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Abstract

The Kullback-Leibler (KL) divergence plays a central role in probabilistic machine learning,
where it commonly serves as the canonical loss function. Optimization in such settings is
often performed over the probability simplex, where the choice of parameterization signif-
icantly impacts convergence. In this work, we study the problem of minimizing the KL
divergence and analyze the behavior of gradient-based optimization algorithms under two
dual coordinate systems within the framework of information geometry− the exponential
family (θ coordinates) and the mixture family (η coordinates). We compare Euclidean
gradient descent (GD) in these coordinates with the coordinate-invariant natural gradient
descent (NGD), where the natural gradient is a Riemannian gradient that incorporates the
intrinsic geometry of the underlying statistical model. In continuous time, we prove that
the convergence rates of GD in the θ and η coordinates provide lower and upper bounds,
respectively, on the convergence rate of NGD. Moreover, under affine reparameterizations
of the dual coordinates, the convergence rates of GD in η and θ coordinates can be scaled
to 2c and 2

c , respectively, for any c > 0, while NGD maintains a fixed convergence rate of
2, remaining invariant to such transformations and sandwiched between them. Although
this suggests that NGD may not exhibit uniformly superior convergence in continuous time,
we demonstrate that its advantages become pronounced in discrete time, where it achieves
faster convergence and greater robustness to noise, outperforming GD. Our analysis hinges
on bounding the spectrum and condition number of the Hessian of the KL divergence at the
optimum, which coincides with the Fisher information matrix.

1 Introduction

The convergence properties of the natural gradient descent algorithm, originally introduced in Amari (1996),
have been extensively studied in the literature (e.g., Amari (1998); Pascanu & Bengio (2014); Martens
(2020)). In particular, the natural policy gradient Kakade (2001) has motivated a rich body of research (see,
e.g., Müller & Montúfar (2024); Yuan et al. (2022); Khodadadian et al. (2022).) Beyond this, the natural
gradient methods have been applied to diverse problems including Bayesian networks Ay (2023); Ay & van
Oostrum (2023), over-parametrized neural networks Zhang et al. (2019); van Oostrum & Ay (2021); van
Oostrum et al. (2023) and infinitely-wide networks Karakida et al. (2019); Karakida & Osawa (2021) to
name a few. Related to our focus, recent work has also investigated convergence rates of natural gradient
flows and their discrete counterparts (see Zhang et al. (2019); Xiao (2022); Yuan et al. (2022); Khodadadian
et al. (2022); Müller & Montúfar (2024)). A commonly observed phenomenon is that natural gradient descent
outperforms Euclidean gradient descent, albeit at a higher computational cost. In this work, we revisit this
comparison in a simple yet illuminating setting: minimizing the Kullback-Leibler (KL) divergence over the
probability simplex. The KL divergence is a fundamental loss function in probabilistic machine learning,
arising naturally from the maximum likelihood principle and information-theoretic considerations (Mohri
et al., 2018, Section 12.1.1). Despite the apparent simplicity of the problem, we observe that natural gradient
flows do not universally outperform standard Euclidean gradient flows.

Specifically, we consider two dual parametrizations of the probability simplex: the exponential family repre-
sentation (the θ coordinates) and the mixture family representation (the η coordinates) Amari (2016). We
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prove that the natural gradient flow converges faster than the Euclidean gradient flow in the θ coordinates
(the θ-gradient flow), consistent with results in the literature. However, the natural gradient flow (despite
yielding straight-line trajectories) converges more slowly than the Euclidean gradient flow in η coordinates
(η−gradient flow). This demonstrates that the often-reported rapid convergence of natural gradient flow
cannot be simplistically attributed to the straightness of its trajectories. Furthermore, leveraging the invari-
ance of the canonical divergence under affine transformations, we show that the convergence rates of the
Euclidean gradient flows in η and θ coordinates can be adjusted to 2c and 2

c , respectively, for an arbitrary
c > 0, while the natural gradient maintains a fixed convergence rate of 2, sandwiched between them. Thus,
by setting c = 1, we can construct a pair of dual coordinates, (η̄, θ̄), that match the convergence rate of
the natural gradient flow. Since the advantages of the natural gradient are not immediately apparent in
the continuous-time setting, we extend our analysis to the discrete-time case, where the natural gradient
demonstrates both faster convergence and greater robustness to noise, outperforming Euclidean gradient
descent. We show that the fundamental reason behind the superiority of natural gradient lies in the optimal
conditioning of the loss landscape: the natural gradient updates are equivalent to minimizing the loss func-
tion 1

2 ∥η− ηq∥2, whose Hessian has a condition number equal to 1. The main contributions of this paper are
summarized as follows:

1. We analyze the convergence rates of Euclidean gradient flows in η and θ coordinates, and of the
natural gradient flow (Theorem 3 and Theorem 9). We show that while the natural gradient flow
converges faster than the θ-gradient flow, it is slower than the η-gradient flow. This result builds
upon bounds on the spectrum of the Hessian of the loss function established in Lemma 2. These
theoretical findings are supported by illustrative numerical experiments.

2. Exploiting the duality and the invariance of the canonical divergence under affine transformations,
we demonstrate in Theorem 4 that the convergence rates of Euclidean gradient flows in η and θ
coordinates can be adjusted to 2c and 2

c , respectively, for an arbitrary c > 0, while the natural
gradient maintains a fixed convergence rate of 2, sandwiched between them. This shows that there
exists a pair of dual coordinates, (η̄, θ̄) such that the convergence rate of η̄− and θ̄−gradient flows
matches the convergence rate of the natural gradient flow.

3. We analyze the discrete-time dynamics in Section 4, where Theorems 7 and 8 establish the superior
robustness properties of natural gradient dynamics compared to their Euclidean counterparts. The
core reason for this superiority is the optimal conditioning of the underlying loss landscape. In
particular, natural gradient updates can be interpreted as minimizing the loss function 1

2 ∥η − ηq∥2,
whose Hessian exhibits the ideal condition number of 1.

4. We complement our theoretical results with empirical studies in Section 5, extending the analysis to
practical settings where only finite samples from the target distribution are available. Specifically,
we consider optimization of the empirical KL divergence in both full-batch and stochastic gradient
descent (SGD) settings. Our results show that NGD consistently outperforms standard GD when
learning rates are optimally tuned, in alignment with Theorems 5, 7, and 8. Furthermore, when using
sufficiently small and equal learning rates across all methods, the sandwiching behavior predicted
by Theorem 3 for continuous-time dynamics persists in the discrete-time, sample-based setting thus
validating the relevance of our theory beyond idealized assumptions.

Notation

Let R denote the set of real numbers. For a function g of two variables x ∈ Rn and y ∈ Rm, g : Rn×Rm → R,
we use the notation

∇xg(x, y) =


∂g
∂x1

(x, y)
...

∂g
∂xn

(x, y)

 , ∇2
xg(x, y) =


∂2g
∂x2

1
(x, y) · · · ∂2g

∂x1∂xn
(x, y)

... . . . ...
∂2g

∂xn∂x1
(x, y) · · · ∂2g

∂x2
n

(x, y)

 .
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For functions f of a single variable x, we suppress the subscript and simply write ∇f(x) and ∇2f(x). For a
manifold M with two global charts ϕm : M → ϕm(M) ⊂ Rn and ϕe : M → ϕe(M) ⊂ Rn with coordinates
η ∈ ϕm(M) and θ ∈ ϕe(M), we slightly abuse notation and write for any smooth function L : M → R,

L(η) := L(ϕ−1
m (η)), L(θ) := L(ϕ−1

e (θ)),
∇L(η) := ∇

(
L ◦ ϕ−1

m

)
(η), ∇L(θ) := L(ϕ−1

e (θ)),
∇2L(η) := ∇2 (L ◦ ϕ−1

m

)
(η), ∇2L(θ) := ∇2 (L ◦ ϕ−1

e

)
(θ).

For a point p ∈ M, we write ηp = ϕm(p) and θp = ϕe(p) to denote the point p in the η and θ coordinates,
respectively. For a symmetric matrix Q, we write Q ≻ 0 (resp. Q ⪰ 0) to denote that Q is symmetric positive
definite (resp. positive semi-definite). Building on this notation, we write Q ≻ P (resp. Q ⪰ P ) to mean
Q − P ≻ 0 (resp. Q − P ⪰ 0). For a symmetric matrix Q, let λmin (Q) and λmax (Q) denote the minimum
and maximum eigenvalue of Q. Since Q ≻ 0 implies that all eigenvalues of Q are positive, we can define
the condition number of Q as cond(Q) := λmax(Q)

λmin(Q) . For any x ∈ Rn, let ||x|| denote the standard Euclidean
norm, and define the closed norm ball of radius ε centered at x by Bε(x) := {y ∈ Rn : ||y−x|| ≤ ε}. For any
real matrix M , let ∥M∥2 := supx ̸=0

∥Mx∥
∥x∥ be the induced matrix 2-norm, which coincides with the maximum

eigenvalue of M when M ≻ 0.

2 Information Geometry Preliminaries and Gradient Flow Dynamics

In this section, we review the information geometric preliminaries and arrive at the continuous-time gradient
flow dynamics which are then analyzed in the following section. For further details on the underlying concepts
of information geometry, the reader is referred to Amari (2016); Amari & Nagaoka (2000); Ay et al. (2017).

