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ABSTRACT

Model-level explanations for Graph Neural Networks (GNNs) aim to identify
class-discriminative motifs that capture how a classifier recognizes a target class.
Because the true motifs relied on by the classifier are unobservable, most ap-
proaches evaluate explanations by their target class score. However, class score
alone is not sufficient as high-scoring explanations may be pathological or may
fail to reflect the full range of motifs recognized by the classifier. To bridge this
gap, this work introduces sufficiency risk as a formal criterion for whether expla-
nations adequately represent the classifier’s reasoning, and derives distribution-
free certificates that upper-bound this risk. Building on this foundation, three
metrics are introduced: Coverage, Greedy Gain Area (GGA), and Overlap which
operationalize the certificates to assess sufficiency, efficiency, and redundancy in
explanations. To ensure practical utility, finite-sample concentration bounds are
developed for these metrics, providing confidence intervals that enable statisti-
cally reliable comparison between explainers. Experiments with synthetic data
and with three state-of-the-art explainers on four real-world datasets demonstrate
that these metrics reveal differences in explanation quality hidden by class scores
alone. Designed to complement class score, they constitute the first theoretically
certified framework for evaluating model-level explanations of GNNs.

1 INTRODUCTION

Graph Neural Networks (GNNs) have emerged as powerful models for learning from graph-
structured data, achieving state-of-the-art performance in diverse domains such as drug discovery
(Merchant et al., 2023), weather forecasting (Lam et al., 2023) and social network analysis (Wu
et al., 2022). Despite these successes, the opaque nature of GNNs pose significant challenges in
high-stakes applications, where understanding why a prediction is made is as important as the pre-
diction itself. This has driven rapid progress in research on post-hoc explainability methods for
GNNs. Broadly, post-hoc GNN explainability approaches fall into two categories (Kakkad et al.,
2023): instance-level and model-level methods. Instance-level methods (Pope et al., 2019; Feng
et al., 2023; Baldassarre & Azizpour, 2019; Huang et al., 2022; Schlichtkrull et al., 2020; Yuan
et al., 2021; Lucic et al., 2022; Lin et al., 2022; Zhang et al., 2021; Vu & Thai, 2020) are devised
to explain the prediction on a single instance by highlighting salient nodes and edges that most in-
fluenced the outcome. However, such explanations lack generalizability, since insights drawn from
one instance may not extend to others. Hence, achieving a global understanding of model behaviour
requires inspecting instance-level explanations across numerous instances, which is costly and un-
reliable. In contrast, model-level explanations(Yuan et al., 2020; Wang & Shen, 2023; Shin et al.,
2024) aim to provide a global view of the classifier’s behavior. Given a target class, they seek to
identify key discriminative motifs that the model consistently relies on, to recognize instances of
the class. These motifs provide a high level view of the classifier’s behavior, reducing the need for
exhaustive inspection and offering a more coherent picture of what the model has learned.

Model-level explainers typically work by either discovering or generating key class discriminative
motifs. While each approach differs in their mechanism, an uniform objective all of them share is
to generate motifs that attain high target class scores. Since the true patterns that a classifier relies
on to identify a class are unobservable, motifs which the classifier assigns high class scores are in-
terpreted as representative of the discriminative information using which the model has learned to
recognize instances of the class. Consequently, the quality of a model-level explanation is typically
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judged by the score it receives from the classifier, making the target class score the primary met-
ric for comparing explanations and the methods that generate them. However, class score alone is
insufficient to distinguish between explanations. Since every explainer explicitly optimizes a loss
term that rewards high target class scores, the resulting motifs often become pathological: they
achieve high scores but stray far from the data distribution and may bear little resemblance to mean-
ingful graph structures. In the absence of more principled metrics, researchers frequently resort to
qualitative inspection where consensus is elusive and comparisons are vulnerable to cherry-picking.
Other than qualitative comparison between explanations, researchers also rely on auxilliary mea-
sures such as time required to generate explanations, sparsity of the explanations and comparison
between graph statistics of real graphs and the generated explanations. While useful, these auxiliary
measures do not directly assess explanation quality, since they ignore the relationship between the
motifs and the classifier’s decision process. It should also be noted here that common measures of
explanation quality for instance-level explanations such as fidelity and accuracy style metrics are not
directly applicable in this setting. Fidelity style metrics typically involve operations like removing
the explanation subgraph or corrupting input features while preserving the explanation. However,
model-level explanations, especially those produced by generative methods rarely appear as exact
subgraphs of any graph in the class, making such operations infeasible. Accuracy, on the other hand,
requires ground-truth explanation subgraphs for comparison. Yet in the model-level setting, the true
motif relied upon by the classifier is unknown, rendering this measure inapplicable as well. This
leaves a fundamental gap in principled evaluation of model-level explanations.

This work closes this gap by introducing a principled and computable suite of metrics for evaluating
model-level explanations. We begin by characterizing when a set of explanations generated by a
model-level explainer can be said to sufficiently capture the classifier’s decision process, formaliz-
ing sufficiency through a risk functional and deriving distribution-free certificates that upper-bound
this risk. The first metric, Coverage, measures how much of the class manifold in the classifier’s
embedding space is accounted for by the explanations, thereby providing a certified bound on suf-
ficiency risk. To assess how efficiently coverage is accumulated, we propose the Greedy Gain Area
(GGA), which connects to guarantees on prefix coverage, motif budgets, and certified sufficiency
under motif constraints, while also diagnosing when coverage has stagnated. We further introduce
Overlap, which captures redundancy between motifs that explain the same regions. Since these
quantities are estimated from finite samples, we also derive uncertainty bounds that yield confidence
intervals, ensuring that comparisons between methods remain statistically reliable. Through exten-
sive experiments, we demonstrate that our metrics reliably complement the class score, enabling
meaningful distinctions between explanations that would otherwise appear equivalent. Moreover,
we show that they can diagnose common pitfalls, such as pathological motifs that drift away from
the data distribution and cases of mode collapse where explanations fail to capture the full diversity
of patterns learnt by the classifier. To the best of our knowledge, this constitutes the first principled
framework with theoretical certificates for evaluating model-level explanations of GNNs.

2 RELATED WORK

Model-Level Explanations. Compared to instance-level explanations, model-level explanations
for GNNs remain relatively underexplored. Existing approaches can be broadly categorized into
generation-based and discovery-based methods. Generation-based methods employ graph gener-
ative models to synthesize class-discriminative motifs. Representative examples include XGNN
Yuan et al. (2020), which uses reinforcement learning to construct motifs node by node; GNNInter-
preter Wang & Shen (2023), which leverages a probabilistic generative model; Graphon-Explainer
Saha & Bandyopadhyay, D4Explainer Chen et al. (2024), and MAGE Yu & Gao (2025), which
employ graphon-based, diffusion-based, and motif-based generation strategies respectively. While
such methods optimize for high class scores and incorporate distributional constraints, they still
yield pathological motifs not representative of the underlying data distribution. Discovery-based
methods, such as PAGE and GLGExplainer (Shin et al., 2024; Azzolin et al., 2023), argue that gen-
erative explainers are inherently prone to such pathologies and instead identify motifs directly from
the dataset, either by selecting discriminative subgraphs already present in instances or by aggregat-
ing instance-level explanations. While this avoids unrealistic motifs, extracted patterns often cover
only a limited subset of instances and may fail to generalize across the class. Both categories high-
light the difficulty of balancing faithfulness, diversity, and generality in model-level explanations,
underscoring the need for principled metrics to assess explanation quality.
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Metrics for Evaluating GNN Explanations. Existing evaluation of GNN explanations combines
domain-specific criteria with quantitative metrics such as accuracy, fidelity, faithfulness, sparsity,
and consistency. Considerable theoretical analysis has highlighted their limitations and proposed
refinements, but all such work remains confined to instance-level explanations. Examples include
upper bounds on worst-case performance Agarwal et al. (2022), robust fidelity under distribution
shifts Zheng et al. (2024), characterization scores combining fidelity measures Amara et al. (2022),
and robustness-based metrics Fang et al. (2023). Complementary benchmarking efforts (Kosan et al.,
2024; Agarwal et al., 2023) systematically compare instance-level explainers across diverse datasets
and highlight which metrics are reliable in different settings.

