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Abstract

Precise control over monomer sequences in synthetic copolymers is essential for
tailoring material properties but remains challenging due to the complexity of poly-
merization processes. Simulation studies have provided valuable insights into how
individual factors influence sequence formation, yet they often examine parameters
in isolation and fail to capture their combined effects. Previous applications in poly-
mer sequence design and reaction optimization have proved that machine learning
can efficiently navigate complex parameter spaces and accelerate discovery, which
is expected to advance the understanding and control of sequence during copoly-
merization reactions. In this work, we propose a unified conditional block-length
distribution generation model to capture the characterization features of polymer
sequences, PolyGen. Using simulation datasets, we demonstrate that PolyGen can
accurately predict copolymer block-length distributions in most cases under diverse
chemical and physical conditions, including monomer interactions, chain stiffness,
activation energy, monomer density, and solvent viscosity. By linking synthesis
parameters with sequence outcomes, PolyGen establishes a new machine learn-
ing–based approach for investigating and guiding the design of sequence-controlled
polymers, thereby accelerating their study and potential applications. Our code and
dataset are available at https://github.com/GuanghuiMin/PolyGen.

1 Introduction

In polymer science, achieving precise control over the sequences of synthetic copolymers remains a
critical yet challenging objective[53, 49, 8]. The composition and monomer sequence along polymer
chains jointly determine material properties and, consequently, their potential applications[34, 32].
However, owing to the complexity of synthetic systems, current methods for producing sequence-
controlled polymers often suffer from low efficiency and are restricted to specific monomer types[34].

To better understand the complicated factors governing sequence formation during copolymerization,
we developed a coarse-grained model to simulate one-pot step-growth copolymerization[60], as de-
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tailed in the Appendix. Our previous work revealed that relatively weak non-bonded interactions[60],
chain stiffness[62], comonomer reactivities[40, 19], and solvent viscosity[19] can influence final
sequences by inducing emergent oligomer aggregation, whereas other factors, such as monomer
density[19], have negligible effects. Nonetheless, these studies primarily examined only one or two
parameters in isolated values, without exploring the combined effects or continuous variation of
multiple parameters.

Recent advances in machine learning (ML) have opened new avenues for the investigation and design
of sequence-defined polymers[9, 23, 39, 35, 30, 14]. The implementation of effective featurization
techniques of polymer sequences, such as through one-hot encoding, realizes the integration of se-
quence information into ML models, thereby enabling the expansion of data-driven polymer research
to sequence-defined copolymers[44]. ML algorithms have been applied to capture complex, nonlinear
relationships between monomer sequences and their physicochemical properties[37], enabling the
prediction and inverse design of polymer sequences with desired features across vast sequence
space[50, 31, 16, 7]. The well-known examples include learning of protein folding landscapes[25, 3],
high-throughput peptide drug design[56, 46, 55], and self-assembly material study[57, 4, 45].

PolyGen
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Figure 1: An illustration of the ultimate goal
for conditional copolymer chain set predic-
tion. Chemical reaction parameters are fed
into a machine learning model, PolyGen,
which generates the block distribution of pos-
sible copolymer chain sets.

Furthermore, ML-driven approaches have shown
great promise in learning chemistry reactions and op-
timizing reaction conditions by identifying subtle de-
pendencies between experimental parameters[64, 38],
particularly in the context of organic synthesis[13, 2].
By integrating experimental data, ML tools facili-
tate efficient exploration of reaction conditions-such
as catalysts, solvent, voltage and other controllable
factors-which significantly accelerates the identifi-
cation of optimal conditions for maximizing target
product yield. The incorporation of feature impor-
tance analysis allows researchers to quantitatively
assess the relative impact of individual reaction pa-
rameters, offering deeper insights into reaction mech-
anisms and informing more rational reaction design
strategies[2]. As for the study of polymer synthe-
sis, Takasuka et al. employed Bayesian optimiza-
tion to identify process variables that achieve a tar-
get monomer composition in radical copolymeriza-
tion reactions of styrene-methyl methacrylate, which
inspires subsequent research applying machine learning to control and elucidate polymerization
processes[54].