2.1 Discrete Distributions in Mixture and Exponential Coordinates

Consider the family Sn of probability distributions over a discrete random variable X with sample space
Ω = {1, 2, · · · , n, n+1}. Let pi be the probability that X takes the value i. Then, any p ∈ Sn can be written
as

p(x) =
n+1∑
i=1

piδi(x),

where δi(x) is the delta distribution over Ω, concentrated at i. Thus, Sn can be identified with the
n−dimensional simplex1, i.e., Sn =

{
(p1, p2, · · · , pn, pn+1) ∈ Rn+1| pi > 0,

∑n+1
i=1 pi = 1

}
. This family ad-

mits representations both as a mixture family and an exponential family Amari (2016). This can be seen by
noticing that any p ∈ Sn can be written as

p(x) =
n∑
i=1

ηiδi(x) +
(

1 −
n∑
k=1

ηk

)
δn+1(x)︸ ︷︷ ︸

Mixture family representation

= exp
(

−ψ(θ) +
n∑
i=1

θiδi(x)
)
,︸ ︷︷ ︸

Exponential family representation

where ψ(θ) = log
(
1 +

∑n
i=1 e

θi
)

is the log-partition function ensuring the normalization constraint∑
x∈Ω pθ(x) = 1 for the exponential family representation. With η = (η1, η2, · · · , ηn), we obtain a co-

ordinate system for the simplex, with η serving as the natural parameter of the mixture family. We let
ϕm : Sn ∋ p 7→ η = (η1, η2, · · · , ηn) ∈ Rn denote the global chart for Sn in the mixture family coordinate
system. This is depicted in Fig. 1 (left). Similarly, with θ := (θ1, θ2, · · · , θn), we obtain an alternate
coordinate system for the simplex with θ being the natural parameter of the exponential family. Define
ϕe : Sn ∋ p 7→ θ = (θ1, θ2, · · · , θn) ∈ Rn as the global chart for Sn in the exponential family coordinate
system. This is depicted in Fig. 1 (right).

1Note that our definition of the simplex excludes the boundary.
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Figure 1: Left: Coordinate system with the natural parameters η = (η1, η2) of the mixture family represen-
tation of S2. Right: Coordinate system with the natural parameters θ = (θ1, θ2) of the exponential family
representation of S2.

2.2 Convex Duality and Bregman Divergence

For the family Sn, there exists a dual relationship between the coordinates η and θ. Since ψ(θ) =
log
(
1 +

∑n
i=1 e

θi
)

is strictly convex, it is possible to define its convex conjugate φ(η) = maxϑ
(
ηTϑ− ψ(ϑ)

)
.

Optimality condition on the maximizer ϑopt = θ yields the relationship ∇ψ(θ) = η, which can be solved to

obtain θi = log
(

ηi

1−
∑n

i=1
ηi

)
. This results in φ(η) =

(
ηT θ − ψ(θ)

)
=
∑n+1
i=1 ηi log ηi, the negative of Shannon

entropy. Conversely, ψ is the convex conjugate of φ leading to θ = ∇φ(η). Since ∇ηφ(∇θψ(·)) is the identity
map, application of the chain rule gives

∇2φ(η) =
[
∇2ψ(θ)

]−1
. (1)

The convex conjugate functions ψ and φ define a pair of Bregman Divergence Dψ and Dφ satisfying

Dψ(θp ∥ θq) := ψ(θp) − ψ(θq) − ∇ψ(θq)T (θp − θq) (2)
= φ(ηq) − φ(ηp) − ∇φ(ηp)T (ηq − ηp) =: Dφ(ηq ∥ ηp). (3)

In our setting of Sn, this Bregman divergence equals the canonical KL-divergence D(q||p) between probability
distributions q and p, i.e.,

Dψ(θp ∥ θq) = Dφ(ηq ∥ ηp) = D(q||p) =
n+1∑
i=1

qi log
(
qi
pi

)
, (4)

where (ηq, ηp) and (θq, θp) are the coordinate representations of (q, p) in the η and θ coordinates, respectively.
For further details, the reader is referred to Amari & Nagaoka (2000).

2.3 Gradient and Natural Gradient Dynamics

For a given target distribution q ∈ Sn, let the loss function Lq : Sn → R be defined by Lq(p) = D(q||p). As
discussed in Section 1, we abuse the notation slightly and interchangeably use q, θq = ϕe(q) or ηq = ϕm(q)
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to denote probability distribution q ∈ Sn, the same distribution in θ coordinates and in η coordinates,
respectively. Thus, we write Lq(ηp) to mean Lq(ϕ−1

m (ηp)) and Lq(θp) to mean Lq(ϕ−1
e (θp)). The gradient of

the loss function can be computed in the different coordinate systems using equation 2 and equation 4 as

∇Lq(ηp) = −∇φ(ηp) − ∇2φ(ηp)(ηq − ηp) + ∇φ(ηp) = −∇2φ(ηp)(ηq − ηp), (5)
∇Lq(θp) = ∇ψ(θp) − ∇ψ(θq). (6)

Analogously, for a given target distribution p ∈ Sn, let the loss function L∗
p : Sn → R be defined by

L∗
p(q) = D(q||p). The gradient of this loss function can be computed in the different coordinate systems

using equation 2 and equation 4 as

∇L∗
p(ηq) = ∇φ(ηq) − ∇φ(ηp), (7)

∇L∗
p(θq) = −∇ψ(θq) − ∇2ψ(θq)(θp − θq) + ∇ψ(θq) = −∇2ψ(θq)(θp − θq). (8)

Building on the pair of conjugate dual functions, we define a Riemannian metric g on Sn, which assigns
to each point p ∈ Sn an inner product ⟨·, ·⟩p on the tangent space TpSn. The tangent space TpSn can
be identified with

{
(v1, v2, · · · , vn, vn+1) ∈ Rn+1|

∑n+1
i=1 vi = 0

}
(see Ay et al. (2017)). In coordinates, this

Riemannian metric is represented by the matrix ∇2φ(η) in the η coordinates and ∇2ψ(θ) in the θ coordinates.
Importantly, this Riemannian metric coincides with the Fisher metric (Amari, 2016, Theorem 2.1). Using
this Riemannian metric, we define the Riemannian gradient grad Lq(p), also called as the natural gradient,
at a point p ∈ Sn through the relation

⟨grad Lq(p), v⟩p = dLq(p)[v] (9)

for all v in the tangent space of Sn at the base point p. This defining property allows us to compute the
natural gradient in η coordinates using equation 5 as

grad Lq(ηp) =
[
∇2φ(ηp)

]−1 ∇Lq(ηp) = −(ηq − ηp).

Similarly, grad L∗
p(q) can be computed in the θ coordinates using equation 8 as grad L∗

p(θq) = −(θp − θq).
Interestingly, the natural gradients when represented in appropriate coordinates take on particularly simple
linear forms − they directly point towards the target distributions. Since the situation with the loss function
L∗
p is analogous to that of Lq, for brevity, we will focus our analysis on Lq for the remainder of the paper2.

We now introduce the gradient flow dynamics in both η and θ coordinates, as well as the natural gradient
flow which will be analyzed in the subsequent sections. Although the natural gradient flow dynamics are
coordinate-invariant, we express them in η coordinates to exploit the particularly simple linear structure.

For a given target distribution q ∈ Sn and an initial distribution p0 ∈ Sn, consider the gradient flow dynamics
described by equation 10 and equation 11 and the natural gradient flow dynamics described by equation 12

η̇(t) = −∇Lq(η(t)), η(0) = ηp0 , (10)
θ̇(t) = −∇Lq(θ(t)), θ(0) = θp0 , (11)

η̇ng(t) = −grad Lq(ηng(t)), ηng(0) = ηp0 . (12)

We will analyze these dynamics in the following sections.

3 Convergence Analysis in Continous Time

We start the convergence analysis with a general result which is at the core of the analysis. This result
frequently appears in various forms, typically emphasizing the upper bound in inequality 14 (see (Wensing
& Slotine, 2020, Proposition 1) for example). We present an adaptation of this result to our setting.

2We include the convergence rate analysis of gradient flows for L∗
p in Appendix A for completeness.
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Proposition 1 (Convergence of general gradient flows). Consider the gradient flow dynamics

ẋ(t) = −∇f(x(t)), x(t0) = x0, (13)

where a sufficiently smooth function f : U → R, with U ⊂ Rn being an open neighborhood of x0, satisfies the
following properties:

(a) f has a unique minimizer x∗ ∈ U satisfying ∇f(x∗) = 0.

(b) there exist positive constants m and L such that m · I ⪯ ∇2f(x) ⪯ L · I for all x in the sublevel set
S := {x ∈ U |f(x) ≤ f(x0)}.

Then the solution x : [t0,∞) → U of equation 13 satisfies

(i) x(t) ∈ S for all t ≥ t0 and

(ii) With c = f(x0) − f(x∗), we get that

c · e−2L(t−t0) ≤ f(x(t)) − f(x∗) ≤ c · e−2m(t−t0) for all t ≥ t0, (14)

i.e., f(x(t)) converges exponentially to f(x∗) with a rate larger than 2m and smaller than 2L.

Proof. See Appendix C.1

To facilitate the application of Proposition 1 to the dynamics given in equation 10 and equation 11, we
establish bounds on the Hessian of the loss function in the following Lemma.
Lemma 2 (Bounds on the Hessian of the loss function). Let p, q ∈ Sn. Then the following statements hold:

(i) (Global bound) The Hessians of Lq and L∗
p satisfy

0 ≺ ∇2Lq(θ) ≺ I ≺ ∇2L∗
p(η) ∀ θ ∈ ϕe(Sn),∀ η ∈ ϕm(Sn) and (15)

0≺ ∇2Lq(η) ∀ η ∈ ϕm(Sn). (16)

(ii) (Local bound at optimum) The Hessians of Lq and L∗
p evaluated at the optimum satisfy

I ≺ ∇2Lq(ηq) = ∇2Lq(θq)−1, (17)
I ≺ ∇2L∗

p(ηp) = ∇2L∗
p(θp)−1, (18)

Proof. See Appendix C.2

The positive definiteness of the Hessians established in Lemma 2 (see equation 15 and equation 16) shows
that Lq is convex in the θ coordinates as well as in the η coordinates, and L∗

p is convex in the η coordinates.
One might conjecture that L∗

p might likewise be convex in the θ coordinates. However, this turns out not to
be the case, as illustrated by a counterexample. Figure 2 shows a sample contour plot of L∗

p(θ) for n = 2. The
plot clearly shows that the sublevel sets of L∗

p(θ) are non-convex, disproving the conjecture. To summarize,
while the KL divergence is geodesically convex along m-geodesics in both of its arguments, it is geodesically
convex along e-geodesics only with respect to its second argument (see (Boumal, 2023, Definition 11.3) for
definition of geodesic convexity and (Amari, 2016, Section 2.4) for definitions of e− and m− geodesics).
With these uniform bounds on the Hessians in place, we are now equipped to control the exponential decay
rates of gradient flows through Proposition 1. This is presented in the next result which is the main result
of this section.
Theorem 3 (Convergence analysis). Let q ∈ Sn be the target distribution and p0 ∈ Sn be the initial
distribution. Suppose η, θ and ηng be the solutions to dynamics described by equation 10, equation 11 and
equation 12, respectively. Then

6
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Figure 2: Contour plot of L∗
p(θ) showing that the sublevel sets are non-convex.