Despite this progress, no principled evaluation framework exists for model-level explanations. A
few works have highlighted the pitfalls of relying solely on class score: Wang & Shen (2023) and
Chen et al. (2024) observe that high-scoring explanations may be pathological and drift from the
data distribution, while Saha & Bandyopadhyay identify mode collapse, where explainers generate
only variations of a single motif despite the classifier relying on diverse patterns. These approaches
attempt to mitigate such issues by adding training constraints, but they stop short of introducing
metrics that can directly diagnose the issues they highlight.

3 PRELIMINARIES

We begin by formalizing when a model-level explainer can be considered to sufficiently capture how
a classifier f(·) identifies instances of a target class c. Given a target class c, a model-level explainer
outputs an explanation set Ec = {M1, . . . ,MK}, where each motif Mi ∈ Ec is intended to
represent a discriminative substructure that the classifier relies on to recognize graphs of class c.

Denote by Ĝc the set of input graphs that the classifier has identified as belonging to class c. Then, the
premise of model-level explanation is that for each graph G ∈ Ĝc, there exists a membership function
M⋆(G,Ec) that specifies how motifs in Ec are internally associated by the classifier to G when
assigning it to class c. In the simplest case, M⋆(G,Ec) may be a binary vector in {0, 1}K , where
the i-th entry indicates whether motif Mi is used in the classifier’s reasoning for G. More generally,
M⋆(G,Ec) may encode soft or probabilistic associations. If Ec truly captures the reasoning of the
classifier, then the membership codes {M⋆(G,Ec) : G ∈ Ĝc} should contain sufficient information
to reconstruct the classifier’s output scores {fc(G)} for graphs in Ĝc. Note that the true membership
function M⋆ is not observable, hence in practice a computable surrogate M must be used as an
approximation of M⋆.

Notational Simplification: Since, the explanation set Ec remains fixed throughout our analysis,
whenever we denote the input for a membership function M , we write M(G) in place of M(G,Ec).

Sufficiency risk. Given a membership function M and an explanation set Ec, the sufficiency risk
is defined as

SRc(M,Ec) := E
[(
fc(G)− E[fc(G) | M(G)]

)2 ∣∣∣ G ∈ Ĝc

]
,

where fc(G) is the classifier’s score for class c and E[fc(G) | M(G)] its conditional expectation
given the membership code. This risk quantifies the predictive information lost when G is replaced
by its membership representation under M . Low values of SRc(M

⋆, Ec) indicate that motifs faith-
fully capture the classifier’s reasoning, with SRc(M

⋆, Ec) = 0 denoting an optimal explanation.

4 METRICS FOR EVALUATING MODEL-LEVEL EXPLANATIONS

As noted earlier, the true membership M⋆ is unobservable, so the true sufficiency risk SRc(M
⋆, Ec)

cannot be computed directly. We therefore consider proxy memberships M induced from the ex-
plainer’s motifs Ec, which approximate M⋆ but are inherently noisy. One might ask why we do
not simply compute the surrogate SRc(M,Ec), since both M(G) and fc(G) are observable. This
is feasible in principle as SRc(M,Ec) is the mean squared error between fc(G) and its prediction
from M(G) using E[fc(G) | M(G)] . However estimating the conditional expectation term re-
quires a high-dimensional regression, which is statistically unstable, sensitive to finite samples, and
yields no certified guarantees. A low empirical risk may reflect estimation error rather than genuine
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sufficiency. For these reasons, we propose computable metrics that serve as distribution-free upper
bounds on sufficiency risk, thereby providing reliable certificates of explanatory adequacy.

At this point, it is important to emphasize that, a priori, there is no guarantee that the sufficiency risk
under a proxy membership M has any meaningful relation to the risk under the true membership
M⋆. Without such a connection, bounding SRc(M,Ec) would say nothing about the unobservable
quantity SRc(M

⋆, Ec). The following theorem establishes precisely this link: it shows that the
sufficiency risk with any proxy membership is always greater than or equal to that with the true
membership. Hence, the risk under M⋆ is always upper bounded by the risk under any proxy M .
Theorem 1. Fix Ec. Let Y = fc(G). Let M⋆(G) be the (unobservable) true membership relative
to Ec, and let M(G) = h(M⋆, ε) be any proxy membership with ε ⊥ Y | M⋆. Then

SRc(M
⋆, Ec) ≤ SRc(M,Ec),

with equality if and only if Var
(
E[Y | M⋆] | M

)
= 0 almost surely.

The proof is deferred to Appendix B.1. Theorem 1 establishes the ground for introducing a proxy
membership function and the first metric Coverage using which the sufficiency risk under the proxy
membership can be upper bounded.

4.1 COVERAGE

To make sufficiency risk estimable, we introduce a structured proxy membership Mr based on
the graph embeddings of the target class and the embeddings of the explanation set Ec =
{M1, . . . ,MK}. Let f = H ◦ ϕ where ϕ : G → Rd is the classifier’s embedding function,
and write mk := ϕ(Mk) for the embedding of each motif. For a graph G, define its nearest-motif
distance D(G,Ec) := mink ∥ϕ(G)−mk∥2.

The proxy membership is then the function Mr : G × Ec → {1, . . . ,K} ∪ {⊥}

Mr(G,Ec) :=

{
argmink ∥ϕ(G)−mk∥2, if D(G,Ec) ≤ r,

⊥, otherwise,

where the null code ⊥ indicates that G is not assigned to any motif. For clarity, we will simply
write Mr(G) and D(G) in the remainder of the paper, with the dependence on Ec left implicit.

Intuitively, Mr(G) attaches each graph to its closest motif within radius r, and leaves it uncovered
otherwise. Note that Mr is constructed solely from embeddings and does not use the classifier score
Y . Hence, conditioned on the true membership M⋆, the residual noise in Mr is independent of Y
satisfying the assumption in Theorem 1.
Definition 1 (Coverage). Coverage is the conditional probability that a class-c instance is covered
by some motif.

Covc(r) := Pr
(
D(G) ≤ r

∣∣∣ G ∈ Ĝ c
)
.