However, no studies to date have applied machine learning to examine the interplay of multiple
factors influencing sequence formation during copolymerization. This gap hinders the translation of
sequences from inverse design ML models into experimentally achievable polymer chains. Without
effective understanding about copolymerization reactions, even significant advances in ML-aided
sequence design and screening would have limited impact on material discovery and practical
application.

In this work, we apply machine learning to investigate the synthesis of sequence-defined poly-
mers using data obtained from our previous coarse-grained simulations of irreversible step-growth
copolymerization. We first develop a condition encoder with contrastive learning for the features
of resulting copolymer chain sets. This embedding enables quantitative assessment of sequence-set
similarity from the block-length distributions. Building on this representation, we then construct a
conditional diffusion model that takes simulation parameters as input conditions to generate plausible
block-length distributions. This model, named as PolyGen, provides a new route for linking polymer-
ization conditions with sequence outcomes, thereby advancing the application of machine learning in
sequence-controlled polymer synthesis.
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2 Related Works

Polymer Sequence Analysis and Control. Traditional approaches to understanding polymer se-
quence formation rely heavily on analytical models such as the Mayo-Lewis equation, which de-
scribes copolymerization kinetics through reactivity ratios [36, 42]. However, these models assume
idealized conditions and provide limited predictive power under complex synthesis environments
involving multiple interacting factors [41]. Recent computational studies have revealed that factors
beyond simple reactivity ratios—including non-bonded interactions, chain stiffness, and solvent
effects—significantly influence sequence development [61, 17, 63]. Despite these insights, existing
approaches typically examine parameters in isolation and lack frameworks for predicting sequence
outcomes under arbitrary synthesis conditions. Machine learning approaches have shown promise for
polymer property prediction and inverse design [10, 24], but most focus on final material properties
rather than the underlying sequence formation process during synthesis.

Conditional Generation for Chemical Systems. Generative modeling in chemistry has evolved
from early VAE and GAN approaches [15, 6] toward more sophisticated conditional generation
frameworks. Recent work has demonstrated the effectiveness of diffusion models for molecular
design [1], with Graph Diffusion Transformers enabling multi-conditional generation of small
molecules [28]. However, these approaches primarily target discrete molecular structures rather than
statistical distributions of structural properties. For polymer systems specifically, generative models
have been applied to sequence design [58, 51] and morphology prediction [5], but typically assume
known sequence inputs rather than predicting sequence characteristics from synthesis conditions.
Conditional generation of polymer block distributions represents a fundamentally different challenge:
rather than generating discrete structures, the task requires modeling probability distributions over
block lengths while preserving distributional constraints and capturing rare but chemically significant
events. Our work addresses this gap by developing the first conditional generation framework
specifically designed for polymer block-length distribution prediction from synthesis parameters.

3 Problem Definition

In this section, we first introduce the notations that will be used throughout the paper. We then
formally define the notions of polymer sequence, block, and copolymer chain set, which serve as
the central objects of our study. Finally, we state our target problem, namely, conditional block
distribution forecasting.

Notations. Let A denote a finite alphabet of monomers. A polymer sequence is represented as a
string s = (s1, . . . , sℓ) with si ∈ A and length ℓ ≥ 1. The set of all finite polymer sequences is
written as A⋆ =

⋃
ℓ≥1 Aℓ.

Definition 1 (Polymer Sequence) A polymer sequence is any s ∈ A⋆, e.g. s = AAABAABA.

Definition 2 (Block) Given a polymer sequence s ∈ A⋆, a block is defined as a maximal contiguous
subsequence of identical monomers. Formally, s = (s1, . . . , sℓ) can be uniquely partitioned into
blocks

s = s1 · · · si1︸ ︷︷ ︸
block 1

si1+1 · · · si2︸ ︷︷ ︸
block 2

· · · sik−1+1 · · · sℓ︸ ︷︷ ︸
block k

, (1)

such that sj = sim within each block and sim ̸= sim+1 across adjacent blocks. For instance,
AAABAABA consists of blocks AAA, B, AA, B and A, with block lengths (3, 1, 2, 1, 1).