(i) there exist positive constants 1 < mη ≤ Lη, cη, c̄η and T such that

cηe
−2Lηt ≤ Lq(η(t)) ≤ c̄ηe

−2mηt ≤ c̄ηe
−2t ∀t ≥ T (19)

i.e., Lq(η(t)) converges to zero exponentially with rate higher than 2. Furthermore, if Lq(η(0)) is
sufficiently small, the result holds with T = 0.

(ii) there exist positive constants mθ ≤ Lθ < 1 and cθ such that

cθe
−2t ≤ cθe

−2Lθt ≤ Lq(θ(t)) ≤ cθe
−2mθt ∀t ≥ 0, (20)

i.e., Lq(θ(t)) converges to zero exponentially with rate lower than 2.

(iii) there exist positive constants c1 and c2 such that

c1e
−2t ≤ Lq(ηng(t)) ≤ c2e

−2t ∀t ≥ 0, (21)

i.e., Lq(ηng(t)) converges to zero exponentially with rate 2.

Proof. See Appendix C.3

Theorem 3 shows that gradient dynamics in the mixture family coordinates exhibit faster convergence rates
than natural gradient dynamics, which, in turn, outperform gradient dynamics in the exponential family
coordinates. On one hand, this supports the generally observed superiority of the natural gradient dynamics
over gradient dynamics in the exponential family coordinates. On the other hand, it demonstrates that
natural gradient dynamics are slower than gradient dynamics in the mixture family coordinates. Note that
although we choose to represent the natural gradient dynamics in the η coordinates, the obtained convergence
rate bound in equation 21 is independent of this choice. Note that the convergence rate bound for the η
coordinates established in equation 19 in Theorem 3 is asymptotic in nature and formally holds only after
some time T > 0, whose value is not explicitly characterized. This is a common feature of asymptotic
convergence rate analyses, where rate guarantees apply beyond some unknown T . Finally, as stated in the
last sentence of item (i), Theorem 3, the result can be interpreted as describing local behavior: if the initial
distribution lies sufficiently close to the target, the bound holds from the start (i.e., with T = 0). More
precisely, a sufficient condition for the bound to hold with T = 0 is that ∇Lq(η) ≻ I for all η belonging to
the sublevel set Sη := {η ∈ ϕm(Sn)|Lq(η) ≤ Lq(η(0))}. Despite the absence of a global estimate on T , our

7
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Figure 3: Left: Simulation trajectories of η−gradient flow described by equation 10, θ−gradient flow de-
scribed by equation 11 and the natural gradient flow described by equation 12 for n = 2 and t ∈ [0, 1.5]
superimposed on the level curves of KL divergence. The markers on the curves show equal time intervals for
each curve. Right: KL divergence evaluated along the solutions plotted as a function of time t. The intervals
between markers in the left figure are unrelated to the intervals between markers in the right figure.
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Figure 4: Left: KL divergence evaluated along the solutions to η−gradient flow described by equation 10,
θ−gradient flow described by equation 11 and the natural gradient flow described by equation 12 for n = 2
plotted on semi-log scale. The dashed lines show the best-fit linear function used to estimate the slope which
gives the convergence rate. Right: Empirical convergence rates for 100 randomly chosen initial distributions
and a randomly chosen target distribution for n = 2. The dotted line shows the theoretical lower bound
for the convergence rate of η−gradient flows and the dashed line shows the theoretical upper bound for the
convergence rate of θ−gradient flows.

empirical results (see Figure 4 for n = 2 and Figure 7 for n = 10) indicate that the ordering of convergence
rates predicted by theory emerges early in the flow. This supports the practical relevance of the asymptotic
comparison.

We now present numerical experiments with n = 2 to illustrate the theoretical results developed so far.
Figure 3 (left) depicts the trajectories of the η−gradient flow described by equation 10, θ−gradient flow
described by equation 11 and the natural gradient flow described by equation 12 superimposed on the level
curves of KL divergence. Although the natural gradient flow follows straight trajectories, it is slower than the
η−gradient flow but faster than the θ−gradient flow, as seen from the unit time markers along the curves.
Figure 3 (right) confirms this by plotting the KL divergence over time along these trajectories.
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Figure 5: Left: Local sections of KL divergence around the minimizer q plotted as Lq(ηq + s · vi), where all
vi are unit norm vectors distributed evenly on the unit circle. A quadratic function f(s) = 1

2s
2 is also shown

for reference. Right: Local sections of KL divergence around the minimizer q plotted as Lq(θq + s · wi),
where all wi are unit norm vectors distributed evenly on the unit circle. A quadratic function f(s) = 1

2s
2 is

also shown for reference.

To better highlight the convergence rates, Figure 4 (left) presents the KL divergence on a logarithmic scale,
revealing exponential convergence. Best-fit linear curves are superimposed to estimate the slopes, which
correspond to the convergence rates. The η−gradient flow exhibits the fastest convergence (slope ≈ 7), the
θ−gradient flow is slowest (slope ≈ 0.475), and the natural gradient flow lies in between (slope ≈ 2.04),
closely matching the theoretical prediction of rate 2. This experiment is repeated over 100 randomly chosen
initial conditions and one randomly chosen target distribution, as shown in Figure 4 (right). The empirical
convergence rates align well with the theoretical bounds from Theorem 3, confirming that η−gradient flows
exceed rate 2, natural gradient flows converge at rate 2, and θ−gradient flows fall below rate 2.

Finally, note that the natural gradient dynamics governed by equation 12 can be equivalently described as

η̇ng(t) = −grad Lq(ηng(t)) = ηq − ηng(t) = −∇fq(ηng(t)),

where fq(ηng(t)) = 1
2 ∥ηq − ηng(t)∥2. The natural gradient dynamics thus correspond to minimizing a convex

quadratic function with identity Hessian. Figure 5 offers insight into convergence behaviors by plotting local
sections of the KL divergence near the optimum along different directions. This is achieved by plotting the
functions s 7→ Lq(ηq+s·vi) for different directions vi on the unit circle for the η coordinates and by plotting the
functions s 7→ Lq(θq+s·wi) for different directions wi on the unit circle for the θ coordinates. This illustrates
the local curvature of the function around the optimum. Since the natural gradient dynamics correspond to
minimizing a convex quadratic function with identity Hessian as discussed above, we overlay the plots with
a quadratic function f(s) = 1

2s
2 for reference. The plots reveal that the functions s 7→ Lq(ηq + s · vi) exhibit

higher curvature than the quadratic reference function f , while the functions s 7→ Lq(θq + s · wi) appear
flatter. This provides the core intuition behind the fast convergence of the gradient flow in η coordinates in
comparison to gradient flow in the θ coordinates and shows why the natural gradient flow falls in between
the two extremes.

To extend our numerical study to a higher-dimensional setting, we repeat the experiments from Figures 3
and 4 for the case n = 10. Figure 6 shows the KL divergence evaluated along gradient flow trajectories:
the left panel shows the divergence on a linear scale, while the right panel uses a semi-logarithmic scale
to highlight exponential convergence. As before, best-fit lines are overlaid to estimate the slopes, which
correspond to the convergence rates. The η−gradient flow shows the fastest convergence (slope ≈ 16.239),
the θ−gradient flow is the slowest (slope ≈ 0.099), and the natural gradient flow lies in between (slope
≈ 1.974), closely matching the theoretical rate of 2. For greater confidence, we repeat this experiment over
100 randomly chosen initial distributions and one randomly chosen target distribution; the results are shown
in Figure 7. The empirical convergence rates align well with the theoretical predictions from Theorem 3,
confirming that η−gradient flows exceed rate 2, natural gradient flows converge at rate 2, and θ−gradient
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Figure 6: KL divergence evaluated along the solutions to η−gradient flow described by equation 10,
θ−gradient flow described by equation 11 and the natural gradient flow described by equation 12 for n = 10
plotted on a linear scale (left) and on a semi-log scale (right). The intervals between markers in the left
figure are unrelated to the intervals between markers in the right figure. The dashed lines in the right figure
show the best-fit linear function used to estimate the slope which gives the convergence rate.
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Figure 7: Left: Empirical convergence rates for 100 randomly chosen initial distributions and one randomly
chosen target distribution with n = 10. The dotted line shows the theoretical lower bound (12.94) for the
convergence rate of η−gradient flows and the dashed line shows the theoretical upper bound (0.31) for the
convergence rate of θ−gradient flows. Right: Same data, but with the y-axis restricted to highlight the
variation in convergence rates of θ−gradient flows.

flows fall below rate 2. Moreover, based on these empirical studies, we also observe that the difference in
convergence rates is more pronounced for n = 10 as compared to n = 2.

Finally, the analysis presented in this section raises an interesting question: Since the dual pairing between
the coordinates η and θ is preserved under appropriate affine transformations (as discussed in the following
section and in Amari (2016), how do the convergence rates of the resulting dynamics change under such
affine coordinate transformations? This question is addressed in the following subsection.

3.1 Convergence Rate Analysis Under Affine Coordinate Transformation

We first review the effect of an affine transformation of coordinates on the duality pairing between θ and
η (or equivalently between ψ and φ). Since the convergence rate analysis from the previous section hinges
on bounding the Hessian of the loss function, we investigate how the Hessian transforms under an affine
change of coordinates. Consider new coordinates θ̄ that are related to the original θ-coordinates via an affine

10
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transformation: θ = Aθ̄ + b, where A ∈ Rn×n is an invertible matrix and b ∈ Rn is an arbitrary vector. Let
ψ̄ be defined as ψ̄(θ̄) = ψ(Aθ̄ + b). A simple application of the chain rule shows ∇2ψ̄(θ̄) = AT∇2ψ(θ)A.
Therefore, ∇2ψ̄(θ̄) ≻ 0 if and only if ∇2ψ(θ) ≻ 0, since A is non-singular. This implies the strict convexity
of ψ̄, and it is possible to define its convex conjugate φ̄(η̄) = maxϑ̄

(
η̄T ϑ̄− ψ̄(ϑ̄)

)
. Optimality condition on

the maximizer ϑ̄opt = θ̄ yields the relationship η̄ = ∇ψ̄(θ̄) = AT∇ψ(θ) = AT η. It is straight-forward to
verify that with these newly defined convex conjugate pairs of functions ψ̄ and φ̄ the Bregman divergence
still gives the original KL divergence, i.e.,

Dψ̄(θ̄p ∥ θ̄q) = Dφ̄(η̄q ∥ η̄p) = Dψ(θp ∥ θq) = Dφ(ηq ∥ ηp) = D(q∥p).

