAGE with GCN aggregation as our
teacher model (also as graph tokenizer) and use the same student MLP models for all evaluations
following SOTA GLNN (Zhang et al., 2022b) and NOSMOG (Tian et al., 2023b). The codebook
size increases accordingly with dataset size (studied in Sec. 5.3). For example, we set 2048 and 8192
for Cora and A-photo, respectively. More model hyperparameters are detailed in Appendix B.2.
We investigate the influence of alternative teacher models, including GCN (Kipf & Welling, 2017),
GAT (Veličković et al., 2018), and APPNP (Klicpera et al., 2019), detailed in Appendix C.2.

Transductive vs. Inductive We experiment in two separate settings, transductive (tran) and in-
ductive (ind), for comprehensive evaluation. In both settings, we first pre-train our graph tokenizer
to learn the codebook embeddings E for code-based distillation. For the tran setting, we train our
models on the labeled graph G, along with the corresponding feature matrix XL and label vector
Y L, before evaluating their performance on the unlabeled data XU and Y U . Soft labels, soft code
assignments are generated for all nodes within the graph (i.e., ysoftv , rGNNv , rMLP

v for v ∈ V). As
for ind, we follow the methodology of prior work (Tian et al., 2023b) in randomly selecting 20%
of the data for inductive evaluation. Specifically, we divide the unlabeled nodes VU into two sepa-
rate yet non-overlapping subsets, observed and inductive (i.e., VU = VUobs ⊔ VUind), producing three
distinct graphs, G = GL ⊔ GUobs ⊔ GUind, wherein there are no shared nodes. In training, the edges
between GL⊔GUobs and GUind are removed, while they are leveraged during inference to transfer posi-
tional features via average operator (Hamilton et al., 2017). Node features and labels are partitioned
into three disjoint sets, i.e., X = XL ⊔XU

obs ⊔XU
ind and Y = Y L ⊔ Y U

obs ⊔ Y U
ind. Soft labels and

soft code assignments are generated for nodes within the labeled and observed subsets (i.e., ysoftv ,
rGNNv , rMLP

v for v ∈ VL ⊔ VUobs). We provide code and models in the supplementary material.

5.1 MAIN RESULTS

GNN-to-MLP Distillation We compare VQGRAPH to other state-of-the-art GNN-to-MLP dis-
tillation methods GLNN and NOSMOG with same experimental settings, and use distilled MLP
models for evaluations. We first consider the standard transductive setting, enabling direct compari-
son with previously published literature (Zhang et al., 2022b; Hu et al., 2020b; Yang et al., 2021a).
As depicted in Tab. 1, VQGRAPH outperforms all baselines including teacher GNN models across
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Table 1: Node classification results under the standard setting, results show accuracy (higher is
better). ∆GNN , ∆MLP , ∆NOSMOG represents the difference between VQGRAPH and GNN, MLP,
NOSMOG, respectively. GLNN and NOSMOG are the SOTA GNN-to-MLP distillation methods.

Datasets SAGE MLP GLNN NOSMOG VQGRAPH ∆GNN ∆MLP ∆NOSMOG

Citeseer 70.49 ± 1.53 58.50 ± 1.86 71.22 ± 1.50 73.78 ± 1.54 76.08 ± 0.55 ↑ 7.93% ↑ 30.05% ↑ 3.18%
Pubmed 75.56 ± 2.06 68.39 ± 3.09 75.59 ± 2.46 77.34 ± 2.36 78.40 ± 1.71 ↑ 3.76% ↑ 14.64% ↑ 1.37%
Cora 80.64 ± 1.57 59.18 ± 1.60 80.26 ± 1.66 83.04 ± 1.26 83.93 ± 0.87 ↑ 4.08% ↑ 41.82% ↑ 1.07%
A-computer 82.82 ± 1.37 67.62 ± 2.21 82.71 ± 1.18 84.04 ± 1.01 85.17 ± 1.29 ↑ 2.84% ↑ 25.95% ↑ 1.34%
A-photo 90.85 ± 0.87 77.29 ± 1.79 91.95 ± 1.04 93.36 ± 0.69 94.21 ± 0.45 ↑ 3.70% ↑ 21.89% ↑ 0.91%
Arxiv 70.73 ± 0.35 55.67 ± 0.24 63.75 ± 0.48 71.65 ± 0.29 72.43 ± 0.20 ↑ 2.40% ↑ 30.11% ↑ 0.93%
Products 77.17 ± 0.32 60.02 ± 0.10 63.71 ± 0.31 78.45 ± 0.38 79.17 ± 0.21 ↑ 2.59% ↑ 31.91% ↑ 0.92%

Table 2: Node classification results in a production scenario with both inductive and transductive
settings. ind indicates the results on VUind, tran indicates the results on VUtran, and prod indicates the
interpolated production results of both ind and tran.

