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Abstract

Contrastive learning is quickly becoming an essential tool in neuroscience for ex-1

tracting robust and meaningful representations of neural activity. Despite numerous2

applications to neuronal population data, there has been little exploration of how3

these methods can be adapted to key primary data analysis tasks such as spike sort-4

ing or cell-type classification. In this work, we propose a novel contrastive learning5

framework, CEED (Contrastive Embeddings for Extracellular Data), for high-6

density extracellular recordings. We demonstrate that through careful design of the7

network architecture and data augmentations, it is possible to generically extract8

representations that far outperform current specialized approaches. We validate our9

method across multiple high-density extracellular recordings. All code used to run10

CEED can be found at https://github.com/ankitvishnu23/CEED.11

1 Introduction12

High-density extracellular recordings now allow for simultaneous recordings of large populations13

of neurons across multiple brain regions with high temporal and spatial resolution. [1–4]. These14

large-scale recordings are essential for gaining insights into key biological processes such as vision,15

decision-making, and behavior which are distributed across brain regions [5]. Along with gaining16

insights into brain function, these technologies also promise to improve the scalability and accuracy17

of brain-computer interfaces which can restore motor function to paralyzed individuals [6].18

A major bottleneck for interpreting neural population activity is processing the raw extracellular19

signal [7]. Although extracellular recordings contain a precise record of the coordinated neural20

activity, it must be extracted algorithmically through a processing step called spike sorting. A crucial21

assumption in spike sorting is that each recorded neuron has a unique spatiotemporal extracellular22

waveform based on its morphology and position relative to the recording device [8]. Using this23

unique identifier, it is possible to assign a detected extracellular action potential (spike) back to its24

putative neuron (unit). Along with spike sorting, another important task in extracellular analysis is25

cell-type classification. As neural circuits are diverse and heterogeneous, it is becoming increasingly26

important to profile detected units using their morphoelectrical features [9]. At a coarse level, it is27
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possible to classify units as inhibitory or excitatory based on their extracellular profile [10]; however,28

it may be possible to divide units into finer subgroups [11–13].29

For both spike sorting and cell-type classification, it is important to extract low-dimensional, mean-30

ingful features from extracellular waveforms. Despite the importance of feature extraction, current31

approaches are often ad hoc and lack robustness to common nuisance variables in extracellular32

recordings. By far the most common featurization method for spike sorting is principal components33

analysis (PCA) [3, 14–22]. Although PCA is relatively effective and scalable, it suffers from a34

few key drawbacks including: (1) a lack of robustness to extracellular nuisance variables such as35

spatiotemporally overlapping spikes (collisions), (2) an inability to model non-linear data, and (3) an36

objective function that aims to find features that explain variance rather than features that discriminate37

different waveforms. To improve the robustness of PCA, [21] introduced a supervised waveform38

denoiser that is able to ‘clean’ the waveforms before featurization. For morphoelectric cell-type39

classification, most feature extraction methods rely heavily on manually extracted features including40

action potential width, peak-to-peak amplitude, and the ratio of pre-hyperpolarization peak to the41

post-hyperpolarization peak [13]. Again, while scalable and effective, these features are too simple42

and ad hoc to fully capture morpho-eletrical differences [13]. Recently, a non-linear approach to43

cell-type classification, WaveMap, was introduced, utilizing UMAP [23] and Louvain community44

detection [24] to automatically find cell-type clusters [13].45

In this work, we introduce a robust and generalizable feature learning method, CEED, for extracellular46

datasets. Our main hypothesis is that embeddings of extracellular waveforms that are invariant47

to both common and task-specific nuisance variables will be more useful for spike sorting and48

morphoelectric cell-type classification than current specialized feature extraction methods. For49

example, in extracellular recordings, there are a number of nuisance variables including collisions,50

correlated background noise, or variability in the time at which a spike is detected [21]. Each of51

these confounds pose a problem for traditional representation learning methods like PCA or manually52

extracted features. Along with these common nuisance variables, there are also task-specific nuisance53

variables such as the spatial position of detected spikes. For spike sorting, this information is crucial as54

spike locations are highly informative of neuron identity [25, 26]. However, for cell-type classification,55

neurons with different locations may still share a cell-type. In order to extract representations that56

are invariant to these nuisance variables, we utilize contrastive learning, which has been shown to57

approximately induce invariance in the representation space to a set of transformations [27]. We58

utilize a recent contrastive learning framework [28] for our training and implement a stochastic view59

generation module for extracellular waveforms. We validate our approach on multiple high-density60

extracellular recordings. Surprisingly, for cell-type classification, our representations appear to be61

more informative than state-of-the-art specialized methods even when performing zero-shot learning62

on an unseen animal and probe geometry. Our contributions are as follows:63

1. We introduce a novel framework, CEED, for analyzing extracellular recordings based on64

invariance learning.65

2. We implement a stochastic view generation module for both single-channel and multi-66

channel extracellular waveforms.67

3. We demonstrate that CEED works well with multiple neural network architectures, including68

a novel transformer-based architecture with a spatiotemporal causal attention mask (SCAM).69