High coverage means most positive instances for class c are explained by motifs in Ec, whereas low
coverage indicates explanatory insufficiency.
Theorem 2 (Bounding Sufficiency Risk with Coverage). Assume the classifier head H in the
factorization f = H ◦ ϕ is L-Lipschitz on ϕ(G). Then for any r > 0, the sufficiency risk under the
proxy membership Mr satisfies

SRc(Mr, Ec) ≤ L2 E
[
D(G)2 1{D(G) ≤ r}

∣∣∣ G ∈ Ĝ c
]
+ 1

4

(
1− Covc(r)

)
.

Moreover, since D(G)2 ≤ r2 whenever D(G) ≤ r, we obtain the coarser bound

SRc(Mr, Ec) ≤ L2r2 Covc(r) + 1
4

(
1− Covc(r)

)
.

The proof is deferred to Appendix B.2. Theorem 2 establishes a computable coverage-based cer-
tificate for the sufficiency risk of explanations. A natural question is: for which choice of radius r
does this bound become tightest? The following result shows that the optimal choice is the universal
radius r⋆ = 1/(2L), independent of the distribution of D(G).

4
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Theorem 3 (Optimal radius for the coverage certificate). Under the setting of Theorem 2, con-
sider the coverage-based bound

B(r) = L2 E[D(G)2 1{D(G) ≤ r} | G ∈ Ĝ c] + 1
4 (1− Covc(r)).

Then B(r) is minimized at r⋆ = 1
2L .

The proof is deferred to Appendix B.3. The result of Theorem 3 extends verbatim to a scale-
invariant, angular formulation on normalized embeddings (Appendix A) which is used in practice
compute the Coverage. Together, these results imply that evaluating explanations at radius r⋆ yields
the tightest certified guarantee on sufficiency risk, regardless of the underlying distribution of dis-
tances. The Lipschitz condition required for Theorem 2 is mild, since classifier heads such as linear
layers or shallow MLPs with standard activations are Lipschitz and admit efficient spectral-norm
based estimates. While the existence of such an L suffices for the coverage bound, its explicit value
becomes relevant only in Theorem 3, where it determines r⋆.

4.2 GREEDY GAIN AREA: MEASURING DISTRIBUTION OF COVERAGE

Coverage at the optimal radius r⋆ provides a certified upper bound on sufficiency risk, but it does
not reveal how this coverage is distributed across motifs. An explainer may achieve its coverage
by relying almost entirely on a single motif, leaving others redundant, or it may distribute coverage
more evenly across motifs. To capture this, we introduce the Greedy Gain Area (GGA).

Formally, given Ec = {M1, . . . ,MK}, ϕ(Mi) = mi and radius r⋆, define Sk(r
⋆) = {G ∈ Ĝ c :

∥ϕ(G) −mk∥ ≤ r⋆} as the set of class-c graphs covered by motif Mk. We construct a greedy set
cover by iteratively selecting motifs: at step j, the motif that yields the largest marginal increase in
coverage is chosen. Let Ij ⊆ {1, . . . ,K} denote the set of selected motif indices after j steps. The

cumulative coverage fraction after j motifs is then αj = 1

|Ĝ c|

∣∣∣⋃k∈Ij
Sk(r

⋆)
∣∣∣, j = 1, . . . ,K.

Definition 2 (Greedy Gain Area). The Greedy Gain Area (GGA) of Ec at radius r⋆ is the normal-
ized area under the greedy coverage curve:

GGA(Ec, r
⋆) :=

1

K

K∑
j=1

αj .

GGA measures how efficiently motifs contribute to coverage: it is high when a few motifs account
for most of the explanatory power and low when many motifs are required. Its maximum value
equals the coverage attained by the explainer. When coverage is high, a GGA value close to cov-
erage indicates parsimonious explanations where a few motifs suffice, whereas a low GGA reflects
diversity with many motifs contributing. When coverage is low, a GGA value close to coverage
signals mode collapse, with one motif dominating, while a low GGA denotes poor explanations that
are neither sufficient nor diverse.

GGA also admits formal guarantees: it certifies how much coverage is retained when only a fixed
budget of motifs is used, and it bounds the resulting sufficiency risk. These guarantees, together
with full statements and proofs, are presented in Appendix C.

A different question concerns whether generating additional motifs beyond the given set could still
improve explanatory sufficiency. To address this, we examine the greedy coverage curve: once its
marginal gains stagnate, further motifs cannot significantly reduce the certified sufficiency risk. In
such cases, the explainer can be considered to have already reached its maximal achievable coverage,
and producing further motifs yields only marginal benefits. The next theorem formalizes this idea.

Theorem 4 (Diagnostic stopping criterion from stagnation). Let {αj}Kj=1 be the greedy coverage
curve at r⋆ with marginal gains ∆j = αj − αj−1 and final coverage α⋆ = Covc(r

⋆). Fix t ∈
{1, . . . ,K} and suppose the curve stagnates after t motifs in the sense that ∆j ≤ ϵ for all j > t.
Let E(t)

c be the first t motifs under greedy selection and Ec the full set of motifs. Then, under the
setting of Theorem 2,

SRc(Mr⋆ , E
(t)
c ) − SRc(Mr⋆ , Ec) ≤ 1

4

(
α⋆ − αt

)
≤ 1

4 (K − t) ϵ.

5
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In particular, once the marginal gains flatten below ϵ, the certified benefit of adding the remaining
motifs is at most 1

4 (K − t)ϵ. Thus stagnation serves as a diagnostic that the explainer has already
achieved essentially all of the coverage it can provide.

In practice, after generating K motifs, one may inspect the greedy coverage curve. If the curve has
already stagnated, Theorem 4 guarantees that producing further motifs cannot yield a meaningful
reduction in sufficiency risk. Hence, the curve itself provides a diagnostic criterion for deciding
when explanation generation can be safely terminated.

4.3 OVERLAP

Even when an explanation set achieves high coverage, different motifs may end up covering largely
the same subset of graphs. Such redundancy inflates apparent explanatory capacity without actually
broadening the scope of what is explained. To make this effect explicit, we introduce the Overlap
metric, which measures the degree to which motifs provide duplicated rather than complementary
coverage.
Definition 3 (Overlap). At radius r⋆, define

Overlap =

∑K
k=1 |Sk(r

⋆)| − |U(r⋆)|
max{1, |U(r⋆)|}

, U(r⋆) =

K⋃
k=1

Sk(r
⋆).

The numerator measures redundant coverage across motifs, while the denominator normalizes by
the effective domain size. Overlap takes values in [0,K − 1], with 0 indicating no redundancy and
K − 1 indicating complete redundancy.

Taken together, the three metrics provide a holistic evaluation of model-level explanations: coverage
certifies sufficiency, GGA characterizes how coverage is accumulated across motifs, and overlap
explicitly quantifies redundancy. An analysis of the computational cost of these metrics can be found
in Appendix F. We now turn to their empirical estimation, analyzing how reliably these population
metrics can be approximated from finite samples.