Datasets Eval SAGE MLP GLNN NOSMOG VQGRAPH ∆GNN ∆MLP ∆NOSMOG

Citeseer
prod 68.06 58.49 69.08 70.60 73.76 ↑ 8.37% ↑ 26.11% ↑ 5.80%
ind 69.14 ± 2.99 59.31 ± 4.56 68.48 ± 2.38 70.30 ± 2.30 72.93 ± 1.78 ↑ 5.48% ↑ 22.96% ↑ 3.74%
tran 67.79 ± 2.80 58.29 ± 1.94 69.23 ± 2.39 70.67 ± 2.25 74.59 ± 1.94 ↑ 10.03% ↑ 27.96% ↑ 7.74%

Pubmed
prod 74.77 68.39 74.67 75.82 76.92 ↑ 2.86% ↑ 12.47% ↑ 1.45%
ind 75.07 ± 2.89 68.28 ± 3.25 74.52 ± 2.95 75.87 ± 3.32 76.71 ± 2.76 ↑ 2.18% ↑ 12.35% ↑ 1.11%
tran 74.70 ± 2.33 68.42 ± 3.06 74.70 ± 2.75 75.80 ± 3.06 77.13 ± 3.01 ↑ 3.25% ↑ 12.73% ↑ 1.75%

Cora
prod 79.53 59.18 77.82 81.02 81.68 ↑ 2.70% ↑ 38.02% ↑ 0.81%
ind 81.03 ± 1.71 59.44 ± 3.36 73.21 ± 1.50 81.36 ± 1.53 82.20 ± 1.32 ↑ 1.44% ↑ 38.29% ↑ 1.03%
tran 79.16 ± 1.60 59.12 ± 1.49 78.97 ± 1.56 80.93 ± 1.65 81.15 ± 1.25 ↑ 2.51% ↑ 37.26% ↑ 0.27%

A-computer
prod 82.73 67.62 82.10 83.85 84.16 ↑ 1.73% ↑ 24.46% ↑ 0.37%
ind 82.83 ± 1.51 67.69 ± 2.20 80.27 ± 2.11 84.36 ± 1.57 85.73 ± 2.04 ↑ 3.50% ↑ 26.65% ↑ 1.62%
tran 82.70 ± 1.34 67.60 ± 2.23 82.56 ± 1.80 83.72 ± 1.44 84.56 ± 1.81 ↑ 2.25% ↑ 25.08% ↑ 1.00%

A-photo
prod 90.45 77.29 91.34 92.47 93.05 ↑ 2.87% ↑ 20.39% ↑ 0.62%
ind 90.56 ± 1.47 77.44 ± 1.50 89.50 ± 1.12 92.61 ± 1.09 93.11 ± 0.89 ↑ 2.82% ↑ 20.24% ↑ 0.54%
tran 90.42 ± 0.68 77.25 ± 1.90 91.80 ± 0.49 92.44 ± 0.51 92.96 ± 1.02 ↑ 2.81% ↑ 20.34% ↑ 0.56%

Arxiv
prod 70.69 55.35 63.50 70.90 71.43 ↑ 1.05% ↑ 29.05% ↑ 0.75%
ind 70.69 ± 0.58 55.29 ± 0.63 59.04 ± 0.46 70.09 ± 0.55 70.86 ± 0.42 ↑ 0.24% ↑ 28.16% ↑ 1.10%
tran 70.69 ± 0.39 55.36 ± 0.34 64.61 ± 0.15 71.10 ± 0.34 72.03 ± 0.56 ↑ 1.90% ↑ 30.11% ↑ 1.31%

Products
prod 76.93 60.02 63.47 77.33 77.93 ↑ 1.30% ↑ 29.84% ↑ 0.77%
ind 77.23 ± 0.24 60.02 ± 0.09 63.38 ± 0.33 77.02 ± 0.19 77.50 ± 0.25 ↑ 0.35% ↑ 29.12% ↑ 0.62%
tran 76.86 ± 0.27 60.02 ± 0.11 63.49 ± 0.31 77.41 ± 0.21 78.36 ± 0.13 ↑ 1.95% ↑ 30.56% ↑ 1.23%

all datasets. Specifically, VQGRAPH improves performance by an average of 3.90% compared
to its teacher GNN, highlighting its ability to capture superior structural information without re-
lying on explicit graph structure input. Comparing VQGRAPH to NOSMOG, our proposed model
achieves an average improvement of 1.39% across both small- and large-scale graph datasets.
Further model analysis of VQGRAPH is presented in Sec. 5.3.