4. We show that CEED outperforms specialized featurization methods for spike sorting and70

morphoelectric cell-type classification.71

2 Background72

Contrastive Learning. Contrastive representation learning [28] falls under a broad class of self-73

supervised learning methods [29–31] whose goal is to learn robust and generalizable representations74

by encouraging invariances to a prior-known set of transformations or nuisance variables. While75

contrastive learning has mainly been used to extract effective and transferable representations from76

image-based data [27, 28], more recently, it has also become a powerful tool in the sciences to learn77

invariances for physical systems [32, 33].78

In computational neuroscience, representation learning has mostly been performed using generative79

models [34]. While this has led to many interesting insights into behavior [35] and decision-making80

[36], this paradigm is sensitive to nuisance variables and will not capture subtle changes in the81
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Figure 1: CEED framework. In CEED, we assume that waveforms are already extracted from
an extracellular recording. Each waveform is then passed through our stochastic view generation
module, where different views are obtained by applying transformations. These transformations
induce a pre-defined set of invariances (see Section 3.2.1). Using these views, a neural-network based
encoder, which can take the form of a multi-layer perceptron (MLP) or a transformer, is then trained
to produce representations that respect the desired invariances. This is accomplished via contrastive
learning, where representations from views of the same waveform are encouraged to be similar and
views of different waveforms are encouraged to be dissimilar. When training completes, the learned
representations can then be used for a series of downstream neuroscience tasks, such as spike sorting
or morphoelectrical cell-type classification.

observation space that do not contribute much to the explained variance. While recent research82

into label-guided generative models [37–39] has somewhat alleviated these problems, it is still83

unclear if good generative performance is important for representation learning. Most recently, a84

number of contrastive learning methods have been introduced for learning robust and generalizable85

representations of neural population data [40–42]. To our knowledge, however, contrastive learning86

has not been applied to key primary data analysis tasks such as spike sorting or cell-type classification.87

Spike sorting. In spike sorting, the goal is to extract a precise record of which neurons spiked at88

which time steps based on the raw extracellular data. For each electrode, the contributions of an89

unknown number of neurons are mixed together, making spike sorting a challenging blind-source90

separation task akin to the cocktail party problem [43]. While a number of spike sorting methods have91

been developed for microelectrode arrays (MEAs), almost all of these methods currently utilize PCA92

for feature extraction For example, the popular algorithms Klusta, HerdingSpikes2, Mountainsort4,93

SpykingCircus, Trideclous, and Kilosort all use a form of SVD/PCA in their processing pipelines.94

Despite the ubiquity of PCA as a feature extraction method for spike sorting, it lacks robustness95

to common nuisance variables in extracellular recordings, cannot capture non-linear features of96

the observed data, and prefers features that explain variance rather than those that discriminate97

different waveforms. More recently, it has been shown that non-linear autoencoders can have higher98

performance than PCA despite suffering from similar drawbacks [44].99

Cell-type classification. Morphoelectric cell-type classification has many similarities to spike sorting.100

Similarly to spike sorting, you are also interested in grouping detected extracellular waveforms101

together. However, the granularity of these clusters should be lower, reflecting shared morphologies102

among the units in the recording. Classically, pre-defined morphoelectrical features (e.g., action103

potential width) were extracted from the waveforms to group together similar units [10, 45]. More104

recently, a non-linear method based on UMAP was introduced for cell-type classification [13]. In this105

work, it was shown that automatically discovering relevant features from extracellular waveforms can106

lead to more informative cell-type groupings than when simply clustering pre-defined features. It is107

important to note that, along with morphoelectric cell-type classification, it is also possible to classify108

cell-types by their function, morphology, physiology, molecular properties [46–48].109
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3 Contrastive Embeddings for Extracellular Data (CEED)110

We introduce Contrastive Embeddings for Extracellular Data (CEED), a novel framework for111

extracting robust and generalizable representations of extracellular data via contrastive learning.112

CEED consists of three main components (see Figure 1) — (1) a stochastic view generation module113

that augments waveforms with both common and task-specific nuisance variables. (2) A neural114

network-based encoder that can extract low-dimensional representations from both single-channel115

and multi-channel waveforms. (3) A contrastive loss function that encourages the representations116

of views of the same waveform to be similar while forcing the representations of views of different117

waveforms to be dissimilar. We postulate that the representations extracted by CEED, which are118

approximately invariant to nuisance variables, can outperform specialized feature extraction methods119

for both spike sorting and cell-type classification.120

3.1 Notation121

To introduce our method, we must first define some notation for extracellular recordings. Let122

PM := {pm|m ∈ M} be the position of all M channels on the multi-electrode array (MEA), where123

each pm ∈ R3 is the location of channel m. Now define PM̃ to be the set of positions for a subset of124

channels, M̃ ⊆ M , on the MEA.125

Let S := {sn}Nn=1 be the set of N spiking events that are detected in an extracellular recording.126