Definition 3 (Copolymer Chain Set) A copolymer chain set is a finite multiset

C = {s(1), . . . , s(M)}, s(i) ∈ A⋆, (2)

representing M polymer sequences produced under given synthesis conditions. For instance, C =
{AAABAABA,BBB,AB}.

Block statistics are central to characterizing copolymer microstructures in polymer chemistry. Clas-
sical theories such as the Mayo–Lewis equation describe average reactivity ratios and predict the
likelihood of observing alternating vs. blocky arrangements [36, 42]. However, these analytical
models typically assume idealized kinetics and provide only coarse expectations (e.g. mean block
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Figure 2: Overall pipeline of our framework. In Stage 1, contrastive condition encoder maps synthesis
conditions into a discriminative embedding space, enhancing sensitivity to subtle distributional
differences. In Stage 2, a conditional diffusion generator leverages these embeddings to synthesize
block-length distributions that align with both the dominant statistics and rare long-tail behaviors.

length). In practice, the full block length distribution conveys richer information about microstructure
and functionality [20], and serves as a critical descriptor in both simulation and experimental studies.
This motivates us to directly forecast block distributions under varying synthesis conditions.

Problem 1 (Conditional Block Distribution Forecasting) Given synthesis conditions X ∈ Rd and
an observed copolymer chain set C, the goal is to predict the block length distribution associated
with C:

pθ(b | X), b ∈ ∆K−1, (3)

where b is a histogram over block lengths with K bins, and ∆K−1 denotes the probability simplex.
At inference time, the model outputs a forecasted block distribution samples from pθ(· | X).

4 Methodology

Modeling conditional block distributions for copolymer chain sets is challenging due to several factors.
First, block length histograms are high-dimensional and sparse, with skewed and long-tailed behavior
that standard generative models often fail to capture [27, 29]. Second, rare but chemically meaningful
long blocks, though infrequent, are critical to determining material properties [12, 33]. Third, the
mapping from synthesis conditions (e.g., monomer ratios, interaction energies) to block statistics is
highly nonlinear and governed by polymerization kinetics [36, 42], which makes direct regression
approaches insufficient. Finally, supervision is only available at the distribution level (histograms),
requiring the model to encode conditions in a way that preserves global statistical structure rather
than token-level alignment. To address these challenges, we design a two-stage framework: (i) a
contrastive condition encoder that learns semantically meaningful embeddings aligned with block-
level statistics, and (ii) a diffusion-based generator that leverages these embeddings to forecast full
block distributions under given synthesis conditions.
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4.1 Condition Encoder with Contrastive Learning

We learn a condition encoder that maps tabular synthesis conditions x ∈ Rdc to a semantically
meaningful representation suitable for conditioning the diffusion model. The embedding should place
conditions that induce similar block-length histograms close together.

Given x, the encoder applies a multi-layer perceptron (MLP) with LayerNorm and GELU activations
to produce a semantic vector

h = fϕ(x) ∈ Rd, (4)
followed by a projection head gψ and ℓ2 normalization for contrastive learning:

z =
gψ(h)

∥ gψ(h) ∥2
∈ SD−1. (5)

We compare samples by temperature-scaled cosine similarity sij =
z⊤
i zj

τ , where a smaller τ yields
sharper separation between positives and negatives.

Positive Pair Construction. To ensure the learned embedding reflects chemically meaningful
similarities, we define positive pairs based on the empirical block-length distributions of copolymer
chains. Two condition samples are considered positives if their block histograms are close under
the Earth Mover’s Distance (EMD), or if they are explicitly paired in the dataset by sharing chains
generated under the same conditions. This design grounds the encoder in polymer statistics rather
than purely tabular similarity.

Negative Pair Construction. All other in-batch samples and entries from a momentum queue are
treated as negatives. In addition, we mine hard negatives by selecting those with the smallest EMD
to the anchor, sharpening the decision boundary and preventing representation collapse.

Contrastive Objective. The encoder is trained with an InfoNCE-style loss [43] that encourages
positive pairs to have higher similarity than negatives. For an anchor condition i with positive set
P(i), the objective is

Li = − log

∑
j∈P(i) exp(sij)∑
k ̸=i exp(sik)

. (6)

Minimizing this loss simultaneously aligns embeddings of conditions that lead to similar block
structures while pushing apart conditions producing dissimilar polymer architectures.

