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Abstract

The goal of this work is to develop a recommendation sys-
tem for smart farming such that based on the details of the
farm and the farming conditions, including information on
the weather and soil properties, the system presents recom-
mendations on the choice of the crop/seed, the type of fer-
tilizers, and the amount of water for irrigation in order to
maximize the overall net profit of the farmer. We refer to this
problem as the crop-fertilizer-irrigation (CFI) recommender
problem. In this paper, we propose a conservative, stochastic,
contextual bandit formulation for solving the CFI problem,
where the context captures the farm ID, weather indices and
soil properties, the action set is the possible types of crop-
s/seed, the types of fertilizers and irrigation, and the reward is
the net profit of the farmer. Our bandit formulation is a con-
servative bandit setting since we incorporate constraints on
the learned policy such that the learned policy need to sat-
isfy certain performance criteria imposed by the farmer while
maximizing the reward. Furthermore, our bandit formulation
is also stochastic in the sense that the contexts are not ob-
servable, rather a distribution of the contexts are known. The
stochastic bandit setting captures the uncertainty associated
with the measurements of the weather indices and the soil
properties. Based on the optimism in the face of uncertainty
principle, we propose an algorithm to solve the bandit formu-
lation of the CFI problem. To validate the performance of our
approach we used the maize data collected through the G2F
initiative. While we present initial model fitting results, the
implementation and validation of the proposed algorithm are
part of our future work.

Introduction
Making agricultural production system decisions is chal-
lenging due to risks and uncertainties associated with cli-
mate change, extreme weather events, high volatility in the
crop price market, and increased regulatory pressure on the
environment and public health (Hardaker et al. 2015). At the
pre-season stage, a farmer must make crop selection deci-
sions based on forecast/simulated weather, soil characteris-
tics, available resources, expected prices of supplies such as
water and fertilizer, and anticipated market value of the crop,
all while adhering to budget and public regulations. Under
uncertain conditions, farmers’ crop choices – which crops to
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sow and how much acreage to devote to various crops – are
crucial for achieving the best trade-off between profit and
environmental footprint/regulation. The majority of farmers
rely their seed selections on knowledge gathered from years
of experience, the outcomes of prior decisions, and contacts
with colleagues and consultants. Which, as it turns out, is
not the optimal strategy in the face of uncertainty. Farmers
require decision support tools to make a more informed de-
cision.

Currently, available pre-season decision support tools are
based on mechanistic crop models and data-driven models.
Crop models including DSSAT (Jones et al. 1998), APSIM
(Keating et al. 2003), and WOFOST (Eitzinger et al. 2004),
are used to simulate crop yield under all potential what-
if scenarios while accounting for uncertainty and facilitate
crop selection. However, the model requires calibration for
each field and crop type, which is costly, time consuming,
and laborious (Lamsal et al. 2017). Data driven model in-
cludes linear models and its variants (Li et al. 2017; Iizumi
et al. 2018; Drummond et al. 2003; Gonzalez-Sanchez,
Frausto-Solis, and Ojeda-Bustamante 2014), nonlinear mod-
els such as support vector regression, Gaussian process re-
gression (Shirley et al. 2020), decision tree (Romero et al.
2013), random forest (Jeong et al. 2016), neural networks
(Kaul, Hill, and Walthall 2005; Abbasi-Yadkori, Pál, and
Szepesvári 2011; Barbosa et al. 2020; Cunha, Silva, and
Netto 2018). The generalizability of these models is depen-
dent on data variety, quantity, and contexts. Uncertainty and
risk were incorporated to these models by stochastic pro-
gramming (Li and Hu 2020), portfolio optimization (Marko
et al. 2017), and stochastic contextual bandit (Kirschner and
Krause 2019). The stochastic contextual bandit formulation
can account for weather, soil, and other variables’ uncer-
tainty but not for constraints such as budget limits. To ac-
count for the limitations, we extend the formulation to a con-
servative stochastic contextual bandit.