Now, let the extracellular waveform of a spiking event sn on a channel m be defined as Wn,m :=127

{r(0)n,m, r
(1)
n,m, ..., r

(T )
n,m} ∈ RT , where T contiguous samples from the recording define a waveform128

and r
(t)
n,m is the value of the waveform at sample t. This can be thought of as a window of samples of129

size T on channel m which includes the spike sn.130

The amplitude of a spike sn on a channel m can be defined as An,m := maxt |Wn,m|. This is also131

known as the absolute maximum voltage recorded on channel m. The timestep t at which the absolute132

maximum voltage occurs can vary for each channel. Therefore, for a spike, we center the waveform133

on each channel using the timestep at which the maximum An,m occurred (i.e., the timestep of the134

maximum amplitude channel). For all spikes in the recording, waveforms are aligned in this manner135

so that the amplitude on the maximum amplitude channel occurs at the same timestep t.136

Let Wn,M̃ ∈ RT×|M̃ | be the set waveforms for a spike on a subset of channels and let An,M̃ ∈137

R>0
|M̃ | be the set amplitudes for a spike on a subset of channels, where |M̃ | is the number of channels.138

3.2 Stochastic view generation module139

3.2.1 Common invariances140

Let us define the representation of the waveform Wn,M̃ for spike sn as zn ∈ RD. There are a number141

of nuisance variables that change the observed waveform of a spike without changing the underlying142

signal. Therefore, we can define a set of invariances we wish to impose on our representations,143

1. Amplitude voltage jitter - We want representations that are invariant to "small" amplitude144

variability. To this end, if we scale the amplitude of the waveform Wn,M̃ for spike sn such that145

W̃n,M̃ = Wn,M̃ × (1± ϵ), then the representation z̃n for W̃n,M̃ should be such that z̃n = zn.146

2. Correlated background noise - We want representations that are invariant to the correlated147

background noise found in real extracellular recordings. We assume extracellular noise can be148

modeled as a spatiotemporal matrix Gaussian MN (0, U, V ), where U ∈ RT×T models the149

temporal correlation of a waveform and V ∈ R|M |×|M | models the spatial correlation between150

channels. For a spike sn, we want a representation such that if we sample n ∼ MN (0, U, V )151

and form W̃n,M̃ = Wn,M̃ + nM̃ , where nM̃ is the noise on the channels subset M̃ , then W̃n,M̃152

should still yield a representation z̃n = zn.153

3. Spike collisions - We want representations that are invariant to the voltage distortions caused154

when spikes "collide" spatiotemporally. A collision is when two or more spikes occur at similar155

times in the same location on the probe leading to observed waveforms that are distorted. To156

this end, consider two spikes sn1
and sn2

with waveforms Wn1,M̃1
and Wn2,M̃2

such that M̃1157
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and M̃2 share some number of channels. Now let us shift sn2 by k time steps (−T/2 < k < 0158

or 0 < k < T/2) such that for any channel m ∈ M̃2, Wn2,m := {r(0+k)
n2,m , r

(1+k)
n2,m , ..., r

(T+k)
n2,m }.159

We refer to this temporally shifted waveform as Wshift
n2,M̃2

. A new waveform that is a linear sum160

of these two waveforms W̃n,M̃1
= Wn1,M̃1

+ Wshift
n2,M̃2

should yield a representation z̃n = zn1
.161

4. Channel subsets - We want representations that are invariant to changes in the subset of channels162

M̃ used to define Wn,M̃ . So for a new subset of channels M̃ ′, as long as the channel with163

the highest amplitude is still contained in M̃ ′, then the waveforms Wn,M̃ ′ should still yield a164

representation z̃n = zn.165

3.2.2 Task-specific invariances166

While all feature extraction methods suffer from common extracellular nuisance variables, there167

are also task-specific nuisance variables. For example, the position and orientation of neurons in168

the recording are essential information for spike sorting. However, for cell-type classification, this169

information can be a confound when trying to find shared morphoelectrical features. Therefore, we170

propose an additional set of invariances for cell-type classification,171

1. Cell position - For cell-type classification, we want representations that are invariant to the172

channel positions PM at which a spike is detected. So for a waveform Wn,M , any uniform173

changes to the channel positions PM̃ (without changing the waveforms at each channel) should174

still yield a representation z̃n = zn.175

2. Cell amplitude - As amplitude is mainly a function of cell position and orientation, we want176

representations that are invariant to any uniform changes in the amplitudes. To this end, for any177

positive value a, a change in the amplitudes for the spike sn, W̃n,M̃ = Wn,M̃ × a, should still178

yield a representation z̃n = zn.179

To achieve these task-specific invariances for cell-type classification, we directly transform the180

training data. First, we extract the max channel waveform for each spike. Then, we normalize each181

waveform to be between -1 and 1, thus removing any positional information [13]. A drawback of this182

approach is that we discard multi-channel information that may be useful for classifying different183

cell-types [12] (see Section 7 for a more detailed discussion). The full view generation pipeline is184

detailed in Supplementary Materials Section A.1.185

3.3 Encoder Architecture186

For the encoder of CEED, we explored two neural network architectures – a transformer-based187

network with a novel Spatiotemporal Causal Attention Mask (SCAM) and a simple multi-layer188

perceptron (MLP) which is a more computationally efficient alternative (i.e., can fit on a single GPU).189