4.2 Diffusion-based Block Distribution Generator

Given encoded synthesis conditions h, we generate realistic block-length distributions p ∈ ∆M−1

using a conditional denoising diffusion probabilistic model (DDPM) [21]. To ensure numerical
stability, we operate in logit space: z0 = logit(p+ ϵsmooth) ∈ RM .

Forward Diffusion Process. We progressively corrupt the logits z0 using a cosine noise schedule
over T timesteps:

xt =
√
αt z0 +

√
1− αt ϵ, ϵ ∼ N (0, I), (7)

where αt controls the noise level at timestep t. This produces increasingly noisy representations that
gradually erase distributional structure.

Denoising Network. The reverse process employs a one-dimensional diffusion transformer (DiT-1D)
[47] with v-parameterization that predicts:

vθ(xt, t,h) ≈ αtϵ−
√
1− αtz0. (8)

Synthesis condition embeddings h are injected into each transformer layer via Feature-wise Linear
Modulation (FiLM) [48], enabling adaptive generation based on experimental parameters.

Training Objective. Our loss combines denoising accuracy with distributional constraints:

L = Et,z0,ϵ

[
∥vθ(xt, t,h)− vtarget∥22

]
+ λEMDLEMD, (9)

where the EMD regularizer preserves distributional shape by aligning cumulative density functions.

Residual Prior. To remove global frequency bias and let the model focus on condition–dependent
deviations (e.g., shoulders and long tails), we train the diffusion in a residual-logit space. We
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Figure 3: t-SNE visualization of condition embeddings h learned by our encoder. The embeddings
are colored by polymer statistics (normalized): (a) pAA, (b) pBB , (c) mean block length, and (d)
alternation index. Darker colors indicate larger values, while lighter colors indicate smaller values.

first estimate a dataset-level prior histogram pprior (from the training set) and convert it to logits
zprior = logit(pprior). Instead of learning z0 directly, the target becomes the residual

r = z0 − zprior. (10)
The DiT then predicts v-parameterized noise on r via the same objective as above. At inference, we
reconstruct logits by adding the prior back,

ẑ0 = r̂+ zprior, p̂ = softmax(ẑ0/τ) . (11)
The residual prior is estimated once from the training set only, ensuring no test-set information
leakage.

Classifier-Free Guidance. During training, we randomly drop condition embeddings with probability
pcfg to enable classifier-free guidance [22] at inference. At generation time, we use DDIM sampling
[52] with guidance scale w > 1 to balance sample diversity against conditioning fidelity. The final
block distribution is obtained via temperature-scaled softmax: p̂ = softmax(z0/τ).

5 Empirical Study

5.1 Experimental Settings

Infrastructure and Implementation. All experiments were conducted on a server equipped with
NVIDIA A100 GPUs (80GB memory) and an AMD EPYC 7473X CPU with 48 cores and 503GB
RAM. Our implementation is based on PyTorch 2.4 with CUDA 12.1.

Dataset. The dataset used to train and evaluate our model was generated from coarse-grained
simulations [18, 40, 19] described in Appendix A. It comprises 564 samples, each defined by a set
of adjustable parameters summarized in Table 2. All parameters in the dataset are expressed in
Lennard–Jones (LJ) reduced units [11, 26], with the length scale set to σ and the energy scale set to ϵ,
where 1 ϵ corresponds to kBT at 100 K.

Evaluation Metrics. To evaluate the accuracy of predicted block-length distributions, we adopt
both Kullback–Leibler (KL) divergence and Earth Mover’s Distance (EMD). KL(p ∥ p̂) =∑M
b=1 pb log

pb
p̂b+ε

, emphasizes probability calibration by penalizing underestimation of high-density

regions. In contrast, EMD(p, p̂) =
∑M
b=1 |Fp(b)− Fp̂(b)|, with Fp denoting the cumulative distri-

bution, measures the transport cost of shifting probability mass and is thus sensitive to geometric
displacement across bins. Using both metrics provides complementary insights: KL reflects fidelity
to true modes, while EMD captures global shape and shift mismatches.

