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Abstract
Recent Large Vision-Language Models (LVLMs)
have advanced multi-modal understanding by in-
corporating finer-grained visual perception and
encoding. However, such methods incur signif-
icant computational costs due to longer visual
token sequences, posing challenges for real-time
deployment. To mitigate this, prior works have
explored pruning unimportant visual tokens ei-
ther at the output layer of the visual encoder or
at the early layers of the language model. In this
work, we revisit these design choices and reassess
their effectiveness through comprehensive empir-
ical studies of how visual tokens are processed
throughout the visual encoding and language de-
coding stages. Guided by these insights, we pro-
pose VScan, a two-stage visual token reduction
framework that addresses token redundancy by:
(1) integrating complementary global and local
scans with token merging during visual encod-
ing, and (2) introducing pruning at intermediate
layers of the language model. Extensive exper-
imental results across four LVLMs validate the
effectiveness of VScan in accelerating inference
and demonstrate its superior performance over
current state-of-the-arts on sixteen benchmarks.

1 Introduction

Large Vision-Language Models (LVLMs) have emerged
as a transformative advancement in multi-modal learning,
achieving remarkable proficiency across a broad range
of vision-language tasks (Liu et al., 2023; Li et al., 2024;
2023a; Team et al., 2024). Recent advances in LVLMs (Liu
et al., 2024b; Li et al., 2025) further enhance their capacity
to process high-resolution images and multi-image/video
inputs, enabling fine-grained perception in tasks such as
video question answering (Fang et al., 2024), multi-image
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understanding (Fu et al., 2024), and referential ground-
ing (Kazemzadeh et al., 2014). However, processing such
rich visual inputs necessitates a substantial increase in
the number of visual tokens, which often far exceeds the
number of text tokens (Lin et al., 2024a; Li et al., 2025).
This leads to significantly longer input sequences and, due
to the quadratic complexity of self-attention (Vaswani et al.,
2017), incurs substantial computational and memory over-
head, thereby limiting real-time deployment of LVLMs in
practical applications (Chen et al., 2024a; Yang et al., 2025).

Recognizing that not all visual tokens contribute meaning-
fully to the final LVLM response, recent works (Chen et al.,
2024a; Xing et al., 2025; Zhang et al., 2024a) have proposed
visual token reduction techniques aimed at improving com-
putational efficiency by pruning visually redundant or textu-
ally irrelevant tokens. These methods generally fall into two
categories: (1) Text-agnostic pruning approaches (Zhang
et al., 2024a; Yang et al., 2025; Wang et al., 2025; Wen
et al., 2025) (Figure 1(a)), which prune visually redundant
tokens based on their significance and uniqueness during
the visual encoding stage; and (2) Text-aware pruning ap-
proaches (Zhang et al., 2024b; Xing et al., 2025; Ye et al.,
2025) (Figure 1(b)), which selectively remove tokens with
low relevance to the text query during the early layers of lan-
guage decoding stage. While these approaches have shown
promising results, their performance is often constrained by
their single-stage design and the lack of a systematic un-
derstanding of how visual tokens are processed and utilized
throughout the entire LVLM pipeline.

In this work, we conduct an in-depth empirical analysis to
reassess the effectiveness of these two prevailing pruning
paradigms and distill insights that guide the design of more
effective visual token reduction methods. Our study reveals
two key observations: (1) In the visual encoding stage,
the visual encoder attends to locally significant tokens in
the shallow layers, focusing on fine-grained local details,
while at deeper layers, it gradually shift its focus to a highly
condensed set of tokens that encapsulate broader global
context; (2) In the LLM decoding stage, early layers exhibit
strong positional bias toward visual tokens appearing
later in the sequence, neglecting their semantic relevance;
as the layers deepen, cross-modal interactions begin to
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Figure 1: Comparison of our VScan with existing approaches (e.g., VisionZip (Yang et al., 2025) and FastV (Chen
et al., 2024a)). Our VScan delivers substantial inference acceleration for various LVLMs with minimal performance loss.

emerge, and output token probabilities typically converge
in the mid-to-late layers where visual information is more
effectively integrated into the language stream.

Building on these insights, we introduce VScan, a two-stage
visual token reduction framework that enhances the effi-
ciency of LVLMs by progressively pruning uninformative
tokens during both visual encoding and language decoding,
as shown in Figure 1(c). In the visual encoding stage,
VScan employs a complementary global-local scan strategy
to retain semantically important and spatially diverse tokens,
followed by token merging to preserve comprehensive visual
information. In the LLM decoding stage, VScan introduces
middle layer pruning to further eliminate visual tokens
with low relevance to the text query, while maintaining
essential cross-modal interactions to minimize disruption
to final task performance. We comprehensively evaluate
the effectiveness of VScan on LLaVA-1.5, LLaVA-NeXT,
Qwen-2.5-VL, and Video-LLaVA across sixteen image and
video understanding benchmarks. Extensive experimental
results demonstrate VScan’s generalizable effectiveness
across diverse LVLM architectures and LLM scales, high-
lighting its advantageous performance-efficiency trade-off.

2 Method

We introduce VScan, which progressively prunes uninfor-
mative tokens in visual encoding and LLM decoding stages
to accelerate LVLM inference, as illustrated in Figure 1(c).

2.1 Empirical Analysis

We provide a comprehensive analysis of how LVLMs pro-
cess visual tokens during both the visual encoding and lan-

guage decoding in Appendix B, offering empirical guidance
for designing more effective visual token reduction strate-
gies. This analysis reveals two key insights: (1) Our findings
highlight a gradual transition in the visual encoder from cap-
turing low-level local details to modeling high-level, glob-
ally relevant semantics, suggesting that relying solely on
the output layer may overlook the rich local information
encoded in the shallow layers; (2) Our findings collectively
suggest that early layers are suboptimal for pruning due to
position bias and limited engagement with visual content.
In contrast, pruning at middle layers is more appropriate
as it better preserves critical cross-modal interactions and
minimizes disruption to model predictions.

2.2 Complementary Global and Local Scans

Motivated by the observations in Appendix B, we design
two complementary token selection schemes for the visual
encoding stage, namely global and local scan, which select
important tokens based on both local and global significance,
enabling the capture of more comprehensive visual details.

Global Scan. Given that the final layers of visual encoders
capture global information, we follow recent works (Zhang
et al., 2024a; Yang et al., 2025) to select global tokens
that receive the most attention from the [CLS] token x[CLS]

in the output layer (e.g., the penultimate layer in LLaVA-
1.5 (Liu et al., 2024a)). Specifically, the [CLS] attention
computation for each attention head can be represented by

Q[CLS] = x[CLS]W
h
Q, KV = xV W

h
K ,

Sh
[CLS] = Softmax

(
Q[CLS]K

⊤
V√

D

)
, (1)

where Wh
Q and Wh

K represent the projections weights for
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Table 1: Performance comparisons on LLaVA-1.5-7B (Liu et al., 2024a) across 9 image understanding benchmarks.
The best results in each setting are bolded, and the second-best are underlined.