Experiments in Inductive and Transductive Settings To gain deeper insights into the effective-
ness of VQGRAPH, we conduct experiments in a realistic production (prod) scenario that involves
both inductive (ind) and transductive (tran) settings across multiple datasets, as detailed in Tab. 2.
Our experimental results demonstrate that VQGRAPH consistently achieves superior performance
compared to the teacher model and baseline methods across all datasets and settings. Specifically,
our proposed method outperforms GNN across all datasets and settings with an average improve-
ment of 2.93%, demonstrating its superior efficacy of our learned code-based representation space
in capturing graph structural information, even on large-scale datasets. Furthermore, when compared
to MLP and NOSMOG, VQGRAPH consistently achieves significant performance improvements,
with average gains of 25.81% and 1.6%, respectively, across all datasets and settings.

5.2 MODEL ANALYSIS

Trade-off between Performance and Inference Time To demonstrate its efficiency and capac-
ity of our VQGRAPH, we visualize the trade-off between node classification accuracy and model
inference time on Citeseer dataset in Figure 3. Our results indicate that achieves a highest accu-
racy of 76% while maintaining a fast inference time of 1.45ms. Compared to the other models with
similar inference time, VQGRAPH significantly outperforms NOSMOG and MLPs by 3.12%
and 30.05% in average accuracy, respectively. For those models having comparable performance
with VQGRAPH, they require a considerable amount of inference time, e.g., 2 layers GraphSAGE
(SAGE-L2) needs 152.31ms and 3 layers GraphSAGE (SAGE-L3) needs 1201.28ms, making them
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Figure 3: Accuracy vs. Inference Time.
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Figure 4: t-SNE visualization of learned node rep-
resentations, colors denotes different classes.

unsuitable for real-world applications. This makes VQGRAPH 105× faster than SAGE-L2 and
828× faster than SAGE-L3. Although increasing the hidden size of NOSMOG slightly improves its
performance, NOSMOGw2 (2-times wider than NOSMOG) and NOSMOGw4 still perform worse
than VQGRAPH with more inference time, demonstrating the superior efficiency of our VQGRAPH.

Compactness of Learned Node Representation Space We use t-SNE (Van der Maaten & Hinton,
2008) to visualize the node representation spaces of both teacher GNN and distilled student MLP
models with different methods, and put the results in Figure 4. Our VQGRAPH provides a better
teacher GNN model than GLNN and NOSMOG, and the node representations of same classes have
a more compact distribution. The representations extracted by our distilled MLP model also have
a more compact distribution. We attribute these to our expressive code-based representation space,
providing more structure-aware representations for classifying nodes. Besides, our new code-based
distillation strategy can effectively deliver both graph structural information and categorial informa-
tion from GNN to MLP, guaranteeing the compactness of MLP’s representation space.

Table 3: The cut value. VQGRAPH predictions are
more consistent with the graph topology than GNN,
MLP, GLNN and the state-of-the-art method NOS-
MOG.

Datasets SAGE MLP GLNN NOSMOG VQGRAPH

Citeseer 0.9535 0.8107 0.9447 0.9659 0.9786
Pubmed 0.9597 0.9062 0.9298 0.9641 0.9883
Cora 0.9385 0.7203 0.8908 0.9480 0.9684
A-computer 0.8951 0.6764 0.8579 0.9047 0.9190
A-photo 0.9014 0.7099 0.9063 0.9084 0.9177
Arxiv 0.9052 0.7252 0.8126 0.9066 0.9162
Products 0.9400 0.7518 0.7657 0.9456 0.9571
Average 0.9276 0.7572 0.8725 0.9348 0.9493