4.4 FINITE-SAMPLE CONCENTRATION OF THE METRICS

The metrics of coverage and greedy gain area are defined as population quantities, i.e., expectations
with respect to the distribution of class-c graphs. In practice, however, we only observe a finite
sample Ĝc = {G1, . . . , Gn} of size n. To make reliable use of such finite data, we derive concen-
tration bounds that quantify the estimation error of the empirical metrics Ĉovc and ĜGA. These
bounds quantify the maximum deviation from the population values at any chosen confidence level
δ, effectively yielding confidence intervals whose width shrinks with n. Equivalently, they pro-
vide confidence intervals that support principled comparison between explainers. Non-overlapping
intervals imply statistically distinguishable performance at the population level.

All probability statements below are with respect to the randomness of drawing these n graphs i.i.d.
from the conditional distribution given G ∈ Ĝ c.

Concentration Bounds for Coverage: Let, Xi = 1{D(Gi) ≤ r} be a random variable. At the
population level, the true coverage is the expectation Covc(r) = E[Xi]. However, at the empirical
level, with n observed graphs, coverage is estimated by the sample average Ĉovc(r) = 1

n

∑n
i=1 Xi.

The next result quantifies how close this empirical estimate is to its population counterpart.
Proposition 1 (Concentration of coverage). For any δ ∈ (0, 1), with probability at least 1− δ,∣∣Ĉovc(r)− Covc(r)

∣∣ ≤
√

1
2n log 2

δ .

Concentration Bounds for GGA: As with coverage, GGA can be defined at both the population
and empirical levels. At the population level, let αj denote the expected coverage after selecting j

motifs according to the greedy procedure. Then the true GGA is GGA = 1
K

∑K
j=1 αj .

At the empirical level, with n observed graphs, the coverage after j motifs is given by α̂j , and the
corresponding estimate of GGA is ĜGA = 1

K

∑K
j=1 α̂j .

6
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Proposition 2 (Concentration of GGA). For any δ ∈ (0, 1), with probability at least 1− δ,∣∣ĜGA−GGA
∣∣ ≤

√
1
2n log 2K

δ .

The proofs of Propositions 1 and 2 are deferred to Appendix B.5 and B.6.

Together, Propositions 1–2 establish bounds which translate directly into meaningful confidence in-
tervals. When n is small the intervals are wider, so only coarse distinctions between methods are
certified; however, clear performance gaps remain statistically significant. As n increases, the inter-
vals shrink at the rate O(n−1/2), enabling progressively finer comparisons between explainers while
preserving the same theoretical control. The time complexity bounds for computing the metrics on
finite samples data is shown in Appendix F.

5 EXPERIMENT

We validate the proposed metrics through controlled experiments designed to highlight key proper-
ties of explanations. In all our experiments, the classifier comprises an embedding function followed
by a linear classification head, allowing exact computation of its Lipschitz constant and the radius
r⋆ via the spectral norm. Also note that, Coverage and GGA values in Figs. 1 and 2 and Table 1 are
presented with Hoeffding bounds at significance level p = 0.05.

5.1 IDENTIFYING UNFAITHFULNESS AND MODE COLLAPSE

Detecting Unfaithfulness: We begin by testing whether the proposed metrics can distinguish faith-
ful from unfaithful explanations. We train a GNN classifier on the synthetic 4Shapes dataset, where
each class corresponds to one of four motifs Star, Lollipop, Grid or Tree. These motifs are attached
to random Barabási–Albert (BA) graphs. For evaluation, each class is assigned two explanation sets:
a good set containing 5 instances of the class-specific motif without the BA backbone and a bad set
containing 5 random BA graphs. The classifier attains 0.93 test accuracy, confirming that class iden-
tities based on the motifs are well learned. As shown in Figs. 1a–1b, good sets achieve both high
class scores and coverage, while random BA graphs may reach high class scores but always yield
zero coverage. Fig. 1c confirms that good motifs consistently lie closer to graph embeddings. This
shows class scores alone can mask unfaithfulness, whereas coverage reliably exposes it. In Ap-
pendix E, we show that Coverage aligns with established distributional notions and preserves order-
ing with radii changes. Specifically, explanation sets with higher coverage exhibit lower Wasserstein
(W1) distances to the class distribution, and the ordering between good and random motifs remains
stable across radii around r⋆.

(a) Coverage (b) Class Scores (c) Embedding-Motif Distances

Figure 1: a) Coverage b) Class Scores and c) Distance of Embeddings from Nearest Motifs for Good
(Blue) and Bad (Orange) explanation sets on 4Shapes.

Diagnosing Redundancy and Partial Explanations: We test whether the metrics capture redun-
dancy in overly similar explanation sets and diagnose when they only partially reflect the motifs
recognized by the classifier. To this end, we build a synthetic MixedShapes dataset by merging
pairs of 4Shapes classes: one with Lollipop and Star motifs, the other with Grid and Tree motifs.
For each class, we compare a unimodal explanation set (containing a single motif) with a bimodal ex-
planation set (containing both motifs). As shown in Fig. 2, while both sets attain similar mean class

7
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(a) Class Scores and Coverage (b) Overlap (c) GGA Curve

Figure 2: Plots of a) Coverage (Solid Bars) and Class Scores (Dashed Bars) b) Overlap and c)
GGA Curve for MixedShapes for Bimodal (Blue) and Unimodal (Orange) sets.

scores, bimodal sets achieve much higher coverage explaining a broader range of instances, while
unimodal sets show high overlap as motifs cover largely the same subset. The GGA curves also
show that bimodal motifs steadily expand coverage, whereas unimodal coverage quickly saturates.
Thus, the metrics expose sufficiency and redundancy properties invisible to class scores. Additional
analysis in Appendix G shows how explanation embeddings align with graph embeddings.

5.2 EXPERIMENTS USING STANDARD MODEL-LEVEL EXPLAINERS

We conducted experiments with three standard model-level explainers XGNN Yuan et al. (2020),
GNNInterpreter Wang & Shen (2023) and PAGE Shin et al. (2024) across four diverse real-world
datasets: MUTAG Debnath et al. (1991), IMDB-Multi Yanardag & Vishwanathan (2015), REDDIT-
Binary Yanardag & Vishwanathan (2015), and the large scale OGB-MOLHIV Hu et al. (2020)
dataset. The datasets and classifiers are discussed in detail in Appendix D.

XGNN GNNInterpreter PAGE

Mutagenic

Non-
mutagenic

MUTAG

ClassDataset

Class 0

Class 1

Reddit-B

Class 0

IMDB-
Multi Class 1

Class 2

C
F
Br
N
I
O
Cl

Example

Figure 3: Explanations and Examples on MUTAG, REDDIT-B and IMDB-Multi datasets

For each target class, an explanation set of ten motifs is generated by each explainer. The qualitative
(Fig. 3) and quantitative (Table 1) results reveal distinct behaviors. On MUTAG, XGNN and PAGE
achieve higher Coverage than GNNInterpreter due to their design choices: XGNN enforces valency
constraints, and PAGE discovers connected motifs, yielding explanations aligned with molecular
structures. GNNInterpreter, lacking such domain-aware constraints, generates disconnected and
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Table 1: Quantitative Results on All Real Datasets

Methods Dataset Class Coverage GGA Overlap Class Score

XGNN MUTAG Mutagenic 0.773±0.117 0.710±0.150 7.314 0.966±0.005
Non-mutagenic 0.885±0.185 0.829±0.235 8.400 1.000±0.000