Method Venue GQA MMB MMBCN MME POPE SQAIMG VQAV2 VQAText VizWiz Average
Upper Bound, 576 Tokens (100%), 3.817 TFLOPs

LLaVA-1.5-7B (Liu et al., 2024a) CVPR’24 61.9 64.7 58.1 1862 85.9 69.5 78.5 58.2 50.0 100.0%
Retain 192 Tokens in Average (↓ 66.7%), ∼1.253 TFLOPs

ToMe (Bolya et al., 2023) ICLR’23 54.3 60.5 - 1563 72.4 65.2 68.0 52.1 - 88.5%
FastV (Chen et al., 2024a) ECCV’24 52.7 61.2 57.0 1612 64.8 67.3 67.1 52.5 50.8 90.4%
SparseVLM (Zhang et al., 2024b) arXiv’24 57.6 62.5 53.7 1721 83.6 69.1 75.6 56.1 50.5 96.1%
PyramidDrop (Xing et al., 2025) CVPR’25 57.3 63.3 56.8 1797 82.3 69.0 75.1 56.5 51.1 97.2%
VisionZip (Yang et al., 2025) CVPR’25 59.3 63.0 - 1783 85.3 68.9 77.4 57.3 - 97.8%
VScan (Ours) - 60.6 63.9 57.4 1806 86.2 68.6 77.8 57.7 50.4 99.0%

Retain 64 Tokens in Average (↓ 88.9%), ∼0.415 TFLOPs
ToMe (Bolya et al., 2023) ICLR’23 48.6 43.7 - 1138 52.5 50.0 57.1 45.3 - 70.1%
FastV (Chen et al., 2024a) ECCV’24 46.1 48.0 52.7 1256 48.0 51.1 55.0 47.8 50.8 76.7%
SparseVLM (Zhang et al., 2024b) arXiv’24 52.7 56.2 46.1 1505 75.1 62.2 68.2 51.8 50.1 87.2%
PyramidDrop (Xing et al., 2025) CVPR’25 47.5 58.8 50.5 1561 55.9 69.2 69.2 50.6 50.7 86.6%
VisionZip (Yang et al., 2025) CVPR’25 55.1 60.1 - 1690 77.0 69.0 72.4 55.5 - 92.7%
VScan (Ours) - 58.3 62.1 55.7 1698 85.0 69.1 75.4 55.6 51.8 96.7%

head h ∈ [1, H], D is the hidden state size, and Sh
[CLS] repre-

sents the [CLS] attention. The global tokens are selected by

xg
V =

{
xi
V ∈ xV

∣∣∣Savg
[CLS] ≥ τ

}
,

where Savg
[CLS] =

1

H

H∑
h=1

Sh
[CLS]. (2)

Here, τ is a soft threshold based on a top percentile
of attention scores, set to retain a target number of
tokens. Note that for LVLMs without a [CLS] token (e.g.,
Qwen-2.5-VL (Bai et al., 2025)), we can similarly select
the tokens using self-attention, i.e., the average attention
each visual token receives from others.

Local Scan. To complement the global tokens and capture
finer local details, we divide the image into non-overlapping
windows and select the locally important tokens with the
highest [CLS] attention from the shallow layer l within each
window. Specifically, we allocate token budgets uniformly
across windows, and select local tokens from each window:

xl
V =

W⋃
w=1

{
xj
V ∈ xw

V

∣∣∣Savg
[CLS] ≥ τw

}
(3)

where w denotes the window index, xw
V represents the set

of all tokens within the window, and τw is the soft threshold
for window w. The final set of selected tokens is the union
of global and local tokens, xselectedV = xg

V ∪ xl
V , resulting

in a retention rate of R1%. By default, we balance the
selection such that |xg

V | = |xl
V |, i.e., half of the retained

tokens are global and half are local.

Token Merging. To alleviate information loss, we introduce
a similarity-based token merging strategy that merges
unselected visual tokens with their most similar selected
counterparts. Specifically, for each unselected token xu

V ,
we identify its most similar selected token xs

V ∈ xselected
V

based on the highest cosine similarity. Once all unselected

tokens are assigned to their closest selected tokens, we
apply average merging (Bolya et al., 2023) within each
group to obtain the final merged representation xmerged

V .

2.3 Middle Layer Pruning

After selecting visually significant tokens, we further refine
the token set based on their relevance to the text query.
Building on the empirical insights from Appendix B, we
design our approach to prune tokens at the mature middle
layers of the LLM, aiming to avoid position bias, preserve
cross-modal interactions, and minimize the impact on final
predictions. Specifically, we compute the attention between
all visual tokens and the last instruction token at middle
layer k, denoted as

QT = xlastT Wh
Q, KV = x

merged
V Wh

K ,

Sh
text = Softmax

(
QTK

⊤
V√

D

)
. (4)

We similarly average the attention scores across attention
heads and select R2% textually relevant tokens with the
highest average text attention. This allows us to retain a set
of visual tokens that are both visually significant and textu-
ally relevant, contributing the most to an accurate response.

3 Experiments
In this section, we validate the effectiveness of our VScan
on four LVLMs, evaluating its performance across various
benchmarks and comparing it with other state-of-the-arts.
Please see Appendix D.2 for detailed experimental settings.

3.1 Results and Discussions

Results on LLaVA-1.5. In Table 1, we apply our approach
to LLaVA-1.5-7B and compare its performance with other
baselines across 9 image understanding tasks. With only
128 and 192 tokens per image instead of the original 576,
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Figure 2: Performance comparisons on Qwen-2.5-VL (Bai et al., 2025) with different LLM sizes (3B/7B/32B) across 3
image understanding benchmarks. We present the performance of different approaches at 4 various retention rates.

our approach nearly retains the performance of the original
LLaVA-1.5, with only negligible performance declines of
1.0% and 1.2%, respectively. Our approach becomes even
more advantageous with higher reduction rates: With an
aggressive 88.9% reduction rate, our approach results in
only a 3.3% degradation in average performance across
benchmarks, outperforming the second-best VisionZip by
a substantial margin of 4.0%. These results suggest that
our method effectively maintains high performance while
reducing the number of visual tokens processed.

Results on LLaVA-NeXT. In Table C1, we further com-
pare the performance achieved by our approach with other
state-of-the-arts on the more advanced LLaVA-NeXT-7B.
We present the performance of all approaches under a fixed
budget of 320 tokens per image, corresponding to an 88.9%
reduction rate. Our approach continues to achieve superior
performance on LLaVA-NeXT-7B, attaining the best perfor-
mance on 6 out of 9 benchmarks, and achieving 95.4% of
the original LLaVA-NeXT-7B performance with only 11.1%
of the token budget without additional training.