For a runtime comparison of these two architectures, see Supplementary Materials Section E.190

3.3.1 Transformer-based encoder with spatiotemporal causal attention mask (SCAM)191

Our first proposed architecture utilizes transformers [49] which have been highly successful across a192

series of tasks in natural language processing [50, 51]. Transformers have a natural inductive bias193

towards time-series and sequence-based data and are thus highly suitable for extracellular waveforms.194

For this work, we designed a novel spatiotemporal causal attention mask (SCAM) to obey causality195

across time and channels. Specifically, we allow every recorded time step in a waveform to attend196

to time steps on other channels as long as those data points precede it in time. Full details and197

visualization of the transformer-based architecture, including implementation details are available in198

Supplementary Materials Section A.2.199

3.3.2 Multi-layer perceptron (MLP)200

While a transformer-based architecture provides a natural inductive bias towards time-series data201

appropriate for extracellular recordings, a downside to such an architecture is its high computational202

complexity and the requirement that it needs multiple GPUs to train. To demonstrate the generality203

of the CEED framework, we also propose a simpler MLP architecture that can be trained on a204

single GPU. The MLP encoder is a straightforward model that consists of three layers with sizes205

[768, 512, 256] and ReLU activations between them.206
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3.4 Objective function207

The encoder is trained as follows. Let z̃i and zi be representations of the two views of the input208

waveform i, where the two views differ by the invariances listed in Sections 3.2.1 and 3.2.2. The209

optimization objective for a batch of B samples follows the contrastive loss utilized by SimCLR210

[28] and several other representation learning methods [52, 53];211

L =

B∑
i=1

− log
exp(ẑi · ˆ̃zi)/τ∑
k ̸=i exp(ẑi · ẑk/τ)

(1)

where ẑi and ˆ̃zi are the L2 normalized representations and τ is a temperature hyperparameter.212

Following [28], we also include a 2-layer MLP projector network after the encoder and the loss213

function operates on the outputs of this projector network (see Supplementary Materials Section214

A.3 for details and ablations of the projector network and its architecture).215

4 Datasets216

To train and evaluate our model, we make use of two publicly available extracellular recordings217

published by the International Brain Laboratory (IBL): the DY016 and DY009 recordings [54]. These218

multi-region, Neuropixels 1.0 recordings are taken from a mouse performing a decision-making task219

(see Supplementary Materials Section C for more details).220

4.1 Spike sorting221

To evaluate how useful the features learned by CEED are for spike sorting, we constructed three222

datasets using units found by Kilosort 2.5, a full spike sorting pipeline manually tuned by IBL. The223

first dataset was extracted from the DY016 extracellular recording. It consisted of a 10 unit train and224

test dataset where all 10 units were classified as "good" by IBL’s quality metrics [55]. We selected225

these units for their high waveform diversity (qualitatively) and because they had a relatively high226

amplitude, i.e., peak-to-peak (ptp). For this dataset, we constructed training sets of 200 or 1200227

spikes per unit with a test set of 200 spikes per unit. For each spike, we extracted waveforms from228

21 channels centered on the maximum amplitude channel. Although we extract 21 channels for our229

data augmentations (see Supplementary Materials Section A.1), we train and evaluate our model (and230

baselines) on either 5 or 11 channel subsets.231

The second dataset was extracted from both the DY016 and DY009 extracellular recordings. This232

dataset consisted of a 400 training units and 10 test units (the same 10 units evaluated in the first233

dataset). We extracted 200 units from each recording to create the training set with 200 or 1200234

training spikes per unit. The goal of this dataset was to test how well CEED could generalize across a235

large set of units with varying quality. To this end, we also evaluated the performance of CEED on236

100 random test sets of varying sizes (see Supplementary Materials Section D).237

The third and final dataset was also extracted from both the DY016 and DY009 extracellular record-238

ings. Unlike the first and second dataset, where the training set contained spikes from the test units239

(in-distribution), we purposefully excluded all units in the test set from the training set. To this end,240

this dataset consisted of 390 training units and 10 test units (the same 10 units evaluated in the above241

datasets). For all units in the training set, we utilized either 200 or 1200 training spikes per unit. The242

goal of this dataset was to test how well CEED could generalize to out-of-distribution (OOD) units.243

4.2 Cell-type244

For our cell-type classification dataset, we utilized the DY016 extracellular recording. We extracted245

the same 10 IBL "good" units used for the spike sorting datasets. To remove positional information246

from each spike, we only extract waveforms from the maximum amplitude channel and we normalize247

each waveform as described in Section 3.2.2.248
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5 Experiments249