5.2 Performance Analysis

Effectiveness of Contrastive Representation. Figure 3 shows the t-SNE visualization of the learned
condition embeddings. Clear clustering structures emerge when colored by different polymer statistics,
including pAA, pBB , mean block length, and alternation index. This alignment with chemically
meaningful quantities indicates that the encoder successfully captures the underlying polymerization
patterns, consistent with the Mayo–Lewis theory [36]. Specifically, the Mayo–Lewis equation

dfA
dx

=
rAf

2
A + fAfB

rAf2
A + 2fAfB + rBf2

B

(12)

6



relates the instantaneous copolymer composition to the monomer feed fractions fA, fB and the reac-
tivity ratios rA, rB . From this, one can derive the transition probabilities pAA = rAfA

rAfA+fB
, pBB =

rBfB
rBfB+fA

. Although the previous study from DuBay group proved the failure of Mayo–Lewis theory
for the prediction of pAA and pBB with difference in activation energy and non-bonded interactions
between like monomer pairs [40], the relation between the pair probabilities and block-level statistics
remains true in all of the simulations in the dataset. The probabilities of finding unlike neighbors are
therefore calculated from pAB = 1− pAA, pBA = 1− pBB . Furthermore, these transition probabili-
ties influence block-level statistics: the mean block length of A is approximately ℓA = 1/(1− pAA),
the variance is governed by Var(ℓA) = pAA/(1− pAA)

2, and the alternation index can be summa-
rized as pAB + pBA. Since our contrastive learning objective is defined with respect to the block
distribution, embeddings that capture these statistics naturally align with chemically meaningful
distinctions. In particular, embeddings associated with similar block statistics are mapped closer in
the latent space, suggesting that the learned representation is semantically informative and suitable as
conditioning input for downstream generative modeling.
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Figure 4: (Top) Mean predicted and ground-
truth block-length distributions (log-scale).
(Bottom) Scatter plot of validation metrics
with KL divergence and 1D EMD.

Effectiveness of Reconstruction. Figure 4 high-
lights the reconstruction ability of our diffusion-based
generator. In the upper panel, the predicted block-
length distribution aligns well with the ground-truth
distribution in the high-probability region, indicat-
ing that the model successfully captures the dom-
inant statistics. Comparison with the theoretical
Mayo–Lewis distribution further shows that the pre-
dictions also reproduce non-theoretical features ob-
served in the ground truth, including the long-tail be-
havior at low probabilities and a characteristic shoul-
der around 15 monomers corresponding to a preferred
block length. The lower panel further supports this
observation: most validation samples lie in the lower-
left corner of the KL–EMD scatter plot. The KL val-
ues are concentrated within the range of 0 to 1, while
the EMD mainly fall within the range of 0 to 4, which
are small enough to indicate a high degree of agree-
ment between the predicted and ground-truth distri-
butions. These results provide strong evidence that
our model successfully captures key distributional
features of the block-length histogram, including the
long-tail behavior and the shoulder region, which are
particularly challenging to model accurately.

Effectiveness of Forecasting. Figure 5 presents rep-
resentative prediction results of our diffusion model.
The dataset is randomly divided into a training set (95%) and a held-out test set (5%), where the
model is trained only on the training portion and evaluated on unseen test samples. The overlap plots
show that in the high-probability regions, the forecasts closely match the ground truth, confirming
that the model effectively captures the dominant statistical patterns. The figure also showcases
representative prediction results of our model across diverse distributional regimes. For instance,
idx=61 closely aligns with the Mayo–Lewis theoretical distribution, demonstrating that the model
can faithfully capture well-characterized behaviors. Other examples highlight the model’s ability to
forecast challenging distributional patterns beyond the theory: idx=287 and idx=320 exhibit pro-
nounced long-tail characteristics, which the model successfully reproduces, while idx=492 presents
a characteristic block length, with the predicted peak magnitude closely matching the ground truth.
These results collectively underscore the model’s robustness in capturing not only theoretically
predictable structures but also complex and rare distributional features that are difficult to model.