Results on Qwen-2.5-VL. To further validate the general
effectiveness of our approach, we apply it to the recent
Qwen-2.5-VL with three different LLM scales and visualize
the performance on three image understanding benchmarks
in Figure 2. As shown, our approach consistently outper-
forms FastV and PDrop across all retention rates and model
scales.

We extend our comparisons to more challenging grounding
tasks and present the performance of different approaches
in Table C2. Compared to image understanding tasks, these
grounding tasks require higher token budgets to preserve
visual information necessary for precise localization. A 75%
reduction rate, for instance, halves the performance of FastV
and PDrop. In this challenging scenario, our approach still
robustly maintains 80.7% of the original performance.

Results on Video-LLaVA. In Appendix C.3, we further
assess the effectiveness of our approach on video under-
standing tasks and compare its performance against other

Table 2: Efficiency comparisons on the POPE bench-
mark. We report the theoretical FLOPs, actual runtime,
KV cache compression rate (%), and the achieved accuracy.

Method FLOPs ↓ Total Time ↓ Prefill Time ↓ KV Cache ↓ Accuracy ↑

LLaVA-1.5-7B 3.817 T 1113 s (1.00×) 416 s (1.00×) 100.0% 85.9

+ Ours (33%) 1.253 T 937 s (1.19×) 301 s (1.38×) 39.9% 86.2

+ Ours (11%) 0.415 T 812 s (1.37×) 235 s (1.77×) 19.9% 85.0

LLaVA-NeXT-7B 20.825 T 2294 s (1.00×) 1420 s (1.00×) 100.0% 86.5

+ Ours (33%) 6.459 T 1701 s (1.35×) 994 s (1.43×) 34.8% 86.1

+ Ours (11%) 2.099 T 1120 s (2.05×) 488 s (2.91×) 13.1% 85.1

approaches on Video-LLaVA-7B. The results illustrate that
with a 25% token budget, our approach maintains nearly
100% of the original Video-LLaVA-7B’s performance, con-
sistently outperforming other methods.

3.2 Efficiency Analysis

In Table 2, we evaluate the practical acceleration effects of
VScan. By retaining only 11% of the visual tokens, VScan
achieves a 1.37× speedup in overall efficiency and a 1.77×
speedup in prefilling efficiency on LLaVA-1.5-7B, while
maintaining robust performance with only a 0.9% decline.
Our approach achieves even more significant acceleration
on LLaVA-NeXT-7B, where it delivers a 2.05× speedup in
inference and a 2.91× speedup in the prefill stage. Addition-
ally, our approach can also effectively compress KV cache
storage across different backbones.

4 Conclusion

In this work, we present a comprehensive empirical study to
understand how visual information is processed across both
the visual encoding and LLM decoding stages. Building on
these insights, we propose VScan—a two-stage, training-
free visual token reduction framework—to accelerate LVLM
inference while maintaining robust performance. Extensive
experiments across 4 LVLM architectures and 16 image and
video benchmarks demonstrate that our approach consis-
tently outperforms existing state-of-the-art methods, achiev-
ing a superior trade-off between efficiency and accuracy.
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S., Bińkowski, M. a., Barreira, R., Vinyals, O., Zisserman,
A., and Simonyan, K. Flamingo: a visual language model
for few-shot learning. In Advances in Neural Information
Processing Systems, volume 35, pp. 23716–23736, 2022.

Alexey, D., Fischer, P., Tobias, J., Springenberg, M. R.,
and Brox, T. Discriminative unsupervised feature learn-
ing with exemplar convolutional neural networks. IEEE
Transactions on Pattern Analysis and Machine Intelli-
gence, 38(9):1734–1747, 2015.

Arif, K. H. I., Yoon, J., Nikolopoulos, D. S., Vandieren-
donck, H., John, D., and Ji, B. Hired: Attention-guided
token dropping for efficient inference of high-resolution
vision-language models in resource-constrained environ-
ments. In Proceedings of the AAAI Conference on Artifi-
cial Intelligence, pp. 1773–1781, 2025.

Bai, J., Bai, S., Yang, S., Wang, S., Tan, S., Wang, P., Lin,
J., Zhou, C., and Zhou, J. Qwen-vl: A versatile vision-
language model for understanding, localization, text read-
ing, and beyond. arXiv preprint arXiv:2308.12966, 2023.

Bai, S., Chen, K., Liu, X., Wang, J., Ge, W., Song, S., Dang,
K., Wang, P., Wang, S., Tang, J., Zhong, H., Zhu, Y.,
Yang, M., Li, Z., Wan, J., Wang, P., Ding, W., Fu, Z., Xu,
Y., Ye, J., Zhang, X., Xie, T., Cheng, Z., Zhang, H., Yang,
Z., Xu, H., and Lin, J. Qwen2.5-vl technical report. arXiv
preprint arXiv:2502.13923, 2025.

Bolya, D., Fu, C.-Y., Dai, X., Zhang, P., Feichtenhofer, C.,
and Hoffman, J. Token merging: Your vit but faster. In
International Conference on Learning Representations,
2023. URL https://openreview.net/forum?
id=JroZRaRw7Eu.

Brauwers, G. and Frasincar, F. A general survey on atten-
tion mechanisms in deep learning. IEEE Transactions
on Knowledge and Data Engineering, 35(4):3279–3298,
2021.

Chen, D. and Dolan, W. B. Collecting highly parallel data
for paraphrase evaluation. In Proceedings of the 49th
Annual Meeting of the Association for Computational
Linguistics, pp. 190–200, 2011.

Chen, K., Zhang, Z., Zeng, W., Zhang, R., Zhu, F., and
Zhao, R. Shikra: Unleashing multimodal llm’s referential
dialogue magic. arXiv preprint arXiv:2306.15195, 2023.

Chen, L., Zhao, H., Liu, T., Bai, S., Lin, J., Zhou, C., and
Chang, B. An image is worth 1/2 tokens after layer
2: Plug-and-play inference acceleration for large vision-
language models. In European Conference on Computer
Vision, pp. 19–35. Springer, 2024a.

Chen, Z., Wu, J., Wang, W., Su, W., Chen, G., Xing, S.,
Zhong, M., Zhang, Q., Zhu, X., Lu, L., Li, B., Luo, P., Lu,
T., Qiao, Y., and Dai, J. Internvl: Scaling up vision foun-
dation models and aligning for generic visual-linguistic
tasks. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 24185–
24198, 2024b.