GNN-
Interpreter

MUTAG Mutagenic 0.411±0.117 0.344±0.150 6.573 0.987±0.002
Non-mutagenic 0.599±0.185 0.514±0.235 4.674 1.000±0.000

Reddit-B Class 0 0.864±0.051 0.629±0.065 6.511 0.844±0.069
TableClass 1 0.772±0.038 0.529 ±0.048 5.361 0.975±0.004

OGB-
MolHIV

HIV 0.812±0.117 0.773±0.141 7.781 0.449±0.004
non-HIV 0.431±0.013 0.362±0.016 7.944 0.929±0.021

IMDB-
Multi

Class 0 0.911±0.018 0.893±0.061 8.599 0.650±0.004
Class 1 0.956±0.077 0.956±0.092 9.000 0.754±0.000
Class 2 0.976±0.062 0.976±0.074 9.000 0.711±0.003

PAGE

MUTAG Mutagenic 0.778±0.117 0.721±0.150 5.611 0.992±0.002
Non-mutagenic 0.823±0.185 0.639±0.235 7.682 0.926±0.003

Reddit-B Class 0 0.799±0.051 0.681±0.065 8.694 0.776±0.010
Class 1 0.575±0.038 0.323±0.048 6.171 0.745±0.009

OGB-
MolHIV

HIV 0.737±0.117 0.713±0.141 8.944 0.578±0.008
non-HIV 0.311±0.013 0.215±0.016 3.872 0.937±0.004

IMDB-
Multi

Class 0 0.947±0.018 0.947±0.061 9.000 0.955±0.001
Class 1 0.996±0.077 0.996±0.092 9.000 0.856±0.005
Class 2 0.966±0.061 0.966±0.074 9.000 0.855±0.004

chemically invalid graphs that attain high class scores but low Coverage. On REDDIT and IMDB,
XGNN completely fails(scores reported in Appendix I), producing trivial structures (single nodes or
lines Fig. 3) with zero Coverage, GGA, Overlap, and low class scores. XGNN also cannot be run
on OGB-MOLHIV, since it only supports graphs with discrete node features.

On REDDIT-Binary, where graphs represent large user interaction networks, GNNInterpreter sur-
passes PAGE in both Coverage and class score, likely because PAGE’s subgraph search fails on large
graphs. On IMDB-Multi, both methods achieve high Coverage, GGA, and overlap, indicating that
few motifs suffice to explain class identity, though PAGE attains significantly higher class scores.

On the large-scale OGB-MOLHIV dataset, none of the methods achieve more than 0.5 Coverage on
the majority non-HIV class, and GGA values remain close to Coverage, suggesting stagnation where
adding more explanations would not improve coverage. For the minority HIV class, Coverage values
are higher but class scores remain low. This stems from the severe class imbalance (∼4%), where
the classifier memorizes specific minority molecules rather than learning robust discriminative pat-
terns, leaving the explainers unable to extract motifs that trigger confident predictions. Appendix H
supports this interpretation: even removing a single random node from a minority molecule flips its
label, indicating that the classifier has memorized examples rather than generalizing.

6 CONCLUSION

In this paper, we have examined the limitations of prevailing practices for evaluating model-level
explanations in GNNs, highlighting the inadequacy of solely using class score. Motivated by the goal
of upper bounding sufficiency risk, we introduced three complementary metrics-Coverage, GGA and
Overlap—that capture essential properties of explanation sets and are supported by strong theoretical
guarantees. Through extensive experiments, we demonstrated that these metrics reliably diagnose
unfaithfulness, redundancy, and mode collapse, which remain hidden when evaluation relies only on
class score. Our contributions advance the foundations of explainable graph learning by providing
the first rigorous theoretically grounded evaluation protocol for model-level explanations.

Reproducibility Statement The code of our project for computing the metrics can be anony-
mously found here. The proofs of all proposed theorems are in Appendix B. XGNN, GNNInter-
preter and PAGE were run using their official implementations which are publicly available. The
datasets and the classifiers used on each dataset is detailed in Appendix D.
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A COVERAGE IN ANGULAR DISTANCE

Why angular distances? In practice, the Euclidean geometry underlying r⋆E = 1
2L can be fragile

to arbitrary rescalings of the embedding space or the classifier head (e.g., layerwise gain, feature nor-
malization choices), which stretch or shrink ∥ϕ(G)−mk∥2 without altering the decision boundary.
As a result, the Euclidean coverage at r⋆E may saturate to 0 or 1 and become uninformative, de-
spite the validity of the theoretical guarantee. To obtain a scale-invariant notion of proximity while
retaining a distribution-free upper bound on sufficiency risk, we evaluate coverage on normalized
embeddings using angular distance. The next result provides the exact analogue of the Euclidean
bound and its optimizer in this scale-invariant geometry.

Theorem 5 (Coverage–risk bound and optimal radius in angular geometry). Let f = H ◦ ϕ and
assume the head H is L-Lipschitz w.r.t. the Euclidean norm on ϕ(G): |H(z1) −H(z2)| ≤ L∥z1 −
z2∥2 for all z1, z2 ∈ ϕ(G). Define normalized embeddings ϕ̃(G) = ϕ(G)/∥ϕ(G)∥2 and m̃k =
mk/∥mk∥2, and the angular distance

Dθ(G) := min
k

θ
(
ϕ̃(G), m̃k

)
, θ(u, v) := arccos

(
⟨u, v⟩

)
.

Let Covθc(rθ) := Pr
(
Dθ(G) ≤ rθ | G ∈ Ĝ c

)
. Then for any rθ ∈ (0, π],

SRc(Mrθ , Ec) ≤ L2 E
[(
2 sin(12Dθ(G))

)2
1{Dθ(G) ≤ rθ}

∣∣∣G ∈ Ĝ c
]
+ 1

4

(
1−Covθc(rθ)

)
, (1)

and the right-hand side is minimized at

r⋆θ = 2 arcsin
(
min{1, 1

4L}
)
.

When L ≥ 1
4 , this simplifies to r⋆θ = 2arcsin( 1

4L ).

Proof. Define the proxy Mrθ ∈ {1, . . . ,K,⊥} by assigning G to the index of its nearest motif in
angle if Dθ(G) ≤ rθ, and to ⊥ otherwise. Let Y := fc(G) ∈ [0, 1]. By variance decomposition,

SRc(Mrθ , Ec) =

K∑
k=1

Pr(Mrθ = k)Var(Y | Mrθ = k) + Pr(Mrθ =⊥)Var(Y | Mrθ =⊥).

For a covered bin (Mrθ = k), Var(Y | Mrθ = k) ≤ E[(Y − fc(Mk))
2 | Mrθ = k]. On the unit

sphere, the chord–angle identity yields ∥z̃ − m̃∥2 = 2 sin
(
1
2θ(z̃, m̃)

)
. Using Lipschitzness of H in

Euclidean norm,

|fc(ϕ̃(G))− fc(m̃k)| ≤ L ∥ϕ̃(G)− m̃k∥2 = 2L sin
(
1
2θ(ϕ̃(G), m̃k)

)
.

Averaging over covered bins gives the expectation term in equation 1. For the uncovered bin, since
Y ∈ [0, 1], Var(Y | Mrθ =⊥) ≤ 1

4 , giving the second term.