5.1 Spike sorting250

Re-sorting units extracted using KS2.5 In this experiment, we aim to demonstrate that CEED251

extracts more useful features for spike sorting than both PCA and a non-linear autoencoder. We252

evaluate these methods on both an in-distribution (ID) and out-of-distribution (OOD) waveform253

discrimination task. Specifically, we train CEED, PCA, and an autoencoder on all three spike sorting254

datasets (see Section 5) and perform inference on the spikes from the test units. Then, we ‘re-sort’255

these test spikes back to their putative units by performing clustering on the resulting embeddings.256

For clustering, we use a parametric clustering algorithm, the Gaussian Mixture Model (GMM),257

and a non-parametric clustering algorithm, HDBSCAN [56]. To evaluate how well each clustering258

corresponds to the ground-truth, we use the Adjusted Rand Index (ARI) [57]. One can also compute259

the accuracy after optimal permutation (e.g., Hungarian algorithm), however, this is will give similar260

results to the ARI. To strengthen our spike sorting baselines, we also compare CEED to PCA and an261

autoencoder trained and tested on denoised waveforms using the YASS waveform denoiser [21, 58].262

The YASS denoiser was trained to denoise single channel waveforms so we apply it independently263

to each channel and it improves clustering of PCA across the board. For all baselines, we sweep264

across (3,5,7,9) principal components and 3-11 channel subset sizes.265

5.2 Cell-type classification266

Cell-type classification of IBL recordings In this analysis, we aim to demonstrate that CEED can267

extract putative cell-type clusters from IBL extracellular recordings. For the IBL recordings, we268

extract average waveforms (templates) for 163 good units pooled over DY016 and DY009. We then269

run inference on the extracted templates using CEED and perform a GMM clustering on the resulting270

embeddings to find putative cell-types. As there is no ground-truth for the IBL recordings, we validate271

our results by visualizing the templates for each cell-type cluster.272

Zero-shot cell-type classification. In this experiment, we compare the inferred representations273

of CEED to a state-of-the-art cell-type classification method, WaveMap, on an out-of-distribution274

(OOD) dataset. Not only is this dataset not seen during training, but both the animal and the probe275

geometry are completely different than the dataset used to train CEED. The dataset consists of 625276

templates (average waveforms) extracted from units which are recorded while a monkey performs a277

discrimination task [13]. The probe used to record these waveforms is a Plexon U-probe. The goal of278

this experiment is to find putative cell-types that explain the waveform variability seen in the data.279

We propose to run CEED on the 625 templates and then perform a GMM clustering of the resulting280

embeddings. We choose the number of clusters by again utilizing the Elbow method and BIC. Given281

how OOD this dataset is compared to the recordings used to train CEED, success on this task would282

demonstrate the robustness and generalizability of CEED.283

6 Results284

6.1 Spike Sorting285

Re-sorting units extracted using KS2.5 For our re-sorting task, we find that CEED outperforms286

both PCA and the non-linear autoencoder using raw waveforms or denoised waveforms across all287

three datasets introduced in Section 4. The results for this analysis can be found in Table 1. As can288

be seen, in both the ID and OOD regimes, CEED has much higher performance than both baseline289

models. For all methods we utilize the same number of latent dimensions for the analysis (5D). We290

also show in Supplementary Materials Section D that the strong performance of CEED generalizes to291

many different sets of test units.292

Along with this results table, we also quantitatively and qualitatively compare the performance of293

CEED to PCA on the 10 neuron train and test dataset in Figure 2. Visually, it can be seen that CEED’s294

features are far more informative about each unit’s identity than the representations found by PCA.295

The performance of CEED is also much higher when being clustered by either HDBSCAN or a296

GMM even when when more principal components are afforded for the analysis.297
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Method 10 neuron train set 400 neuron train set 390 neuron train set
10 neuron ID (ARI) 10 neuron ID (ARI) 10 neuron OOD (ARI)

CEED (1200 spikes, 11 channels) .89 ± .04 .79 ± .09 .78 ± .05
CEED (1200 spikes, 5 channels) .83 ± .03 .76 ± .07 .77 ± .08
Denoised PCA (1200 spikes, 11 channels) .39 ± .05 .45 ± .04 .46 ± .04
Denoised PCA (1200 spikes, 5 channels) .46 ± .07 .48 ± .04 .49 ± .04
Autoencoder (1200 spikes, 11 channels) .47 ± .06 .35 ± .03 .28 ± .02
Autoencoder (1200 spikes, 5 channels) .43 ± .06 .37 ± .03 .33 ± .01

Table 1: Benchmarking CEED, PCA, and an autoencoder on in-distribution (ID) and out-of-
distribution (OOD) data. For evaluation, we fit 50 GMMs to the embeddings and compute the mean
and std. of the adjusted rand index (ARI). First column: we train and test each method with spikes
from 10 neurons. Second column: we train each method with spikes from 400 neurons and then test
on the original 10 neurons which are included in the training set (ID). Third column: we train each
method on spikes from 390 neurons and test on the original 10 neurons which are not included in the
training set (OOD). This experiment demonstrates that CEED peforms well on OOD data and can
outperform a non-linear autoencoder. All CEED results are generated using the MLP encoder.