The Hessians of the loss function when evaluated at the optimum, transform as follows:

∇2Lq(η̄q) = ∇2φ̄(η̄q) = AT∇2φ(ηq)A, (22)
∇2Lq(θ̄q) = ∇2ψ̄(θ̄q) = A−1∇2ψ(θq)A−T . (23)

This calculation immediately gives us the following theorem.
Theorem 4 (Dual coordinates with identity Hessian). Let c be a positive constant, q ∈ Sn be the target
distribution and p0 ∈ Sn be the initial distribution. There exists a pair of convex conjugate functions ψ̄ and
φ̄ inducing the pair of dual coordinates η̄ and θ̄ for Sn with coordinate maps ϕ̄m and ϕ̄e such that

∇2Lq(η̄q) =
[
∇2Lq(θ̄q)

]−1 = c · I. (24)

Consider the gradient flow dynamics:

˙̄η(t) = −∇Lq(η̄(t)), η̄(0) = η̄p0 ,

˙̄θ(t) = −∇Lq(θ̄(t)), θ̄(0) = θ̄p0 .

Then for any ε > 0, there exist positive constants c1, c2, c3, c4 and T such that for all t ≥ T ,

c1e
−2(c+ε)t ≤ Lq(η̄(t)) ≤ c2e

−2(c−ε)t, (25)
c3e

−2( 1
c +ε)t ≤ Lq(θ̄(t)) ≤ c4e

−2( 1
c −ε)t, (26)

i.e., Lq(η̄(t)) and Lq(θ̄(t)) converge exponentially with rate 2c and 2
c , respectively.

Proof. See Appendix C.4

Note that by plugging c = 1 in Theorem 4, we see that there exists a dual pair of coordinates that achieves
the convergence rate of the natural gradient dynamics. However, the affine transformation that leads to this
convergence rate depends on the target distribution q and thus cannot be known in advance. Furthermore,
Theorem 4 illustrates that the convergence rate of gradient flows in the transformed coordinates can be
made arbitrarily small or arbitrarily large by scaling the coordinates. In contrast, the natural gradient flow
is independent of the choice of coordinates, and therefore, has a coordinate independent convergence rate.

The superiority of the natural gradient method in terms of convergence rates is not immediately clear from
the continuous-time analysis presented so far. In order to facilitate a meaningful discussion of convergence
rates in continuous time, Muehlebach & Jordan (2020) propose a particular time-normalization approach
that can be deployed in our setting. Alternatively, a more direct comparison between the Euclidean gradient
and the natural gradient can be made by studying discrete-time gradient descent iterations. To elaborate
this, we turn our attention to the discrete-time setting in the next section, where the advantages of the
natural gradient method become evident.

11
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4 Convergence Analysis in Discrete Time

For a given target distribution q ∈ Sn and an initial distribution p0 ∈ Sn, the discrete-time gradient dynamics
are given by

η(k + 1) = η(k) − αη · ∇Lq(η(k)) = η(k) + αη∇2φ(η(k))(ηq − η(k)), η(0) = ηp0 , (27)
θ(k + 1) = θ(k) − αθ · ∇Lq(θ(k))) = θ(k) − αθ∇ψ(θ(k)) + αθ∇ψ(θq), θ(0) = θp0 , (28)

ηng(k + 1) = ηng(k) − αng · grad Lq(ηng(k)) = ηng(k) − αng (ηng(k) − ηq) , ηng(0) = ηp0 , (29)

where αη, αθ and αng are the learning rates. Unlike in the continuous-time setting, the choice of coordinates
used to represent the natural gradient dynamics in discrete time influences the analysis of convergence rates,
primarily due to the presence of the learning rate α in the update equations (see Martens (2020); Song
et al. (2018)). In what follows, we restrict the analysis to the representation of the natural gradient in the
η coordinates.

To simplify the analysis, let us linearize these dynamics around the equilibrium points and examine the local
convergence rates of the linearized dynamics. Owing to the already linear natural gradient dynamics, these
do not need to be linearized. These linearized dynamics are given by

η(k + 1) =
(
I − αη∇2φ(ηq)

)
η(k) + αη∇2φ(ηq)ηq, η(0) = ηp0 , (30)

θ(k + 1) =
(
I − αθ∇2ψ(θq)

)
θ(k) + αθ∇2ψ(θq)θq, θ(0) = θp0 , (31)

ηng(k + 1) = (1 − αng)ηng(k) + αng · ηq, ηng(0) = ηp0 . (32)

It turns out that the discrete-time natural gradient dynamics in the θ coordinates, when linearized about the
equilibrium θq, leads to update equations that are identical to equation 32. This is elaborated in Appendix
B. Furthermore, also note that the update equation 32 is invariant to any affine transformation of the
coordinates. Therefore, the update equation 32 represents local linearized dynamics for all dual pairs of
coordinates.

The dynamics described by equation 30, equation 31 and equation 32 can be written in the general form

x(k + 1) = (I − αQ)x(k) + αQx∗

where Q is a symmetric positive definite matrix. Notice that these dynamics result from gradient descent
iterations when optimizing the convex quadratic function f(x) = 1

2 (x−x∗)TQ(x−x∗). In this discrete-time
setting, we say that a sequence f(x(k)) converges exponentially to f(x∗) with rate ρ ∈ [0, 1) if there exists a
positive constant c and an integer k0 such that |f(x(k)) − f(x∗)|≤ cρk holds for all k ≥ k0. A smaller value
of ρ corresponds to faster convergence. The convergence rates of gradient descent algorithms for minimizing
convex quadratic functions have been extensively studied. For example, the following result from Nesterov
(2018) shows that the condition number of Q determines the convergence rates.
Theorem 5 (Nesterov (2018)). Let f(x) = 1

2 (x−x∗)⊤Q(x−x∗) with Q ≻ 0, and let κ denote the condition
number of Q. Consider the gradient descent iterations x(k + 1) = x(k) − α∇f(x(k)). Then:

(i) f(x(k)) converges to zero at rate
(
1 − 1

κ

)2 when α = 1
λmax(Q) (standard choice).

(ii) f(x(k)) converges to zero at rate
(

1 − 2
κ+1

)2
when α = 2

λmin(Q)+λmax(Q) (optimal choice).

Note that the gradient descent dynamics in η and θ coordinates correspond to setting Q = ∇2φ(ηq) and
Q = ∇2ψ(θq), respectively. By directly applying these results to the discrete-time gradient descent dynamics
described by equation 30 and equation 31, we observe that poorer conditioning of Q leads to a larger
convergence rate ρ, and thus slower convergence. The condition numbers associated with the gradient
descent dynamics in the η and θ coordinates can be bounded away from 1 as stated in Lemma 6.
Lemma 6 (Bounds on the condition number of the Hessian). Let q ∈ Sn. Then,

1 < κq ≤ cond(∇2Lq(ηq)) = cond(∇2Lq(θq)), (33)

12
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where κq = ηmin,2
ηmin

with ηmin and ηmin,2 being the smallest and the second-smallest element of
{[ηq]1 , · · · , [ηq]n}, respectively.

Proof. See Appendix C.5

The natural gradient dynamics correspond to setting Q = I which yields optimal conditioning. Observe
that the discrete-time natural gradient descent dynamics achieve a convergence rate of |1 −α| for α ∈ (0, 2).
Furthermore, it achieves an optimal convergence rate of 0, i.e., convergence in a single step for the optimal
learning rate α = 1. Note, however, that since this analysis pertains to the linearized system, the actual
natural gradient descent does not converge in single step. Finally, with the goal of studying the properties of
the stochastic gradient descent (SGD), we examine the robustness of these dynamics to imperfect gradient
measurements. Although the noise models studied next do not exactly model the stochastic behavior of the
SGD, they take us a step closer to it and provide valuable insight. Furthermore, practical implementations of
the natural gradient method involve approximating the Fisher information matrix by an empirical version of
it Martens (2020). This can also be captured to some degree by the noise models studied next. Specifically, we
study two noise models motivated by (Polyak, 1987, Chapter 4): relative deterministic noise (multiplicative)
and absolute random noise (additive). These and other similar noise models have been studied in the
optimization literature and they evidently show that the condition number plays a central role in these
analyses (see Guille-Escuret et al. (2021); Lessard et al. (2016); Van Scoy & Lessard (2024)).

4.1 Robustness Analysis with Relative Deterministic Noise

Let us first consider the relative deterministic noise (multiplicative) model which replaces the gradient vector
v by (I + ∆(k))v where ∆(k) ∈ Rn×n captures the noise at time instant k. This leads to dynamics

η(k + 1) = η(k) − αη · (I + ∆(k))∇2φ(ηq)(η(k) − ηq), η(0) = ηp0 , (34)
θ(k + 1) = θ(k) − αθ · (I + ∆(k))∇2ψ(θq)(θ(k) − θq), θ(0) = θp0 , (35)

ηng(k + 1) = ηng(k) − αng · (I + ∆(k))(ηng(k) − ηq), ηng(0) = ηp0 , (36)

where the learning rates αη, αθ and αng are chosen optimally assuming the noise-free conditions (∆ ≡ 0).
Theorem 7 (Robust stability under relative deterministic noise). Consider a target distribution q ∈ Sn,
an initial distribution p ∈ Sn and the discrete-time dynamics described by equation 34, equation 35 and
equation 36, respectively, where the learning rates αη, αθ and αng are chosen optimally for each case assuming
the absence of noise (∆ ≡ 0). Let κ = cond(∇2φ(ηq)) = cond(∇2ψ(θq)). Then the following statements
hold:

(i) If the sequence of perturbations ∆(k) is such that for some ε > 0, ∥∆(k)∥2 < 1−ε for all k ≥ 0, then
the natural gradient dynamics described by equation 36 are stable, i.e., limk→∞∥ηng(k) − ηq∥= 0.