5.3 Ablation Study and Sensitivity Analysis

This section aims to assess the effectiveness of the proposed contrastive condition encoding and
analyze the sensitivity of critical parameters that shape the accuracy of block distribution prediction.
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Figure 5: Overlay of predicted and ground-truth block-length distributions for representative test
samples.

Table 1: Ablation study of the proposed frame-
work. Both KL divergence and EMD are reported
(scaled by 10−2); lower values indicate better per-
formance, and the best results are in bold.

Model Variant KL EMD

PolyGen
Reconstruction 2.89±0.18 63.89±4.16
Prediction 18.38±3.17 95.67±16.14

w/o Cond. Encoder
Reconstruction 3.02±0.09 65.99±4.17
Prediction 71.52 ±11.01 717.34±316.15

To verify the effectiveness of contrastive condi-
tion encoder, we repeat each experiment three
times and compare the differences between the
reconstructed block distributions on the train-
ing set and the predicted distributions on the
test set, with and without the encoding, against
the ground truth. Table 1 demonstrates both the
effectiveness and necessity of our component.

As illustrated in Figure 6, the choice of logit
temperature τ has a profound impact on the pre-
dicted block-length distribution, particularly in
the long-tail regime. Because the final distri-
bution is obtained by p̂ = softmax(z0/τ), a smaller τ sharpens the softmax and concentrates
probability on head bins, thereby underestimating rare long blocks. Conversely, a larger τ increases
entropy and spreads mass into the tails, but overly large values may flatten out genuine peaks. We
empirically find that setting τ around 1.4 during inference achieves the best balance between head
fidelity and tail coverage.
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Figure 6: Comparison of mean reconstructed block-length distributions under different logit tem-
peratures. Lower values of τ sharpen the predicted probabilities, while higher values smooth them,
influencing how well the model aligns with the ground-truth distribution.

6 Conclusion

This work represents a preliminary step toward developing a generative model that links synthesis
conditions with the resulting copolymer sequences. By framing the prediction of block-length distri-
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butions as a conditional generation task, we introduce PolyGen, a model that integrates contrastive
learning for condition encoding and a diffusion-based generator for sequence feature prediction. Our
results show that PolyGen can capture the dominant statistical patterns of copolymer sequences with
satisfying accuracy.

Future efforts will focus on improving the model to enhance sequence feature generation and
predictive performance. We also plan to expand and standardize the dataset to include more complex
scenarios, such as the incorporation of seed oligomers[59], to enable deeper investigation of sequence
control in one-pot synthesis.

Overall, this work proposes a new problem for the application of machine learning in the polymer
studies. It also lays the foundation for a machine learning model that not only predicts sequence
features but can also be extended to generate full polymer sequences, evaluate factor importance, and
support reverse design of synthesis conditions. Such advances will accelerate the rational design and
scalable production of sequence-controlled polymers.
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A Coarse-grained Model

Here we use a coarse-grained model developed by DuBay group to investigate the factors influencing
polymer sequences[60, 62, 40]. In the coarse-grained model simulating an irreversible step-growth
copolymerization, the monomers are simplified as three connected particles: one center particle (type
1) and two linking particles (type 2) (Figure 7(a)).

A.1 Interaction

The non-bonded interaction between type 1 particles is represented by a modified Lennard-Jones
potential (Eq (13)) with separated repulsion and attraction parts (Figure 7(a)). In all simulations, the
repulsive part remains fixed, while the attractive portion varies by modifying the well depth, εatt.
The εAA, εAB , and εBB refer to he attractions between AA, AB, and BB respectively.

ELJ(1, 1
′) =

{
4ϵatt(1,1′)[(

σ
r(1,1′)

)12 − ( σ
r(1,1′ )

)6] r0 ≤ r(1,1′) < 2.5σ

4ϵrep(1,1′)[(
σ

r(1,1′)
)12 − ( σ

r(1,1′)
)6] + C r(1,1′) < r0

, (13)

The non-bonded repulsive interactions between type 2 particles is a soft short-range repulsion as
described by Eq (14) and illustrated in Figure 7(a). The dbond and donset refer to the bonding and
interaction onset distances which are 0.2 σ and 0.3 σ respectively. The h parameter is the activation
energy parameters, Ea, in the dataset, which is correlated with the activation barrier of bond forming
between type 2 particles. Additional information regarding the calculation of the activation barrier
and its variation with h is provided in Ref.[40].