6.2 Cell-type Classification298

Cell-type classification of IBL recordings The results for cell-type classification of the pooled IBL299

recordings are shown in Supplementary Materials Section B. We choose the number of cell-type300

clusters by sweeping over 1-10 clusters and choosing the minimum BIC. We find that 4 clusters explain301

most of the waveform variability. Interestingly, we find good separation in CEED’s embedding space302

between narrow-spiking and broad-spiking units which indicates that we may be able to discriminate303

between inhibitory and excitatory subtypes.304

Zero-shot cell-type classification. The results for cell-type classification of OOD single unit data305

are shown in Figure 3. Despite training on IBL extracellular datasets from a mouse brain recorded306

with Neuropixels 1.0, CEED is able to generalize to unseen data from a completely different animal307

(monkey) and probe (Plexon U-probe). In Figure 3A, we visualize the inferred representations from308

CEED using a 2D UMAP and by coloring the points with the output of a GMM that is trained on309

the 5D contrastive representations. We choose the number of cell-type clusters by sweeping over310

1-10 clusters and then using the Elbow Method on the BIC curve. With this method, we discover 6311

putative cell-types (similarly to WaveMap). Upon visual inspection, our cell-types are more well-312

isolated from each other than those of WaveMap (Figure 3C). To quantitatively assess which cell-type313

classification method better reflects the ’real’ differences in extracellular waveforms, we utilize a314

supervised classifier which is trained to predict cell-type labels using input waveforms (introduced315

in [13]). In Figure 3B and Figure 3D, we show the results of this data on 5 cross-validation folds.316

Despite never training on this dataset, CEED has a much higher accuracy (93.4%) compared to that317

of WaveMap (88.8%). A small caveat is that we ran WaveMap using publically available code but318

were unable to precisely reproduce the original result in the paper which finds 8 cell-type clusters.319

Despite this difference, the accuracy value reported in the WaveMap paper for the 8 cell-type clusters320

(91%) was still lower than that of CEED.321

7 Discussion322

In this paper, we introduced a novel representation learning method, CEED, for extracellular record-323

ings. Our main hypothesis was that by finding representations of extracellular waveforms that are324

robust to both common and task-specfic nuisance variables, we can outperform specialized feature325

extraction approaches on two key tasks: spike sorting and morphoelectrical cell-type classification.326

We validate CEED on multiple high-density extracellular datasets. For spike sorting, we show327

that CEED extracts features that far outperforms those of PCA and a non-linear autoencoder on a328

waveform discrimination task. For cell-type classification, we show that CEED is able to extract329

discriminative features of extracellular waveforms that allow for finding morphological subgroups330

in an unsupervised manner. Surprisingly, we find that CEED even outperforms a recent non-linear331

cell-type classification method WaveMap, on an animal and probe geometry unseen during training.332
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Figure 2: CEED outperforms PCA on spike sorting featurization. Here, we show results for CEED
(using the SCAM architecture) and PCA when trained and evaluated on a 10 neuron dataset. (A)
Clustering results for the two featurization methods using a parametric (GMM) and non-parametric
(HDBSCAN) clustering algorithm. As can be seen, the featurization learned by CEED is much more
discriminative than that of PCA for both clustering methods even when using a supervised denoiser
to reduce noise in the data. (B) Visualized results of a 10 component GMM clustering on the learned
embeddings from CEED (left) and denoised PCA (right). (C) Visualized results of the HDBSCAN
clustering applied to the learned embeddings from CEED (left) and denoised PCA (right).

Despite the significant performance improvements of CEED, there are few limitations that must333

be addressed before it can become a plug-and-play method for extracellular analysis. Firstly, the334

training sets we utilize in this work are still quite small and lack neuron diversity. For CEED to335

be generalizable to multiple recordings and animals, more diverse datasets must be constructed.336

Secondly, the best results of CEED are obtained when using the transformer-based encoder which337

requires multiple GPUs and is currently quite slow to train. Recent progress in acceleration software338

[59] offer promising solutions to speed up computation and incorporating these methods into CEED339

could be a future direction. Thirdly, all spike sorting results in the paper are from re-sorting already340

sorted datasets; CEED must be incorporated into a full spike sorting pipeline in order to be used341

by many different research groups. Finally, our cell-type results do not include any functional342

classification which could help validate the clusters found by CEED.343

8 Broader Impact344

Although CEED has the potential to improve key tasks in extracellular analysis, a drawback of345

our approach compared to simple approaches like PCA is the additional computational resources346

it requires to train and run. Contrastive learning requires large batch sizes to achieve state-of-347

the-art performance which means, if training the SCAM transformer model, we often have to348

run experiments on large-scale, multi-gpu clusters. Moreover, transformer-based architectures349

have hundreds of thousands of parameters, which further increases CEED’s compute requirements.350