(ii) There exist time-invariant perturbations ∆η and ∆θ with ∥∆η∥2 = ∥∆θ∥2 = 1
κ that destabilize the

gradient descent dynamics described by equation 34 and equation 35, respectively.

Proof. See Appendix C.6

The above result shows that the natural gradient dynamics exhibit a larger robustness margin in comparison
to the robustness margin of the η and θ gradient dynamics which depend on the condition number κ.
This shows that the superiority of the natural gradient dynamics can be again attributed to the optimal
conditioning (κ = 1). Also note that the above noise model includes time-varying perturbations to the
learning rate and shows that the natural gradient dynamics tolerate a much higher deviation from the optimal
learning rate. Furthermore, note that statement (i) of the above theorem proves convergence for the situation
where the inverse of the Fisher information matrix G−1 is replaced by (I + ∆(k))G−1 with ∥∆(k)∥2 < 1 − ε
for all k ≥ 0. This result thus also makes progress towards the more practical implementations of the natural
gradient involving an empirical version of the Fisher information matrix Martens (2020).
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4.2 Robustness Analysis with Absolute Random Noise

Now let us now consider the absolute random noise (additive) model which perturbs the original dynamics
by adding an independent and identically distributed noise signal δ(k) for k ∈ {0, 1, · · · }. This leads to
dynamics

η(k + 1) = η(k) − αη
(
∇2φ(ηq)(η(k) − ηq)

)
+ δ(k), η(0) = ηp0 (37)

θ(k + 1) = θ(k) − αθ
(
∇2ψ(θq)(θ(k) − θq)

)
+ δ(k), θ(0) = θp0 , (38)

ηng(k + 1) = ηng(k) − αng (ηng(k) − ηq) + δ(k), ηng(0) = ηp0 , (39)

where learning rates αη, αθ and αng are chosen optimally for each case assuming the absence of noise
(δ(k) ≡ 0). Furthermore, assume that δ(k) is an independent and identically distributed stochastic process
satisfying E[δ(k)] = 0 and E[δ(k)δ(k)T ] = I for all k ≥ 0.
Theorem 8 (Robustness against additive noise). Consider a target distribution q ∈ Sn, an initial distribution
p0 ∈ Sn and the discrete-time dynamics described by equation 37, equation 38 and equation 39, respectively,
where the learning rates αη, αθ and αng are chosen optimally for each case assuming the absence of noise
(δ(k) ≡ 0). Then

(i) limk→∞ E[(η(k) − ηq)(η(k) − ηq)T ] = Ση ⪯ (κ+1)2

4κ I,

(ii) limk→∞ E[(θ(k) − θq)(θ(k) − θq)T ] = Σθ ⪯ (κ+1)2

4κ I,

(iii) E[(ηng(k) − ηq)(ηng(k) − ηq)T ] = I for all k ≥ 0.

The upperbound in (i) and (ii) is tight, i.e., Ση and Σθ have eigenvalues equal to (κ+1)2

4κ . Furthermore, for
n = 2, we get equality in (i) and (ii).

Proof. See Appendix C.7

The above result explores the effect of adding an independent and identically distributed (i.i.d.) noise signal
at every iteration of the dynamics. It establishes that the largest eigenvalues of the steady-state error
covariances are given by (κ+1)2

4κ I for the η and θ gradient dynamics whereas the error covariance with the
natural gradient dynamics equals the noise covariance which corresponds to optimal conditioning (κ = 1).

5 Numerical Experiments with Empirical KL Divergence

The gradient expressions analyzed in previous sections involve the target distribution q, which is typically
unknown in practical machine learning applications. In reality, one only has access to a data sequence
D = (x1, x2, · · · , xN ) consisting of samples drawn i.i.d. with respect to q. This section aims to bridge
the gap between our theoretical analysis and practical implementations by investigating empirical versions
of the KL divergence and their associated optimization dynamics. Recall that the KL divergence can be
decomposed as

Lq(p) =
n+1∑
i=1

qi log
(
qi
pi

)
= H(q) −

n+1∑
i=1

qi log (pi) ,

where H(q) is the (negative) Shannon entropy of q, independent of p, and the second term is the cross-entropy,
equal to −Ex∼q [log(px)]. As a result, minimizing Lq(p) is equivalent to minimizing the cross-entropy term,
since the entropy term is constant with respect to p. Given a data sequence D sampled with respect to q,
we can estimate this expectation using the empirical mean

− 1
N

N∑
j=1

log
(
pxj

)
= −

n+1∑
i=1

q̂i log (pi) ,
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Figure 8: KL divergence evaluated along optimization trajectories generated by discrete-time gradient descent
dynamics described by equation 40, equation 41 and equation 42. All methods use the same and sufficiently
small learning rate. The left panel shows results for n = 2 with αη = αθ = αng = 0.01; the right panel
shows n = 10 and αη = αθ = αng = 0.001. Convergence behavior is consistent with its continuous-time
counterpart.

where q̂i is the relative frequency of outcome i in D. This defines the empirical target distribution
q̂ = (q̂1, · · · , q̂n+1) ∈ Sn. This motivates the definition of the empirical KL divergence, defined for a
given data sequence D, as L̂D(p) = Lq̂(p). Since this differs from the empirical cross-entropy only by a
constant (independent of p), minimizing L̂D(p) is equivalent to minimizing the empirical estimate of Lq(p).
Therefore, our continuous-time analysis in Section 3 applies directly in this empirical setting by substituting
q with q̂, assuming q̂ lies in the interior of the simplex Sn, which typically holds for large enough data
sequences. As N → ∞, we have that q̂ → q, ensuring that the empirical KL divergence converges to the true
KL divergence. This provides a direct connection between our theoretical results and their applicability in
data-driven settings.

In what follows, we outline the setting described above more explicitly. Consider an arbitrary target dis-
tribution q and generate the data sequence D of independent and identically distributed samples drawn
with respect to q. Analogous to the discrete-time updates given in equations equation 27, equation 28, and
equation 29, consider the empirical gradient descent dynamics described by

η(k + 1) = η(k) − αη · ∇L̂D(η(k)), η(0) = ηp0 , (40)
θ(k + 1) = θ(k) − αθ · ∇L̂D(θ(k))), θ(0) = θp0 , (41)

ηng(k + 1) = ηng(k) − αng · grad L̂D(ηng(k)), ηng(0) = ηp0 . (42)

For sufficiently small and equal learning rates αη = αθ = αng, the discrete-time dynamics approximate the
continuous-time behavior. This is illustrated in Figure 8, where we set αη = αθ = αng = 0.01 for n = 2 (left)
and αη = αθ = αng = 0.001 for n = 10 (right). The sandwiching property derived in the continuous-time
setting (see Theorem 3) thus extends, as expected, to the discrete-time setting when the learning rates are
chosen to be equal across the different methods and sufficiently small.

Drawing motivation from Theorem 5, which analyzed convergence rates under different choices of learning
rates, we next explore how varying the learning rates individually for each method influences empirical
convergence properties. specifically, we sample 100 random initializations and, for each algorithm and each
learning rate, run simulations from these 100 initializations. We then measure the convergence time defined
as the maximum umber of iterations (across the 100 initializations) required to reach a fixed tolerance from
the optimum. Figure 9 plots convergence time as a function of learning rate for discrete-time gradient
descent dynamics governed by equation 40, equation 41 and equation 42. Results correspond to dimension
n = 10. The optimal learning rates and convergence times are shown in Table 1. With optimally tuned
learning rates, natural gradient descent consistently converges faster than standard gradient descent in either
coordinate system.
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Figure 9: Convergence time as a function of learning rate for discrete-time gradient descent dynamics
governed by equation 40 (left), equation 41 (right) and equation 42 (center). Results correspond to dimension
n = 10. For each learning rate, convergence time is defined as the maximum number of iterations (across
100 random initializations) required to reach a fixed tolerance near the optimum. Natural gradient descent
achieves the fastest convergence when appropriately tuned, as evidenced by comparing the lowest convergence
times in each plot. These results are summarized in Table 1

Table 1: Optimal Learning Rates and Convergence Times from Figure 9
optimal learning rate optimal convergence time

η coordinates αη = 0.0036 k = 29
natural gradient αng ∈ [0.7141, 1.16] k = 2
θ coordinates αθ ∈ [11.96, 14.24] k = 12

5.1 Numerical Experiments with Stochastic Gradient Descent

Recall that the key motivation behind Theorems 7 and 8 is to go beyond gradient descent potentially taking
a step towards better understanding the behavior of stochastic gradient descent (SGD). To this end, we
now extend our empirical study to the SGD setting, where at each iteration k, a mini-batch Dk ⊂ D is
drawn uniformly at random, and gradients are computed with respect to the empirical loss L̂Dk

. To satisfy
standard conditions for the almost sure convergence of SGD, we adopt a time-varying learning rate of the
form α ·

(
a
k+a

)
, where the parameter a is chosen large enough to delay the onset of decay until sufficiently

large k and is kept equal across all the different algorithms. The resulting dynamic equations are then
described by

η(k + 1) = η(k) − αη ·
(

a

k + a

)
· ∇L̂Dk

(η(k)), η(0) = ηp0 , (43)

θ(k + 1) = θ(k) − αθ ·
(

a

k + a

)
· ∇L̂Dk

(θ(k))), θ(0) = θp0 , (44)

ηng(k + 1) = ηng(k) − αng ·
(

a

k + a

)
· grad L̂Dk

(ηng(k)), ηng(0) = ηp0 . (45)