Chung, H. W., Hou, L., Longpre, S., Zoph, B., Tay, Y.,
Fedus, W., Li, Y., Wang, X., Dehghani, M., Brahma, S.,
Webson, A., Gu, S. S., Dai, Z., Suzgun, M., Chen, X.,
Chowdhery, A., Castro-Ros, A., Pellat, M., Robinson,
K., Valter, D., Narang, S., Mishra, G., Yu, A., Zhao, V.,
Huang, Y., Dai, A., Yu, H., Petrov, S., Chi, E. H., Dean,
J., Devlin, J., Roberts, A., Zhou, D., Le, Q. V., and Wei, J.
Scaling instruction-finetuned language models. Journal
of Machine Learning Research, 25(70):1–53, 2024.

Dai, W., Li, J., Li, D., Tiong, A. M. H., Zhao, J., Wang,
W., Li, B., Fung, P., and Hoi, S. Instructblip: towards
general-purpose vision-language models with instruction
tuning. In Advances in Neural Information Processing
Systems, pp. 49250–49267, 2023.

Dao, T. Flashattention-2: Faster attention with better par-
allelism and work partitioning. In International Confer-
ence on Learning Representations, 2024. URL https:
//openreview.net/forum?id=mZn2Xyh9Ec.

Dao, T., Fu, D., Ermon, S., Rudra, A., and Ré, C. Flashat-
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Appendix

In the appendix, we provide additional details and experimental results to enhance understanding and insights into our
method. The appendix is organized as follows:

• Section A reviews recent work that are related to our research, including recent advances in visual token pruning and
efficient LVLMs.

• Section B provides a comprehensive analysis of how LVLMs process visual tokens during both the visual encoding and
language decoding, offering empirical guidance for designing more effective visual token reduction strategies.

• Section C presents additional experimental results that further validate the effectiveness and robustness of our approach
across various settings.

• Section D provides extended experimrntal details, including FLOPs calculation and full experimental configurations, to
facilitate reproducibility.

• Section E lists the license information for all models, baselines, and benchmarks used in this work.

• Section F discusses the limitations of this work and explores its broader implications and impacts.

A Related Work

Efficient Large Vision-Language Models. Building on powerful auto-regressive LLMs (Achiam et al., 2023; Touvron
et al., 2023; Chung et al., 2024), recent LVLMs typically adopt an encoder-projector-decoder architecture, where visual
inputs are encoded into tokens and jointly processed with language sequences (Liu et al., 2023; Lin et al., 2024a; Bai et al.,
2023; Chen et al., 2024b; Team et al., 2024; Chen et al., 2023). However, as image resolution increases or the input scales
to multi-image/video, the number of visual tokens grows proportionally, leading to a quadratic increase in computation
cost and runtime due to the self-attention mechanism (Vaswani et al., 2017; Brauwers & Frasincar, 2021), which limits
the scalability of LVLMs in real-world applications (Bolya et al., 2023; Chen et al., 2024a; Mehta & Rastegari, 2022;
Kondratyuk et al., 2021; Zhang et al., 2025b;a). To mitigate this issue, several LVLMs introduced specialized modules
to enhance efficiency—such as the Q-Former in InstructBLIP (Dai et al., 2023) and the perceiver resampler (Jaegle et al.,
2021) in OpenFlamingo (Alayrac et al., 2022)—that distill dense visual inputs into a compact set of features before LLM
decoding. Orthogonal to these architectural strategies, FlashAttention (Dao et al., 2022; Dao, 2024) has emerged as a widely
adopted, hardware-aware optimization that accelerates attention computation by minimizing redundant memory access,
offering substantial speedups without compromising performance.

Vision Token Reduction in LVLMs. Another line of work aims to improve model efficiency on the sequence
dimension—pioneering works such as ToMe (Bolya et al., 2023) and FastV (Chen et al., 2024a) have explored strategies
like visual token merging and text-guided pruning to improve the efficiency of LVLMs. Building on these advances,
subsequent approaches can be broadly divided into two main categories: (1) Text-agnostic pruning approaches (Shang
et al., 2024; Arif et al., 2025; Zhang et al., 2024a; Yang et al., 2025), which identify and remove redundant or uninformative
visual tokens during the visual encoding stage. For instance, VisionZip (Yang et al., 2025) selects dominant tokens based
on [CLS] attention scores, while FOLDER (Wang et al., 2025) introduces token merging with reduction overflow in the
final blocks of the visual encoder. (2) Text-aware pruning approaches (Zhang et al., 2024b; Xing et al., 2025), which aim to
remove visual tokens that are irrelevant to the text query during the LLM decoding stage. For instance, SparseVLM (Zhang
et al., 2024b) proposes an iterative sparsification strategy that selects visual-relevant text tokens to rate the significance
of vision tokens, and PyramidDrop (Xing et al., 2025) performs progressive pruning at multiple decoding layers to balance
efficiency and context preservation. In this work, we present a comprehensive analysis of how LVLMs process visual tokens
during both the visual encoding and language decoding stages, and propose a corresponding two-stage approach, VScan,
to effectively improve the inference efficiency of LVLMs while maintaining robust performance.

B Empirical Analysis

In this section, we provide a comprehensive analysis of how LVLMs process visual tokens during both the visual encoding
and language decoding, offering empirical guidance for designing more effective visual token reduction strategies.

Preliminary: Architecture of LVLMs. We consider an LVLM parameterized by θ, which consists of three major
components: a visual encoder, a feature projector, and an LLM decoder. Given an image input, the visual encoder processes
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Figure B1: Empirical study on visual redundancy reduction. (Left) We illustrate two failure cases where relying solely
on the output [CLS] attention leads to incorrect predictions. For comparison, we include reference token selections from
CLIP-ViT-L-336px (Radford et al., 2021), following Gandelsman et al. (Gandelsman et al., 2024), which highlight regions
of interest relevant to the text query. (Right) We visualize the [CLS] attention maps and self-attention maps of representative
tokens (e.g., #536: ground, #234: person) across different visual encoding layers, illustrating how attention patterns evolve
from localized focus in shallow layers to broader global context in deeper layers.

the image patches, and the projector converts them into n visual tokens xV = {xi
V }ni=1. These visual tokens are then

concatenated with the tokenized textual query xT and fed into the LLM decoder for auto-regressive next-token generation,
represented as yt ∼ pθ(yt|xV ,xT ,y<t), where the next token yt is sampled from the output probability distribution pθ(·),
and y<t denotes the sequence of tokens generated prior to timestep t.

Rethinking Visual Redundancy Reduction. To address visual redundancy in token representations, recent works (Zhang
et al., 2024a; Yang et al., 2025) have proposed text-agonostic approaches that retain visual tokens with high [CLS] attention
at the output layer of the ViT-based visual encoder. However, this raises a critical question: Is relying solely on output [CLS]
attention truly sufficient to capture all task-relevant visual information? Upon closer examination, we identify a clear yet
often overlooked limitation of these approaches: they tend to favor tokens corresponding to visually salient objects, while
aggressively discarding background visual details that may carry essential semantic information. As illustrated in Figure B1
(Left), output [CLS] attention is incorrectly directed to the wall and person, ignoring the actual targets—the pan and leather
bag—leading to incorrect model responses.