Consistency between Model Predic-
tions and Global Graph Topology
Here we corroborate the superiority of
VQGRAPH over GNNs, MLPs, GLNN
and NOSMOG in capturing global graph
structural information, which is comple-
mentary to the above analysis on local
structure awareness. We use the cut
value to effectively evaluate the alignment
between model predictions and graph
topology as (Zhang et al., 2022b; Tian
et al., 2023b) based on the approxima-
tion for the min-cut problem (Bianchi
et al., 2019). The min-cut problem divides nodes V into K disjoint subsets by removing
the minimum number of edges. Correspondingly, the min-cut problem can be expressed as:
max 1

K

∑K
k=1(C

T
k ACk)/(C

T
k DCk), where C is the node class assignment, A is the adja-

cency matrix, and D is the degree matrix. Therefore, cut value is defined as follows: CV =

tr(Ŷ TAŶ )/tr(Ŷ TDŶ ), where Ŷ is the model prediction output, and the cut value CV indi-
cates the consistency between the model predictions and the graph topology. We report the cut
values for various models in the transductive setting in Tab. 3. The average CV achieved by VQ-
GRAPH is 0.9493, while SAGE, GLNN, and NOSMOG have average CV values of 0.9276, 0.8725,
and 0.9348, respectively. We find VQGRAPH obtains the highest cut value, indicating the superior
global structure-capturing ability over GNN and SOTA GNN-to-MLP distillation methods.

5.3 ABLATION STUDY

Influence of the Codebook Size We analyze the influence of the codebook size of our graph to-
kenizer. From Figure 5(i), we observe that changing codebook size can significantly influence the
performance for our distilled MLP model. Too small a value can not have enough expressiveness
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for preserving graph structures while too large a value will lead to code redundancy impairing the
performance. Morever, VQGRAPH has different optimal codebook sizes for various datasets as in
Figure 5(ii). Another interesting observation is the graph with more nodes or edges tends to re-
quire a larger codebook size to achieve optimal distillation results. In our VQGraph, the size of the
codebook is mainly determined by the complexity of the graph data, considering both nodes and
edges which produce different local substructures. Thus, our codebook size is still small compared
to the exponential graph topological complexity, demonstrating the expressiveness of our codebook.
Taking Cora as an example, our codebook size is 2048, but it contains 2485 nodes with an average
degree about 4 which can theoretically result in O(24854) possible 1-hop substructure patterns.
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(i) Accuracy vs. Codebook Size.
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Arxiv
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(169343, 1166243)

(ii) Optimal codebook size for various datasets.

Figure 5: Influence of the codebook size.

Contribution Analysis of VQGRAPH We design experiments to make statistical analysis on the
contributions of our VQGRAPH. The results are presented in Tab. 4, and we observe that compared
to traditional class-based distillation, both Only-VQ and VQGRAPH promote the average accuracy,
suggesting that both graph tokenizer and soft code assignments have vital impacts on final perfor-
mance. Moreover, comparing AE+class-based to class-based, we find adding structure awareness
slightly improves GNN-to-MLP distillation. Our designed graph VQ-VAE efficiently improves the
GNN-to-MLP distillation results more significantly than classic graph (Variational)AE, because we
directly learn numerous structure-aware codes to enrich the expressiveness of node representations.
Our VQ+code-based distillation (denoted as VQGRAPH) substantially improves node classification
performance over Only-VQ across all datasets, demonstrating the superiority of our new structure-
aware distillation targets over soft labels. Please refer to Appendix C for more ablation studies.

Table 4: Class-based denotes only using soft labels for distillation (e.g., GLNN), AE+Class-based
denotes adding classic graph Auto-Encoder (Kipf & Welling, 2016) for structure awareness. Only-
VQ denotes using VQ for training teacher but using soft labels for distillation. ∆Only-VQ, ∆VQGRAPH

represents the differences between Only-VQ, VQGRAPH and Class-based.