Problem Formulation: Conservative,
Stochastic Bandit Formulation for Farming

Recommendation
Consider a farmland denoted by F , which is divided into an
n×m grid, i.e., nm number of cells. Each cell in the grid is
associated with a feature vector that captures the soil proper-



ties of the cell, including soil fertility levels and soil texture.
The entire land F is associated with a feature vector that
captures the climate indices such as heat degree days, frost
days, highest temperature, lowest temperature, average tem-
perature, and rainfall aggregated over specific periods. Let
X be the set defined as X := {XS}×{XF }×{XI}, where
XS is the set of all possible crops or seed types that can be
grown in F , XF is the set of all available fertilizers that can
be used inF , andXI is the amount of irrigation forF . Addi-
tionally, often farmers impose performance constraints such
as the net profit must be at least a certain value, and sustain-
ability constraints such as limits on the amount of irrigation
water and fertilizers and choices of fertilizers. For a given
farmland and set of soil properties and climate indices, our
goal is to provide recommendations for the crop/seed type,
the fertilizer type, and the irrigation for each cell in the grid
such that the annual net profit of the farmer is maximized
and the associated constraints are satisfied. Here, farmer’s
annual net profit is defined as the total revenue subtracted by
total management costs (i.e., cost of fertlizers and irrigation)
during the farming process. We refer to this problem as the
crop-fertilizer-irrigation (CFI) recommender problem.

In this work, we propose a contextual bandit formulation
for the CFI recommender problem. Consider a context set
C = {c1, c2, . . .} of finite dimension. Each context ci ∈ C is
a d-dimensional vector that captures the soil properties and
the weather indices. To consider the uncertainty associated
with the weather and soil data, we consider a setting where
the nature provides a distribution over the context set rather
than the context itself, i.e., a prediction on the weather and
soil data. At round t, the nature chooses a distribution µt ∈
P(C) over the context set and samples a context realization
ct ∼ µt. The learner observes only µt and not ct and chooses
an action, say xt. The unknown reward function is given by
f : C × X → R such that for a given context ct ∈ C and
choice of crop or seed type xS , fertilizer xF , and irrigation
xI at time t, f(xt, ct) is the resulting net profit, where xt =
(xS , xF , xI) and xt ∈ X . In addition, there exists a baseline
(farmer’s ) policy πb that at each round t, selects action bt ∈
X and incurs the expected reward z(bt, ct).

At round t, the learner observes µt and makes a deci-
sion xt, i.e., recommends a crop or seed type, fertilizer,
and irrigation, based on a prediction on soil properties and
weather conditions. Then the nature provides a reward yt =
f(xt, ct) + εt, where yt ∈ R, εt is a σ−subGaussian, ad-
ditive noise and satisfies Assumption 1. In addition, at each
round t the learner queries the farmer to present his/her pol-
icy bt based on the prior experience and preferences. The ex-
pected rewards of the actions taken by the farmer is denoted
as z(bt, ct). We assume that z(bt, ct) is known since we have
access to a large amount of data generated by the baseline
policy, i.e., farmer’s strategy, and thus have a good estimate
of its performance. In order to solve the CFI recommender
problem, our aim is to learn an optimal mapping/policy
g : C → X of contexts (soil & weather conditions) to
the crops, fertilizer, and irrigation such that the cumula-
tive reward,

∑T
t=1 f(xt, ct) is maximized while simultane-

ously satisfying the constraints imposed by the farmer. The
constraints are such that at round t, the difference between

the performances of the baseline and the learner’s policies
should remain above a pre-defined fraction α ∈ (0, 1) of the
baseline performance. Formally, our aim is to minimize the
cumulative regret

RT =

T∑
t=1

(
f(x?t , ct)− f(xt, ct)

)
, (1)

such that
t∑
i=1

f(xt, ct) ≥ (1− α)

t∑
i=1

z(bt, ct) (2)

at each round, where x? := arg maxx∈X Ec∼µt [f(x, c)] is
the best choice of crop/seed, fertilizer, and irrigation for the
given context µt, T is the number of rounds, and α ∈ (0, 1)
is the maximum decrease in the performance the decision
maker is willing to accept. The constraint metric ensures
that the learned policies satisfy certain requirements of the
farmer such as type and amount of fertilizer and amount of
water, and net profit. We focus on linearly parameterized re-
ward functions f(x, c) = φ>x,cθ with given feature vectors
φx,c ∈ Rd for x ∈ X and c ∈ C, and an unknown reward
parameter vector θ ∈ Rd. Thus the reward at round t is de-
noted as

yt = φ>xt,ctθ + εt, (3)
where θ and φ satisfy Assumption 2. A bandit setting with a
linear reward structure is referred to as linear bandit setting
(Bubeck and Cesa-Bianchi 2012).