To better understand and overcome this limitation, we analyze how visual information is processed across the visual encoding
layers in LVLMs. Specifically, we visualize both the [CLS] attention and self-attention of representative tokens across
different visual encoding layers, as illustrated in Figure B1 (Right). Our observations are as follows: (1) In the shallow layers,
the [CLS] attention maps capture fine-grained local details across the image. In contrast, in the deeper layers, the attention
becomes increasingly concentrated on the main entities, reflecting their global semantic relevance; (2) The self-attention
maps for representative visual tokens reveal a similar local-to-global trend: in the shallow layers, these tokens primarily
attend to nearby regions with similar semantic meaning, while in the deeper layers, their attention becomes more dispersed,
integrating context from the entire image. These findings highlight a gradual transition in the visual encoder from capturing
low-level local details to modeling high-level, globally relevant semantics, suggesting that relying solely on the output layer
may overlook the rich local information encoded in the shallow layers.

Rethinking Textual Irrelevance Reduction. While prior works (Chen et al., 2024a; Zhang et al., 2024b; Lin et al., 2024b)
have introduced effective text-aware approaches for pruning visual tokens at early layers during LLM decoding, a critical
question remains: Are early layers the optimal stage for pruning visual tokens to minimize their impact on the model’s
final response? To investigate this, we conduct three empirical studies on POPE (Li et al., 2023b) and GQA (Hudson &
Manning, 2019), analyzing how the model’s knowledge and predictions evolve during the decoding process:

• Study 1: How does position bias in token selection evolve across LLM layers? Specifically, we visualize the distribution
of the retained tokens selected by the attention score of the last instruction token (Chen et al., 2024a) across LLM layers
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Figure B2: (Left) Study 1: Distribution of retained tokens at a 50% reduction rate in layers 2, 8, and 16 of LLaVA-1.5-7B
on POPE (Li et al., 2023b); (Right) Study 2: Sum of visual attention across different attention heads and LLM layers using
LLaVA-1.5-7B and Qwen-2.5-VL-7B on POPE (Li et al., 2023b).

Figure B3: Study 3: Visualization of next-token predictions derived from the output hidden states of each LLM layer using
LLaVA-1.5-7B. Darker colors indicate higher prediction confidence.

using LLaVA-1.5-7B. As shown in Figure B2 (Left), early layers (e.g., layers 2 and 8) tend to select tokens at the bottom
of the image, reflecting an inherent LLM position bias, as the last instruction token primarily attends to nearby tokens and
focuses on local context (Vaswani et al., 2017), and flattened visual tokens from the bottom of the image are positioned
closest to the instruction tokens in the sequence. As the LLM layers deepen, this undesirable position bias diminishes
and the focus shifts toward the center of the image, which is more intuitive since the center of the image typically carries
the most informative and task-relevant features (Alexey et al., 2015).

• Study 2: From which layer does the LLM begin to gather and process visual information? We visualize the sum of
attention received by all visual tokens from the last instruction token across different LLM layers using LLaVA-1.5-7B
and Qwen-2.5-VL-7B in Figure B2 (Right). The red curve in each plot highlights the layer-wise attention patterns directed
towards visual information. We observe that the middle LLM layers are primarily responsible for interacting with the
visual tokens, whereas the early and deep layers focus predominantly on processing textual information.

• Study 3: At which LLM layer do next-token predictions begin to converge? In Figure B3, we provide an interpretation
of the hidden states across different LLM layers in LLaVA-1.5-7B. Specifically, we feed the hidden states from each LLM
decoding layer into the final linear projection layer to obtain vocabulary logits and intermediate next-token predictions.
We observe that in more challenging open-ended tasks like GQA, the next-token predictions stabilize around LLM layer
20, whereas in simpler yes/no tasks such as POPE, the predictions converge earlier, around LLM layer 16.

These findings collectively suggest that early layers are suboptimal for pruning due to position bias and limited engagement
with visual content. In contrast, pruning at middle layers is more appropriate as it better preserves critical cross-modal
interactions and minimizes disruption to model predictions.
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Table C1: Performance comparisons on LLaVA-NeXT-7B (Liu et al., 2024b) across 9 image understanding bench-
marks. The best results in each setting are bolded, and the second-best are underlined.

Method Venue GQA MMB MMBCN MME POPE SQAIMG VQAV2 VQAText VizWiz Average

Upper Bound, 2,880 Tokens (100%), ∼20.825 TFLOPs

LLaVA-NeXT-7B (Liu et al., 2024b) CVPR’24 64.2 67.4 60.6 1851 86.5 70.1 81.8 61.3 57.6 100.0%

Retain 320 Tokens in Average (↓ 88.9%), ∼2.099 TFLOPs

FastV (Chen et al., 2024a) ECCV’24 55.9 61.6 51.9 1661 71.7 62.8 72.9 55.7 53.1 88.7%

HiRED (Arif et al., 2025) AAAI’25 59.3 64.2 55.9 1690 83.3 66.7 75.7 58.8 54.2 93.9%

PyramidDrop (Xing et al., 2025) CVPR’25 56.4 63.4 56.2 1663 77.6 67.5 73.5 54.4 54.1 91.4%

VisionZip (Yang et al., 2025) CVPR’25 59.3 63.1 - 1702 82.1 67.3 76.2 58.9 - 94.0%

VScan (Ours) - 60.7 65.3 57.8 1767 85.1 66.9 77.1 58.0 53.8 95.4%

Table C2: Performance comparisons on Qwen-2.5-VL-7B (Bai et al., 2025) across 3 referring expression compre-
hension benchmarks: RefCOCO, RefCOCO+, and RefCOCOg. The best results in each setting are bolded, and the
second-best are underlined. †Evaluation is based on our re-implementation.