E(2,2′) =


h r < dbond
h
2 cos(

π(r−dbond)
donset−dbond

) + h
2 dbond ≤ r < donset

0 r ≥ donset

(14)

All bonds are modeled as harmonic bonds with sufficiently large force constants to prevent bond
breaking. The specific bond parameters are provided in our previous publication[60]. The angular
potential follows the harmonic form given in Eq.(15). Here the Kangle denotes the potential constant.
In particular, we vary the Kangle values for intra-monomer angles (angle α in Figure 7(a)), Kangle

2-1-2’ ,
to modulate chain stiffness. Increasing Kangle

2-1-2’ results in a stiffer polymer backbone. The relationship
between Kangle

2−1−2′ and the persistence length has been described in detail in Ref. [62]. The equilibrium
bond angle, θ0, is set to 180◦ for all angular potentials.

Eangle(θijk) = Kangle
ijk (θijk − θ0)

2 (15)

A.2 Reaction

The simulations employ Langevin dynamics to all particles. The damp parameter in the fractional
drag term of the Langevin equation is related to the solution viscosity according to Eq. (16), where m
and d denote the particle mass and size, respectively:

13



η =
m

3πd · damp
(16)

Each simulation begins with a randomly distributed 1:1 mixture of A and B monomers in a cubic
box with a side length of 50σ. As the reaction evolves, an irreversible bond forms when two type-2
particles approach closer than the bonding cutoff distance dbond (Figure 7(b)). The polymerization
follows a step-growth mechanism, where both monomers and oligomers can react with both monomers
and oligomers. Simulations are terminated when the reaction extent exceeds 0.9, meaning that over
90% of possible bonds between type-2 particles have been formed (Figure 7(c)).

Figure 7: Illustration of the coarse-grained model for irreversible step-growth copolymerization. (a)
Each monomer is represented by three particles: a central type-1 particle, which defines the monomer
type, and two type-2 particles serving as linking sites. The angle α corresponds to the intra-monomer
2-1-2’ angle. Interactions between type-1 particles follow a modified Lennard–Jones potential with
separate repulsive and attractive parts (top right), while interactions between type-2 particles are
modeled using a short-range repulsive potential with a maximum value h (bottom left). (b)A bond
forms between two type-2 linker particles when they approach closely enough that their distance
reaches dbond. (c)Simulations start from a randomly distributed 1:1 mixture of A and B monomers
and proceed until the reaction extent exceeds 0.9.

B Parameters in Copolymer Simulations
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Table 2: Description of parameters in copolymer simulation data.
Parameter Description
size Size of the simulation box
Nmono Number of total monomers
damp Damping coefficient in Langevin Dynamics
Temp Temperature
εAA Attraction between A-A monomers
εAB Attraction between A-B monomers
εBB Attraction between B-B monomers
εhard Repulsion between monomers
Kangle

A Potential constant for intramolecular angle of A monomers
Kangle

B Potential constant for intramolecular angle of A monomers
EAA
a Activation energy for the formation of A-A bonding

EAB
a Activation energy for the formation of A-B bonding

EBB
a Activation energy for the formation of B-B bonding

seq Generated polymer sequence (an array of strings)
pAA Probability or fraction of AA pairs in sequence
pBB Probability or fraction of BB pairs in sequence
pAA,BB Probability or fraction of AA or BB pairs in sequence
pAB Probability or fraction of AB pairs in sequence
block_dist Block length distribution

15


	Introduction
	Related Works
	Problem Definition
	Methodology
	Condition Encoder with Contrastive Learning
	Diffusion-based Block Distribution Generator

	Empirical Study
	Experimental Settings
	Performance Analysis
	Ablation Study and Sensitivity Analysis

	Conclusion
	Coarse-grained Model
	Interaction
	Reaction

	Parameters in Copolymer Simulations