As highly parameterized deep neural networks produce large amounts of carbon emissions [60],351

CEED could have a possible negative impact on the environment. We also propose an MLP-based352
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Figure 3: CEED outperforms WaveMap on morphoelectrical cell-type classification with zero-
shot learning. (A) A 2D UMAP embedding of CEED’s inferred representations for a OOD dataset
which consists of 625 single units extracted from a monkey recording. We cluster the representations
using a GMM and plot each cluster with a distinct color. For each cluster, we also plot the waveforms
associated with the discovered cell-type. It can be seen that narrow-spiking waveforms (3,5,6)
are well-separated from broad-spiking waveforms (1,2,4) which may indicate good separation of
inhibitory and excitatory subtypes, respectively. Surprisingly, CEED is trained on a different animal
and probe geometry, but can still generalize to this dataset, outperforming WaveMap on a classification
baseline introduced in [13]. (B) On the top, we demonstrate how we chose the number of clusters
for the GMM, i.e., with the Elbow Method and BIC. On the bottom, we show the confusion matrix
of a gradient boosted decision tree classifier trained to map raw waveforms to the cell-type clusters
extracted by CEED. The accuracy of each method is defined as the average of the diagonal. (C) A
2D UMAP embedding the single unit dataset using WaveMap. The clusters are colored according
to WaveMap’s outputted labels. Narrow-spiking clusters (1,2,4) are more mixed with broad-spiking
clusters (3,5,6). (D) The confusion matrix of a gradient boosted decision tree classifier trained to map
raw waveforms to the cell-type clusters extracted by WaveMap.

architecture that performs comparably to a transformer while only using a single GPU, which can353

lower CEED’s impact on the environment.354
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integrated silicon probes for high-density recording of neural activity. Nature, 551(7679):232–358

236, 2017.359

[2] Ashley L Juavinett, George Bekheet, and Anne K Churchland. Chronically implanted neuropix-360

els probes enable high-yield recordings in freely moving mice. Elife, 8:e47188, 2019.361

10



[3] Nicholas A Steinmetz, Cagatay Aydin, Anna Lebedeva, Michael Okun, Marius Pachitariu,362

Marius Bauza, Maxime Beau, Jai Bhagat, Claudia Böhm, Martijn Broux, et al. Neuropix-363

els 2.0: A miniaturized high-density probe for stable, long-term brain recordings. Science,364

372(6539):eabf4588, 2021.365

[4] International Brain Laboratory, Kush Banga, Julius Benson, Niccolò Bonacchi, Sebastian A366

Bruijns, Rob Campbell, Gaëlle A Chapuis, Anne K Churchland, M Felicia Davatolhagh,367

Hyun Dong Lee, et al. Reproducibility of in-vivo electrophysiological measurements in mice.368

bioRxiv, pages 2022–05, 2022.369

[5] Nicholas A Steinmetz, Peter Zatka-Haas, Matteo Carandini, and Kenneth D Harris. Distributed370

coding of choice, action and engagement across the mouse brain. Nature, 576(7786):266–273,371

2019.372

[6] Elon Musk et al. An integrated brain-machine interface platform with thousands of channels.373

Journal of medical Internet research, 21(10):e16194, 2019.374

[7] Matthias H Hennig, Cole Hurwitz, and Martino Sorbaro. Scaling spike detection and sorting for375

next-generation electrophysiology. In Vitro Neuronal Networks: From Culturing Methods to376

Neuro-Technological Applications, pages 171–184, 2019.377

[8] Carl Gold, Darrell A Henze, Christof Koch, and Gyorgy Buzsaki. On the origin of the extracellu-378

lar action potential waveform: a modeling study. Journal of neurophysiology, 95(5):3113–3128,379

2006.380

[9] Ganesh Vigneswaran, Alexander Kraskov, and Roger N Lemon. Large identified pyramidal381

cells in macaque motor and premotor cortex exhibit “thin spikes”: implications for cell type382

classification. Journal of Neuroscience, 31(40):14235–14242, 2011.383

[10] Peter Barthó, Hajime Hirase, Lenaïc Monconduit, Michael Zugaro, Kenneth D Harris, and384

Gyorgy Buzsaki. Characterization of neocortical principal cells and interneurons by network385

interactions and extracellular features. Journal of neurophysiology, 92(1):600–608, 2004.386

[11] Alessio P Buccino, Michael Kordovan, Torbjørn V Ness, Benjamin Merkt, Philipp D Häfliger,387

Marianne Fyhn, Gert Cauwenberghs, Stefan Rotter, and Gaute T Einevoll. Combining biophysi-388

cal modeling and deep learning for multielectrode array neuron localization and classification.389