Method Venue
RefCOCO RefCOCO+ RefCOCOg

Average
val testA testB val testA testB val test

Upper Bound, 4∼16384 Tokens (100%)

Qwen-2.5-VL-7B (Bai et al., 2025) arXiv’25 89.45 92.56 85.16 83.50 89.02 79.15 86.76 87.24 100.0%

Retain 75% Tokens in Average (↓ 25%)

FastV† (Chen et al., 2024a) ECCV’24 85.27 87.84 82.28 79.02 82.95 72.86 82.95 83.32 94.8%

PyramidDrop† (Xing et al., 2025) CVPR’25 87.79 91.00 83.22 81.48 86.55 74.02 84.62 85.10 97.2%

VScan (Ours) - 88.75 91.94 83.96 82.39 87.90 74.15 85.54 86.55 98.3%

Retain 50% Tokens in Average (↓ 50%)

FastV† (Chen et al., 2024a) ECCV’24 73.85 73.38 74.21 66.75 68.88 62.65 71.06 71.86 81.2%

PyramidDrop† (Xing et al., 2025) CVPR’25 77.52 80.82 72.07 70.27 75.48 63.33 74.86 75.65 85.1%

VScan (Ours) - 86.78 90.74 82.37 79.99 86.12 71.67 84.03 84.44 96.1%

Retain 25% Tokens in Average (↓ 75%)

FastV† (Chen et al., 2024a) ECCV’24 43.57 46.81 40.86 39.47 43.78 36.02 43.04 42.69 48.5%

PyramidDrop† (Xing et al., 2025) CVPR’25 46.46 53.83 37.23 42.29 47.76 32.81 45.32 44.91 50.4%

VScan (Ours) - 74.32 79.05 68.22 67.22 73.72 58.95 69.42 69.43 80.7%

C Additional Experimental Results

C.1 Results on LLaVA-NeXT

In Table C1, we further compare the performance achieved by our approach with other state-of-the-arts on the more
advanced LLaVA-NeXT-7B (Liu et al., 2024b). We present the performance of all approaches under a fixed budget of 320
tokens per image, corresponding to an 88.9% reduction rate. Our approach continues to achieve superior performance on
LLaVA-NeXT-7B (Liu et al., 2024b), attaining the best performance on 6 out of 9 benchmarks, and achieving 95.4% of the
original LLaVA-NeXT-7B (Liu et al., 2024b) performance with only 11.1% of the token budget without additional training.

C.2 Results on Qwen-2.5-VL

We extend our comparisons to more challenging grounding tasks and present the performance of different approaches
in Table C2. Compared to image understanding tasks, these grounding tasks require higher token budgets to preserve visual
information necessary for precise localization. A 75% reduction rate, for instance, halves the performance of FastV (Chen
et al., 2024a) and PDrop (Xing et al., 2025). In this challenging scenario, our approach still robustly maintains 80.7% of the
original performance. Additionally, our approach achieves 96.1% of the original performance with only 50% of the visual
tokens. These results demonstrate that our approach is versatile and can be effectively applied to various vision-language
tasks, offering an excellent performance-efficiency trade-off.
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C.3 Results on Video-LLaVA

Table C3: Performance comparisons on Video-LLaVA-7B (Lin et al., 2024a)
across 4 video understanding tasks with a 75% reduction rate. The best
results are bolded, and the second-best are underlined. †Evaluation is based on
our re-implementation.

Method
TGIF MSVD MSRVTT ActivityNet

Acc. Score Acc. Score Acc. Score Acc. Score

Video-LLaVA-7B (Lin et al., 2024a) 47.0 3.40 70.5 3.92 58.3 3.51 42.2 3.37
FastV† (Chen et al., 2024a) 42.7 3.19 67.4 3.83 53.6 3.40 36.1 3.15
PyramidDrop† (Xing et al., 2025) 44.1 3.26 66.7 3.81 56.1 3.45 37.4 3.15
VScan (Ours) 46.9 3.35 69.8 3.93 57.1 3.48 42.6 3.34

Finally, we validate the effectiveness
of our approach on video understand-
ing tasks and compare its performance
against other approaches on Video-
LLaVA-7B (Lin et al., 2024a), as
shown in Table C3. Specifically, we
report the accuracy and GPT-evaluated
scores for each benchmark to assess
the quality of the responses. The re-
sults illustrate that with a 25% token
budget, our approach maintains nearly
100% of the original Video-LLaVA-7B’s performance, consistently outperforming other methods.

C.4 Empirical Validation of Global and Local Scan

Figure C4: Performance comparisons on
AdvGQA and AdvPOPE. We report the
results for each approach with 64 visual
tokens retained using LLaVA-1.5-7B (Liu
et al., 2024a).

To validate the effectiveness of our global and local scan schemes, we
construct adversarial subsets for GQA and POPE, namely AdvGQA and
AdvPOPE, which contains failure cases similar to those shown in Figure B1
(Left), where the text queries play an important role and relying solely on
the global scan to select visual tokens leads to errors. To accurately select
these samples, we follow Gandelsman et al. (Gandelsman et al., 2024) to
decompose the image representations and pinpoint the tokens or regions
most relevant to the query. Specifically, we utilize both the text and visual
encoders of CLIP-ViT-L-336px (Radford et al., 2021) to identify the visual
tokens relevant to the text query as a reference. Two examples of the
visual tokens selected by CLIP are shown in Figure B1 (Left). A sample is
included in the adversarial set if the response is correct when using the 64
tokens selected by CLIP, but becomes incorrect when using the 64 tokens
selected solely by the global scan. Following this, we collected 886 and 515
adversarial samples in AdvGQA and AdvPOPE, respectively.

In Figure C4, we present a performance comparison of incorporating
both global and local scans with FastV (Chen et al., 2024a) and Pyramid-
Drop (Xing et al., 2025), which select visual tokens based on text attention
and are expected to handle samples in the adversarial set effectively. We observe that incorporating both global and local
scans achieves performance comparable to these text-guided approaches, despite being text-agnostic and selecting important
tokens solely based on visual significance. These results validate that combining both scanning strategies and token merging
helps preserve the maximum amount of visual information, effectively preventing information loss.

C.5 Empirical Validation of Middle Layer Pruning
Table C4: Comparative study of pruning visual
tokens at different LLM layers. R1 denotes the
retention rate in the visual encoding stage, while
k and R2 indicate the pruning layer and retention
rate in the LLM decoding stage, respectively.

Settings R1 = 50% R1 = 25%

k = 2, R2 = 73.3% 59.6 56.8

k = 8, R2 = 66.7% 59.6 57.2

k = 12, R2 = 60.0% 59.6 58.6

k = 16, R2 = 50.0% 60.7 58.7
k = 20, R2 = 33.3% 60.6 58.7
k = 24, R2 = 0.0% 60.2 58.4

We conduct a comparative analysis on the GQA benchmark using
LLaVA-1.5-7B (Liu et al., 2024a) to examine the effect of pruning
tokens at different LLM layers, while keeping the average reduction
rate consistent across settings. To better highlight the impact of
pruning depth, we first apply a global scan to reduce the visual tokens
to 288/144 (i.e., R1 = 50%/25%), and then perform pruning at various
LLM layers to reach an average retention rate of 75% during the
LLM decoding stage. As shown in Table C4, pruning at middle LLM
layers (e.g., layers 16 or 20) yields the best performance, whereas
pruning at earlier layers (e.g., layer 2) leads to up to a 1.9% drop in
accuracy. These results align with our empirical insights in Section B
and validate the effectiveness of pruning at middle layers to remove
textual irrelevance in LVLMs.
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Figure C5: Qualitative results on RefCOCO benchmark using Qwen-2.5-VL (Bai et al., 2025). We present the predicted
boxes for 6 different queries on 2 images, along with visualizations of the retained tokens.