Datasets GNN Class-based AE+Class-based Only-VQ (ours) VQGRAPH (ours) ∆Only-VQ ∆VQGRAPH

Citeseer 70.49 ± 1.53 71.22 ± 1.54 71.65 ± 0.69 74.96 ± 1.50 76.08 ± 0.55 ↑ 5.25% ↑ 6.82%
Pubmed 75.56 ± 2.06 75.59 ± 2.46 76.56 ± 1.23 77.86 ± 2.46 78.40 ± 1.71 ↑ 3.00% ↑ 3.71%
Cora 80.64 ± 1.57 80.26 ± 1.66 81.11 ± 1.01 82.48 ± 0.46 83.93 ± 0.87 ↑ 2.77% ↑ 4.57%
A-computer 82.82 ± 1.37 82.71 ± 1.18 83.01 ± 1.18 84.06 ± 1.18 85.17 ± 1.29 ↑ 1.63% ↑ 2.97%
A-photo 90.85 ± 0.87 91.95 ± 1.04 92.06 ± 0.69 93.86 ± 1.04 94.21 ± 0.45 ↑ 2.08% ↑ 2.45%
Arxiv 70.73 ± 0.35 63.75 ± 0.48 70.10 ± 1.02 70.75 ± 0.48 72.43 ± 0.20 ↑ 10.98% ↑ 13.61%
Products 77.17 ± 0.32 67.71 ± 0.31 77.65 ± 0.98 78.71 ± 0.31 79.17 ± 0.21 ↑ 16.25% ↑ 16.93%

6 CONCLUSION

In this paper, we improve the expressiveness of existing graph representation space by directly la-
beling nodes’ diverse local structures with a codebook, and utilizing the codebook for facilitating
structure-aware GNN-to-MLP distillation. Extensive experiments on seven datasets demonstrate
that our VQGRAPH can significantly improve GNNs by 3.90%, MLPs by 28.05%, and the state-of-
the-art GNN-to-MLP distillation method by 1.39% on average accuracy, while maintaining a fast
inference speed of 828× compared to GNNs. Furthermore, we present additional visualization and
statistical analyses as well as ablation studies to demonstrate the superiority of the proposed model.
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A MORE ANALYSIS AND RESULTS

A.1 CONNECTION BETWEEN LOCAL GRAPH STRUCTURE AND LEARNED CODEBOOK

To better illustrate the connection between local graph structure and the codebook learned by our
graph VQ-VAE, we conduct node-centered subgraph retrieval in the learned MLP representation
spaces of NOSMOG and our VQGRAPH. Specifically, we extract the representation with distilled
MLP model for a query node in Citeseer. We demonstrate 4 subgraphs centered at the nodes that
are most similar to the query node representation with the cosine similarities in the whole graph in
Figure 6. As can be observed, the identical token IDs yield similar substructures, indicating the rep-
resentation similarities of VQGRAPH are approximately aligned with the local subgraph similarities,
which is denoted as graph edit distance (GED) Sanfeliu & Fu (1983); Bunke & Allermann (1983);
Gao et al. (2010) and is one of the most popular graph matching methods. In contrast, the repre-
sentations extracted from NOSMOG fail to sufficiently model and reflect the structural similarities
between subgraphs. Hence, VQGRAPH is necessary and effective for addressing structure-complex
graph tasks. Moreover, we observe that VQGRAPH can be aware of the minor neighborhood struc-
tural difference despite the nodes with the same class, demonstrating the more fine-grained expres-
siveness of our token-based distillation, which further helps with more accurate classification.

NOSMOG

VQGraph
Class id: 2

Token id: 3958

Class id: 2
Token id: 3958

Class id: 2
Token id: 3958

Class id: 2
Token id: 3797

Class id: 2
Token id: 1301

GED: 0 GED: 0 GED: 1 GED: 2

Class id: 2 Class id: 2 Class id: 5 Class id: 4

GED: 1 GED: 2 GED: 3 GED: 3

Figure 6: The query node and 4 closest nodes in distilled MLP representation space with corre-
sponding subgraphs.

A.2 VQGRAPH FOR HETEROPHILIC GRAPHS

In addition to homophilic graphs, we extend our proposed method to heterophilic graphs for further
evaluation. We consider 2 heterophilic datasets, Texas and Cornell, realsed by Pei et al. (2020a).
Texas and Cornell are web page datasets collected from computer science departments of var-
ious universities. In these datasets, nodes are web pages and edges represent hyperlinks between
them. Bag-of-words representations are taken as nodes’ feature vectors. The task is to classify the
web pages into five categories including student, project, course, staff and faculty. Basic statistics
of the datasets are shown in Tab. 5. The Edge Hom. (Zhu et al. (2020)) is defined as the fraction of
edges that connect nodes with the same label.

Table 5: Heterophilic Dataset Statistics.

Dataset # Nodes # Edges # Features # Classes # Edge Hom.