Assumptions 1 and 2 are presented below.

Assumption 1 Each element εt of the noise sequence
{εt}∞t=1 is conditionally σ−subGaussian, i.e.,

For all ζ ∈ R,E[eζεt |x1:t,ε1:t−1
] ≥ exp(ζ

2σ2

2
).

Assumption 2 There exists constant A,D ≥ 0 such that
‖θ‖2 ≤ A, ‖φx,ct‖2 ≤ D, and φ>x,ctθ ∈ [0, 1], for all t and
all x ∈ X .

Background: Linear Contextual Bandits
In this section, we briefly review the results from the lin-
ear contextual bandit literature. The linear contextual ban-
dit problem has been extensively studied and different so-
lution approaches have been proposed (Li et al. 2010; Alle-
siardo, Féraud, and Bouneffouf 2014; Agrawal and Goyal
2013; Abbasi-Yadkori, Pál, and Szepesvári 2011). In the lin-
ear contextual bandit setting, there are no constraints that
need to be satisfied by the learner and the context in round t
is known and hence it is a special case of the bandit setting
considered in this paper with no constraints and the choice
of the distribution µt as a Dirac delta distribution denoted as
µt = δct for all t. In round t of the linear contextual bandit
setting, the nature presents an action-context feature vector
Ψt = {φx,ct : x ∈ X } ⊂ Rd. The learner then selects an
action xt ∈ X and observes a noisy reward yt = φ>t θ + εt,
where εt is conditionally σ-subGaussian. The goal here is to
minimize the cumulative regret RT =

∑T
t=1 φ

?>
t θ − φ>t θ,



where φ?t = arg maxφ∈Ψt φ
>θ is the feature vector corre-

sponding to the best action in round t.

A linear contextual bandit setting with uncertainty in the
context is studied in (Lamprier, Gisselbrecht, and Gallinari
2018; Kirschner and Krause 2019), specifically (Kirschner
and Krause 2019) considered a setting where the context
itself is not observable rather a distribution on the context
is available. Often decision making problems are associated
with safety or performance constraints and the objective of
the learner is to learn a policy that maximizes the cumula-
tive reward and guarantees that the learned policy performs
at least as well as a baseline. Constrained linear contextual
bandits are studied in (Kazerouni et al. 2017; Amani, Al-
izadeh, and Thrampoulidis 2019; Russo and Van Roy 2014;
Daulton et al. 2019). In this work we built on the work in
(Kirschner and Krause 2019; Kazerouni et al. 2017) to ad-
dress the CFI-recommender problem in which the contexts
are uncertain (predictions of weather and soil data) and the
farmland is subject to certain constraints.

Solution Approach: Conservative Stochastic
Contextual Bandit

In this section, we present the algorithm for solving the
CFI-recommender problem. We observe the predictions on
the weather and the soil properties, µt, for each grid in
the farmland instead of the accurate measurements ct, and
the features φx,ct . Given the distribution µt, we construct
the expected feature vector, Ψt = {ψ̄x,µt

: x ∈ X }
where {ψ̄x,µt := Ec∼µt [φx,c]} (step: 4) (Kirschner and
Krause 2019). We note that, each feature ψ̄x,µt

corre-
sponds to exactly one action x ∈ X and we use Ψt

as the feature context set at time t. The proposed algo-
rithm is based on the optimism in the face of uncertainty
principle, where the algorithm maintains a confidence set
Bt ⊂ Rd that contains the unknown parameter vector θ
with high probability (Abbasi-Yadkori, Pál, and Szepesvári
2011). The algorithm then chooses an optimistic estimate
θ̃t = arg maxθ̂∈Bt (maxx∈X ψ̄>x,µt

θ̂) and chooses an ac-
tion x′t = arg maxx∈X ψ̄

>
x,µt

θ̃t. Equivalently the algorithm
chooses the pair (x′t, θ̃t) ∈ arg max

(x,θ̂)∈X×Bt
ψ̄>x,µt

θ̂ which

jointly maximizes the reward.