Table C5: Ablation experiment using LLaVA-1.5-7B with an average reduction rate of 11.1% on GQA and MME. We
ablate the effects of (a) retention rates R1 and R2; (b) the proportion of global and local tokens; and (c) encoding layer l for
the local scan, while keep all other settings fixed.

(a) Retention rates R1 and R2.
R1 R2 GQA MME

11.1% 100.0% 56.7 1651
13.3% 66.7% 57.1 1683
14.8% 50.0% 57.5 1676
16.7% 33.3% 58.3 1698
22.2% 0.0% 52.7 1720

(b) Global & local tokens.
Global Local GQA MME

0% 100% 58.0 1681
25% 75% 58.1 1689
50% 50% 58.3 1698
75% 25% 57.4 1688

100% 0% 57.5 1665

(c) Local scan encoding layer l.
Encoding Layer GQA MME
l = 2 (shallow) 57.1 1712
l = 6 (shallow) 58.3 1698
l = 12 (middle) 57.8 1692
l = 18 (deep) 57.5 1678
l = 23 (output) 57.3 1683

C.6 Qualitative Results

In Figure C5, we present qualitative examples from the RefCOCO benchmark using Qwen-2.5-VL (Bai et al., 2025). For
each image, we show the model’s predicted bounding boxes in response to different referring expressions, along with
visualizations of the retained visual tokens after token pruning. These examples illustrate that our method can accurately
localize the target objects described in queries, while significantly reducing the number of visual tokens used for inference.
This demonstrates the model’s ability to preserve semantically important information under token-efficient settings.

C.7 Ablation Studies

Varying Retention Rates R1 and R2. We analyze how different retention rate configurations affect performance by varying
the retention rates R1 and R2 during the visual encoding and LLM decoding stages, respectively. As shown in Table C5
(a), we observe that relying solely on token selection in the visual encoder or applying overly aggressive pruning during
LLM decoding leads to suboptimal performance. Instead, a more balanced and gradual two-stage pruning strategy, i.e.,
R1 = 16.7% and R2 = 33.3%, achieves the best performance. These results also validate the effectiveness of combining
both visual token reduction strategies to jointly improve efficiency and maintain accuracy.

Mixing Global and Local Tokens. In Table C5 (b), we examine the impact of mixing global and local token selections
by varying their proportions. We find that selecting an equal ratio of global and local tokens yields the best performance,
achieving 58.3% on GQA and 1698 on MME. In contrast, retaining only local or global tokens results in 0.3% and 0.8%
performance drop on GQA, respectively. These results highlight the complementary roles of global and local tokens, which
together capture rich visual information and help preserve the model’s visual reasoning capabilities.
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Different Encoding Layers for Local Scan. In Table C5 (c), we explore the effect of performing local token selection
at different layers of the visual encoder. Consistent with our empirical findings in Section B, we find that applying the
local scan at a shallow layer (l = 6) yields the best performance. However, performing the local scan at very early (l = 2)
or the output layer (l = 23) leads to a noticeable performance drop, with performance on GQA falling to 57.1 and 57.3,
respectively.

D More Experimental Details

D.1 Computational Complexity

We follow PyramidDrop (Xing et al., 2025) to compute the theoretical floating-point operations (FLOPs) introduced in the
LLM decoding layers during the pre-filling stage for processing the visual tokens. Specifically, in each of the K decoding
layers, self-attention calculation with a causal mask is applied, followed by multiple feed-forward network (FFN) layers.
The total FLOPs can thus be computed as:

Total FLOPs =
∑K

k=1

(
4nkd

2 + 2n2
kd+ 3nkdm

)
, (5)

where K is the number of transformer layers, nk is the number of visual tokens at LLM layer k, d is the hidden state
size, and m is the intermediate size of the FFN. This calculation suggests that reducing the number of visual tokens can
significantly decrease the FLOPs required during inference.

D.2 Full Experimental Details

Models. We applied our approach to four popular LVLMs with different architectures to evaluate its general effectiveness.
Specifically, we follow previous work in this field to compare performance on LLaVA-1.5-7B (Liu et al., 2024a), which
is widely recognized for academic use and maps an image input to 576 tokens, and LLaVA-NeXT-7B (Liu et al., 2024b),
which offers enhanced high-resolution visual understanding by representing an image input using up to 2,880 visual tokens.
We also include evaluations on Video-LLaVA-7B (Lin et al., 2024a), which extends the framework to handle video input,
processing up to 8 frames with 2,048 visual tokens. Furthermore, we are among the first to present experimental results
on the recent Qwen-2.5-VL (Bai et al., 2025) model with various LLM sizes (3B, 7B, 32B), which incorporates dynamic
resolution processing to handle images of varying sizes, supporting token counts ranging from 4 to 16,384.

Benchmarks and Metrics. We conduct extensive experiments on 9 standard image understanding benchmarks, including vi-
sual question answering benchmarks such as GQA (Hudson & Manning, 2019), ScienceQA (Lu et al., 2022), VQAv2 (Goyal
et al., 2017), TextVQA (Singh et al., 2019) and VizWiz (Gurari et al., 2018); multi-modal reasoning benchmarks such as
MMBench (Liu et al., 2024c), MMBench-CN (Liu et al., 2024c), MME (Fu et al., 2023), and POPE (Li et al., 2023b).
We also include evaluations on 3 more challenging referring grounding tasks using RefCOCO (Kazemzadeh et al., 2014),
RefCOCO+ (Kazemzadeh et al., 2014), and RefCOCOg (Mao et al., 2016), and report the accuracy achieved by different
approaches. In these grounding tasks, a localization is considered correct if the predicted bounding box has an IoU score
of at least 0.5 with the ground truth. Additionally, we evaluate our approach on 4 video question answering benchmarks:
TGIF (Jang et al., 2017), MSVD (Chen & Dolan, 2011), MSRVTT (Xu et al., 2016), and ActivityNet (Yu et al., 2019).
We follow previous work (Maaz et al., 2024; Xing et al., 2025) to utilize both accuracy and the ChatGPT score1 as key
performance metrics for these video-based benchmarks.