Texas 183 295 1,703 5 0.11
Cornell 183 280 1,703 5 0.30

We incorporate our structure-aware code embeddings with two state-of-the-art GNN models known
for their efficacy on heterophilic graphs, namely ACMGCN (Luan et al. (2022)) and GCNII (Chen
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et al. (2020c)), along with MLP. We compare with these baselines in Tab. 6. The results of these ex-
periments demonstrate that our graph VQ-VAE can generalize to different heterophilic GNN/MLP
architectures and consistently improve their performances.

Table 6: Results on Heterophilic Graphs.

Texas Cornell
ACMGCN 86.49 84.05
ACMGCN with our Graph VQ-VAE 87.03 84.59
MLP 75.68 76.38
MLP with our Graph VQ-VAE 77.93 78.29
GCNII 76.73 76.49
GCNII with our Graph VQ-VAE 79.04 78.29

A.3 ANALYSIS ON CODEBOOK ENTRIES

In the training stage, we tokenize each node with different neighborhood structures as discrete codes
using Graph VQ-VAE. Now we take a closer look at codebook entries for different classes on
Pubmed for in-depth analysis (Tabs. 7 and 8). There is little difference in the number of codes
with each class and there is a uniform distribution of the nodes for each class, demonstrating the
learning capacity of our model. Meanwhile, the results demonstrate that there is a small code over-
lap among different classes, which indicates the code distributions learned for different classes are
mutually independent. This finding validates that our graph VQ-VAE enables distinct separation
of the nodes with different class labels in the representation space, facilitating a better knowledge
transfer in GNN-to-MLP distillation.

Table 7: Codebook Entries for Each Class in Pubmed.

Class 1 Class 2 Class 3

Code Entries 2,560 2,623 2,591

Table 8: The Overlapping Codes (%) for Each Paired Classes of Pubmed.

Class 1 Class 2 Class 3

Class 1 * 0.9% 0.8%
Class 2 * 0.6%
Class 3 *

B EXPERIMENT DETAILS

B.1 DATASETS

The statistics of the seven public benchmark datasets used in our experiments are shown in Tab. 9.
For all datasets, we follow the setting in the original paper to split the data. Specifically, for the five
small datasets (i.e., Cora, Citeseer, Pubmed, A-computer, and A-photo), we use the splitting strategy
in the CPF paper (Yang et al., 2021b), where each random seed corresponding to a different split.
For the two OGB large datasets (i.e., Arxiv and Products), we follow the official splits in Hu et al.
(2020a) based on time and popularity, respectively. We introduce each dataset as follows:

• Citeseer (Sen et al., 2008) is a benchmark citation dataset consisting of scientific pub-
lications, with the configuration similar to the Cora dataset. The dictionary contains 3,703
unique words. Citeseer dataset has the largest number of features among all datasets used
in this paper.
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• Pubmed (Namata et al., 2012) is a citation benchmark consisting of diabetes-related arti-
cles from the PubMed database. The node features are TF/IDF-weighted word frequency,
and the label indicates the type of diabetes covered in this article.

• Cora (Sen et al., 2008) is a benchmark citation dataset composed of scientific publications.
Each node in the graph represents a publication whose feature vector is a sparse bag-of-
words with 0/1-values indicating the absence/presence of the corresponding word from the
word dictionary. Edges represent citations between papers, and labels indicate the research
field of each paper.

• A-computer and A-photo (Shchur et al., 2018) are two benchmark datasets that are ex-
tracted from Amazon co-purchase graph. Nodes represent products, edges indicate whether
two products are frequently purchased together, features represent product reviews encoded
by bag-of-words, and labels are predefined product categories.

• Arxiv (Hu et al., 2020a) is a benchmark citation dataset composed of Computer Science
arXiv papers. Each node is an arXiv paper and each edge indicates that one paper cites
another one. The node features are average word embeddings of the title and abstract.

• Products (Hu et al., 2020a) is a benchmark Amazon product co-purchasing network
dataset. Nodes represent products sold on Amazon, and edges between two products indi-
cate that the products are purchased together. The node features are bag-of-words features
from the product descriptions.

Table 9: Dataset Statistics.