Journal of neurophysiology, 120(3):1212–1232, 2018.390

[12] Xiaoxuan Jia, Joshua H Siegle, Corbett Bennett, Samuel D Gale, Daniel J Denman, Christof391

Koch, and Shawn R Olsen. High-density extracellular probes reveal dendritic backpropagation392

and facilitate neuron classification. Journal of neurophysiology, 121(5):1831–1847, 2019.393

[13] Eric Kenji Lee, Hymavathy Balasubramanian, Alexandra Tsolias, Stephanie Udochukwu394

Anakwe, Maria Medalla, Krishna V Shenoy, and Chandramouli Chandrasekaran. Non-linear395

dimensionality reduction on extracellular waveforms reveals cell type diversity in premotor396

cortex. Elife, 10:e67490, 2021.397

[14] Samuel Garcia and Christopher Pouzat. Tridesclous, 2015. https://github.com/398

tridesclous/tridesclous.399

[15] Cyrille Rossant, Shabnam N Kadir, Dan FM Goodman, John Schulman, Maximilian LD Hunter,400

Aman B Saleem, Andres Grosmark, Mariano Belluscio, George H Denfield, Alexander S Ecker,401

et al. Spike sorting for large, dense electrode arrays. Nature neuroscience, 19(4):634–641,402

2016.403

[16] Marius Pachitariu, Nicholas A Steinmetz, Shabnam N Kadir, Matteo Carandini, and Kenneth D404

Harris. Fast and accurate spike sorting of high-channel count probes with kilosort. Advances in405

neural information processing systems, 29, 2016.406

[17] Jason E Chung, Jeremy F Magland, Alex H Barnett, Vanessa M Tolosa, Angela C Tooker, Kye Y407

Lee, Kedar G Shah, Sarah H Felix, Loren M Frank, and Leslie F Greengard. A fully automated408

approach to spike sorting. Neuron, 95(6):1381–1394, 2017.409

11

https://github.com/tridesclous/tridesclous
https://github.com/tridesclous/tridesclous
https://github.com/tridesclous/tridesclous


[18] Gerrit Hilgen, Martino Sorbaro, Sahar Pirmoradian, Jens-Oliver Muthmann, Ibolya Edit Kepiro,410

Simona Ullo, Cesar Juarez Ramirez, Albert Puente Encinas, Alessandro Maccione, Luca411

Berdondini, et al. Unsupervised spike sorting for large-scale, high-density multielectrode arrays.412

Cell reports, 18(10):2521–2532, 2017.413

[19] Pierre Yger, Giulia LB Spampinato, Elric Esposito, Baptiste Lefebvre, Stéphane Deny,414

Christophe Gardella, Marcel Stimberg, Florian Jetter, Guenther Zeck, Serge Picaud, et al.415

A spike sorting toolbox for up to thousands of electrodes validated with ground truth recordings416

in vitro and in vivo. Elife, 7:e34518, 2018.417

[20] Roland Diggelmann, Michele Fiscella, Andreas Hierlemann, and Felix Franke. Automatic spike418

sorting for high-density microelectrode arrays. Journal of neurophysiology, 120(6):3155–3171,419

2018.420

[21] JinHyung Lee, Catalin Mitelut, Hooshmand Shokri, Ian Kinsella, Nishchal Dethe, Shenghao421

Wu, Kevin Li, Eduardo Blancas Reyes, Denis Turcu, Eleanor Batty, et al. Yass: Yet another422

spike sorter applied to large-scale multi-electrode array recordings in primate retina. BioRxiv,423

pages 2020–03, 2020.424

[22] Keming Chen, Yangtao Jiang, Zhanxiong Wu, Nenggan Zheng, Haochuan Wang, and Hui425

Hong. Htsort: Enabling fast and accurate spike sorting on multi-electrode arrays. Frontiers in426

Computational Neuroscience, 15:657151, 2021.427

[23] Leland McInnes, John Healy, and James Melville. Umap: Uniform manifold approximation428

and projection for dimension reduction. arXiv preprint arXiv:1802.03426, 2018.429

[24] Vincent D Blondel, Jean-Loup Guillaume, Renaud Lambiotte, and Etienne Lefebvre. Fast430

unfolding of communities in large networks. Journal of statistical mechanics: theory and431

experiment, 2008(10):P10008, 2008.432

[25] Cole Hurwitz, Kai Xu, Akash Srivastava, Alessio Buccino, and Matthias Hennig. Scalable spike433

source localization in extracellular recordings using amortized variational inference. Advances434

in Neural Information Processing Systems, 32, 2019.435

[26] Julien Boussard, Erdem Varol, Hyun Dong Lee, Nishchal Dethe, and Liam Paninski. Three-436

dimensional spike localization and improved motion correction for neuropixels recordings.437

Advances in Neural Information Processing Systems, 34:22095–22105, 2021.438

[27] Rumen Dangovski, Li Jing, Charlotte Loh, Seungwook Han, Akash Srivastava, Brian Che-439
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