Baselines. We compare the performance of our approach with 6 state-of-the-art visual token pruning methods: ToMe (Bolya
et al., 2023), FastV (Chen et al., 2024a), SparseVLM (Zhang et al., 2024b), HiRED (Arif et al., 2025), PyramidDrop (Xing
et al., 2025), and VisionZip (Yang et al., 2025). (1) ToMe (Bolya et al., 2023), which uses bipartite soft matching to
iteratively merge similar tokens within ViT layers; (2) FastV (Chen et al., 2024a), which drops visual tokens in early layers
of the LLM, guided by text-oriented attention score; (3) SparseVLM (Zhang et al., 2024b), which selects vision-relevant
text tokens to evaluate the significance of visual tokens; (4) HiRED (Arif et al., 2025), which dynamically assigns token
budgets to sub-images for high-resolution image inputs; (5) PyramidDrop (Xing et al., 2025), which divides the LLM
into stages and drops a portion of visual tokens at the end of each stage; (6) VisionZip (Yang et al., 2025), which selects
a set of dominant tokens and merges unselected tokens contextually. To ensure a fair comparison, we directly report the
results of these baselines from their respective original papers unless stated otherwise.

Implementation Details. We adhere to the default inference settings for each evaluated LVLM as specified in their

1Evaluated using gpt-3.5-turbo: https://platform.openai.com/docs/models/gpt-3.5-turbo.
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Instructions:
You are an intelligent chatbot designed for evaluating the correctness of generative outputs for question-answer pairs.
Your task is to compare the predicted answer with the correct answer and determine if they match meaningfully.
Here’s how you can accomplish the task:

##INSTRUCTIONS:
- Focus on the meaningful match between the predicted answer and the correct answer.
- Consider synonyms or paraphrases as valid matches.
- Evaluate the correctness of the prediction compared to the answer.

User Input:
Please evaluate the following video-based question-answer pair:

Question: {question}
Correct Answer: {answer}
Predicted Answer: {pred}

Provide your evaluation only as a yes/no and score where the score is an integer value between 0 and 5, with 5
indicating the highest meaningful match. Please generate the response in the form of a Python dictionary string
with keys ‘pred’ and ‘score’, where value of ‘pred’ is a string of ‘yes’ or ‘no’ and value of ‘score’ is in INTEGER,
not STRING. DO NOT PROVIDE ANY OTHER OUTPUT TEXT OR EXPLANATION. Only provide the Python
dictionary string. For example, your response should look like this: {‘pred’: ‘yes’, ‘score’: 4}.

Table D6: GPT-aided evaluation setup. We present the prompt and user input format for evaluating the LVLM
responses in video understanding tasks.

respective codebases. Additionally, we perform local scan at a shallow layer, specifically at l = 6 for LLaVA-series models
and l = 8 for Qwen-2.5-VL. For LLM-stage pruning, we select the middle layer as k = 16 for LLaVA-series models and
k = 14 for Qwen-2.5-VL. By default, we set the retention rate at the LLM middle layer to R2 = 33.3%, and adjust R1

accordingly to achieve the target average reduction rate. Note that these design choices are grounded in our analysis in
Section B, and we also provide comprehensive ablation studies in Section C.7.

Remarks on FlashAttention. Our proposed VScan is compatible with FlashAttention (Dao, 2024; Dao et al., 2022), as we
recompute the attention scores for the last instruction token using vanilla attention calculation (Vaswani et al., 2017) outside
the standard LLM layers. A detailed efficiency analysis can be found in Section 3.2.

D.3 GPT-Aided Evaluation on Video Understanding Tasks

Following the evaluation protocol of Video-LLaVA, we employ GPT-3.5-Turbo to assess model responses on video
understanding tasks, evaluating them based on both accuracy and quality score. Specifically, we adopt the prompt shown in
Table D6 to guide GPT in rating each response:

• Accuracy: A binary yes/no judgment indicating whether the response is correct.

• Score: An integer ranging from 0 to 5, where 5 represents the highest degree of relevance and informativeness and
indicates the highest meaningful match.

E License Information

We list the license information for all the used assets as follows.

Benchmarks. We evaluate on a comprehensive set of 16 benchmarks spanning image QA, video QA, multimodal reasoning,
and referential understanding tasks:

• GQA (Hudson & Manning, 2019): compositional visual question answering. This benchmark is released under the CC
BY 4.0 license.

• ScienceQA (Lu et al., 2022): multimodal science questions with diagrams and text. This benchmark is released under the
MIT license.
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• VQAv2 (Goyal et al., 2017): real-world image-based QA with balanced answers. This benchmark is released under the
CC BY 4.0 license.

• TextVQA (Singh et al., 2019): reading and reasoning over scene text in images. This benchmark is released under the CC
BY 4.0 license.

• VizWiz (Gurari et al., 2018): real-world visual questions from blind users. This benchmark is released under the CC BY
4.0 license.

• MMBench (Liu et al., 2024c) / MMBench-CN (Liu et al., 2024c): multilingual multimodal reasoning. These benchmarks
are released under Apache License 2.0.

• MME (Fu et al., 2023): fine-grained multimodal evaluation on object, OCR, and commonsense. This benchmark is
released under Apache License 2.0.

• POPE (Li et al., 2023b): probing object hallucinations in vision-language models. This benchmark is released under the
MIT license.

• RefCOCO / RefCOCO+ (Kazemzadeh et al., 2014), RefCOCOg (Mao et al., 2016): referential expression grounding.
These benchmarks are released under Apache License 2.0.

• TGIF (Jang et al., 2017): video QA with spatiotemporal reasoning. The license of this work is not specified.

• MSVD (Chen & Dolan, 2011): short video captioning and QA. This benchmark is released under the MIT license.

• MSRVTT (Xu et al., 2016): large-scale video-text retrieval and QA. This benchmark is released under the MIT license.

• ActivityNet-QA (Yu et al., 2019): complex event-centric video QA. This benchmark is released under Apache License
2.0.

Models. We apply our approach to four widely used LVLMs.

• LLaVA-1.5 (Liu et al., 2024a) is released under the LLaMA 2 Community License.

• LLaVA-NeXT (Liu et al., 2024b) is released under Apache License 2.0.

• Qwen-2.5-VL (Bai et al., 2025) is released under Apache License 2.0.

• VideoLLaVA (Lin et al., 2024a) is released under Apache License 2.0.

Code. Our codebase builds upon PyramidDrop (Xing et al., 2025), licensed under MIT, and FasterVLM (Zhang et al.,
2024a), licensed under Apache 2.0.

F Limitations and Broader Impacts

Limitations. One key limitation of this work is the inherent trade-off between efficiency and accuracy: while the proposed
VScan significantly reduces inference cost of LVLMs, aggressive token pruning may still distort visual information and
lead to degraded performance, particularly on challenging tasks that demand fine-grained understanding or compositional
reasoning.

Broader Impacts. The development of efficient LVLMs has significant potential to influence a wide range of applications,
from autonomous systems and robotics to healthcare, education, and accessibility. By optimizing visual token reduction
with VScan, we are addressing the computational overheads associated with processing large visual inputs, enabling faster
and more efficient inference in real-time applications. This can lead to more widespread adoption of LVLMs in settings
where rapid decision-making is crucial, such as autonomous vehicles, real-time video analysis, and interactive AI systems.
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