Dataset # Nodes # Edges # Features # Classes

Citeseer 2,110 3,668 3,703 6
Pubmed 19,717 44,324 500 3
Cora 2,485 5,069 1,433 7
A-computer 13,381 245,778 767 10
A-photo 7,487 119,043 745 8
Arxiv 169,343 1,166,243 128 40
Products 2,449,029 61,859,140 100 47

B.2 MODEL HYPERPARAMETERS AND IMPLEMENTATION DETAILS

The code and trained models are provided in the supplementary material.

Production Scenario Regarding to the production scenario, we recognize that real-world deploy-
ment of models necessitates the ability to generate predictions for new data points as well as reliably
maintain performance on existing ones. Therefore, we apply our method in a realistic production
setting to better understand the effectiveness of GNN-to-MLP models, encompassing both trans-
ductive and inductive predictions. In a real-life production environment, it is common for a model
to be retrained periodically. The holdout nodes in the inductive set represent new nodes that have
entered the graph between two training periods. To mitigate potential randomness and to evaluate
generalizability more effectively, we employ a test dataset V U

ind, which contains 20% of the test
data, and another dataset V U

obs, containing the remaining 80% of the test data. This setup allows us
to evaluate the model’s performance on both observed unlabeled nodes (transductive prediction) and
newly introduced nodes (inductive prediction), reflecting real-world inference scenarios. We further
provide three sets of results: ”tran” refers to results on V U

obs, ”ind” refers to V U
ind, and ”prod” refers

to an interpolated value between tran and ind, according to the split rate, indicating the performance
in real production settings.

Graph Tokenizer Pre-Training We first train our graph tokenizer which contains a teacher GNN
model and a learnable codebook, then use both the GNN and the codebook to conduct GNN-to-MLP
distillation. The hyperparameters of GNN models on each dataset are taken from the best hyperpa-
rameters provided by the CPF paper (Yang et al., 2021b) (Tab. 10) and the OGB official examples
(Hu et al., 2020a) (Tab. 11). We provide the hyperparameters of our codebooks for different datasets

17



Published as a conference paper at ICLR 2024

in Tab. 12. Kindly note that the VQ procedure is inserted between the encoder and the classifier of
the GNN model, and the dimensions of code embedding and GNN feature are same for convenient
assignment. And the code embeddings are initialized with uniform distribution. During the train-
ing of our graph tokenizer, VQGRAPH additionally includes two separate linear decoder layers to
decode node attributes and graph topology, respectively, based on assigned code embeddings.

Code-Based GNN-to-MLP Distillation We freeze the parameters of both the pre-trained teacher
GNN model and the learned codebook embeddings for our code-based GNN-to-MLP distillation.
For the student MLP in VQGRAPH, unless otherwise specified with -wi or -Li, we set the number of
layers and the hidden dimension of each layer to be the same as the teacher GNN, so their total num-
ber of parameters stays the same as the teacher GNN (in Tab. 12). In distillation, the teacher GNN
not only delivers the soft labels with respect to node classification to the MLP, but also produces its
corresponding soft code assignment for the MLP. Kindly recall that we use codebook embeddings to
compute code assignments for the MLP only in training process, and we remove this assigning pro-
cedure for deploying the distilled MLP in testing process, which does not increase inference time.
In practice, categorial and structural information might be of different importance to the distillation
in various graph datasets. We correspondingly modify their loss weights for better performance.

Table 10: Hyperparameters for GNNs on five datasets from the CPF paper.

SAGE GCN GAT APPNP

# layers 2 2 2 2
hidden dim 128 64 64 64
learning rate 0.01 0.01 0.01 0.01
weight decay 0.0005 0.001 0.01 0.01
dropout 0 0.8 0.6 0.5
fan out 5,5 - - -
attention heads - - 8 -
power iterations - - - 10

Table 11: Hyperparameters for GraphSAGE on OGB datasets.

Dataset Arxiv Products

# layers 3 3
hidden dim 256 256
learning rate 0.01 0.003
weight decay 0 0
dropout 0.2 0.5
normalization batch batch
fan out [5, 10, 15] [5, 10, 15]

Table 12: Hyperparameters of VQGRAPH.