Analogous to the full-batch setting, Figure 10 shows that for sufficiently small and equal learning rates
αη = αθ = αng, the sandwiching property derived in the continuous-time setting (see Theorem 3) extends
to the setting of stochastic gradient descent. We next plot convergence times as a function of learning rate
in Figure 11 and summarize the optimal values in Table 2. Once again, stochastic natural gradient descent
outperforms its Euclidean counterparts when the learning rate is optimally tuned. Figure 12 provides example
trajectories illustrating the convergence behavior under both full-batch and stochastic updates with optimally
chosen learning rates. In contrast to sandwiching property observed in Figure 8 and Figure 10, it can be
seen in Figure 12 that the natural gradient trajectories converge faster than their Euclidean counterparts in
the full-batch as well as stochastic settings.
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Figure 10: KL divergence evaluated along optimization trajectories generated by discrete-time gradient
descent dynamics described by equation 43, equation 44 and equation 45. All methods use the same and
sufficiently small learning rate. The left panel shows results for n = 2 with αη = αθ = αng = 0.01; the right
panel shows n = 10 and αη = αθ = αng = 0.001. Convergence behavior is consistent with its continuous-time
counterpart.
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Figure 11: Convergence time as a function of learning rate for discrete-time stochastic gradient descent
governed by equation 43 (left), equation 44 (right) and equation 45 (center). Results correspond to dimension
n = 10. For each learning rate, convergence time is defined as the maximum number of iterations (across
100 random initializations) required to reach a fixed tolerance near the optimum. Natural gradient descent
achieves the fastest convergence when appropriately tuned, as evidenced by comparing the lowest convergence
times in each plot. These results are summarized in Table 2
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Table 2: Optimal Learning Rates and Convergence Times from Figure 11
optimal learning rate optimal convergence time

η coordinates αη = 0.0025 k = 41
natural gradient αng ∈ [0.541, 0.695] k = 3
θ coordinates αθ ∈ 6.93 k = 20

0 5 10 15 200

0.1

0.2

0.3

k

K
L

D
iv

er
ge

nc
e

D(q∥η(k))
D(q∥ηng(k))
D(q∥θ(k))

0 20 40 60 80 1000

0.1

0.2

0.3

k
K

L
D

iv
er

ge
nc

e

D(q∥η(k))
D(q∥ηng(k))
D(q∥θ(k))

Figure 12: KL divergence evaluated along the trajectories generated by equation 40, equation 41 and equa-
tion 42 (left) corresponding the full-batch setting and by equation 43, equation 44 and equation 45 (right)
corresponding to the stochastic setting. Results correspond to dimension n = 10 and the learning rates are
set to their optimal values obtained from Figure 9 for the left panel and from Figure 11 for the right panel.
Natural gradient descent exhibits faster convergence across both settings with appropriately tuned learning
rates.

5.2 Summary

These empirical studies validate that our theoretical insights apply to practical scenarios involving sampled
data from the target distribution. In both full-batch and stochastic optimization settings, natural gradient
descent (NGD) consistently outperforms standard gradient descent (GD) under optimally tuned learning
rates. This corresponds to Theorems 5, 7, and 8. In contrast, when learning rates are chosen to be equal for
all methods and sufficiently small, the sandwiching property established in Theorem 3 for continuous-time
dynamics holds also in the discrete-time setting.

Table 3 summarizes the correspondence between theoretical results and empirical findings. These empirical
observations thus closely align with the theoretical results developed in the preceding sections, reinforcing
the practical relevance of our analysis.

Table 3: Summary of Theoretical and Empirical Results

Setting Sandwiching property
(αη = αng = αθ sufficiently small)

NGD outperforms GD
(αη, αng, αθ individually optimized)

Theory Theorem 3 Theorems 5, 7, 8
Empirical studies (GD) Figure 8 Table 1, Figure 12 (left)
Empirical studies (SGD) Figure 10 Table 2, Figure 12 (right)

6 Conclusions and Outlook

In this work, we revisited the convergence properties of natural gradient flows in comparison to their Eu-
clidean counterparts, focusing on the minimization of the KL divergence over discrete probability distri-
butions. Our analysis revealed a more nuanced picture than the commonly held belief in the universal
superiority of natural gradient methods. In the continuous-time setting, while the natural gradient flow in-
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deed outperforms the Euclidean gradient flow in the θ coordinates, consistent with traditional expectations,
we showed that it converges more slowly than the η-gradient flow, despite following straight-line trajec-
tories in these coordinates. This demonstrates that the commonly observed rapid convergence of natural
gradient flow cannot be simplistically attributed to the straightness of its trajectories. Our discrete-time
analysis of gradient descent dynamics further clarified that the fundamental reason behind the superiority
of natural gradient methods lies in their optimal conditioning: natural gradient updates effectively minimize
an optimally conditioned loss landscape, leading to consistently better performance compared to their Eu-
clidean counterparts. Furthermore, our empirical results reinforce the theoretical results by demonstrating
that natural gradient descent (NGD) maintains its convergence advantages over standard gradient descent
(GD) even in practical, sample-based settings. In both full-batch and stochastic optimization, NGD ex-
hibits faster convergence when learning rates are optimally tuned, and satisfies the theoretical sandwiching
property under sufficiently small and equal learning rates. These findings highlight the practical relevance
of the theoretical analyses and support the use of NGD in real-world applications where access to the full
distribution is limited to finite samples. Overall, our findings refine the understanding of natural gradient
methods and highlight the subtle, yet important, nuances that govern their behavior.

The theoretical results presented in this paper primarily concern exact natural gradient, with robustness
analyses taking initial steps toward incorporating noise in gradient measurements and system dynamics.
A natural next step is to extend this analysis to practical settings where the Fisher information matrix
must be approximated. For instance, Theorem 7 already accommodates structured perturbations of the
form (I + ∆(k))G−1, where G is the Fisher information matrix, provided ∥∆(k)∥2 < 1 − ε for all k ≥ 0,
ensuring the stability of the resulting updates. This suggests that if approximations such as K-FAC can
be modeled as structured perturbations of G−1 satisfying the above condition, then it may be possible to
establish convergence guarantees for the resulting approximate natural gradient algorithms. A systematic
exploration of the trade-off between the quality of the approximation of the Fisher matrix and the resulting
convergence guarantees would be an important direction for bridging theory and practice.

While we focused on the probability simplex equipped with dual coordinate systems, an important extension
would be to general dually flat statistical manifolds (Amari & Nagaoka (2000); Ay et al. (2017)), where
similar tools may be employed to study optimization dynamics in broader settings. Such manifolds are
induced by general Bregman divergences going beyond the setting of a KL divergence. Notably, the identity
∇2φ(η) = [∇2ψ(θ)]−1 holds for any pair of dual Bregman divergences induced by strictly convex functions φ
and ψ, respectively Amari & Nagaoka (2000). So it is plausible that one can derive an analogue of Lemma 2
for this general setting provided ∇2φ(η) ≻ I holds at the optimum. One can then proceed to derive the
“sandwich” ordering as in Theorem 3.

Additionally, our framework may be extended to richer families of probability distributions, such as general
exponential families derived from Boltzmann machines without hidden units, and more intricate mixtures of
exponential families associated with Boltzmann machines with hidden variables (Amari et al. (1992)). These
models exhibit more complex geometries that may reveal deeper interactions between parametrizations and
optimization dynamics.

While our analysis in Section 4 relies on a linearization of the gradient flows around the optimal solution (i.e.,
the target distribution q), we acknowledge that extending these results to the fully nonlinear setting remains
an interesting direction for future work. A potential avenue for future research involves characterizing a
neighborhood around the optimum in which the Hessians of the loss functions can be uniformly bounded,
i.e., their eigenvalues lie within [m,L] for some 0 < m ≤ L. This would allow us to draw on classical results
from optimization theory for the class S(m,L) of strongly convex functions with Lipschitz-continuous gra-
dients. In such settings, it may be possible to rigorously extend convergence guarantees and comparative
analyses to the nonlinear regime. More generally, for any convergent optimization algorithm, the nonlinear
dynamics necessarily approach the linearized ones asymptotically near the optimum. Thus, for any con-
vergent algorithm, the trajectory of the nonlinear dynamics must eventually enter a neighborhood of the
optimum where the linear approximation becomes accurate. Therefore, our results can also be interpreted
as describing either the local or asymptotic behavior of the optimization dynamics.
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Finally, although our discrete-time analysis highlights robustness advantages of natural gradient methods,
it does not fully capture the stochasticity inherent in stochastic gradient descent (SGD). Developing a more
precise theoretical model that explicitly incorporates the stochastic dynamics of SGD remains an important
avenue for future work.
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A Gradient Flows for L∗
p

For a given target distribution p ∈ Sn and an initial distribution q0 ∈ Sn, consider the gradient flow dynamics
described by equation 46 and equation 47, and the natural gradient flow dynamics described by equation 48
given by

η̇(t) = −∇L∗
p(η(t)), η(0) = ηq0 , (46)

θ̇(t) = −∇L∗
p(θ(t)), θ(0) = θq0 , (47)

θ̇ng(t) = −grad L∗
p(θng(t)) = −θng(t) + θp, θng(0) = θq0 . (48)

The following is an analogue of Theorem 3 applied to the above dynamics.
Theorem 9 (Convergence analysis). Let p ∈ Sn and q0 ∈ Sn be such that D(q0||p) is sufficiently small.
Suppose η, θ and θng be the solutions to dynamics described by equation 46, equation 47 and equation 48,
respectively. Then

(i) there exist positive constants m∗
θ ≤ L∗

θ < 1, c∗
θ and c̄∗

θsuch that

c∗
θe

−2t ≤ c∗
θe

−2L∗
θt ≤ L∗

p(θ(t)) ≤ c̄∗
θe

−2m∗
θt ∀t ≥ 0, (49)

i.e., L∗
p(θ(t)) converges exponentially with rate lower than 2.

(ii) there exist positive constants 1 < m∗
η ≤ L∗

η and c∗
η such that

c∗
ηe

−2L∗
ηt ≤ L∗

p(η(t)) ≤ c∗
ηe

−2m∗
ηt ≤ c∗

ηe
−2t ∀t ≥ 0 (50)

i.e., Lq(η(t)) converges exponentially with rate higher than 2.

(iii) there exist positive constants c∗
1, c∗

2 and T such that

c∗
1e

−2t ≤ L∗
p(θng(t)) ≤ c∗

2e
−2t ∀t ≥ 0, (51)

i.e., L∗
p(θng(t)) converges exponentially with rate 2.