For optimality, let Fθ(r) := Pr(Dθ(G) ≤ r | G ∈ Ĝ c) and write the bound as

Bθ(rθ) = L2

∫
[0,rθ]

4 sin2( t2 ) dFθ(t) + 1
4

(
1− Fθ(rθ)

)
.

For 0 ≤ r1 < r2 ≤ π,

Bθ(r2)−Bθ(r1) =

∫
(r1,r2]

(
4L2 sin2( t2 )−

1
4

)
dFθ(t).

Hence Bθ decreases while 4L2 sin2(rθ/2) ≤ 1
4 and increases afterwards. The minimizer solves

2 sin(r⋆θ/2) =
1
2L . If L ≥ 1

4 , this yields r⋆θ = 2arcsin( 1
4L ); otherwise the inequality holds for all

t ∈ [0, π] and the minimizer is the maximal feasible radius. Compactly, r⋆θ = 2arcsin(min{1, 1
4L}).
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B PROOFS

B.1 PROOF OF THEOREM 1

Proof. First note that for any M , SRc(M,Ec) = E
[
Var(Y | M)

]
. Set Z := E[Y | M⋆]. By the

tower property of expectation,

E[Y | M ] = E
[
E[Y | M⋆] | M

]
= E[Z | M ].

By the law of total variance applied inside M ,

Var(Y | M) = E
[
Var(Y | M⋆) | M

]
+Var(Z | M) ≥ E

[
Var(Y | M⋆) | M

]
.

Taking expectations yields

SRc(M,Ec) = E
[
Var(Y | M)

]
≥ E

[
Var(Y | M⋆)

]
= SRc(M

⋆, Ec),

as claimed.

B.2 PROOF OF THEOREM 2

Proof. Let Y = fc(G). By variance decomposition,

SRc(Mr, Ec) = E[Var(Y | Mr(G))] =

K∑
k=1

Pr(Mr = k) Var(Y | Mr = k) + Pr(Mr =⊥) Var(Y | Mr =⊥).

We show the total bound by bounding the covered and uncovered parts.

Covered Part (Mr = k). For each k, let Mk ∈ Ec denote the k-th motif with embedding mk =
ϕ(Mk). For any random variable Z and constant a, Var(Z) ≤ E[(Z−a)2]. Apply this with Z = Y
and a = fc(Mk) under the conditional distribution given Mr = k:

Var(Y | Mr = k) ≤ E
[(
fc(G)− fc(Mk)

)2 | Mr = k
]
.

By L-Lipschitzness of H on ϕ(G),

|fc(G)− fc(Mk)| ≤ L ∥ϕ(G)−mk∥2,

hence
Var(Y | Mr = k) ≤ L2 E

[
∥ϕ(G)−mk∥22 | Mr = k

]
.

Averaging over k with weights Pr(Mr = k) yields

K∑
k=1

Pr(Mr = k) Var(Y | Mr = k) ≤ L2 E[D(G)2 1{D(G) ≤ r}].

Uncovered Part (Mr =⊥). Here Mr takes a single value, so

Pr(Mr =⊥) Var(Y | Mr =⊥) =
(
1− Covc(r)

)
Var(Y | Mr =⊥).

Since Y = fc(G) ∈ [0, 1], any conditional variance satisfies Var(Y | ·) ≤ 1/4. Thus

Pr(Mr =⊥) Var(Y | Mr =⊥) ≤ 1
4 (1− Covc(r)).

Combining the covered and uncovered parts establishes the claim.

B.3 PROOF OF THEOREM 3

Proof. Let F (r) = Pr(D(G) ≤ r | G ∈ Ĝ c) denote the cumulative distribution function of D(G).
For two radii 0 ≤ r1 < r2, the change in the bound is

B(r2)−B(r1) = L2

∫
(r1,r2]

t2 dF (t) − 1
4

(
F (r2)− F (r1)

)
.
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This expression rewrites as

B(r2)−B(r1) =

∫
(r1,r2]

(
L2t2 − 1

4

)
dF (t).

We now analyze the sign of the integrand: - If r2 ≤ 1/(2L), then for all t ∈ (r1, r2] we have
L2t2 ≤ 1

4 . Hence each term inside the integral is nonpositive, so B(r2) − B(r1) ≤ 0. Therefore
B(r) is nonincreasing on [0, 1/(2L)]. - If r1 ≥ 1/(2L), then for all t ∈ (r1, r2] we have L2t2 ≥ 1

4 .
Hence each term inside the integral is nonnegative, so B(r2) − B(r1) ≥ 0. Therefore B(r) is
nondecreasing on [1/(2L),∞).

Combining these two facts, the function B(r) decreases up to r = 1/(2L) and increases thereafter.
Thus B(r) achieves its global minimum at

r⋆ = 1
2L .

B.4 PROOF OF THEOREM 4

Proof. All expectations/probabilities are with respect to G ∈ Ĝ c. By Theorem 2, for any explanation
set E at r⋆,

SRc(Mr⋆ , E) ≤ L2 E
[
DE(G)2 1{DE(G) ≤ r⋆}

]
+ 1

4

(
1− αE

)
,

where DE(G) is the nearest-motif distance to E and αE its coverage fraction. For the greedy prefix
E

(t)
c and the full set Ec, enlarging the motif set cannot increase the distance term, i.e., DEc

(G) ≤
D

E
(t)
c
(G) and hence

E
[
DEc

(G)2 1{DEc
(G) ≤ r⋆}

]
≤ E

[
D

E
(t)
c
(G)2 1{D

E
(t)
c
(G) ≤ r⋆}

]
.

Therefore
SRc(Mr⋆ , E

(t)
c )− SRc(Mr⋆ , Ec) ≤ 1

4

(
α⋆ − αt

)
.

If ∆j ≤ ϵ for all j > t, then α⋆ − αt =
∑K

j=t+1 ∆j ≤ (K − t)ϵ, yielding the stated bound.

B.5 PROOF OF PROPOSITION 1

Proof. By Hoeffding’s inequality for bounded independent variables in [0, 1], for any t > 0,

Pr
(
|Ĉovc(r)− Covc(r)| ≥ t

)
≤ 2 exp(−2nt2).

Set the right-hand side to δ and solve for t: 2 exp(−2nt2) = δ ⇐⇒ t =
√

1
2n log 2

δ . Equivalently,

Pr
(
|Ĉovc(r)− Covc(r)| ≤

√
1
2n log 2

δ

)
≥ 1− δ.

B.6 PROOF OF PROPOSITION 2

Proof. Fix j. Write α̂j = 1
n

∑n
i=1 Xi,j with indicators Xi,j ∈ [0, 1]. Hoeffding gives Pr(|α̂j −

αj | ≥ t) ≤ 2 exp(−2nt2) for any t > 0. Apply a union bound over j = 1, . . . ,K:

Pr
(

max
1≤j≤K

|α̂j − αj | ≥ t
)
≤ 2K exp(−2nt2).