Citeseer Pubmed Cora A-computer A-photo Arxiv Products

tokenizer attribute decoder layers 1 1 1 1 1 1 1
tokenizer topology decoder layers 1 1 1 1 1 1 1
codebook size 4096 8192 2048 16384 8192 32768 32,768
τ in Lcode distill 4 4 4 4 4 4 4
MLP layers 2 2 2 2 2 3 3
hidden dim 128 128 128 128 128 256 256
learning rate 0.01 0.01 0.005 0.003 0.001 0.01 0.003
weight decay 0.005 0.001 0.001 0.005 0.001 0 0
dropout 0.6 0.1 0.4 0.1 0.1 0.2 0.5
α for Lclass distill 1 1 1 1 1 1 1
β for Lcode distill 1e-8 1e-8 1e-8 1e-8 1e-8 1e-8 1e-8
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C MORE ABLATION STUDIES

C.1 VQGRAPH WITH DIFFERENT RELATION MODULES IN EQUATION (4)

In Sec. 4.2, we compute 1-vs-M token-wise relations in Equation (4) using L2 distance as the rela-
tion module COMP(·, ·). Other relation modules can also be applied, and we thus conduct experi-
ments based on cosine similarity with the results depicted in Tab. 13. Experiments across different
datasets illustrate that VQGRAPH with different relation modules can consistently improve the code
distillation performance of VQGRAPH. The influence of relation module on VQGRAPH’s overall
performance is very minimal, with L2 distance exhibiting a slight advantage of approximately 0.2%
on average accuracy.

Table 13: VQGRAPH with diffrent relation modules.

Datasets GNN w/ Cosine Similarity w/ L2 distance ∆

Citeseer 70.49 ± 1.53 75.80 ± 0.66 76.08 ± 0.55 ↑ 0.12%
Pubmed 75.56 ± 2.06 78.12 ± 1.23 78.40 ± 1.71 ↑ 0.23%
Cora 80.64 ± 1.57 83.61 ± 0.70 83.93 ± 0.87 ↑ 0.20%
A-computer 82.82 ± 1.37 84.96 ± 1.06 85.17 ± 1.29 ↑ 0.20%
A-photo 90.85 ± 0.87 94.05 ± 0.29 94.21 ± 0.45 ↑ 0.18%
Arxiv 70.73 ± 0.35 71.96 ± 0.18 72.43 ± 0.20 ↑ 0.16%
Products 77.17 ± 0.32 79.01 ± 0.34 79.17 ± 0.21 ↑ 0.18%

C.2 VQGRAPH WITH DIFFERENT TEACHER GNNS

In VQGRAPH, we utilize GraphSAGE with GCN aggregation to represent our teacher GNN. How-
ever, given that different GNN architectures may exhibit varying performance across datasets, we
seek to investigate whether VQGRAPH can perform well when trained with other GNN architec-
tures. As displayed in Figure 7, we present the average performance of VQGRAPH when distilled
from different teacher GNNs, including GCN, GAT, and APPNP, across five benchmark datasets.
Our results demonstrate that all four teacher models achieved comparable performance, but VQ-
GRAPH consistently outperforms teacher GNNs and other GNN-to-MLP distillation methods, indi-
cating the superior effectiveness and generalization ability of our VQGRAPH.
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Figure 7: Accuracy vs. Teacher GNN Model Architectures.

C.3 ROBUSTNESS EVALUATION WITH NOISY FEATURES

We evaluate the robustness of VQGRAPH with regards to different noise levels across different
datasets and compute average accuracy. Specifically, we follow Tian et al. (2023b) to initialize the
node features and introduce different levels of Gaussian noises to the node features by modifying X
with X̃ = (1−α)·X+α·n, where n denotes an independent Gaussian noise and α ∈ [0, 1] controls
the noise level. Our results, as illustrated in Figure 8, reveal that VQGRAPH achieves comparable
or improved performance compared to GNNs and previous SOTA NOSMOG across different levels

19



Published as a conference paper at ICLR 2024

of noise, demonstrating its superior noise-robustness and efficacy, especially when GNNs leverage
local structure information of subgraphs to mitigate noise impact. Conversely, GLNN and MLP
exhibit rapid performance deterioration as α increases. In the extreme case where α equals 1, and
the input features are entirely perturbed, resulting in X̃ and X being independent, VQGRAPH still
maintains similar performance to GNNs, while GLNN and MLP perform poorly. Furthermore, even
when compared with NOSMOG, which leverages adversarial feature augmentation to combat noise
and improve robustness, VQGRAPH still outperforms NOSMOG in terms of noise robustness and
overall performance across various α settings, due to its superior ability to sufficiently preserve and
leverage graph structural information.
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Figure 8: Accuracy vs. Feature Noises.
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