Proof. Consider the gradient flow dynamics described by equation 46. Analogous to the proof of Theorem 3
(see equation 66 and the discussion thereafter), it can be shown using the Pinsker inequality (Mohri et al.,
2018, Proposition E.7) that ηp is the unique minimizer of L∗

p and S∗
η := {η ∈ ϕm(Sn)|L∗

p(η) ≤ L∗
p(η(0))} is

compact. Furthermore, compactness of S∗
η along with bound 15 implies that

I ≺ m∗
η · I ⪯ ∇2L∗

p(η) ⪯ L∗
η · I ∀η ∈ S∗

η

where m∗
η = minη∈S∗

η
λmin

(
∇2L∗

p(η)
)
> 1 and L∗

η = maxη∈S∗
η
λmax

(
∇2L∗

p(η)
)
. Applying Proposition 1, we

get the desired inequality given in equation 50.

Now consider dynamics described by equation 47. Continuity of ∇2L∗
p along with equation 18 from Lemma

2 implies that there exists an ε > 0 such that
0 ≺ m∗

θ · I ⪯ ∇2L∗
p(θ) ⪯ L∗

θ · I ≺ I ∀θ ∈ Bε(θp) (52)
for some positive constants m∗

θ ≤ L∗
θ < 1. Using this local strong convexity condition, it can be shown

that if L∗
p(θ(0)) is sufficiently small, S∗

θ := {θ ∈ ϕe(Sn)|L∗
p(θ) ≤ L∗

p(θ(0))} is contained in Bε(θp). Applying
Proposition 1, we get the desired inequality given in equation 49.

Finally consider the gradient flow dynamics described by equation 48 which can be solved exactly to obtain
θng(t) = θq + e−t (θ0 − θq) . (53)

Since limt→∞ θng(t) = θq, we can use equation 52 along with (Nesterov, 2018, Theorem 2.1.5 and Theorem
2.1.8) to show that if L∗

p(θ(0)) is sufficiently small, then
m∗
θ

2 ||θng(t) − ηq||2 ≤ L∗
p(θng(t)) ≤ L∗

θ

2 ||θng(t) − θq||2 (54)

for t ≥ 0. Plugging in the exact solution from equation 53, we get the desired inequality given in equation 51.
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B Linearized Discrete-time Natural Gradient Dynamics in θ Coordinates

In this appendix, we show that the discrete-time natural gradient dynamics in the θ coordinates given by

θng(k + 1) = θng(k) − αng · grad Lq(θng(k)), θng(0) = θp0 ,

when linearized about the equilibrium θq, lead to update equations that are identical to the ones in the η
coordinates. From the defining property given in equation 9 of the natural gradient, and equation 6, we get
that

grad Lq(θ) = [∇2ψ(θ)]−1∇Lq(θ) = [∇2ψ(θ)]−1 (∇ψ(θ) − ∇ψ(θq)) ≈ (θ − θq),

where ≈ denotes a first-order approximation obtained by linearizing around θq. The linearized dynamics in
the θ coordinates are thus described by

θng(k + 1) = θng(k) − αng · (θng(k) − θq), θng(0) = θp0 ,

which has the same form as in in equation 32.

C Proofs

C.1 Proof of Proposition 1

Proof. [Proposition 1] Let x be a solution of equation 13 and define E(t) := f(x(t)) − f(x∗). Note that

Ė(t) = ⟨∇f(x(t)), ẋ(t)⟩ = −⟨∇f(x(t)),∇f(x(t))⟩ = −||∇f(x(t))||2 ≤ 0. (55)

Therefore, for all t ≥ t0, f(x(t)) − f(x∗) = E(t) ≤ E(t0) = f(x(t0)) − f(x∗) which implies statement (i).
Furthermore, we get from (Nesterov, 2018, Section 2.1) that m · I ⪯ ∇2f(x) ⪯ L · I for all x ∈ S implies

2m(f(x) − f(x∗)) ≤ ||∇f(x)||2 ≤ 2L(f(x) − f(x∗)) ∀x ∈ S. (56)

Since x(t) ∈ S for all t ≥ t0, inequalities given in equation 56 and equation 55 imply that for all t ≥ t0,

−2L · E(t) ≤ Ė(t) ≤ −2m · E(t).

Integrating from t0 to t, we get that

E(t) = E(t0) +
∫ t

t0

Ė(s)ds ≤ E(t0) +
∫ t

t0

(−2m) · E(s)ds,

−E(t) = −E(t0) +
∫ t

t0

−Ė(s)ds ≤ −E(t0) +
∫ t

t0

(−2L) · (−E(s))ds

Finally applying the Bellman-Gronwall Lemma (Sontag, 2013, Lemma C.3.1) to the above two inequalities
gives us

E(t) ≤ E(t0)e−2m(t−t0)

−E(t) ≤ −E(t0)e−2L(t−t0)

which dirctly gives us the desired inequality 14.

C.2 Proof of Lemma 2

Proof. [Lemma 2] The Hessians of Lq can be evaluated using equation 5 and equation 6 as

∇2Lq(η) = ∇2φ(η) −D3φ(η)[ηq − η],
∇2Lq(θ) = ∇2ψ(θ), (57)
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where D3φ(η) : Rn → Rn×n is the third order derivative of φ whose action on a vector v ∈ Rn is given by(
D3φ(η)[v]

)
ij

=
∑n
k=1

∂3φ(η)
∂ηi∂ηj∂ηk

vk. In particular, note that the inverse relationship given in equation 1 give
us

∇2Lq(ηq) = ∇2φ(ηq) = [∇2ψ(θq)]−1 = [∇2Lq(θq)]−1. (58)

Similarly, we can compute the Hessians of L∗
p using equation 7 and equation 8 as

∇2L∗
p(η) = ∇2φ(η), (59)

∇2L∗
p(θ) = ∇2ψ(θ) −D3ψ(θ)[θp − θ]

and use equation 1 to obtain the inverse relationship

∇2L∗
p(ηp) = ∇2φ(ηp) = [∇2ψ(θp)]−1 = [∇2L∗

p(θp)]−1. (60)

Recall that

φ(η) =
(

n∑
i=1

ηi log ηi

)
+

1 −
n∑
j=1

ηj

 log
(

1 −
n∑
k=1

ηk

)

and it’s Hessian ∇2φ can be explicitly computed to be

∇2φ(η) =


1
η1

. . .
1
ηn

+
(

1
1 −

∑n
i=1 ηi

)1 . . . 1
... . . . ...
1 . . . 1

 . (61)

Since the second matrix on the right hand side is positive semi-definite, we get

I ≺ 1
maxi ηi

I ⪯ ∇2φ(η). (62)

This together with equation 59 gives us

I ≺ ∇2L∗
p(η) ∀η ∈ ϕm(Sn) (63)

and together with equation 57 and the inverse relationship given in equation 1 gives us

0 ≺ ∇2Lq(θ) ≺ I ∀θ ∈ ϕe(Sn) (64)

proving equation 15. Furthermore, it can be shown by direct computation that

∇2Lq(η) =


[ηq ]1
η2

1
. . .

[ηq ]n

η2
n

+
(

1 −
∑n
i=1 [ηq]i

(1 −
∑n
i=1 ηi)

2

)1 . . . 1
... . . . ...
1 . . . 1

 ≻ 0 ∀η ∈ ϕm(Sn). (65)

proving equation 16. Finally, evaluating the global bounds from equation 15 at the optimum points and
using the inverse relationships given in equation 58 and equation 60 yields the desired local inequalities
described by equation 17 and equation 18.

C.3 Proof of Theorem 3

Proof. [Theorem 3] First consider the gradient flow dynamics described by equation 11 and note that
Lq(θq) = 0. Using the Pinsker’s inequality (Mohri et al., 2018, Proposition E.7) along with the fact that
ϕm ◦ϕ−1

e is bijective, we have that for any θp ̸= θq, Lq(θp) > 0. Thus θq is the unique minimizer of Lq giving
us condition a) of Proposition 1. It can be shown that Lq has bounded sublevel sets in the θ coordinates.
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To see this, observe that ∥θ∥ → ∞ implies that for some i, |θi| → ∞, i.e., either θi → −∞ or θi → ∞. This
implies that

pi = eθi

1 +
∑n
j=1 e

θj
→ 0 or pn+1 = 1

1 +
∑n
j=1 e

θj
→ 0.

Since the Lq blows up to infinity on the boundary of the simplex, we get that Lq is coercive, i.e., Lq(θ) =
D(q∥p) → ∞ as ∥θ∥ → ∞. Observe that if some sublevel set of Lq is unbounded, there exists a sequence of
points θ(1), θ(2), · · · such that ∥θ(i)∥ → ∞ but Lq(θ(i)) stays bounded. This is a contradiction. Therefore, we
have that Lq has bounded sublevel sets in the θ coordinates. Finally, continuity of Lq implies that the sublevel
sets are closed which implies that Sθ is compact. Using compactness of Sθ = {θ ∈ ϕe(Sn)|Lq(θ) ≤ Lq(θ(0))}
and the global bound given in equation 15 from Lemma 2, we get that

0 ≺ mθ · I ⪯ ∇2Lq(θ) ⪯ Lθ · I ≺ I ∀θ ∈ Sθ

where mθ = minθ∈Sθ
λmin

(
∇2Lq(θ)

)
> 0 and Lθ = maxθ∈Sθ

λmax
(
∇2Lq(θ)

)
< 1. Applying Proposition 1

gives us the desired conclusion in the form of equation 20.