Set the RHS to δ and solve for t: 2K exp(−2nt2) = δ ⇐⇒ t =
√

1
2n log 2K

δ . Finally,

∣∣ĜGA−GGA
∣∣ = ∣∣∣ 1

K

K∑
j=1

(α̂j − αj)
∣∣∣ ≤ max

j
|α̂j − αj |

which yields the stated bound with probability at least 1− δ.
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C ADDITIONAL GUARANTEES USING GGA

When only a budget of t < K motifs are retained for interpretability, can we certify how much cov-
erage is still guaranteed? The following theorem shows that GGA provides exactly such a guarantee:
it lower bounds the prefix coverage αt at every step t, using only the achievable coverage Covc(r

⋆)
and the average area summarized by GGA.
Theorem 6 (Prefix coverage guarantee from GGA). Let α⋆ = Covc(r

⋆) be the total achievable
coverage at r⋆. Then for every t ∈ {1, . . . ,K}, the coverage obtained by the first t greedy motifs is
certified to satisfy

αt ≥ K GGA − (K − t)α⋆.

Thus GGA provides a distribution-free lower bound on prefix coverage, linking overall efficiency to
budgeted motif selection.

Proof. We have
K∑
j=1

αj =

K∑
j=1

j∑
i=1

∆i =

K∑
i=1

(K − i+ 1)∆i.

Split the sum at t:
K∑
j=1

αj =

t∑
i=1

(K − i+ 1)∆i +

K∑
i=t+1

(K − i+ 1)∆i.

For i ≤ t, (K − i+ 1) ≥ (K − t+ 1), and for i > t, (K − i+ 1) ≤ (K − t). Hence

K GGA =

K∑
j=1

αj ≤ (K − t+ 1)αt + (K − t)(α⋆ − αt).

Rearranging gives αt ≥ K GGA− (K − t)α⋆.

Its immediate consequences: bounding the number of motifs required to reach a target coverage
fraction and the corresponding sufficiency risk of such prefixes are presented next.
Corollary 1 (Motif budget for target fraction of coverage). Fix p ∈ (0, 1] and let Tp = min{j :
αj ≥ pα⋆} be the number of motifs required to reach p fraction of the achievable coverage α⋆.
Then

Tp ≤
⌈
K + p − K GGA

α⋆

⌉
.

Proof. By Theorem 6, for any t we have

αt ≥ K GGA− (K − t)α⋆.

If K GGA − (K − t)α⋆ ≥ pα⋆, then αt ≥ pα⋆ and hence Tp ≤ t. Rearranging yields t ≥
K + p−K(GGA/α⋆). Taking the smallest integer t that satisfies this gives the bound.

Corollary 2 (Risk bound under motif budget). Let E(t)
c denote the greedy prefix of size t at r⋆, with

coverage αt. Then by Theorem 2, the sufficiency risk satisfies

SRc(Mr⋆ , E
(t)
c ) ≤ L2 E[D(G)2 1{D(G) ≤ r⋆}] + 1

4 (1− αt).

Using Theorem 6, this implies the certified bound

SRc(Mr⋆ , E
(t)
c ) ≤ L2 E[D(G)2 1{D(G) ≤ r⋆}] + 1

4

(
1−max{0,K GGA− (K − t)α⋆}

)
.

D DETAILED EXPERIMENTAL SETUP

All experiments were conducted using the PyTorch Geometric library Fey & Lenssen (2019) for
implementing and training the graph neural networks, and the NetworkX library Hagberg et al.
(2008) for synthetic graph generation and visualization. The experiments were performed on a
high-performance workstation equipped with an Intel Xeon Processor with 40 cores, 256 GB RAM,
and an NVIDIA Quadro RTX 6000 GPU (24 GB).
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Algorithm 1 4Shapes Dataset Generation

Require: Number of classes C = 4, number of graphs per class N , range of motifs per graph
[mmin,mmax]

Ensure: Synthetic graph dataset D
1: for each class c ∈ {0, 1, 2, 3} do
2: for i = 1 to N do
3: Generate a Barabási–Albert (BA) graph as the backbone
4: Select motif type based on class c:

• Class 0: Star
• Class 1: Grid
• Class 2: Lollipop
• Class 3: Balanced tree

5: Sample m ∼ U [mmin,mmax]
6: for j = 1 to m do
7: Generate a motif of the chosen type
8: Attach the motif to the backbone by connecting a random node in the backbone with a

random node in the motif
9: end for

10: Add the resulting graph with label c to D
11: end for
12: end for
13: return D

D.1 DATASETS

4Shapes. The synthetic dataset consists of 4000 graphs divided into four classes with 1000 graphs
each. Each graph is generated by first constructing a Barabási–Albert (BA) backbone. Depending on
the class label, one of four motif types (star, grid, lollipop, or balanced tree) is selected. A random
number of motifs is sampled and attached to the backbone by connecting a random node from the
motif to a random node in the backbone. Algorithm 1 demonstrates the generation algorithm of the
dataset.

MixedShapes. This is a synthetic dataset created by merging the Star ad Lollipop classes and the
Grid and Tree classes in the 4Shapes dataset.

MUTAG. MUTAG Debnath et al. (1991) is a benchmark dataset of 188 molecular graphs, each
labeled according to the mutagenic effect of the compound on Salmonella typhimurium. In these
graphs, nodes denote atoms (e.g., C, O, N) and edges represent chemical bonds. Node features
typically encode atom types, while edge features capture bond types. Although relatively small,
MUTAG is widely used for evaluating graph classification methods and explanation approaches, as
models often highlight substructures such as functional groups that influence mutagenicity.

REDDIT-B. REDDIT-B Yanardag & Vishwanathan (2015) is a large-scale social network dataset
containing 2,000 graphs constructed from Reddit discussion threads. Each graph corresponds to a
thread, with nodes representing users and edges indicating reply interactions. The task is binary
classification: Q&A communities, which yield tree-like structures, versus discussion communities,
which form denser interaction patterns. With graphs often containing hundreds of nodes and no node
features, REDDIT-B is commonly used to benchmark GNN scalability and their ability to capture
structural information from purely relational data.

IMDB-MULTI. IMDB-MULTI Yanardag & Vishwanathan (2015) consists of 1,500 ego-networks
extracted from the Internet Movie Database. Each graph corresponds to an actor/actress, with nodes
as actors and edges connecting pairs who co-appear in movies. Graphs are labeled into three classes
based on the predominant genre of the target actor’s movies: Action, Comedy, or Drama. These
graphs are sparse and lack node features, making the dataset a standard benchmark for evaluating
GNN performance on social networks with limited attribute information.
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OGBG-MOLHIV. OGBG-MOLHIV, part of the Open Graph Benchmark (OGB)Hu et al. (2020),
contains 41,127 molecular graphs with the binary prediction task of determining whether a molecule
inhibits HIV replication. Rich atom-level (type, chirality, valence) and bond-level features are pro-
vided. Dataset splits are defined using scaffold splitting, ensuring structurally distinct molecules
across train, validation, and test sets. As a large-scale and chemically meaningful benchmark, ogbg-
molhiv is widely adopted for testing the generalization ability of GNNs in molecular property pre-
diction and drug discovery applications.