To ensure that the action chosen by the algorithm guar-
antees satisfaction of the constraints imposed by the farmer,
the algorithm plays the action x′t only if it satisfies the con-
straint for the worst choice of the parameter θ̂ ∈ Bt (Kazer-
ouni et al. 2017). We formally define this by introducing two
sets Sbt−1 and St−1. Let St−1 be the set of rounds i before
round t at which the algorithm has played the optimistic ac-
tion, i.e., xi = x′i. Then Sbt−1 = {1, 2, . . . , t− 1} − St−1 is
the set of rounds j before round t at which the algorithm has
followed the baseline policy, i.e., xj = bj . To ensure that
constraint in Eq. (2) is satisfied the algorithm plays optimal
action xt = x′t at round t if it satisfies

Algorithm 1: Pseudocode for Conservative Stochastic Con-
textual Bandit

Input: α,B,F
Initialize: S0 = ∅, `0 = 0 ∈ Rd, B1 = B

1: for t = 1, 2, . . . , T do
2: Nature chooses µt ∈ P(C)
3: Learner observes µt
4: Set Ψt = {ψ̄x,µt

: x ∈ X } where {ψ̄x,µt
:=

Ec∼µt
[φx,c]}

5: Query baseline (farmer’s) strategy bt ← πf (Ψt)

6: Find (x′t, θ̃t) ∈ arg max
(x,θ̂)∈X×Bt

ψ̄>x,µt
θ̂

7: Compute Lt = minθ̂∈Bt〈`t−1 + ψ̄x′t,µt
, θ̂〉

8: if Lt +
∑
i∈Sb

t−1
z(bt, ct) ≥ (1 − α)

∑t
i=1 z(bt, ct)

then
9: Play xt = x′t and observe reward yt in Eq. (3)

10: Set `t = `t−1 + ψ̄xt,µt , St = St−1 ∪ t, Sbt = Sbt−1
11: Given xt, yt construct Bt+1 using Eq. (5)
12: else
13: Play xt = bt and observe reward yt in Eq. (3)
14: Set `t = `t−1, St = St−1, Sbt = Sbt−1 ∪ t, Bt+1 =

Bt
15: end if
16: end for

min
θ̂∈Bt

[ ∑
i∈Sb

t−1

z(bt, ct) + (
∑

i∈St−1

ψ̄xi,µi)
>θ̂ + ψ̄>x′t,µt

θ̂
]

≥ (1− α)
t∑
i=1

z(bi, ci),

and plays the action chosen by the farmer, i.e., xt = bt other-
wise. For details on the construction of the confidence set Bt,
we refer to Section 3.1 in (Kazerouni et al. 2017).
Construction of the Confidence Set Bt: We denote the con-
fidence set in round t as Bt. The proposed algorithm starts by
the most general confidence set i.e., B1 = B, and updates the
confidence set only when the optimistic action proposed by
the learner is played. This is because that unless the learner’s
action is played, no additional information is gained about the
unknown parameter θ. Let St = {i1, i2, . . . , imt

} be the set
of rounds up to and including t during which the the algorithm
played the optimistic action. Heremt = |St|. For a fixed value
λ > 0, the regularized least square estimate of θ̂ at round t is
given by

θ̄t =
(

ΦtΦ
>
t + λ

)−1

ΦtYt, (4)

where Φt = [ψ̄xi1 ,µi1
, ψ̄xi2 ,µi2

, . . . , ψ̄xmt ,µmt
] and Yt =

[yi1 , yi2 , . . . , ymt
]>. For a given confidence parameter δ ∈

(0, 1), we construct the confidence set for the next round t+1
as

Bt+1 = {θ̂ ∈ Rd :
∥∥∥θ̂ − θ̄t∥∥∥

Vt

≤ βt+1}, (5)



where βt+1 = σ

√
d log(

1 + (mt + 1)D2/λ

δ
)+
√
λA, Vt =

λI + ΦtΦ
>
t , and the weighted norm is defined as ‖u‖V =√

u>V u for any u ∈ Rd and positive definite V ∈ Rd×d.