Analogous to the previous case, now consider the gradient flow dynamics described by equation 10. We can
use Pinsker’s inequality (Mohri et al., 2018, Proposition E.7) to obtain

Lq(η) ≥ 1
2

( n∑
i=1

|ηi − [ηq]i|
)

+

∣∣∣∣∣∣
1 −

n∑
j=1

ηj

−

(
1 −

n∑
k=1

[ηq]k

)∣∣∣∣∣∣
2

≥ 1
2

(
n∑
i=1

|ηi − [ηq]i|
)2

= 1
2∥ηq − η∥2

1 ≥ 1
2∥ηq − η∥2. (66)

This shows that ηq is the unique minimizer of Lq and together with the continuity of L implies that

Sη := {η ∈ ϕm(Sn)|Lq(η) ≤ Lq(η(0))}

is compact. Using the global bound given in equation 16, we get that

0 ≺ m̄η · I ⪯ ∇2Lq(η) ⪯ L̄η · I ∀η ∈ Sη (67)

where m̄η = minη∈Sη λmin
(
∇2Lq(η)

)
> 0 and L̄η = maxη∈Sη λmax

(
∇2Lq(η)

)
. Applying Proposition 1, we

see that there exists a positive constant c such that

ce−2L̄ηt ≤ Lq(η(t)) ≤ ce−2m̄ηt ∀t ≥ 0. (68)

This implies that Lq(η(t)) converges to 0. Thus, for any ε > 0, there exists a T > 0 such that Lq(η(t)) ≤ 2ε
for all t ≥ T , which, using the lower bound obtained in equation 66 implies that ∥ηq − η(t)∥ ≤ ε for all
t ≥ T . This means that for any ε > 0, there exists a T > 0 such that the set ST := {η ∈ ϕm(Sn)|Lq(η) ≤
Lq(η(T ))} ⊂ Bε(ηq). Furthermore, continuity of ∇2Lq along with equation 17 from Lemma 2 implies that
there exists an ε > 0 such that

I ≺ mη · I ⪯ ∇2Lq(η) ⪯ Lη · I ∀η ∈ Bε(ηq).

for some positive constants 1 < mη ≤ Lη. Putting everything together, we get that there exists a T ≥ 0
such that I ≺ mη · I ⪯ ∇2Lq(η) ⪯ Lη · I holds for all η ∈ ST . Thus, applying Proposition 1 with t0 = T , we
get that there exists a positive constant c̄ such that(

c̄e2LηT
)
e−2Lηt = c̄e−2Lη(t−T ) ≤ Lq(η(t)) ≤ c̄e−2mη(t−T ) =

(
c̄e2mηT

)
c̄e−2mηt

holds for all t ≥ T which is the desired form in equation 19 with cη = c̄e2LηT and c̄η = c̄e2mηT . Finally, note
that if Lq(η(0)) is sufficiently small, then S0 ⊂ Bε(ηq) implying that the above bound holds with T = 0.
This completes the proof for statement (i).
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Finally consider the gradient flow dynamics described by equation 12 which can be solved exactly to obtain

ηng(t) = ηq + e−t (ηp0 − ηq) . (69)

Using (Nesterov, 2018, Theorem 2.1.5 and Theorem 2.1.8) along with equation 67, we get that

m̄η

2 ||ηng(t) − ηq||2 ≤ Lq(ηng(t)) ≤ L̄η
2 ||ηng(t) − ηq||2. (70)

Plugging in the exact solution from equation 69, we get the desired inequality given in equation 21.

C.4 Proof of Theorem 4

Proof. [Theorem 4] Since ∇2ψ(θq) is symmetric positive definite, we can consider its symmetric matrix
square root Dq, such that ∇2ψ(θq) = Dq ·Dq. Setting A =

√
c ·Dq in equation 22 and equation 23 and using

the inverse relationship ∇2φ(ηq) = [∇2ψ(θq)]−1 we obtain equation 24. Using the continuity of Hessians, we
get that for any ε > 0, there exists a δ > 0 such that

(c− ε) · I ⪯ ∇2Lq(η̄) ⪯ (c+ ε) · I ∀η̄ ∈ Bδ(η̄q),(
1
c

− ε

)
· I ⪯ ∇2Lq(θ̄) ⪯

(
1
c

+ ε

)
· I ∀θ̄ ∈ Bδ(θ̄q).

Analogous to the proof of Theorem 3, we can apply Proposition 1 to obtain the desired inequalities given in
equation 25 and equation 26.

C.5 Proof of Lemma 6

Proof. [Lemma 6] Recall that

∇2Lq(ηq) = ∇2φ(ηq) = [∇2ψ(θq)]−1 = [∇2Lq(θq)]−1.

This establishes the equality cond(∇2Lq(ηq)) = cond(∇2Lq(θq)). Recall that

∇2φ(η) =


1
η1

. . .
1
ηn

+
(

1
1 −

∑n
i=1 ηi

)1 . . . 1
... . . . ...
1 . . . 1

 . (71)

Applying Weyl’s inequalities Bhatia (2007) to the above rank one perturbation matrix, we get

λmax
(
∇2φ(η)

)
≥ 1
ηmin

and λmin
(
∇2φ(η)

)
≤ 1
ηmin,2

.

This directly implies the desired inequality given in equation 33.

C.6 Proof of Theorem 7

Proof. [Theorem 7] Consider perturbed dynamics of the form

x(k + 1) = x(k) − α(I + ∆(k))Q(x(k) − x∗), (72)

where Q is a symmetric positive definite matrix. This encompasses the dynamics described by equation 34,
equation 35 and equation 36 by setting Q equal to ∇2φ(ηq), ∇2ψ(θq) and I, respectively and setting x∗

equal to ηq, θq and ηq, respectively.

Let κ = λmax(Q)
λmin(Q) . We will now prove that the dynamics described by equation 72 are stable, i.e.,

limk→∞∥x(k) − x∗∥= 0, if for some ε > 0, ∥∆(k)∥2 < 1
κ − ε for all k ≥ 0. This would directly imply

statement (i) by plugging in Q = I.
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By defining the error variable e(k) := x(k) − x∗, we get that

e(k + 1) = (I − αQ)e(k) − α∆(k)Qe(k). (73)

Note that α is chosen optimally assuming no noise (∆(k) ≡ 0), i.e., α = 2
λmax(Q)+λmin(Q) (see Theorem 5).

With this choice of α, we get that ∥I − αQ∥2 = κ−1
κ+1 and ∥αQ∥2 = 2κ

κ+1 , where the ∥·∥2 is the induced
2−norm which coincides in our case to the largest eigenvalue magnitude owing to symmetry. This can be
seen most directly by an eigenvalue decomposition of the involved matrices. Therefore, using the triangle
inequality and the submultiplicative rule of induced matrix norms, we get that,

∥e(k + 1)∥ ≤
(
κ− 1
κ+ 1 + ∥∆(k)∥2

2κ
κ+ 1

)
∥e(k)∥ = (1 + 2∥∆(k)∥2)κ− 1

κ+ 1 ∥e(k)∥.

Note that if ∥∆(k)∥2 <
1
κ − ε for all k ≥ 0, then (1+2∥∆(k)∥2)κ−1

κ+1 <

ρ︷ ︸︸ ︷
1 − ε

κ

κ+ 1 < 1 which gives us the chain
of inequalities

∥e(k + 1)∥ ≤ ρ∥e(k)∥ ≤ ρ2∥e(k − 1)∥ ≤ · · · ≤ ρk+1e(0).

Since ρ < 1, we get that limk→∞∥e(k)∥= 0. Since Q = I implies κ = 1, this implies statement (i).

Since the above argument only derives a sufficient condition for stability, we still need to prove statement
(ii) separately. We now construct a time-invariant perturbation ∆ such that ∥∆∥2 = 1

κ and the dynamics
described by equation 72 are unstable, i.e., x(k) does not converge to x∗. To this end, let Q = UΛUT be the
eigenvalue decomposition of the symmetric matrix Q where Λ is the diagonal matrix containing eigenvalues
λ1 ≤ λ2 ≤ · · · ≤ λn in ascending order along the diagonal. Construct ∆ as

∆ = U


0 · · · 0 0
... . . . ...

...
0 · · · 0 0
0 · · · 0 1

κ

UT .
Plugging this in equation 73 and using α = 2

λ1+λn
, we get that

e(k + 1) = Me(k), (74)

where M = (I − 2
λ1+λn

(I + ∆)Q) contains an eigenvalue at −1. Since stability of dynamics described by
equation 74 requires the spectral radius of M to be less than 1, and since M contains an eigenvalue at −1,
the dynamics are unstable. This completes the proof for statement (ii) by applying the constructed ∆ to
the choices Q = ∇2φ(ηq) and Q = ∇2ψ(θq), respectively.

C.7 Proof of Theorem 8

Proof. [Theorem 8] Following the same strategy as in the proof of Theorem 7, consider perturbed dynamics
of the form

x(k + 1) = x(k) − αQ(x(k) − x∗) + δ(k), (75)

where Q is a symmetric positive definite matrix. This encompasses the dynamics described by equation 37,
equation 38 and equation 39 by setting Q equal to ∇2φ(ηq), ∇2ψ(θq) and I, respectively and setting x∗

equal to ηq, θq and ηq, respectively. By defining the error variable e(k) := x(k) − x∗, we get that

e(k + 1) = (I − αQ)e(k) + δ(k). (76)

Note that α is chosen optimally assuming no noise (δ(k) ≡ 0), i.e., α = 2
λmax(Q)+λmin(Q) (see Theorem 5).

With this choice of α, we get that ∥I − αQ∥2 = κ−1
κ+1 , where the ∥·∥2 is the induced 2−norm which coincides
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in our case to the largest magnitude eigenvalue owing to symmetry. Define P (k) := E[e(k)e(k)T ] where the
expectation is taken over the different realizations of the noise process δ(k). Using the fact that δ(k) and
e(k) are independent random variables along with E[δ(k)] ≡ 0 and E[δ(k)δ(k)T ] ≡ I, we get that

P (k + 1) = (I − αQ)P (k)(I − αQ) + I. (77)

Since (I − αQ) has all eigenvalues in (−1, 1), it can be shown that limk→∞ P (k) = P where P solves the

P = (I − αQ)P (I − αQ) + I. (78)

To solve this equation, let Q = UΛUT be the eigenvalue decomposition of the symmetric matrix Q where
Λ is the diagonal matrix containing eigenvalues λ1 ≤ λ2 ≤ · · · ≤ λn in ascending order along the diagonal.
Note that equation 78 can be solved to obtain

P = U


1

1−µ2
1

0
. . .

0 1
1−µ2

n

UT ,
where µi are the eigenvalues of (I − αQ). Therefore, the largest eigenvalue of P is 1

1−( κ−1
κ+1 )2 = (κ+1)2

2κ .

This proves statements (i) and (ii) by plugging in Q equal to ∇2φ(ηq) and ∇2ψ(θq), respectively. Finally,
plugging Q = I and α = 2

λmin(Q)+λmax(Q) = 1 in equation 77 directly gives statement (iii).
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