D.2 CLASSIFIER DETAILS

Model architecture and Training For the IMDB-MULTI, REDDIT-B and OGB datasets, we em-
ploy a Graph Isomorphism Network (GIN) architecture. The encoder consists of five stacked GIN-
Conv layers, each parameterized by a two-layer MLP with ReLU activation. Batch normalization
and dropout (p = 0.5) are applied after each layer to improve stability and prevent overfitting. The
final node embeddings are aggregated using global mean pooling to obtain a fixed-size graph-level
representation. This pooled representation is passed through a fully connected layer with ReLU
activation, followed by a linear classifier that outputs logits over the class labels. The model is
trained using the Adam optimizer with a learning rate of 10−3 and a cross-entropy loss function. A
StepLR scheduler with decay factor γ = 0.5 is applied every 20 epochs to reduce the learning rate
adaptively.

On the MUTAG dataset the general architecture and the training paradigm remains the same with
the only modification being the use of two stacked GINConv layers.

Table 2: Dataset Properties and Classifier Accuracy

Dataset #Classes #Graphs Average #Nodes Average #Edges Classifier Accuracy

IMDB-Multi 3 1500 19.77 96.53 0.835

Reddit-Binary 2 2000 429.63 497.75 0.871

MUTAG 2 188 17.93 19.79 0.8723

OGB-MOLHIV 2 41127 25.51 54.94 0.9701

4Shapes 4 2000 41.53 103.20 0.9320

MixedShapes 2 2000 41.53 103.20 0.9563

E BEHAVIOUR OF COVERAGE: ALIGNMENT WITH DISTRIBUTIONAL
DISTANCE AND ROBUSTNESS TO RADIUS CHANGES

Relationship with Wasserstein Distance: To verify that coverage reflects distributional fidelity,
we compare it against the Wasserstein (W1) distance between explanation sets and the target class
distribution. We generate 1000 explanation sets on the 4Shapes dataset for each class and group
them into quantiles based on coverage. Figure 4 shows violin plots of W1 distances for each quantile.
The pattern is clear: sets with higher coverage exhibit substantially lower and more concentrated W1
values, while low-coverage sets show large and dispersed distances. This confirms that coverage is
not only a sufficiency certificate but also correlates with being in-distribution: explanations that
align more closely with the class distribution naturally achieve higher coverage.

Robustness to Radii Changes: We further test robustness to the choice of radius r on which the
coverage is evaluated. For this coverage is evaluated over a sweep of radii around r⋆, comparing
good and random motif sets on the 4Shapes dataset. As shown in Figure 5,across all radii, the
ordering remains invariant: good motifs consistently achieve higher coverage than random ones,
with no reversals observed. This stability shows that coverage-based comparisons are robust to
radius selection.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

W
1 

D
is

ta
nc

e

Coverage Quantile

Figure 4: Distribution of W1 distances across coverage quantiles (1,000 explanation sets). Higher
coverage corresponds to lower and less variable W1, indicating stronger alignment with the class
distribution.

Figure 5: Coverage variance with r⋆

F COMPUTATIONAL COMPLEXITY OF METRICS

We analyze the computational cost of computing the proposed metrics. Let N denote the number of
positive embeddings and M the number of motif embeddings considered for a class.

Metric Complexity Notes
Coverage O(NM) Distance matrix + minimum operation
GGA O(NM2) Greedy selection of motifs
Overlap O(NM) Computed from coverage sets

Table 3: Computational complexity of the proposed metrics.

Coverage. Coverage requires computing the minimum distance from each of the N embeddings
to the M motifs. This involves constructing an N ×M distance matrix and a minimum operation,
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leading to a complexity of
O(NM).

GGA (Greedy Gain Area). The GGA curve is obtained by iteratively adding motifs that maxi-
mize marginal coverage. At each iteration, coverage gains for all remaining motifs are evaluated,
costing O(NM) per iteration. Over up to K iterations (with K ≤ M ), this yields a worst-case
complexity of

O(NM2).

Overlap. Overlap is computed from the coverage sets constructed during GGA. Since these sets
are already available, the additional computation is linear in the number of memberships, giving

O(NM).

Summary. The complexities of the three metrics are summarized in Table 3. In practice, the
number of motifs M is small ( 5–10), so the quadratic dependence in GGA remains computationally
feasible.

G FURTHER ANALYSIS ON THE MIXEDSHAPES DATASET

We compare the explanation sets constructed from Both-shapes motifs (bimodal, containing both
motif types per class) and Single-shape motifs (unimodal, containing only one motif type per class).
The t-SNE visualization in Figure 6 a shows that the bimodal explanation set achieves a broader
and more even coverage of the embedding space, with motifs distributed across diverse regions.
In contrast, the unimodal set concentrates motifs in fewer regions, leaving large portions of the
embedding space underrepresented.

The nearest-distance distributions in Figure 6 b confirm this observation. Embeddings tend to lie
closer to their nearest motifs under the bimodal set, whereas the unimodal set results in larger dis-
tances, indicating poorer representational coverage. Together, these results highlight that explana-
tion sets combining multiple motif types provide better alignment with the embedding distribution
and are thus more representative.

(a) t-SNE of embeddings with motifs. (b) Nearest motif distance distributions.

Figure 6: Comparison of bimodal (Both-shapes) vs unimodal (Single-shape) explanation sets on the
MixedShapes dataset.

H ANALYSIS ON THE OGB DATASET

Figure 7a shows the confusion matrix of the classifier trained on the OGB dataset. It can be observed
that the classifier has a high rate of misclassification on the minority class. We saw that the explainers
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(a) Confusion Matrix of the Classifier. (b) Proportion of label flipping minority-class graphs

Figure 7: Classifier Analysis on the OGB-Molhiv Dataset

on the minority class struggled to achieve a high class score on this dataset even though they attained
relatively high Coverage scores. Our hypothesis for this phenomenon was that the classifier has
memorized instances it has classified to the minority class rather than learning a general pattern.
This is why the no discriminative motif that the explainers came up with attained a high class score.
We verify our hypothesis using a controlled experiment. We randomly choose 50 graphs that the
classifier has classified to the minority class and progressively delete 1-3 randomly chosen nodes
from each graph. Figure 7b shows the proportion of graphs whose labels flip upon deletion of
nodes. It can be seen that after deletion of one node 67% of the graphs flip labels to the majority
class while after deletion of three nodes 94% of the graphs flip their labels. This shows the strong
bias of the classifier to the majority class. Since, the node deletion is done in random and the chosen
graphs were also random, it shows that the classifier’s decision is not robust to minor perturbation.
In other words, the classifier has not learnt a general pattern for the minority class. It has only
memorized certain instances that it has rightly or wrongly classified to the minority class.

I RESULTS ON IMDB-MULTI AND REDDIT-B FOR XGNN

Table 4 shows the quantitative results of XGNN on the IMDB-Multi and the REDDIT-Binary
datasets.

Table 4

Methods Dataset Class Coverage GGA Overlap Class Score

XGNN

Reddit-B Class 0 0.000±0.051 0.000±0.065 0.000 0.003±0.000
Class 1 0.000± 0.038 0.000 ± 0.048 0.000 0.357±0.000

IMDB-
Multi

Class 0 0.000±0.018 0.000±0.061 0.000 0.499± 0.000
Class 1 0.000±0.077 0.000±0.092 0.000 0.544±0.000
Class 2 0.000±0.062 0.000±0.074 0.000 0.508±0.000

J LLM USAGE

We used GPT-5 to polish the writing and grammar of the paper.
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