Experimental Analysis
Crop Data
We use a maize yield data set acquired over four years by
the maize genomes to fields (G2F) initiative (McFarland et al.
2020), a multi-institutional effort in North America over 68
unique locations. The data set includes yields, planting dates,
flowering times, and harvest dates, as well as hourly weather
data from in-field weather stations, such as temperature, hu-
midity, solar radiation, rainfall, and soil wind speed, as well as
soil characteristics such as soil texture, organic matter, texture,
and nitrogen, phosphorous, potassium, sulfur, and sodium lev-
els (in parts per million). There are 2158 yield measurements
for 24 crops collected from 22 different locations in this data
set.

For this experiment, the weather data of the whole grow-
ing season was summarized by crop growth stages as in
(Holzkämper, Calanca, and Fuhrer 2013). These are average
daily solar radiation [MJ/m2], average daily minimum tem-
perature below 0 0C in absolute values [0C] as a measure of
frost impacts, average daily mean temperature [0C] as a mea-
sure of temperature determining plant growth, average daily
maximum temperature above 35 C [0C] as a measure of heat
stress, and average photoperiod.

Experiments
We first constructed a data set D = {(ci, xi, yi)}, where
for each data point i = 1, 2, . . . , 2158, ci ∈ R28 is a
28−dimensional vector that includes 6-dimensional weather
and soil data information (% of sand, % of silt, % of clay in
the soil, daily average temperature, radiation, and photosyn-
thesis) and a 22−dimensional one-hot encoding that captures
the field ID, and xi, yi are the seed/crop identifier, yield, re-
spectively. The set D is of size 2158 which is the size of our
data set. As an initial step before implementing our proposed
algorithm, we first fit a bilinear model (Koren, Bell, and Volin-
sky 2009) such that yi ≈ c>i WVxi

, where Vxi
∈ R10 is the

feature vector for crop type xi (Kirschner and Krause 2019).
Our data set consists of 24 varieties of crops and hence there
are 24 feature vectors, V1, V2, . . . , V24. The bilinear model
captures the correlation between site features c>i W and Vxi

for each data point and serves as the interactive setting that
provides the rewards (yield) for our bandit setting.

We fitted a bilinear model on the historical maize data, col-
lected through the G2F initiative (McFarland et al. 2020), via
stochastic gradient descent using the loss function below (Ko-
ren, Bell, and Volinsky 2009)

L(V,W ) =
n∑
i=1

(yi − cTi WVxi
)2 + λv||Vxi

||2 + λw||W ||2,

where λv and λw denotes the regularization terms. Training
this model for 300 iterations resulted in a mean square error
loss of 0.002 using a learning rate of 0.015, λv = λw = 0.001

Figure 1: Visualization of yield values predicted by the
model versus true yield values. The predicted values shows
correlation with the true values.

and a latent dimension of 10, i.e., Vxi
∈ R10 for all i. Fig-

ure 1 illustrates the model predicted yield values versus the
true yield values in the data set. As seen in the figure, the yield
values predicted by the model correlates well with the true
yield values, signifying that the trained bi-linear model is a
good candidate to test our proposed bandit algorithm. Our fu-
ture work will include validating this crop model on additional
data, including additional relevant context, and implementing
our proposed conservative stochastic contextual bandit algo-
rithm, Algorithm 1, using this model.

Conclusion and Future Work
In this paper, we presented a conservative contextual bandit-
based recommendation system for farming such that given the
details of the farm, the climatic conditions, and soil proper-
ties, the system provides recommendation on the type of crop-
s/seeds, fertilizers, and amount of water for irrigation, in order
to maximize the net profit of the farmer. In our formulation,
we incorporated the domain knowledge and experience of the
farmer into the decision making process by including perfor-
mance constraints such that the farmer can impose certain con-
ditions on the minimum expected yield, type of the fertilizers
and so on. Including these constraints into the model gives
the farmer a certain amount of control on the farming deci-
sions instead of solely relying on the decisions recommended
by the learner. The uncertainties associated with the weather
and soil property measurements are captured by considering
a stochastic contextual bandit where the actual contexts are
unknown rather only the predictions are available. To validate
the performance of our approach we plan to use the maize data
collected through the G2F initiative (McFarland et al. 2020).
While some initial model fitting is completed, the implemen-
tation and validation of the proposed algorithm are part of our
future work. As part of our future work, we also plan to inves-
tigate the convergence of the proposed algorithm.
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